Evolution of the Spin Magnetic Moments and Atomic Valence of Vanadium in VCu_x^+, VAg_x^+, and VAu_x^+ Clusters ($x = 3 - 14$)

–Supporting Information–

William H. Blades,1,2 Arthur C. Reber,1 Shiv N. Khanna,*1 Luis López-Sosa,3 Patrizia Calaminici,*3 Andreas M. Köster3

1 Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
2 Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
3 Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 MEXICO
Figure S1 Copper, silver, gold, and vanadium binding energies of VCu_n^+, VAg_n^+, and VAu_n^+ ($n = 2 – 14$).
Figure S2. The average bond distance between the vanadium atom and the surrounding copper, silver, and gold atoms are plotted. While V$_{Cu_n}^+$ and V$_{Ag_n}^+$ have relatively steady trends, there is an even-odd effect in gold between $n = 2 – 8$.
Figure S3. Average Orbital Energy of the S, P, and 3d/D orbitals of VX$_{2-14}^+$ (X= Cu, Ag, and Au).
Figure S4. Delocalized orbital width of VX$_{2-14^+}$ ($X =$ Cu, Ag, and Au). These values were obtained by subtracting the highest energy value associated with the S, P, and 3d/D orbital by the lowest energy value of that same orbital.