2018

Influence of Gluteus Medius Strength on Interlimb Asymmetry in Female Recreational Runners.

Morgan Meyer
Virginia Commonwealth University

Olivia Moody
Virginia Commonwealth University

Kathryn Harrison
Virginia Commonwealth University

Gregory Crosswell

Bhushan Thakkar
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters
Part of the [Biomechanics Commons](https://scholarscompass.vcu.edu/biomechanics-commons), [Exercise Science Commons](https://scholarscompass.vcu.edu/exercise-science-commons), and the [Other Kinesiology Commons](https://scholarscompass.vcu.edu/other-kinesiology-commons)

© The Author(s)

Recommended Citation

This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
INTRODUCTION

- Approximately 74% of runners experience an injury each year with women being twice as likely to develop running injuries around the hip and the knee as men. [1]
- Gluteus Medius (GM) plays a significant role in lower limb alignment, especially in the frontal and transverse planes by its influence on the pelvis and the femur. [2] The GM, posterior chain muscles, and pelvis work together to provide stability and allow for forward propulsion in walking and running. [3]
- Previous studies have determined that GM weakness contributes to abnormal lower limb kinematics and kinetics during dynamic tasks like running and jumping. [2,4] These deficits include increased peak hip adduction angle (HA), hip internal rotation angle (HI), knee abduction moment (KA), and rearfoot eversion angle (RE). [2,4] (Figure 1A)
- Running-related injuries are most often single-sided and are partially attributed to lower limb movement and loading asymmetries. [5]
- Symmetry Angle (SA) is a commonly used, robust measure of determining symmetry. [6]
- Previous studies have suggested that clinicians should consider screening female athletes related injuries are most often single-sided and are partially attributed to lower limb movement and loading asymmetries. [5]
- No study has evaluated the role of unilateral GM strength on interlimb asymmetry for peak HA, HI, KA, and RE during running.

PURPOSE AND HYPOTHESIS

- The purpose of this study was to determine if GM strength has an influence on the interlimb asymmetry calculated using SA during running in female recreational runners.
- We hypothesized that female runners with stronger GM would demonstrate decreased interlimb asymmetry for HA, HI, KA, and RE during running.

SUBJECTS

- Thirty healthy female recreational runners running at least 10 km per week participated in this study. (Table 1)

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (years)</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>Miles/Week (km)</th>
<th>Strength (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stronger</td>
<td>32.47±10.13</td>
<td>1.67±0.06</td>
<td>64.68±8.31</td>
<td>21.07±9.64</td>
<td>25.85±2.30</td>
</tr>
<tr>
<td>Weaker</td>
<td>38.33±10.09</td>
<td>1.65±0.06</td>
<td>58.44±4.35</td>
<td>25.54±12.19</td>
<td>16.77±1.45</td>
</tr>
</tbody>
</table>

RESULTS

- Female runners with weaker GM demonstrated significantly increased asymmetry for HA (18.80±24.11 vs 12.20±24.11 %, p=0.02), HI (18.47±24.11 vs 12.53±24.11 %, p=0.03), and KA (18.33±24.11 vs 12.67±24.11 %, p=0.04).
- For RE, the weaker group had greater asymmetry (16.13±24.11 vs 14.87±24.11 %, p=0.35), but the relationship was not significant.

METHODS

- Isometric GM strength was measured using a handheld dynamometer (Lafayette Instrument Co., Lafayette, IN) for the right lower limb (Figure 2A).
- Participants were divided into two groups of stronger and weaker using group mean and standard deviations with 15 participants in each group.
- Retoreactive markers were bilaterally placed on the lower extremity using the modified Cleveland clinic model (Figure 2B).
- Three dimensional (3D) gait analysis was performed during a 30 second treadmill run on an instrumented treadmill (Treadmetrix, Park City, UT) at a speed of 2.98 m/s.
- Kinematic data was collected using a 5-camera motion analysis system (Qualysis, Goteborg, Sweden) at 120 Hz.

ANALYSIS

- Visual 3D software (C-Motion, Bethesda, MD) was used to generate peak HA, HI, KA, and RE for the bilateral lower extremities.
- The SA is the angle formed by the vector of two values (left and right) when plotted in a Cartesian coordinate system where values of the right leg are plotted on the x-axis and values of the left leg on the y-axis. (Figure 3A)
- SA was computed using the peak HA, HI, KA, and RE values from both the limbs. To calculate SA for HA, X_L was the peak HA of the left lower limb and X_R was the peak HA of the right lower limb during that running trial.
- SAS (Version 9.3 - Copyright © 2014, SAS Institute Inc., Cary, NC) was used for all statistical analysis with an alpha level of 0.05 being considered statistically significant.
- A Shapiro-Wilk test for normality was conducted and it showed that all variables were not normally distributed.
- Wilcoxon Two-Sample Test was performed to look at differences between the two groups for HA, HI, KA, and RE.

REFERENCES