Mathematical Modeling of Nutrient Signaling and Growth in Saccharomyces cerevisiae

Amogh P. Jalihal
Virginia Polytechnic Institute and State University, jamogh@vt.edu

Pavel Kraikivski
Virginia Polytechnic Institute and State University, pavelkr@vt.edu

T.M. Murali
Virginia Polytechnic Institute and State University, murali@cs.vt.edu

See next page for additional authors

Follow this and additional works at: https://scholarscompass.vcu.edu/bamm
🧩 Part of the [Cell Biology Commons](https://scholarscompass.vcu.edu/bamm), [Medicine and Health Sciences Commons](https://scholarscompass.vcu.edu/bamm), [Molecular Biology Commons](https://scholarscompass.vcu.edu/bamm), and the [Physical Sciences and Mathematics Commons](https://scholarscompass.vcu.edu/bamm)

https://scholarscompass.vcu.edu/bamm/2018/friday/16

This Event is brought to you for free and open access by the Dept. of Mathematics and Applied Mathematics at VCU Scholars Compass. It has been accepted for inclusion in Biology and Medicine Through Mathematics Conference by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Presenter Information
Amogh P. Jalihal, Pavel Kraikivski, T.M. Murali, and John J. Tyson

This event is available at VCU Scholars Compass: https://scholarscompassvcu.edu/bamm/2018/friday/16
Mathematical Modeling of Nutrient Signaling and Growth in *Saccharomyces cerevisiae*

Amogh Jalihal\(^1\), Pavel Kraikivski, Ph.D.\(^2\), T.M. Murali, Ph.D.\(^3\), and John Tyson, Ph.D.\(^2\)

\(^1\)Genetics, Bioinformatics and Computational Biology, Virginia Tech
\(^2\)Department of Biological Sciences, Virginia Tech
\(^3\)Department of Computer Science, Virginia Tech

The regulation of cell growth and division has long been considered a central problem in cell biology, and much work has been done, both theoretically and experimentally, towards expanding our understanding of the processes of cell division and cell size sensing \([1]\). However, there has been almost no systematic investigation of the molecular mechanisms that regulate cell growth pathways in response to fluctuating nutrient environments \([2]\). Due to the complex nature of the regulatory networks governing cell growth, mathematical modeling is an appropriate tool to investigate the dynamic responses of these pathways to various perturbations.

Here, we propose an ODE-based dynamical model of the regulatory mechanism governing growth in the budding yeast *S. cerevisiae*. The model is composed of key molecular regulators from the nutrient sensing and signaling pathways in yeast that ultimately modulate overall protein synthesis in the cell, in turn affecting cellular growth rate. By incorporating into this model the diverse nutritional contexts in which experiments are carried out, we aim to systematically explore the space of nutrient-sensitive phenotypes in the budding yeast. To this end, we demonstrate that our model correctly predicts the nutrient-dependent phenotypes of a number of genetic and chemical perturbations studied in the literature. In the future, we plan on integrating this model of nutrient signaling with the comprehensive model of the yeast cell cycle \([3]\), with the goal of refining the phenotypic predictions made by the cell cycle model.

References

