Mapping New Olfactory Bulb Neurons at the Single-Cell Level Using Iron Oxide-Assisted MRI

Sarah Izabel

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters

© The Author(s)

Downloaded from

This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Mapping New Olfactory Bulb Neurons at the Single-cell Level Using Iron Oxide-Assisted MRI

Sarah S. Izabel1,2, Nikorn Pothayee1, Steve Dodd1, Gretchen Greene1, Alan P. Koretsky1

1Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
2Department of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA

Abstract

Neurogenesis in the subventricular zone (SVZ) of adult mammalian brains persists throughout life. Precursor cells that are continuously born in the SVZ migrate long-distance to the olfactory bulb (OB), where they differentiate into specific neurons. The distribution of new neurons in the OB has been studied via histological and intravital techniques, which are limited longitudinally and in depth of imaging. In the past decade, in vivo studies using magnetic resonance imaging (MRI) have shown the possibility of detecting single cells and tracking new neurons in the OB, where precursor cells were labelled with iron oxide. In this study, neural progenitor cells in the SVZ were labeled using micro-sized iron oxide particles (MPIOs) and their migration to the OB was detected with MRI. MPIO was confirmed to be present in new neurons via immunohistochemistry and MRI signals were overlapped with MPIOs showing that MPIO-generated MRI contrast can be used to detect single neuronal cells in the OB.

Adult Neurogenesis in the SVZ

The subventricular zone (SVZ) is where neurogenesis takes place in adult mammals. Progenitor cells migrate long distance via the rostral migratory stream (RMS). In the OB these immature precursor cells differentiate into specific subtype of interneurons, which are thought to play a crucial role in odorant input processing and environmental adaptation.

MRI as a longitudinal tool for tracking long-distance cell migration in the OB

Past studies have shown that micron sized iron oxide particles (MPIOs), a potent MRI contrast agent, can be used to labeled the migrating immature neurons from the SVZ into the RMS and the OB. The injection of MPIOs into lateral ventricles allows the contrast agent, can be used to labeled the migrating immature neurons from the SVZ and the OB. The migration of the immature neurons can be visualized in live animals by MRI, which enables longitudinal experiments and allows for the assessment of the migration dynamic.

Methods for identifying MPIOs in the OB

Workflow for identification of MPIOs in OB sections by both MRI and Fluorescent imaging

MPIOs generate hypointense signals in the OB

MPIOs mostly label neurons in the OB

MPIOs are not internalized by astrocyte and microglia

Immunohistochemistry shows that, in the OB, most particles are not within microglia or astrocytes.

Conclusions and Future Directions

MRI Imaging and immunohistochemical analysis showed that MPIOs can be used to identify single neurons in the olfactory bulb of adult rats. The selectivity of the neurons labeled in the OB may open an avenue for investigating adult neurogenesis and its roles in neurological disorders. Using MRI as a complementary tool to other in vitro and in vivo methods in future studies, will elucidate the effects of odorant stimuli on the distribution of new neurons at single-cell level.

Acknowledgements

The National Institutes of Health, the Office of Intramural Training and Education (OITE), and the Undergraduate Scholarship Program (UGSP) are acknowledged for providing funding and support to this scientific endeavor.

References