2014

Integrating Phage Therapy into Western Medicine

Jacob B. Jaminet
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters

Part of the Bacteria Commons, Bacterial Infections and Mycoses Commons, Bioinformatics Commons, Biological Factors Commons, Heterocyclic Compounds Commons, Immunology and Infectious Disease Commons, Medical Biotechnology Commons, Medical Molecular Biology Commons, Medicinal Chemistry and Pharmaceutics Commons, Molecular Biology Commons, and the Viruses Commons

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/uresposters/215

This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Integrating Phage Therapy into Western Medicine

Jacob Jaminet, Faye Prichard· Virginia Commonwealth University, Richmond VA · HONORS 200

Introduction

The World Health Organization reported in 2000 concerning the “growing threat of antimicrobial resistance.” Bacteriophages are highly specific viruses that only infect a small range of bacteria. Using bacteriophages to treat bacterial infections is called phage therapy. Research in phage therapy began in the early 20th century until the introduction of antibiotics. While the US and other Western nations moved away from phage therapy, the Soviet Union and its satellite nations continued to research phages. As phage therapy was a standard of care in the countries it was used in, the studies done were not double-blind, placebo controlled and not applicable to the standards of the Food and Drug Administration (FDA) and European Medicines Agency (EMA).

Mechanics of Phage Growth

Viruses replicate by inserting their genome into bacteria to replicate and express their DNA (Figure 1). A phage can be either lysogenic or lytic (Figure 2). A lysogenic phage will initiate lysis, cell death, immediately after all the phage parts are made and assembled. A lysogenic phage genome will remain latent in the bacteria’s genome for several generation until lysis is induced.

Phage therapy involves giving a patient a does of phage which would then replicate at the site of infection (Figure 3) until there was no longer a sufficient host to infect. Phage therapy can be applied after identifying the bacteria and matching the bacteria to a phage. The other way involved giving the patient a cocktail of phage with a wide host ranges.

Characteristics of a Good Phage for Therapy

- Bacteriophage identification
- Potency and biological activity of bacteriophages
- Control of sterility
- Manufacturing process considerations
- Lytic phases
 (Parracho, Burrowes, Enright, McConville, & Harper, 2012)

Potential Problems

- Gene Transfer
- Changing Host range
- Antibiotic Resistance Transfer
- Identification of bacteria

Figure 1. Sulakvelidze, Alavidze, & Morris, 2011, p. 654 Intralytix

Figure 3. Parracho, Burrowes, Enright, McConville, & Harper, 2012, p. 283

Bacteriophages

<table>
<thead>
<tr>
<th>Bacteriophages</th>
<th>Antibiotics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very specific</td>
<td>Target all micro flora</td>
<td>High specificity can be disadvantageous</td>
</tr>
<tr>
<td>Replicate at the site of infection</td>
<td>Metabolized and eliminated from body</td>
<td>Expensive growth of phage may require fewer administrations</td>
</tr>
<tr>
<td>No serious side-effects described</td>
<td>Multiple side effects including allergies and secondary infections</td>
<td>Minor side effects of phage therapy may have been caused by release of endotoxins</td>
</tr>
<tr>
<td>Phage resistant bacteria remain susceptible to other phages with similar host range</td>
<td>Resistant to antibiotics not limited to targeted bacteria</td>
<td>Antibiotics selected for many resistant bacterial species</td>
</tr>
</tbody>
</table>

Future Focus

“Concentrate on pathogens that represent the greatest problems with respect to antibiotic resistance like staphylococci, enterococci, klebsiellae, and enterobacteria. Some Klebsiella pneumoniae and E. coli isolates are already resistant against all known antibiotics and patients with these pathogens are doomed. Targeting these infections with phages might thus address a medical emergency.” (Brüssow, 2012, p. 141).

Future of Phage Therapy

Many studies of phage therapy are in different stages of production. There are available phage cocktail available from Microgen in Russia and the Elavita Institute in Georgia where phage therapy is used as an over the counter drug. The Nestle Research company is currently studying these phage cocktails under double-blind, placebo controlled conditions (Brüssow, 2012). One study that is treating pseudomonas infections in the ear have research stage III clinical trials which are the last phase before distribution to the public (Wright, Hawkins, Ånggard, & Harper, 2009).

One of the largest hurdle for phage therapy is the financial hurdle with new drugs costing $10-$50 million to create (Brüssow, 2012). Companies are unwilling to pursue phages as they cannot patent the phage itself. They can however patent the technology and techniques used to isolate and propagate their phage.

Acknowledgements

I want to thank Prof. Faye Prichard for teaching me how to properly analyze a scientific paper. I also want to thank Prof. Allison Johnson who introduced me to bacteriophages in Phage Lab course. I also want to thank the VCU Honors college for supporting all the research endeavors of their students.

References

