2016

Effects of HIV and Drugs of Abuse on the Blood-Brain Barrier

Gopika Hari
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters

Part of the Other Pharmacy and Pharmaceutical Sciences Commons

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/uresposters/247

This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
INTRODUCTION
Despite effective systemic therapy, HIV-1 infection within the brain results in neuronal degradation and neurocognitive dysfunction. This neurocognitive dysfunction is worsened in the setting of opiate abuse. The central nervous system (CNS) is protected by the blood-brain barrier (BBB), a selective barrier regulating the passage of substances from peripheral circulation into the CNS. The BBB is composed of microvascular endothelial cells encased by basal lamina, pericytes, and perivascular astrocyte endfeet. Intracellular junctional complexes comprising of adherens and tight junctions are located between the endothelial cells and form tight barrier, preventing traffic of compounds between cells (paracellular flux). Clinical and in vitro data suggest that BBB integrity is compromised in HIV infection, which leads to a leaky barrier. Brain microvascular endothelial cells also express efflux transporters that are responsible for the extrusion of substances from the brain back into the blood. P-glycoprotein is a drug efflux transporter involved in the efflux of many antiretroviral drugs and overexpression of P-glycoprotein can limit therapeutic concentrations of substrate drugs within the brain. Additionally, P-glycoprotein expression and/or function may be altered in the setting of HIV infection and in the setting of drug abuse.

OBJECTIVES
The purpose of this study was to analyze the impact of HIV-1 Tat and morphine on P-glycoprotein (Pgp) as a means to study the impact of substance abuse drugs on drug-efflux proteins in the BBB. This will be done by:
- Analyzing Pgp function through Rhodamine-123 cellular accumulation studies
- Analyzing Pgp expression through Western Blots

METHODS
Rhodamine-123 Accumulation
In order to study the impact of morphine, a commonly used opiate drug of abuse, on drug-efflux proteins at the BBB, the effects of morphine and the HIV-1 protein Tat on P-glycoprotein function were studied via intracellular accumulation studies. hCMEC/D3 cells, a human derived brain microvascular endothelial cell line, were pre-treated for 24h with Tat (100nM), morphine (500nM), or Tat (100nM) + morphine (500nM). 12-well plates with 3 replicates of each treatment group were used. Accumulation was determined by measuring fluorescence from the prototypical P-glycoprotein substrate, rhodamine-123, following cell lysis.

P-glycoprotein Western Blots
The effects of Tat and morphine on Pgp protein expression were measured by immunoblot. Gels were run in an electrophoresis box and protein was transferred to the membrane using a wet transfer. Blots were then blocked with milk and probed for both P-glycoprotein and beta-actin (to provide controls for each sample). C219 (1:200 dilution) was used for Pgp primary antibody, and anti-beta actin (1:4000 dilution) was used for beta-actin primary. Both samples used anti-mouse HRP-linked substrate (1:20000 dilution) for secondary antibodies.

RESULTS

Comparison of Rhodamine-123 Accumulation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>Tat</th>
<th>Morphine</th>
<th>Tat+Morphine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodamine-123 Accumulation as % of control</td>
<td>100 ± 5</td>
<td>70 ± 4</td>
<td>80 ± 3</td>
<td>50 ± 2</td>
</tr>
</tbody>
</table>

Protein expression of P-glycoprotein was measured by immunoblot analysis. Pgp expression was significantly decreased in all treatment groups as compared to control: Tat (63 ± 4.2%, p < 0.05), morphine (64 ± 13.5%, p < 0.05) and Tat+morphine (69 ± 15.6%, p < 0.05).

CONCLUSIONS
Increase in accumulation of Rhodamine-123 within cells treated with Tat, morphine, and Tat+morphine treatment groups indicate decreased ability of P-glycoprotein to efflux substrates out of the cell. This is complemented with decreased expression of the P-glycoprotein protein in endothelial cell membranes under each of the treatment groups. Both experiments indicate increased leakiness of the BBB when exposed to HIV-1 protein and opioids. This has implications in both determining substances that lead to increased BBB breakdown and factors that lead to increased permeability of cells to antiretroviral therapy drugs.

FUTURE STUDIES
Areas for further study include:
- Analysis of Tat and morphine on other drug efflux proteins, such as breast cancer resistance protein (BCRP) and the multidrug resistance proteins (MRPs).
- Intracellular accumulation of drugs used in the treatment of HIV (such as atazanavir or lopinavir) would allow for analysis of the impact of P-glycoprotein in efflux of antiretroviral therapy drugs.

REFERENCES
1. Abbott et al., 2010 Neurobiol Dis
3. Mahajan et al., 2008, J Clin Immunol
4. Hayashi et al., 2005, J Neurochem

ACKNOWLEDGMENTS
Special acknowledgements to Dr. MaryPeace McRae and the Honors Summer Undergraduate Research Program at the Honors College at VCU for the generous support and mentorship.