2017

Ergonomic Immobilization Frame for Radiotherapy

Raheel Ahmed
Virginia Commonwealth University

Travis Alford
Virginia Commonwealth University

Talal Almutairi
Virginia Commonwealth University

Kaleem Farooq
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone

Part of the [Mechanical Engineering Commons](https://scholarscompass.vcu.edu/capstone) and the [Nuclear Engineering Commons](https://scholarscompass.vcu.edu/capstone)

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/capstone/170
Ergonomic Immobilization Frame for Radiotherapy

Project team: Raheel Ahmed, Travis Alford, Talal Almutairi and Kaleem Farooq | Faculty adviser: Dr. Woon-Hong Yeo (Mechanical Engineering) | Sponsor: Dr. Siyong Kim (Radiation Oncology) | Sponsor adviser: Mark Ostyn | Project number: MNE 520

Background
➢ Every year cancer patients are treated using radiotherapy.
➢ During radiotherapy the patient must be as still as possible and the radiation must be applied evenly and in a consistent area.
➢ Currently there is no system in place which is used for general torso immobilization when applying radiotherapy in those areas.

Materials:
➢ Any areas in the system which would come into contact with radiation had to be built using radiographic safe materials.
➢ Therefore nonmetallic materials, wood and plexiglass, were used to build the system.

Design & Fabrication
➢ A mechanical shell structure was modeled in Solidworks.
➢ The shell is the area of the system which would have pressure exerted on it from the airbags. Therefore it was important to run an analysis on the shell at 6 Psi in order to calculate the displacement of the plexiglass from the wooden frame.

Strength Analysis:
➢ Three of the four posts will be permanently fixed to the base.
➢ The person will stand in the middle of the base. The removable post will be placed and the patient will have the airbag shells on both sides of them.
➢ The airbags are then inflated on both sides immobilizing the patient.

Device Operation:
➢ Three of the four posts will be permanently fixed to the base.
➢ The person will stand in the middle of the base. The removable post will be placed and the patient will have the airbag shells on both sides of them.
➢ The airbags are then inflated on both sides immobilizing the patient.

Objectives
➢ Our objective is to demonstrate that a patient can be safely immobilized using air in order to have radiotherapy administered to them.
➢ We aim to develop a prototype which will use an air medium to immobilize patients while standing.
➢ The system will be used to treat tumors and immobilize in the general torso area, namely to treat tumors in the lung and liver.

Air Immobilization: Air was chosen for immobilization because radiation can easily flow through air and it allows so there are no physical interferences while the radiation is being applied.

Fabrication:
➢ Each component was cut using a jigsaw this incudes any part with a curve in it.
➢ A frame was developed with a deep groove inside to insert the plexiglass in order to hold it in its desired curved position.
➢ As a replacement for screws in order to join parts together a series of dowels were used.

Future Plan
➢ The system will need to be integrated with current clinical hardware.
➢ Smart electronic inflation and deflation systems need to be added.
➢ Custom airbags which will perfectly fit the semi-circular shells will need to be developed.
➢ There needs to be further development in making the shell adjustable to accommodate patients with different heights.

Conclusion
➢ We successfully fabricated a radiotherapy-compatible system which can be used to immobilize the torso region of a patient using air pressure during radiotherapy.

Acknowledgements
➢ We thank the generous support from Dr. Siyong Kim’s research group at the Radiation Oncology, VCU Medicine.