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A student who is learning or relearning elementary geometry can benefit from 

applications that occur in everyday life. By explaining these applications, the study of geometry 

is not only enhanced, but the student is left with an appreciation for their relevance. Some of 

these applications can be used in a pedagogical content course. They range from the household to 

the construction industry to landscaping to hydraulics. All involve elementary geometry mainly 

involving areas and volumes. 

Finding the Rectangle 

Early in their study, Mathematics Specialist trainees learn that a necessary and sufficient 

condition for a parallelogram to be a rectangle is that the diagonals are equal. So, how is this 

interesting fact useful in daily work? One practical example is a method used by builders and 

involves ensuring that the foundation for a rectangular building, including many houses or rooms 

or parts thereof, is indeed rectangular. First, stakes with boards are installed on each comer. 

Then strings are tightly strung around the site in a pattern around nails on the comer boards (see 

Figure 1). 
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Figure 1. Aerial view of a foundation. 

These string lines are used by the foundation bricklayers to plumb the necessary 

rectangular foundation. The problem is that using a square to measure the corner angles marked 

by the string is difficult to produce the necessary accuracy. So, the builder gets the string 

configuration reasonably close to producing the corner right angles, then measures diagonals for 

equality, and refines the string configuration until the diagonals are equal. This geometry has 

been used for decades by many builders. Students in several Mathematics Specialist geometry 

classes have enjoyed using an electronic range finder to measure outdoor "rectangular" regions. 

"Would You Like Shag or Berber?" 

A household application can be as simple as ordering the correct number of square yards 

of carpet to cover a 9' x 12' room. While students may experiment correctly using the 

measurement in feet to produce 9'x 12' = 108 square feet, they must then convert to square yards 

by recalling that 3 'x 3' = 9 square feet which is one square yard. Then, they divide I 08 by 9 and 

correctly obtain 12 square yards. Another method of calculation would be to convert the original 

measurements to 3 yards by 4 yards and easily multiplying to obtain 12 square yards. 

"How Much Paint?!" 

Another simple household application involves how many gallons of paint to buy in order 

to paint the four walls and ceiling of a rectangular room measuring 10'x14'x8'(high). 

Instructions on the gallon paint can state that normal coverage is 275 square feet. Of course, two 
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walls measure 14' x 8' each and the other two measure 10' x 8' each. Adding the 384 square feet 

of wall space to the 14' x 10' = 140 square feet of ceiling surface yields 524 square feet. Since 

the room has a 4' x 7' door in one wall which will not be painted, we can be comfortable with 

buying two gallons of paint. 

Pouring the Footing 

An additional building example involves the measurement in cubic yards of the amount 

of concrete to order to pour the "footing" on which the brick foundation will be laid for 

constructing a 60' x 120' ranch style house. The footing consists of pouring cement into a 16" 

wide trench so that the depth of the cement is uniformly 8" deep. Converting these measurements 

16" 4' 8" 2' 
into feet, the resulting calculation will be - = - , - = - so that the volume of concrete in 

12" 3 12" 3 

4' 2' 8 
the trench is - x - x 360 = - square feet times 360 feet long= 320 cubic feet. Recalling that 

3 3 9 

a cubic yard is 3 'x 3 'x 3' = 27 cubic feet, the resulting division, 320 + 27, yields slightly less 

than 12 cubic yards. 

An interesting question results from our calculation. Since the depth and width of the 

poured concrete is constant for most normal building applications, can we simplify repeated 

calculations by finding a constant K (which we will call "the footing constant") which can always 

be multiplied by a varying length to quickly produce the number of cubic yards of concrete 

needed? Students can decide whether to work with units of either feet or yards. One solution is 

8 
to notice that our calculation above involves - x 360' (length) + 27. So, if we use 

9 

8 8 
- + 27 x length = -- x length, the result will be the cubic yards required. Thus, the constant 
9 243 

8 
K is--~ .033. So, for example, if we need to pour 260' of uniform footing, we need 

243 

.033 x 260 = 8.58 cubic yards of concrete. Effectively, we will order 9 cubic yards of concrete. 
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The calculation requires the calculation ! x 360' + 27 = ! + 27 x 360 '. 
9 9 

Use number properties 

to verify this equality. 

Circular Logic 

Landscaping offers further opportunities to explore geometry. The problem: how many 

Belgian path stones 8" long will we need to form a circular mulch border of a l 0' radius from the 

center of a tree which has a 12' circumference at its base? 
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Figure 2. The tree's radius. 

We can calculate the circumference of the circle as 2;r x 10' = 20 'x 3.14 = 62.8' or 

approximately 62 ½ feet. Dividing by 12, we determine that each stone is 2/3 foot long so that 

½ 2 188 3 
62 + - = -- • - = 94 stones. This answers the original question, but to construct the circle 

3 3 2 

accurately, we need the radius R measured from the outside of the tree. Here, 27r R = 12' so that 

R = 1.90'. Thus, the radius of the tree can be reasonably approximated as 2' so that the working 

radius R from the outside base of the tree is 8'. 

If a Tree Falls ... 

We encountered a similar problem when cutting down a large oak tree by using an 

available chain saw which has a 20" blade. The radius of the tree could not exceed 20" so that 

the tree could be cleanly cut through the center and not left standing precariously. Using a tape 

measure, we measured the circumference near the base to be 12'. However, this yields 

6' 
2;rR = 12'. Without a calculator available, we decided to use 7r ~ 3, so that R = - = 2'. 

3 

Unfortunately, this cannot be cut with a 20" blade. Since we know 7r = 3.14 is a slightly larger 



GEOMETRY EXAMPLES ENCOUNTERED ... 87 

divisor which will produce a slightly smaller actual radius, we are erring on the side of caution. 

The solution here was to move the tape measure up the tree until we reached a point where the 

5' 
circumference was 10'. Then, 2JrR = 10' produced a - radius. Converting the fraction to 

3 

inches produced a 20" radius which provided a safe cutting margin for a perfect cut. 

From the Dock, Part I 

Oyster ( or crab) floats are used to nurture and protect seedling oyster "spats" until they 

mature, at which time they become marvelous cleansing agents for river and bay water. A quick 

plumbing problem, related to these floats, involves 4' lengths of capped PVC pipe. How many 2" 

diameter pipes would it take to replace one 4" diameter pipe for water flow or buoyancy if sealed 

for air space? Let's consider uniform lengths of l '. Hence, the 4" pipe has a radius of 2" and a 

cross section of 22 Jr= 47r square inches which yields a volume of 48Jr cubic inch per foot. For 

the 2" pipe, the radius is l ". Thus, the cross section area is i2 Jr = Jr square inches, so that the 

four 2" pipes will produce the same volume per foot. It is interesting to try to draw the four 2" 

pipes fitting inside of the 4". The four circles inside the 4" diameter circle will overlap in a 

manner that makes the physical areas difficult to compare. Physically, the four 2" pipes will not 

fit inside the 4" pipe, thus making physical comparisons non-obvious for a mathematically easy 

problem. 

A similar example involving a comparison of 1" and 2" pipes requires work with 

fractions, since the radius of the l" pipe is ½". The resulting 4 to 1 ratio of the number of pipes is 

the same as in the previous comparison. 

Figure 3. Theoretical PVC pipe placement. 
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From the Dock, Part II 

The aforementioned oyster float part poses an interesting geometrical construction 

problem. Such floats can be constructed from relatively "stiff," I" x l" mesh wire by making 

careful bends, using a rubber mallet and table edge, to form edges, and then cutting and 

discarding some corners to allow for closed corners. For starters, think about making an open 

box by cutting square corners from a rectangular sheet of paper and folding up the edges. The 

difference here is that the float which will result when the capped PVC tubes are later attached to 

the sides for flotation must be a closed rectangular solid. We have the capability of clamping 

edges together with "pig rings" which also can be used to hinge a cut piece of wire on one end to 

form a "door flap." One suggested design is similar to the one shown in Figure 4. 

Fold Lines 

6" 

Cut for flap 

Figure 4. Aerial view of oyster float plan. 
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When cut, bent, and assembled, what is the inside volume of the float? Calculation in inches 

yields 24" x 39" x 6" = 5615 cubic inches. 

Can you construct a model of similar design using a 5' x 4' piece of l" coated wire 

which still has a 6" cage height, but yields a larger enclosed volume? Hint: one solution can be 

achieved by folding from the 5' side and using a cut from one end to make the flap on the other 

end. This will produce a volume of 5,832 cubic inches. Although the volume is slightly 

increased, there might be other dimension considerations which could be pertinent. Can you 

devise this design or better diagram by folding and cutting a 5" x 4" sheet of paper? 

Poolside Problem 

A simple volume problem which involves filling a swimming pool with water leads to an 

interesting gallon-per-cubic-foot equivalence. Consider a swimming pool which has rectangular 

dimensions of 18' x 36' with an average depth of 6 feet. Multiplying these dimensions in feet 

yields 3,888 cubic feet, but the problem is that water is delivered in gallons. If you try to guess 

this relationship, you will probably not be close to the actual answer. An employee of the 

MathScience Innovation Center in Richmond, Virginia built a reinforced cubic foot model for our 

geometry class, since no model of a cubic foot could be found on site where metric dominated. 

The students used a quart container to pour water into the model. They researched the answer 

and were convinced that 7.48 gallons filled the cubic foot container. Thus, the swimming pool 

required 3888 x 7.48 = 29082.24 gallons of water. 

Shingling the Roof 

An area problem occurs repeatedly in roofing construction. This problem is usually 

effective after discussions of the Pythagorean Theorem. How many "squares" of shingles are 

needed to roof a building with an A-frame roof if the view of the building is like that in Figure 5? 
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Figure 5. Aerial view of an A-frame roof. 

The slope or pitch of this roofis called a 6/12. Using the Pythagorean Theorem rather 

than making somewhat dangerous measurements from atop the roof, we find the rafter length as 

~122 + 62 = .J144 + 36 =$so= 13.446'. Since the rafter overhangs the side by 6", we use 

14' for the rafter length. Now 14' x 40' = 560 square feet which yields I, 120 square feet for 

both sides of the roof. Since a square of shingles is 100 square feet, we need 11.2 squares. 

Effectively, we will order 12 ){ squares to allow for a 10% cutting loss. This will require thirty­

seven bundles of dimensional shingles which require three bundles per square. 

House of the Two Gables 

Siding the gable ends of a garage with a A-frame roof as in Figure 5 poses an interesting 

observation which can save half of the possible waste of 4' x 8' sheets of T-111 siding. The 

sheets of siding have an outside (finished side) which has grooves cut every twelve inches and an 

inside which is smooth. Thus, the sides are not interchangeable. Obviously, six sheets of siding 

will cover the 24 D span on the building front, cutting the tops off on the proper angles. Note that 

the cuts from the right front will not work on the left front. Can you show, using a piece of paper 

with lines on the finish outside, how the cut off pieces can be used on the gable on the building 

back so that we can eliminate waste and need not order six more sheets for the back gable? 
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Figure 6. Gable end. 

Let It Rain 

As a final example, we investigate an actual rain gauge that will measure more than 5" of 

rain so that the scale in inches is marked approximately 4 ½ inches per inch. Since the gauge is 

nearly 2 J tall, with this large scale per inch, it can be read from a distance of 10-20 yards. The 

problem is for students to determine the accuracy of the scale by performing actual measurements 

on the gauge which has a circular collection top much larger than the tube it feeds water into (see 

Figure 7). 
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Figure 7. Oversized rain gauge. 

Some discussion about how to measure rainfall is useful. Assuming rainfall is uniform in 

a certain locale, we could use a pot of any dimension, so long as the edges are vertical, to measure 
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that an inch of rain in the pot represents a rainfall of one inch. Similarly, if the level of water in a 

swimming pool rises one inch, we received an inch of rain, even if the pool is kidney shaped or 

otherwise. The problem here is to compare the area of the collector top to the area of the 

collector tube to determine the scale on the tube representing an inch of rain. It is difficult to 

measure the diameter of the closed tube even when a centimeter tape measure is used. Students 

usually resort to a somewhat more accurate measurement of the circumference in both places and 

converting the measurement of the corresponding radii. This provides a good millimeter problem 

to find each radius since the ratio of the square of the corresponding radii will yield the ratio of 

( 1r R
2 J the corresponding areas --} and hence, the ratio producing the inch scale on the tube. A 

1rR1 

1rR2 
follow-up discovery question is to find a ratio --} which will give an exact inch scale of 4: 1. If 

1rR1 

the student is familiar with square roots, this will not be difficult. Perhaps a patent could be 

acquired on a new rain gauge. 

Conclusion 

While not all of these applications might be interesting to every student, they do illustrate 

a wide range of mathematical applications. By using these geometrical applications in a practical, 

hands-on manner, teachers gain confidence in their problem solving abilities which they will, in 

tum, pass on to their own students. Enthusiasm is infectious, and these students may need little 

encouragement to find examples of geometry in their own lives. If students are persuaded to 

present their "findings" during classroom presentations with the promise of extra credit, they may 

surprise themselves with their own ability to teach. 


