2017

Wearable Device to Detect Cardiac Arrest

Jon Dyke
Virginia Commonwealth University

Majid Alashari
Virginia Commonwealth University

Ashraf Al Gumaei
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone

Part of the [Electrical and Computer Engineering Commons](https://scholarscompass.vcu.edu/capstone)

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/capstone/163

This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Wearable Device to Detect Cardiac Arrest

MULT603 | Team members: Jon Dyke, Majid Alashari, Ashraf Al Gumaei | Faculty Advisor: Erdem Topsakal, Ph.D.
Clinical Advisor: Joseph Ornato, M.D., FACP, FACC, FACEP

Introduction

The Problem
- According to the American Heart Association, cardiac arrest is the most prominent cause of death globally. 1
- 326,000 people per year experience sudden out of hospital cardiac arrest (SOHCA) in the U.S. 1
- Every minute that follows from the onset of cardiac arrest, the risk of death increases by 10%; brain damage becomes inevitable after nine minutes. 1

The Goal
- Construct a wearable device that can detect Cardiac Arrest and notify emergency personnel, friends, and family members.
- Design and Build the wearable device components to include heart rate detection, Bluetooth connectivity, and skin contact sensors.

Hardware Design

Photo Plethysmography (PPG) Heart Rate Detection

Hardware Features:
- Two PPG Sensors (Dorsal & Palmar positioning)
 - Two photodiode/LED sets connected to a band pass filter of the 8th order
 - Photodiode amplifiers
- Inertial Measurement Unit (MPU6050)
- Bluetooth Communication (NRF8001)
- Atmel Microcontroller (ATMEGA328P)
- Rechargeable 200mAh LIP Battery
- Skin Contact Sensors

PPG: Wavelength 528nm light incident on skin and reflected to photodiode sensitive to 540nm changes reflectance to due change in capillary volume. Generates 0.8Hz to 3Hz pulse signal. Signal amplified after passing through bandpass filter

Software Design

More IMU
HeartRate
SkinContact

Heartbeat Data : Unfiltered vs Filtered

References