Using Crosslinked Hyaluronic Acid (HA) and Collagen Scaffolds with Sustained Brain-Derived Neurotrophic Factor (BDNF) Release for Post-SCI Nerve Regeneration

Panth Doshi
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters
Part of the Molecular, Cellular, and Tissue Engineering Commons

© The Author(s)
BACKGROUND

- Traumatic events resulting in spinal cord injuries (SCIs) often leave people paralyzed or with partial loss of motor function below the site of injury. The physical disabilities arising from traumatic events prevent people from functioning at the same level as pre-injury.

- The immune response after SCIs protects the blood brain barrier. **Astrocyte hypertrophy** and release of **chondroitin sulfate proteoglycans (CSPGs)** are chemical barriers to regeneration. Meanwhile, the formation of the **glia limitans** is a physical barrier to regeneration.

Figure 1: Most common traumatic events that result in spinal cord injury.

Figure 2: Common CSPGs act as chemical inhibitors to nerve regeneration

Figure 3: Rupture of the blood brain barrier results in a physical barrier to nerve regeneration

METHODS

A literature review on the inhibitory post-SCI environment and the efficacy of currently used hyaluronic acid (HA) and collagen scaffolds was completed to propose a viable scaffold polymer to regenerate tissue and restore neural function.

REFERENCES

RESULTS

- HA scaffolds and collagen scaffolds reduce leukocyte extravasation, decreasing inflammation, to counteract the inhibitory post-SCI environment. HA scaffold implants resulted in less inflammation, lower GFAP intensity, and level of CSPGs

- Immune response, signified by inflammatory cells and different leukocyte types, shifted away from the center of injury to the periphery.

- Implanting HA scaffolds and collagen scaffolds into injured spinal cords resulted in more neurofilaments than the natural healing process.

- Regenerating neurons had more linear longitudinal growth and more myelinated axons

- Linear aligned nerve regeneration is correlated with better functional recovery than random regeneration

Figure 4: On average, scaffolds alone or growth factors alone are unable to restore much motor function in rats. However, by combining a scaffold polymer with BDNF, functional recovery increases greatly

Table: Average BBB scores of rats with different treatment methods (4 weeks post-SCI)

<table>
<thead>
<tr>
<th>Treatment Method</th>
<th>BBB Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA + BDNF</td>
<td>10</td>
</tr>
<tr>
<td>Collagen + BDNF</td>
<td>16</td>
</tr>
<tr>
<td>BDNF alone</td>
<td>4</td>
</tr>
<tr>
<td>HA alone</td>
<td>8</td>
</tr>
<tr>
<td>Collagen alone</td>
<td>4</td>
</tr>
<tr>
<td>Untreated</td>
<td>4</td>
</tr>
<tr>
<td>Uninjured</td>
<td>21</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

I would like to thank Professor Mary Boyes, Jennifer Mak, and the HONR 200 teaching assistants for their guidance throughout my research project. Special thanks to Herb Hill and UROP for printing this poster.

FURTHER INFORMATION

Panth Doshi is a Biomedical Engineering major in the Honors College at VCU.

Email: doship@vcu.edu

LinkedIn: linkedin.com/in/doship