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ABSTRACT: The atomic structures, bonding characteristics, spin
magnetic moments, and stability of VCux

+, VAgx
+, and VAux

+ (x = 3−
14) clusters were examined using density functional theory. Our
studies indicate that the effective valence of vanadium is size-dependent
and that at small sizes some of the valence electrons of vanadium are
localized on vanadium, while at larger sizes the 3d orbitals of the
vanadium participate in metallic bonding eventually quenching the spin
magnetic moment. The electronic stability of the clusters may be
understood through a split-shell model that partitions the valence
electrons in either a delocalized shell or localized on the vanadium
atom. A molecular orbital analysis reveals that in planar clusters the
delocalization of the 3d orbital of vanadium is enhanced when
surrounded by gold due to enhanced 6s-5d hybridization. Once the
clusters become three-dimensional, this hybridization is reduced, and
copper most readily delocalizes the vanadium’s valence electrons. By understanding these unique features, greater insight is
offered into the role of a host material’s electronic structure in determining the bonding characteristics and stability of localized
spin magnetic moments in quantum confined systems.

1. INTRODUCTION

Understanding the manner in which transition-metal impurities
with localized spin magnetic moments couple to a nonmagnetic
surrounding material is of great importance and has garnered
significant attention in recent years.1−9 Atomic clusters that
have a transition metal encapsulated by a nonmagnetic layer are
of particular interest due to how drastically the magnetic
moment and stability evolve with size, composition, and charge.
In small metal clusters, quantum confinement leads to the
grouping of electronic states, causing the valence electrons of
atomic clusters to form delocalized electronic shells.10−14 These
shells are reminiscent of those found in atoms and have
principal and angular momentum quantum numbers that
c o r r e s p o n d t o t h e e l e c t r o n i c c o n fi g u r a t i o n s
1S21P61D102S21F14... .15,16 This electronic sequence based on
a confined electron gas in a spherical jellium model was
proposed by Knight et al., where the ionic charge of the system
is distributed uniformly over the size of the cluster.10

Theoretical and experimental efforts over the past 30 years
have shown that clusters with a closed electronic shell exhibit
enhanced stability and can be chemically inert.17−20 Pure
copper, silver, and ligated gold clusters follow this conceptual
basis, as the valence electrons of each constituent atom

contribute to form the predicted delocalized shells correspond-
ing to this model.21−26

However, it has been shown that when a dopant is added to a
cluster the valence electrons of that transition-metal impurity
will not always participate in bonding with the valence electrons
of encapsulating atoms.3,4,8,27−30 Instead of forming bonding
orbitals with the electronic states of the confined nearly free
electron gas, the valence electrons of the dopant may remain
localized on the atom. This means that the effective valence of a
vanadium dopant, [Ar] 3d34s2, is 2 when only the 4s atomic
orbital is involved in bonding, and it becomes 5 when all of the
valence electrons participate in bonding. The localized
electronic states result in a spin magnetic moment. The spin
magnetic moment is size-dependent and is affected by the
effective valence of the magnetic dopant. Identifying the cluster
size and conditions under which the effective valence of a
transition metal changes and begins to bond with the
surrounding atoms offers valuable insights into the chemistry
of transition-metal defects.
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A magnetic dopant will interact differently depending on the
chemical properties of the atoms that surround the dopant.
Therefore, by varying the host material, different properties can
be realized.31−34 To this end, we consider the circumstance
when a vanadium atom, with an electronic configuration of [Ar]
3d34s2, is encapsulated by copper [Ar] 3d104s1, silver [Kr]
4d105s1, and gold [Xe] 5d106s1 atoms. While copper, silver, and
gold are all group 1B noble metals, they have subtly different
electronic structures, which will affect the properties of the
clusters. The most significant difference across the 1B series is
the degree of hybridization between the s and d valence
electrons. Hybridization between two orbitals is maximized
when the orbitals have similar energy overlap and spatial
overlap. As shown in Figure 1, the energy of the 4s and 3d

states of the copper are quite similar, suggesting an increased
likelihood of hybridization. In silver the 4d orbitals are
significantly lower in energy than the 5s orbitals. The 6s and
5d orbitals of gold are not as close in energy as copper but
much closer in energy than silver. For reference, the filled 3d
orbitals of vanadium lie at −5 eV, and the 4s orbital of V lies at
−4.6 eV. The orbital radii of copper, silver, and gold are also
shown in Figure 1. The relativistic quantum chemical effects of
gold result in the contraction of the 6s orbital and an expansion
in the radius of the 5d orbital.35−38 Figure 1 shows that the 6s
orbital of Au is contracted to a shorter radius than that of Ag,
while the 5d orbital of Au has a larger radius than Ag. For
reference, the maximum for the 4s orbital of vanadium is at 2.82
Å, and the maximum for the 3d orbital of vanadium is at 0.81 Å.
For two orbitals to hybridize, they should overlap both in
energy and space, and the 6s and 5d orbitals of Au have
reasonable overlap in both energy and space. For copper, the
3d orbitals are much more localized than the 4d and 5d orbitals
of Ag and Au, so while the energy overlap between the 4s and

3d orbitals of Cu are excellent, the spatial overlap is poor.
Because of the combined overlap in both space and energy,
small Au clusters tend to have enhanced hybridization between
the 6s and 5d orbitals, resulting in unusual properties such as
their tendency to form planar structures. These variations in the
hybridization of copper, silver, and gold will have an effect on
how easily they form bonding orbitals with a transition-metal
impurity.
In this study, we identified the lowest ground-state structures

and spin magnetic moments of VCux
+, VAgx

+, and VAux
+. The

purpose of this work is to determine the size at which the
bonding between vanadium atom and copper, silver, and gold
begins to occur, what is the size dependence of the effective
valence of vanadium, and at what size has the magnetic
moment been quenched? At small sizes, a two- to three-
dimensional transition is observed, which affects the electronic
structure and spin magnetic moment of the cluster. Our
calculations also reveal that the enhanced sd hybridization
experienced by the gold atoms allows the 1D delocalized shell
to begin to fill at smaller size, which provides a lowered
alternating spin magnetic moment due to even/odd number of
electrons. As the clusters grow in size, the 3d vanadium states
start to participate in metallic bonding with the surrounding
atoms, and the spin moment begins to systemically decrease at
VCu8

+, VAg12
+, and VAu11

+, respectively. By using molecular
orbital analysis, a detailed evaluation of the electronic profile of
each cluster is offered. Enhanced electronic stability is found
when there are 6, 8, and 18 delocalized electrons, which
corresponds to a filled shell and agrees with a simple shell
model. This study helps to clarify the role of the electronic
profile of the host material in determining bonding character-
istics and stability of localized spin magnetic moments in
quantum confined systems.

2. THEORETICAL METHODS

Theoretical studies of the electronic structure and ground-state
geometries of VCux

+, VAgx
+, and VAux

+ were performed using a
first-principles density functional theory approach. The
calculations were performed using the Amsterdam Density
Functional (ADF) set of codes, which uses a linear combination
of Slater-type orbitals located at atomic sites, which are
represented by the TZ2P basis set.39 The exchange correlation
effects are incorporated via the PBE gradient correct func-
tional.40 The Zeroth Order Regular Approximation managed
the relativistic effects of our system. The lowest-energy
structures of VCux

+ and VAgx
+ clusters were optimized with

the deMon2k code.41 Details for these calculations were already
presented in ref 3 for the VAgx

+ clusters. In short, the PW86
exchange and correlation functional was employed for the
VCux

+ clusters.42 The V and Cu atoms were described with
DZVP basis sets optimized for generalized gradient approx-
imation.43 The initial structures for the full geometry
optimizations were taken from Born−Oppenheimer molecular
dynamics (BOMD) trajectories, which were recorded at 1500 K
with a total length of 30 ps. The average temperature in these
simulations was controlled with a Nose−́Hoover chain
thermostat.44−46 In this way several hundred structures were
optimized to fully explore the potential energy surfaces of these
systems. The ground-state atomic configurations were, there-
fore, determined by starting from several initial configurations
and optimizing the geometries by allowing full vibrational
freedom without any constraints. In each case, different spin

Figure 1. Energy levels of the s and d orbitals in a single copper, silver,
and gold atom and their respective charge density as a function of
orbital radius are shown above. The relativistic effects in gold are
responsible for the lowered energy level of the s orbitals and raised d
orbitals.
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multiplicities were investigated to find the ground-state spin
configuration.
As the cluster size increases, the 3d localized states of V begin

to hybridize with the delocalized 1D orbitals of the confined
nearly free electron gas to form delocalized orbitals. One of the
effects of delocalization is a reduction in exchange splitting. As
we will discuss later, we performed a Symmetrized Fragment
Orbitals (SFO) analysis, as implemented in the ADF code, to
examine the delocalization of the 3d orbitals of V.

3. RESULTS AND DISCUSSION

3.1. Structures of VCux
+, VAgx

+, and VAux
+ Clusters.

We first determined the ground-state structures of VMx
+

clusters, x = 3−14, M = Cu, Ag, and Au. The lowest ground-
state structures are shown in Figure 2. Our calculations found
that at small sizes VCux

+ prefers three-dimensional geometries,
while VAgx

+ and VAux
+ favor planar structures. VCux

+

continues to favor a three-dimensional geometry at larger
sizes, whereas VAgx

+ and VAux
+ undergo a transition from two

to three dimensions at x = 7. The gold vanadium clusters
experience another geometric transition. A distorted planar
structure is found for VAu8

+, and as a ninth gold atom is added
there is a final transition back to a three-dimensional structure
at VAu9

+. This result is consistent with the well-known
tendency of gold to form planar clusters.36,47,48 These structural
variations have an enormous influence on the bonding
characteristics of these small clusters.
3.2. Multiplicities and Electronic Structure. Figure 3

displays the multiplicities and electronic shell fillings of the
clusters. As already described for the VAgx

+ clusters3 the
vanadium atom can possess a 4s23d3 or 4s13d4 configuration in
these clusters. For the small VCux

+ and VAgx
+ clusters until x =

7 the change in the vanadium atom configuration determines
the alternating multiplicity of 4 and 5 of the clusters. At VCu7

+

and VAg7
+ a 1S21P6 closed-shell electron gas configuration is

reached. From here on the VCux
+ and VAgx

+ clusters follow
different orbital-filling routes. Whereas in VCu8

+ a localized 3d
orbital of the vanadium atom contributes to the electron gas of
the cluster giving rise to a 1S21P61D2 electron gas configuration
(see Figure 3) and a quenched triplet multiplicity, the
separation between the localized 3d vanadium orbitals and
the cluster orbitals remains in VAg8

+. As a consequence, VAg8
+

possesses a quintet multiplicity due to the 3d4 configuration of
the vanadium atom and a 1S21P6 electron gas configuration.
For the small VAux

+ clusters the situation is very different. In
these clusters the vanadium atom only possesses a 3d4

configuration in the case of VAu2
+. From VAu3

+ on the
multiplicity alternates between 3 and 4. As can be seen from
Figure 3 the 1D cluster orbitals are already occupied in VAu6

+,
whereas their occupation starts in VCux

+ at x = 8 and in VAgx
+

at x = 9. Note that the filling of the 1D cluster orbitals is
interrupted in the gold clusters at VAu7

+. This is due to the
1S21P6 shell closing in this cluster. In fact, all studied VM7

+ (M
= Cu, Ag, Au) clusters have the same multiplicity and orbital
filling. This underlines the importance of electron gas shell
closing in these clusters. While metallic bonding first appears
between gold and vanadium, the 3d vanadium electrons are all
participating in bonding in VCu11

+, while this occurs in VAg12
+

and VAu13
+. As a result, a more or less continuous quenching of

the cluster spin multiplicity is observed for these larger clusters
with growing cluster size. In conclusion, we find that the
vanadium 3d orbitals first become delocalized when interacting

with gold but first fully participate in the cluster electron gas
when interacting with copper.

3.3. Electronic Properties. To understand how these
electronic structure effects influence the stability of our systems,
we examined the highest occupied molecular orbital−lowest
unoccupied molecular orbital (HOMO−LUMO) gaps and
ionization potentials in Figure 4. We focus on shell, subshell,
and partial shell closures that correspond to relatively large gaps
and lower ionization potentials. The largest HOMO−LUMO

Figure 2. Ground-state geometries and associated spin multiplicities of
VCux

+, VAgx
+, and VAux

+ (x = 3−14).
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gaps are observed for VCu14
+ and VAg14

+, which correspond to
clusters with 18 valence electrons, consistent with a closed
electronic shell 1S21P61D10 cluster orbital occupation, where all
five vanadium electrons are participating in bonding. Note that
VAu14

+ has a HOMO−LUMO gap that is significantly smaller
than those for Cu and Ag. This low HOMO−LUMO gap can
be attributed to the relatively unsymmetrical geometric
configuration, which lowers the LUMO atomic 3dz2 orbital
shown in Figure 7. Peaks in the HOMO−LUMO gap are also
found for VCu7

+, VAg7
+, and VAu7

+. These clusters are all
three-dimensional, and their enhanced electronic stability is due

to their delocalized electrons having eight valence electrons
with a closed electronic shell while having three localized
electrons on the V atom. The 1S2, 1Px2, 1Py2, and 1Pz2 orbitals
are filled resulting in an electronic structure of 1S21P63d3,
implying that the effective valence of vanadium is 2 at this size.
A partial shell closure corresponding to local maxima in
HOMO−LUMO gaps of 0.54 and 0.60 eV is found for 4VCu5

+

and 4VAg5
+, respectively. Both clusters have six delocalized

electrons providing similar electronic structures of
1S21Px21Py23d

3, and their respective geometries are distinctively
planar or oblate. 4VCu5

+ has a three-dimensional oblate
structure, while 4VAg5

+ favors a quasi-planar structure. In
both cases, the vanadium atom’s 4s electrons participate in the
delocalized electronic shells via metallic bonding, and there are
three localized 3d electrons. The delocalized electron cloud
provides enhanced electronic stability due to its closed-shell
nature, as clusters with planar or oblate structures have magic
numbers that are two less than the usual magic number. The
electronic structure may be described as 1S21P43d3. This partial
shell closure is also observed in 4VAu5

+, which has a planar
structure and has its 1S2, 1Px

2, and 1Py2 orbitals filled. However,
our calculations reveal that the HOMO is raised in energy,
providing large exchange splitting and a lowered gap of only
0.32 eV. This gap is relatively small compared to the copper
and silver counterparts and does not lead to enhanced stability.
A molecular orbital analysis is used to understand the

evolution of the electronic structure of the transition-metal
doped noble-metal clusters. This provides insight into how the
electronic structure of the vanadium atom changes the bonding
characteristics and structure of the copper, silver, and gold,
respectively. When the vanadium atom is introduced into the
copper, silver, and gold clusters, respectively, the 4s electrons of
the vanadium atom will initially participate in the metallic
bonding with the cluster orbitals of the surrounding metal
atoms. Until the cluster grows in size, the vanadium 3d
electrons will remain localized on the vanadium site,
contributing a spin magnetic moment. In this context, we
define a localized orbital as having a vanadium 3d orbital
contribution of 50% or more using the gross SFO population.
Exactly when the 3d electrons of the vanadium start to join the
metallic bonding of the surrounding metal atoms depends on

Figure 3. Spin multiplicities (top) and electronic shell fillings (bottom) for VCux
+, VAgx

+, and VAux
+, x = 2−14. For comparison the multiplicities of

the neutral clusters are also shown. The gray, red, and green columns in the electron shell-filling diagrams represent the occupation of the 1S, 1P, and
1D shells, respectively. The occupation of the localized 3d vanadium orbitals is given by the blue columns that are added to the green 1D column.

Figure 4. HOMO−LUMO gaps of VCux
+, VAgx

+, and VAux
+ (x = 2−

14) as well as the ionization potentials, vertical and adiabatic, of the
corresponding neutral clusters. The gaps for nonsinglet species are for
any spin.
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the electronic structure of the cluster and the subsequent
geometry it provides.
3.4. Two- to Three-Dimensional Transition, VMx

+, x =
4−9, M = Cu, Ag, and Au. One of the more interesting
features of these bimetallic metal clusters is the transition from
two- to three-dimensional structures. While small VCux

+

clusters prefer three-dimensional geometries, our calculations
show that VAgx

+ and VAux
+ favor planar structures. To

highlight this, the molecular orbital diagrams of x = 6−9 are
shown in Figures 5 and 6. The electronic structure of 5VCu6

+

has the 1S2, 1Px
2, and 1Py2 cluster orbitals filled; however,

instead of filling the 1Pz2 orbital the vanadium atom is providing
four localized 3d electrons in the spin-majority channel. These
four localized electrons are responsible for the large exchange
splitting observed in the electronic profile and a lowered
HOMO−LUMO gap. 4VCu7

+ has a prolate three-dimensional
geometry, which accounts for the relatively large 1P6 orbital
width. The vanadium atom is contributing three localized 3d
electrons to the majority-spin channel, and the 1S2, 1Px2, 1Py2,
and 1Pz2 orbitals are filled resulting in an electronic structure of
1S21P63d3. The filling of the 1S2 and 1P6 orbitals corresponds
to eight delocalized electrons, allowing for a full shell closure,
and enhanced stability. At 3VCu8

+ both the 1S2 and 1P6 shells
are filled. As the molecular orbital diagrams reveal in Figure 6,
an additional 1D2 occupation is found. This lowers the

magnetic moment to 2 and yields an electronic structure of
1S21P61D23d↑

2.
5VAg6

+ has a distorted planar geometry. The vanadium atom
is providing four localized 3d electrons in the spin-majority
channel, as the 1Pz2 delocalized orbital is still too high in energy
to be filled. This is responsible for a spin magnetic moment of
four and substantial exchange splitting. The distorted planar
geometry of 3VAu6

+ has the 1S2, 1Px
2, and 1Py2 orbitals filled as

well; however, the vanadium atom is only providing two
localized 3d electrons to the majority-spin channel. The other
3d electron is participating in metallic bonding with the gold
atoms and contributing to the 1D cluster orbital in the spin
majority and minority channels. The 1D orbital of VAu6

+ has
less than a 15% orbital contribution from the V 3d orbitals,
clearly marking it as delocalized. The formation of these
delocalized orbitals shows that the bonding between gold and
vanadium occurs more readily than in copper or silver, in this
size regime. For the sake of comparison, this enhanced bonding
is also observed for the three-dimensional structure of VAu6

+.
However, the two-dimensional structure of 3VAu6

+ is 0.32 eV
more stable than the most stable three-dimensional one,
making the planar geometry the preferred configuration. As the
clusters grow in size, the two- to three-dimensional geometric
transition undertaken by the silver and gold vanadium clusters
occurs at VAg7

+ and VAu7
+ when there are eight delocalized

electrons. Our calculations reveal that the three-dimensional

Figure 5. Molecular orbital diagrams for VCux
+, VAgx

+, and VAux
+ (x = 6−7). The filled orange, red, and green lines represent orbitals

corresponding to the 1S, 1P, and 1D shells, respectively, and the blue lines represent the localized 3d vanadium orbitals. The dashed lines, the color
of which represents the same orbitals as the filled lines, denote the unoccupied orbitals. Pictures of the delocalized orbitals and the localized 3d
vanadium orbitals are stacked, as they appear in the molecular orbital analysis.
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structure of 4VAu7
+ is 0.10 eV more stable than the two-

dimensional structure, showing that this three-dimensional
rearrangement is preferred. This geometric transition allows the
1Pz2 orbital to drop in energy and become filled, resulting in a
closed electronic shell. After this transition, VAgx

+ continues to
prefer three-dimensional structures, and the 1D cluster orbital
eventually begins to fill. However, the gold−vanadium system
experiences a transition back to a two-dimensional structure at
3VAu8

+. In 3VAu8
+, the two-dimensional structure is 0.16 eV

more stable than the lowest-energy three-dimensional structure.
This cluster has nine delocalized electrons; however, only the
1S2, 1Px2, and 1Py2 orbitals are filled. Because of its planar-like
geometry, the 1Pz2 orbital is not filled. Again, there is enhanced
bonding between the 3d vanadium electrons and the gold,
which forms two sets of degenerate 1D cluster orbitals in the
spin-majority and spin-minority channels, respectively. This
leaves only two localized 3d electrons in the spin-majority
channel, which are responsible for a spin magnetic moment of
2. There is a final two- to three-dimensional transition at
4VAu9

+, allowing the 1Pz2 orbital to be filled. Our calculations
reveal there is also partial mixing between the vanadium 3d
electrons and the electrons in the gold, providing five electrons
in the 3d/1D orbital. This yields an electronic structure of
1S21P61D↑

23d↑
21D↓

1, with three delocalized 1D orbitals, two in
the majority and one in the minority spin channel, respectively.
An analysis of the molecular orbitals of the VCux

+, VAgx
+, and

VAux
+ clusters demonstrates that the transition from two- to

three-dimensional structures is rooted in the filling of the 1P

cluster orbital shell. In particular, all VM7
+ (M = Cu, Ag, Au)

have the same electronic structure with a 1S21P63d↑
3 orbital

filling. Because all three 1P cluster orbitals are filled a three-
dimensional ground-state structure is found for these clusters,
irrespectively of the coin metal.

3.5. Trends at Larger Sizes in VMx
+, x = 12−14, M =

Cu, Ag, and Au. A second interesting feature of these clusters
is the difference in the HOMO−LUMO gap between VCu12

+

on one side and VAg12
+ and VAu12

+ on the other. The first
obvious difference between these clusters is their structure.
VCu12

+ is found to have a Th structure that is distorted from an
Ih structure, while VAg12

+ and VAu12
+ have cuboctahedral

structures. Most interestingly, these different structure motifs
can be directly related to the valence of the vanadium atom. To
understand this in more detail we plotted the molecular orbitals
of these clusters in the top of Figure 7. This figure shows that in
VCu12

+, the valence of vanadium is 5 with all of the 1D orbitals
classified as delocalized, which is confirmed by a Mulliken
analysis that shows 1.02 μB on Cu and 0.98 μB on V, as opposed
to 2.57 μB and 2.01 μB on V in VAg12

+ and VAu12
+. The

stronger localization of the 3d vanadium orbitals in VAg12
+ and

VAu12
+ introduces in these clusters fourfold rotation axes that

pass through the V atom in the center. As a result, a
cuboctahedral structure with Oh symmetry is obtained. On the
contrary, the larger delocalization of the 3d vanadium orbitals
in VCu12

+ into the 1D cluster orbitals yields a Th structure that
can be interpreted as Jahn−Teller distortion of a fictitious
icosahedral reference structures due to the partial occupation of

Figure 6. Molecular orbital diagrams for VCux
+, VAgx

+, and VAux
+ (x = 8−9). The filled orange, red, and green lines represent orbitals

corresponding to the 1S, 1P, and 1D shells, respectively, and the blue lines represent the localized 3d vanadium orbitals. The dashed lines, the color
of which represents the same orbitals as the filled lines, denote the unoccupied orbitals. Pictures of the delocalized orbitals and the localized 3d
vanadium orbitals are stacked as they appear in the molecular orbital analysis.
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the 1D shell. Note that the energy ordering of the triple and
double degeneracy is inverted in Th with respect to the
corresponding Oh splitting in the cuboctahedral VAg12

+ and
VAu12

+ clusters. That this inverted energy ordering, that is,
double degeneracy below triple degeneracy, is not found in
VCu12

+ (see Figure 7 top left) is due to the full occupation of
the triple degeneracy and partial occupation of the double
degeneracy. This stabilizes the fully occupied triple degeneracy
slightly below the partially occupied double degeneracy. As a
consequence the HOMO−LUMO gap of the minority-spin
channel is only 0.26 eV. Further, the delocalized nature of the
orbitals result in a reduced exchange splitting. The correspond-
ing spin-majority channel has a large gap of 1.79 eV consistent
with it having a closed shell. In the case of VAg12

+ and VAu12
+

the electronic structure of the clusters is 1S21P63d↑
21D↑

31D↓
3.

Two of the 3d electrons remain localized on the vanadium
atom, with 3d occupations of 65% and 57% for VAg12

+ and
VAu12

+, respectively. This localization favors a cuboctahedral
distortion with low-lying triple degeneracies as shown in Figure
7. For this reason, the exchange splitting is larger than in
VCu12

+, and the HOMO−LUMO gap increases to relatively
large values of 0.76 and 0.69 eV. What is surprising is that at
this size, the copper is forming delocalized orbitals with
vanadium more easily than gold, while at small sizes gold more
readily formed delocalized orbitals with vanadium.
In the case of the spin-quenched VCu14

+, VAg14
+, and

VAu14
+, the clusters all have shell structures of 1S21P61D10 as

shown in the bottom of Figure 7. The vanadium has an effective

valence of 5, and the 3d orbitals are part of fully delocalized
orbitals. The 3d V contributions for this orbitals are 15−25%
on VCu14

+, and VAu14
+, and 25−35% for VAg14

+. VCu14
+ and

VAg14
+ have large gaps of 1.46 and 1.21 eV, consistent with

their closed electronic shells. VAu14
+ has a smaller gap of 0.65

eV due to the cluster’s unsymmetrical structure. The broad-
ening in the 1D shell is seen in Figure 7, and the LUMO that is
constructed from the atomic V dz2 orbital is pulled down in
energy resulting in a reduced gap. A third unusual case that
deserves some consideration is the peak in the HOMO−
LUMO gap seen in 3VAu10

+, which has 14 valence electrons.
The HOMO is a 1D orbital in the minority-spin channel, and
the LUMO consists mostly of dz2, dxz, and dxy vanadium states.
There are two degenerate 3d vanadium states in the spin-
majority channel that are also mostly composed of dz2, dxz, and
dyz states. The prolate geometry of 3VAu10

+ allows the orbitals
in the xy plane to drop in energy, while the dz2, dxz, and dyz
states are raised in energy. This results in a significant orbital
splitting and a respectable HOMO−LUMO gap of 0.61 eV.

3.6. General Trends and Peculiarities between Cu, Ag,
and Au. Perhaps the most puzzling result in studying the
bonding of VCux

+, VAgx
+, and VAux

+ is that at small sizes, x =
6−9, the 3d orbitals of vanadium bond most readily with gold,
while for larger sizes, x = 10−13, vanadium bonds most readily
with copper. Further evidence of this phenomenon is that the
multiplicities of the VAux

+ clusters are consistently either less
than or the same as those of VCux

+ and VAgx
+ from x = 3−7,

while from 8 and larger the multiplicities of VAux
+ and VCux

+

Figure 7. Molecular orbital diagrams for VCux
+, VAgx

+, and VAux
+ (x = 12 and 14). The filled orange, red, and green lines represent orbitals

corresponding to the 1S, 1P, and 1D shells, respectively, and the blue lines represent the localized 3d vanadium orbitals. The dashed lines, the color
of which represents the same orbitals as the filled lines, denote the unoccupied orbitals. Pictures of the delocalized orbitals and the localized 3d
vanadium orbitals are stacked as they appear in the molecular orbital analysis.
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are less than or equal to those of VAgx
+. Because the spin

magnetic moment is inversely correlated with the metallic
bonding, this suggests that small gold clusters form more
metallic bonds, while this is no longer true at larger sizes.
Notably, this shift in enhanced bonding with vanadium
corresponds to the transition from two- to three-dimensional
structures with VAux

+ clusters bonding most readily in two-
dimensional structures, and VCux

+ bonding more readily in
three-dimensional structures. To understand this variation in
electronic structure, occupation of the s and d orbitals of the
noble-metal atoms are examined. We have two hypotheses for
the differences between the interaction of vanadium with
copper, silver, and gold. One hypothesis is that the increased
electron affinity of gold causes differences in the bonding. Our
second hypothesis is that variations in the sd hybridization
within Cu, Ag, and Au result in differences in the bonding.
Figure 8 shows the Hirshfeld charges on the vanadium and

noble-metal atoms. As expected Au is found to be the most
negatively charged of the noble metals; however, the difference
in charge is quite small, typically in the range of 0.01−0.02 e−

per atom.
Next we examine the s and d occupation of the noble-metal

atoms. If the noble-metal atom is behaving as an alkali metal,
one would expect that the s occupation would be 1.0, and the d
occupation would be 10.0, while hybridization would result in
an increase in the s occupation and a decrease in the d
occupation. Figure 8 shows that the Ag 5s occupation is 0.90 e−

and that the 4d occupation ranges from 9.90 e− at small cluster
sizes to 9.78 at larger cluster sizes. On the one hand, copper has
an even lower 4s occupation, ranging from 0.86 to 0.67 e−,
while the d band is filled with an occupation of 9.85−9.80 e−.
On the other hand, gold exhibits a different trend in orbital
occupations with the 6s orbital ranging from 1.08 to 0.86 e−,
with a significantly higher 6s occupation in the two-dimensional
clusters. The 5d occupation of Au is significantly lower than for
the other noble metals, with an occupation ranging from 9.69
to 9.59 e−. This increase in 6s occupation and decrease in 5d

occupation is consistent with gold having enhanced 6s-5d
hybridization. The two-dimensional VAux

+ clusters, where x =
3−6 and 8, exhibit peaks in the 6s occupation and valleys in the
5d occupation, consistent with the planar structures having
enhanced 6s-5d hybridization. As mentioned earlier, this is due
to the relativistic contraction of the 6s orbital and expansion of
the 5d orbital resulting in a better than expected spatial overlap
between the orbitals.
Also, an even−odd alternation is seen in the V−Au bond

distances, while they are not seen in the V−Cu and V−Ag
average bond distances. These shortened V−Au bond distances
offer further evidence that the localized 3d electrons on the
vanadium may successfully couple to the 5d and 6s states of the
gold atoms due to superior hybridization and resulting in more
contribution to the delocalized orbitals. However, this effect
seems to be limited to planar structures, as the hybridization
apparently removes charge from the 5d orbitals perpendicular
to the planar structure and increases the charge in the plane of
the structure. This pronounced sd hybridization is most clear
when considering 3VAu6

+, which has 10 valence electrons and
an electronic configuration of 1S21Px21Py23d↑

21D↑
11D↓

1. Of
these valence electrons, eight are contributing to the delocalized
orbitals, and two are localized on the vanadium atom. The
interesting point about this cluster is that instead of filling the
delocalized 1P6 shell, the planar geometry is forcing the 1Pz2
delocalized orbital to be high in energy, and the increased sd
hybridization provided by the relativistic quantum effects allows
the 1D orbital to partially fill. The atomic contributions reveal
that 34% of the 1D delocalized orbital in the majority spin
channel is coming from the 3d states on the vanadium, while
66% is coming from the gold. There is also a delocalized 1D
orbital in the spin-minority channel that is responsible for the
lowered multiplicity of 3. This partial filling occurs at a much
smaller size for the gold than the copper and silver vanadium
systems, which begin to fill their 1D delocalized orbital at
3VCu8

+ and 4VAg9
+, respectively. Once the bonding is both in

and out of plane in a three-dimensional structure, the
hybridization is reduced in gold. This means that for three-
dimensional structures of this size, the copper atoms form
metallic bonds with vanadium more readily, while the silver and
gold atoms are slightly less likely to form delocalized orbitals
than copper. This is confirmed by our molecular orbital plots
and the lower alternating spin magnetic moment. The ability to
form new metallic bonds with the vanadium are in this larger
size range primarily driven by the energy levels of the s and d
orbitals of the copper, silver, and gold atoms. Thus, the
explanation for the enhanced delocalization in small VAux

+ can
be attributed to the relativistic quantum effects experienced by
the gold atoms and the subsequent enhanced sd hybridization it
provides,37 while the enhanced delocalization is seen in larger
VCux

+ clusters.

4. CONCLUSIONS
The electronic and geometric properties of VCux

+, VAgx
+, and

VAux
+ clusters have been investigated. Our calculations have

shown that the atomic structure of the host cluster plays a
significant role in determining the bonding characteristics of a
dopant with a localized spin magnetic moment. The metallic
bonding between the noble metal and the vanadium atom
begins as the 1D delocalized shell begins to form, although the
degree of delocalization will depend on the properties of the
surrounding atoms. The stability of these bimetallic clusters
changes as the delocalized electronic shells are filled, and an

Figure 8. Average Hirshfeld charges of Cu, Ag, Au, and V in the
VCux

+, VAgx
+, and VAux

+ clusters. The Mulliken population of the
valence s and d orbitals of Cu, Ag, and Au in the VCux

+, VAgx
+, and

VAux
+ clusters.
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increase in electronic stability is observed. The electronic
stability is mostly consistent with a split-shell model in which
the valence electrons are partitioned between a delocalized shell
and electrons that are localized on the vanadium atom. Which
shell is filled depends on whether the geometry of the cluster
assumes a two- or three-dimensional structure. To understand
this bonding scheme the molecular orbital diagrams of each
cluster are considered, and a shell-filling model is applied. The
first subshell closure occurs at x = 5, where the 1S2, 1Px2, and
1Py2 orbitals are filled, and there are three localized 3d electrons
remaining on the vanadium atom. At 4VCu7

+, 4VAg7
+, and

4VAu7
+ each cluster has eight delocalized electrons, which

correspond to a closed electronic shell and enhanced electronic
stability. As the clusters grow in size, the 3d states of the
vanadium will start to participate in hybridized bonding,
eventually fully coupling to the host metal atoms at 1VCu14

+,
1VAg14

+, and 1VAu14
+. At larger sizes, we observe other local

maxima in the HOMO−LUMO gap for 3VAu10
+, 3VAg12

+, and
3VAu12

+, which can be attributed to their respective geometric
configurations. A detailed analysis of the two- to three-
dimensional geometric transition of both the gold and silver
clusters is provided, and the consequences of this transition are
expounded upon by examining the average bond distances of
each cluster. The origin of the enhanced delocalization in two-
dimensional VAux

+ clusters is caused by the enhanced 6s-5d
hybridization that occurs because of relativistic effects; however,
this hybridization is reduced once the VAux

+ clusters form
three-dimensional clusters. In three-dimensional clusters, the
VCux

+ clusters delocalize most readily. Thus, this study has
revealed that by changing the composition of a nonmagnetic
material that encapsulates a magnetic dopant there are subtle
effects that may change the bonding between the magnetic
center and the dopant’s surroundings. By using different
dopants, future studies could be undertaken to see how varying
the energy levels of the dopant will affect the bonding scheme
of the constituent cluster.
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