The Induction of Dendritic Cell Endoplasmic Reticulum Stress by Irradiated-Tumor Derived Extracellular Vesicles Supports the Adoption of a Pro-Tumor Phenotype

Sitara Mahmoodi

Follow this and additional works at: https://scholarscompass.vcu.edu/uresposters

© The Author(s)

Downloaded from
The Induction of Dendritic Cell Endoplasmic Reticulum Stress by Irradiated-Tumor Derived Extracellular Vesicles Supports the Adoption of a Pro-Tumor Phenotype

Sitara Mahmoodi, Gene C. Clark, & Ross Mikkelsen
Massey Cancer Center & Virginia Commonwealth University, Richmond VA
Department of Biology, Radiation Oncology, & Internal Medicine

Background

• Radiotherapy is a cancer treatment that uses high doses of radiation to kill cancer cells by damaging their DNA.
• Exosomes are small extracellular vesicles produced in great numbers by cancer cells playing an important role in intercellular communication with DCs6. When irradiated, they produce high levels of ER stress.
• ER stress induces pro-tumorigenic phenotypes in myeloid cells and has been demonstrated to lead to the suppression of anti-tumor immunity.
• Dendritic Cells (DCs) are known as professional antigen presenting cells necessary for the presentation of tumor antigens to cytotoxic T cells and has been demonstrated to lead to the suppression of anti-tumor immunity.
• Interleukin-6 (IL-6) and IL-10 cytokines which then inhibits the production of IL-6 & IL-10 expression compared to untreated IR exosomes in B16 & LLC cells.

Question: Will inhibiting ER stress in cancer cells inhibit the induction of a tolerogenic DC phenotype by ER stress/p38 Dependent Manner

Methods

Production of Bone Marrow Derived Dendritic Cell

Results

Figure 1. IR exosomes treated with 500uM TUDCA inhibited the production of IL-6 and IL-10 expression.

Abstract

Recent studies have shown that long term exposure of tumor cells to sub-lethal levels of endoplasmic reticulum (ER) stress leads to the suppression of anti-tumor immunity through the manipulation of myeloid cells in the tumor microenvironment. While this effect seems to be dependent upon the ability of cancer cells to “transfer” the state of ER stress to myeloid cells, i.e., to initiate ER stress signaling in myeloid cells independent of the original stimulus, exactly how stressed cancer cells accomplish this is still not well understood.

Our focus is on exosomes which are extracellular vesicles and how they play a significant role in this mechanism. In recent studies, we demonstrated how extracellular vesicles secreted by irradiated melanoma cancer cells (IR-EVs) induce ER stress in Bone Marrow Dendritic Cells (BMDCs). In addition, BMDCs treated with IR-EVs demonstrated enhanced STAT3 and p38 signaling, two related pathways that have been demonstrated to induce tolerogenic DC phenotypes, in an ER stress dependent manner. We’ve also found that IR-EVs stimulate the production of IL-10, a major negative regulator of antitumor immunity, from BMDCs and that this expression can be eliminated by STAT3 inhibition.

However, using a T-Cell Receptor/ tumor-associated antigen (TCR/TAA) system to model the interaction between BMDCs and cytotoxic T cells from a tumor rejection antigen (Pmel/gp100), we have observed that pharmaceutical ER stress or STAT3 inhibition dramatically inhibited T cell proliferation and IFN-gamma expression in response to antigen pulsed BMDCs. This suggests that ER stress and STAT3 signaling are both necessary for the presentation of tumor antigens to cytotoxic T cells, indicating that inhibition of these pathways would not be a desirable approach to enhance antitumor immunity in vivo.

Conclusions

• IR exosomes stimulate STAT3 & P38 expression, initiating a pro-tumor tolerogenic phenotype in DCs.
• The inhibition of ER stress inhibits STAT3 and p38 expression as well as IL-6 & IL-10 cytokines which then inhibits the production of a pro-tumor tolerogenic phenotype in DCs.
• IR exosomes stimulate STAT3 and p38 through an ER-stress dependent manner.

Future Directions

We plan to find a way to inhibit the production or activity of IR-EVs directly to inhibit their effects on DCs in the body while leaving STAT3 signaling in proliferating T-cells unaltered.

Acknowledgements

I would like to acknowledge Dr. Ross Mikkelsen, Dr. Sarah Golding, Gene C. Clark, The Wang Lab, & The Mikkelsen Lab for their help & guidance.

References