2016

Emergency Glucagon Injection Device

John Corbett
Virginia Commonwealth University

Zachary Cullingsworth
Virginia Commonwealth University

Christopher Ducic
Virginia Commonwealth University

Ryan Meekins
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone

Part of the [Mechanical Engineering Commons](https://scholarscompass.vcu.edu/capstone), and the [Nuclear Engineering Commons](https://scholarscompass.vcu.edu/capstone)

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/capstone/78

This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Emergency Glucagon Injection Device

Considerations

Purpose

- In a non-diabetic person
 - Glucagon is a naturally occurring hormone
 - The pancreas uses it to raise blood glucose levels
- For a diabetic
 - The pancreas does not naturally regulate it
 - It must be artificially administered during a hypoglycemic seizure
- The existing emergency kit
 - A syringe filled with fluid and a vial containing powdered glucagon
 - Requires time-consuming preparation
- Our new design
 - Easy enough for anyone to use
 - Quick and effective

Concept

- Novel components
 - Powdered and liquid medication stored in separate chambers within the same device
 - Pull tab to be easily removed and allow mixing
- Functionality
 - Storage chamber above to prevent powder from potentially clogging needle
 - Mixing is started due to gravity pulling the powder down into the liquid
 - Pull tab design allows for necessary separation without adding complications or room for mechanical failures

Analysis

Calculations

- Challenges
 - Water and air tight
 - Force required to remove pull tab
- Solutions
 - Calculations to determine force vs. spacing
 - Force testing to confirm calculations

Conclusion

- Appropriate flange spacing
 - Provides air and water tight seal with pull tab
 - Remains air and water tight upon removal of pull tab
- Device that appropriately meets requirements
 - Easy to use
 - Compact and durable

Data

- Graph 1: Plot of calculated pull tab force vs. chamber spacing
 - Equation 1: Used to determine the pull force based on the contact area with the o-ring
 - Equation 2: Used to determine the contact area of the o-ring based on its compression

Figure 1: The current emergency kit

Figure 2: O-ring compression before and after barrier removal (δ = o-ring strain)

Figure 3: A render of the early concept

Figure 4: A render of the final design

Figure 5: A render of the final design

Contribution

- What was developed
 - A functional device
 - The purpose of the project was achieved
- Improvements over current kit
 - Significant time saved
 - Potential human errors minimized

*Provisional Patent Application Filed with the United States Patent and Trademark Office