2018

Examination of Methylation Sites for Forensic Age Determination from Semen

Christian Renwick
Virginia Commonwealth University

Sarah J. Seashols-Williams
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters

Part of the Other Life Sciences Commons

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/uresposters/267

This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Examination of Methylation Sites for Forensic Age Determination from Semen

Christian Renwick | Sarah Seashols-Williams, Ph.D.
Virginia Commonwealth University, Department of Forensic Science, Richmond VA 23284

Introduction

- Age determination is critical to forensic sexual assault investigations; adequate age estimation would assist investigators with a correct identification
- Age-related changes in cytosine methylation (C → 5mC) at certain loci have been reported from blood and saliva in several studies
- Common methylation analysis involves beadchip assays and pyrosequencing. Few forensic laboratories are equipped with these instruments and high costs prevents routine usage
- Methylation-sensitive high resolution melting (MS-HRM) measures methylation status easily and cost effectively, using bisulfite-treated and PCR amplified DNA
- Previous MS-HRM study has shown methylation at the ELOVL2 and FHL2 CpG islands in blood samples directly relate to age

Methods

Extraction
- Semen samples from 7 individuals were extracted using QIAamp DNA Investigator Kit

Bisulfite Conversion
- Bisulfite conversion of extracted DNA was conducted using EpiTect Bisulfite Kit

PCR amplification and High Resolution Melt Analysis
- Amplification was conducted using QuantStudio 6 Flex Real-Time PCR System
- DNA standards of known methylation values were co-analyzed: 0, 25%, 50%, 75%, 100%
- Melt Curve analysis was conducted using EpiTect HRM PCR Kit

Standard Curve Modeling and Methylation Prediction
- Df value was assigned to absolute minimum value on difference plot with 100% methylation standard set as baseline
- Df values of DNA standards were used to generate reference standard curve

ELOVL2 Standards Melt Curve

Non-linear Regression with Df Values as a Function of Percent Methylation

\[y = d + \frac{a - d}{1 + \left(\frac{x}{c} \right)^b} \]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>ELOVL2</th>
<th>FHL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.95347</td>
<td>3.22090</td>
</tr>
<tr>
<td>b</td>
<td>6.5962</td>
<td>9.55867</td>
</tr>
<tr>
<td>c</td>
<td>6.51756</td>
<td>3.24281</td>
</tr>
<tr>
<td>d</td>
<td>13495287.1</td>
<td>4656593.3</td>
</tr>
<tr>
<td>x/% Methylation</td>
<td>% Methylation</td>
<td></td>
</tr>
<tr>
<td>y/Df Value</td>
<td>Df Value</td>
<td></td>
</tr>
</tbody>
</table>

Results

- Methylation values calculated as negative percentages using the standard curve regression were categorized as “Unknown”
- Minimal resolution for methylation values below 50% inhibited accurate quantification

Conclusions

- Results indicate that no correlation may exist between age and methylation status at these loci in semen
- Small sample size prohibits extrapolation to population

Potential Future direction

- Expand analysis of ELOVL2 and FHL2 loci to other forensically relevant body fluids; evaluate potential variability in methylation differences across male and female samples
- Evaluate ELOVL2 and FHL2 loci in blood to confirm published results
- Resources permitting, conduct an exploratory Whole-Genome Sequencing analysis for semen to identify semen-specific loci related to age

Acknowledgements

- Special thanks to the VCU Undergraduate Research Opportunities Program for providing funding and support for this project