
 Meehean | Computer Networks Flexible Assessment | 35

INTRODUCING FLEXIBLE
ASSESSMENT INTO A
COMPUTER NETWORKS
COURSE: A CASE STUDY

Joseph Meehean
University of Lynchburg
meehean.j@lynchburg.edu

https://doi.org/10.25891/en8j-cz52

ABSTRACT
With overall positive results and limited
drawbacks, I have adapted modern
pedagogical techniques to address a
common difficulty encountered when
teaching a computer networks course. Due
to the tiered nature of the skills taught in the
course, students often fail unnecessarily.
Using mastery learning, competency-based
education, and specifications grading as a
foundation, I have developed a course that
allows students with varied skills and
abilities to pass. The heart of this approach
is the flexible assessment of programming
assignments which eliminates due dates and
allows students to have their work graded
and regraded without penalty. Flexible
assessment also defines an interactive
approach to grading which gives students
immediate formative feedback and does not
penalize initial failure. Using these
instructional techniques, I improved the
course completion rate by 30 percentage
points compared to similar courses. Flexible
assessment works best for upper-level
courses that are not prerequisite courses
because a student can pass without
mastering all of the skills; their grade
reflects the percentage of skills mastered
rather than an average of the competency of
all the skills taught. Drawbacks of flexible
assessment include limited time for in-class
preparation, limited opportunities to review
programming assignments and the increase
in time required for grading.

KEYWORDS
mastery learning, specifications grading,
flexible assessment, computer science
education

36 | Journal of Mathematics and Science: Collaborative Explorations 19

A common challenge in creating a Computer Networks course is designing the course in
a way that allows students with a variety of skill-levels and academic abilities to succeed. The
tiered nature of the skills developed in the course means that students who stumble early are
often unable to catch up. Lower performing students may master only a subset of the skills
covered by an assignment, having only a limited proficiency of the remaining skills. Because
each assignment builds on the full set of skills learned in previous assignments, a student who
does not master an assignment starts the next assignment at a severe disadvantage. The
cumulative nature of this disadvantage causes poor performing students to quickly fall so far
behind that they cannot pass the class.

Borrowing techniques from competency-based learning (Gervais, 2016), specification
grading (Berns, 2020; Nilson, 2014; Sanft et al., 2021) and mastery learning (Bloom, 1968;
Garner et al., 2019; Keller, 1968), I have developed a Computer Networks course that allows
lower performing students to pass. Programming assignments are often the component that
prevents struggling students from passing the class. In response, I have created a flexible
assessment pedagogy to allow the students to develop skills at their own pace. In this pedagogy,
there are no due dates for assignments and I regrade assignments without penalty as often as the
student likes. Students schedule an interactive, formative grading session with me whenever they
feel their project is finished or has seen substantial improvement since the last grading session.
This style of grading gives students immediate feedback and allows them to develop and build
confidence.

Early results indicate that the flexible assessment pedagogy shows promise. It has
increased the number of students who finish the course with a passing grade by 30 percentage
points when compared to courses with a similar difficulty and audience.

There are some drawbacks and limitations to this technique. The flexible assessment
pedagogy will not work for courses that are prerequisites for other courses because a student may
not learn all of the prerequisite skills. Any skills they do learn, however, they master. The lack of
due dates means that different students are often working on different programming assignments
at the same time. This limits the amount of in-class review I am able to do for programming
assignments. Perhaps the biggest drawback for the instructor is the amount of time spent grading.

Related Work

I have not developed radical new teaching methods. Rather, I have borrowed and adapted

existing instructional approaches to fit the needs of my Computer Networks course and my
students. The biggest influences for flexible assessment are competency-based education
(Gervais, 2016), mastery learning (Bloom, 1968; Garner et al., 2019; Keller, 1968), and
specifications grading (Berns, 2020; Nilson, 2014; Sanft et al., 2021).

Competency-based education (Gervais, 2016) focuses on students developing a
predetermined set of competencies or real-world skills. The term is broadly used, but some
hallmarks include unlimited regrading, self-pacing, student-directed learning, and frequent
formative assessment. The largest difference between my Computer Networks course and a
traditional competency-based course is that this course was not student-directed. I provided a
schedule for course material, gave lectures, and assigned written homework that covered the
theoretical aspects of the course content. Another major difference is that students were given 15
weeks to complete as many assignments as possible, unlike a traditional competency-based
course where students have as much time as they like.

 Meehean | Computer Networks Flexible Assessment | 37

Mastery learning proponents posit that 90% of students can master the required learning
outcomes of a course given sufficient time and help from the instructor. Common themes in
mastery learning are that students work at their own pace, participate in formative evaluations
with detailed feedback, and repeat assessments until they demonstrate mastery and, therefore, are
ready to move on to the next topic. Like Bloom’s (1968) Learning for Mastery and Keller’s
(1968) Personalized System of Instruction, my form of flexible assessment allows students to
work at their own pace and provides formative evaluations with detailed feedback. In contrast to
Bloom and Keller’s models, my form of flexible assessment does not require students to achieve
full mastery of one programming assignment before moving on to the next. Additionally, my
course is time-limited, so I do not expect that 90% of the students will achieve mastery of all the
required skills. Garner et al. (2019) provide a literature review of the use of mastery-based
learning in computer sciences courses. The review includes only a small number of papers,
which limits their conclusions. The authors conclude that most universities using mastery-based
learning do so only for introductory computer science courses and that instructors often add
traditional exams to provide summative assessment. The review finds that the primary
motivation for transitioning to mastery learning is to improve learning outcomes in student
populations with wide-ranging aptitudes.

Specifications grading (Nilson, 2014) creates a tiered assessment system. Each
assignment grade is binary, pass or fail. Assignments are grouped into bundles or modules. A
certain group of bundles must be passed before a student can earn a specific grade (e.g., bundles
1 – 2 for a D, bundles 1 – 4 for a C, etc.). This model includes a limited number of resubmissions
for failed assignments. Modified specifications grading has been applied by other computer
science instructors. Berns (2020) proposes a system called binary grading which is similar to
specifications grading but allows unlimited resubmissions. Sanft et al. (2021) propose a modified
specifications grading system with pass/fail assignments. Resubmissions are allowed, but incur a
10% penalty per retry. Sanft et al. show an improvement in student learning outcomes for middle
to low performing students. The flexible assessment pedagogy that I developed allows both
unlimited resubmissions and partial credit, rather than pass/fail, for programming assignments.

Concurrently with my own work, Lionelle et al. (2023) have developed their own flexible
assessment model with a focus on large introductory computer science courses. This model
includes formative assignments with no deadlines and no-penalty resubmissions. This model also
adds a small number of summative assignments with a limited number of resubmissions and hard
deadlines. Mastery of a topic is required for students to move to the next. This model has shown
improved student performance in courses that follow the introductory courses, demonstrating
that students are mastering foundational skills. In contrast to my own flexible assessment
pedagogy, Lionelle et al. make extensive use of auto grading systems which limits the type
feedback that can be provided to students. This limitation is a result of focusing on large classes
where one-on-one formative assessments would be impossible.

Problem Addressed and Desired Aspects of a Solution

Students often fail Computer Networks unnecessarily. The skills and knowledge required

for programming assignments in the course build on one another. That is, a student who does not
successfully complete the first assignment cannot complete the second assignment since the
skills developed in the first assignment are a prerequisite. Using a traditional approach to

38 | Journal of Mathematics and Science: Collaborative Explorations 19

teaching this course, a student who stumbles on the first assignment may never catch up and will
ultimately fail the course.

With a perfect solution to this problem, a student who masters a subset of the skills taught
in this class would pass. Students could learn a subset of skills at their own pace. And, any skill a
student does learn, they learn well. Students who master all of the skills earn an A; students who
master fewer skills earn a lower grade.

Course Description

Computer Networks is the study of the design and use of computer networks, with a

focus on the modern Internet. The course focuses on the theoretical underpinnings of the modern
Internet and the specific algorithms used to implement it. In particular, this course discusses
client-server programming and its relation to the application, transport, network, data, and
physical layer protocols of the Internet. Computer Networks is an upper-level elective for
computer science majors and minors at the University of Lynchburg. Roughly half of our upper-
level students opt to take this course. The content of this course is divided into theory and
practice. The theory portion is focused on the foundational ideas and algorithms that define the
modern Internet. The practical component, on the other hand, focuses on learning how to use the
powerful network interfaces provided by programming languages, software libraries, and
operating systems. Most graduates who work in computer networks will be developing software
which uses the network, a practical application of this course. As good professionals, they should
have a strong grasp of the theoretical foundations that power the networks they are using.
Therefore, class time is divided between lectures, which cover the theoretical aspects, and hands-
on-activities that cover the practical aspects. Students work in small groups to discuss and
understand the theoretical concepts and they may work in pairs on the practical components.

Course Setup

Assignments for this course are divided into two categories: written assignments and

programming assignments. Written assignments cover the theoretical aspects of computer
network design and are intended to replace traditional exams. There are five of these assignments
and they consist of four to five short answer questions. Students are given a week to complete
each of these assignments. The typical student can complete them in a few hours. These
assignments align with a traditional form of assessment: they have a fixed start and due date and
students are only allowed to attempt them once, without regrades. These assignments compose
35% of the final grade.

The programming assignments provide students with practice writing software that use
computer networks. There are three programming assignments and the typical student needs
several weeks consisting of nine to ten hours per week of work to complete them. These
assignments are the heart of the flexible assessment pedagogy. There are no fixed due dates
except that they have to be completed by the end of the semester. Students are given freedom to
decide how they complete these assignments. I also provide flexibility in the grading of these
assignments; students can have these assignments graded as often as they like without penalty.
These assignments comprise 65% of the final grade.

Through these programming assignments students build a simple client-server network
file system, like a greatly simplified File Transfer Protocol (FTP) (Postel & Reynolds, 1985).

 Meehean | Computer Networks Flexible Assessment | 39

Each assignment builds upon the skills (and sometimes the code) students developed in the
previous assignment. The first assignment focuses on building a network-based key-value store
(see Appendix A for the full assignment). A key-value store is a simple database that stores key-
value pairs. A user can ask a key-value store to save a key like “email-address” associated with a
value like “somebody@example.edu”. Later the user can ask the key-value store to retrieve the
value for the key (email-address) to get back the associated value (somebody@example.edu).
For students, the difficult part of this project is developing the network protocol to allow the data
to be stored on one computer and accessed or updated from another computer. In the second
assignment, students convert their key-value store into a network flat file system which is a file
system that does not have folders or directories. At the end of the second assignment students
have a network-based file system that allowed files to be added, retrieved, and appended to. The
third and final assignment improves the reliability of the flat file system by adding features that
could gracefully handle crashed or frozen clients and servers, protocol errors, or corrupted files.

I created these assignments thematically to allow students to demonstrate a mastery of a
collection of skills that cover aspects of network programming. Program 1 contains a set of skills
a programmer needs to build a rudimentary, text-based, client-server network application.
Program 2 introduces the skills required to build a more complex client-server network
application that can handle non-text data like video files. And Program 3 includes techniques to
make a network application resilient to failures. As an example, see Table 1 for the set of skills
developed by a programmer who completes Program 1.

Table 1
Skills Demonstrated by Completing Program 1
Program 1 Skills
Initiate and accept TCP connections
Send and respond to text-based commands
Develop a protocol to differentiate between commands and user data
Develop a protocol to differentiate between text-based errors and requested data
Develop a protocol that allows all text-based data to be transmitted (incl. special characters)
Gracefully recover from non-fatal errors in the server

Several aspects of these programming assignments are more flexible than their

counterparts in a traditional networks course. Students are allowed to develop their own network
protocol to govern communication between the client software and the file server. A network
protocol defines the ordering of network messages (e.g., who initiates the communication) and
the data format of the messages. In a more traditional networks course, the professor would
define this protocol for the students. Students write the code for these assignments using the Java
programming language. Java provides a myriad of ways to interface with the computer network,
from low-level interactions using bytes to sending high-level programmer defined objects. I give
the students the freedom to use any of Java’s network interfacing tools. Again, in a traditional
class, students would be given specific directions about how to use Java in their assignments.

The most flexible aspect of this approach is the lack of due dates or a rigid sequencing of
the assignments. When a student feels that their project is ready, I grade it. Students earn points
for each feature of the assignment that works to specification. If during the grading session a

40 | Journal of Mathematics and Science: Collaborative Explorations 19

feature does not work, the student is encouraged to spend more time working on it. When the
student fixes the broken feature, I regrade the assignment. The student receives full points for
each additional feature that works. This iterative approach to grading gives the student multiple
opportunities to learn a skill with helpful feedback along the way. When a student feels that they
have learned enough from an assignment, they move on to the next assignment, even if they have
not developed all of the features of the previous one. This is a significant contrast to mastery
learning and specifications grading. If the next assignment proves to be too difficult, the student
can return to a previous assignment to reinforce the skills that it covered and earn more points.
This is in stark contrast to the traditional rigid sequencing of a computer science course where a
student is given a fixed amount of time to complete an assignment and must move on to the next
assignment whether they are ready or not. The flexible sequencing of assignments in this course
matches the nature of network software development quite well. A student must understand the
rudimentary aspects of network protocols and network software development before they can
attempt to build more complex real-world network applications. In a traditional networks course,
if a student struggles with the first programming assignment it is impossible for them to
complete any of the following assignments. This ensures that they fail the class. Using the
flexible approach, students accrue network development skills at their own pace.

A key part of this flexible approach is setting clear expectations and standards for the
students. At the start of each assignment, students are given the grading rubric (see Appendix B
for the student’s version of the rubric for Program 1). The rubric format is a list of three types of
features: prerequisite required features, features that earn points along with their point values,
and features that are not required. Students need to have all of the prerequisites completed before
I will grade the assignment. These prerequisites are generally straight-forward and ensure that
students do not violate the spirit of the assignment (e.g., the project must use a computer
network). For each of the features that earn points, the rubric specifies how many points each
feature is worth and provides general examples of the specific behaviors that must be supported
(e.g., server should reject keys that are already in the key-value store). I include a list of features
that are not required to prevent students from wasting valuable time building things that are
beyond the scope of the project (e.g., the client does not need to have a graphical user interface).
These rubrics are designed to help students focus on the most important aspects of each
assignment and prevent surprises during grading.

On a broader scale, I also have a grading rubric for the full set of programming
assignments. Students who earn all of the points on the first assignment earn a passing grade for
the programming assignment portion of the class. Students who also earn all of the points on the
second assignment earn a B –, and students who earn all of the points for all three assignments
earn an A. I created this overall rubric to motivate students to complete all three assignments and
to prevent them from being surprised by their final grades.

During the Course

During the course, the two most important parts of the flexible assessment process are

student preparation and grading.

 Meehean | Computer Networks Flexible Assessment | 41

Student Preparation

Preparation for the first programming assignment is vitally important because the lack of
due dates means I cannot host a post-assignment review session after the due date to discuss the
proper way to complete the assignment.

After the first five weeks, most of the material the students need to complete the first
programming assignment has been covered through the course lectures. In addition to the
lectures, I use a class period to host a code-along during which we built a simple echo server and
a National Institutes of Standards and Technology (NIST) time server client (Lombardi, 2002). A
code-along is an interactive, in-class activity where the students and instructor write software
together. During the code-along, I explain the feature we are trying to build and the Java classes
we will use to build it. I then give them some time to try to build a NIST time server client on
their own. After they spend some time working on it, we come back together as a whole group
and they explain to me how to write the code while I type. With a little guidance from me, we are
able to get a specific feature of the program working. Then we move on to the next feature and
repeat the process. In this way, each student has two working network programs and several
weeks of lectures on which to base the development of their first programming assignment.

Flexible Grading

The grading process is fairly straightforward and starts with the student. When a student

feels that their assignment is ready to be graded, they schedule an individual meeting with me.
During the meeting the student demonstrates the working features of their assignment. For each
assignment there are specific test cases I use; these test cases cover aspects of the assignment
students may not have considered. I record which parts of their assignment work to specification
and which do not. Initially this grading process was slow for me, but by the end of the semester I
had it down to about 10 to 15 minutes per student per assignment.

When a student’s program correctly implements all of the features listed in the rubric,
they have demonstrated mastery of a collection of related network programming concepts. In this
way, a student that earns a C has demonstrated mastery of a subset of the skills required for this
course. This approach to assessment differs from a traditional course where a C may mean the
same as above or it may mean that the student only partially understands all of the course
material.

In a traditional course, grading is often a form of summative feedback and can be viewed
as pure assessment. Through the flexible assessment approach, grading gives students formative
feedback that helps them better understand the skills they are learning. Students can use this
feedback to improve their project and earn more points. This incentivizes quick integration of
feedback to improve their skills. Another important feature is the interactive nature of the
feedback. If a feature does not work to specification, we discuss why. Students sometimes
misunderstand a core concept from the lectures and I take the time to re-explain it to them. Or
they simply misunderstand the feature I am asking them to build. Summative feedback penalizes
these misunderstandings. The formative feedback that I provide through the flexible approach
allows students to expose and repair gaps in their knowledge without fear of it effecting their
grade.

Without due dates, one of my largest concerns is academic misconduct. I do not want one
student to finish the assignment and immediately give the answers to everyone else. To prevent

42 | Journal of Mathematics and Science: Collaborative Explorations 19

this, each grading session starts out with a conversation. The student explains the network
protocol they developed for the assignment and answers some questions about the project. To
prevent the student from feeling tricked, I give them these questions in advance. If the student
cannot explain their protocol or answer the questions satisfactorily, we stop the grading session,
no points are awarded, and I give them advice on how to prepare for the next grading session.
This approach prevents students from sharing too much information about their assignments with
their classmates. Students can give each other limited help, but they know that the help is only
the start. Each student needs to cultivate a deeper understanding of why the project is built a
certain way or they will not be able to answer my questions. Since this deeper understanding is a
goal for this course, in my opinion, how it is acquired is somewhat irrelevant.

Results

During my first semester of using flexible assessment, the vast majority of students

acquired some computer networking skills during this course. As shown in Table 2, by the end of
the semester, 80% of students were able to demonstrate a complete collection of skills required
to implement a simple computer networking program. And over half were able to acquire at least
one skill at an advanced level. While just one student was able to demonstrate competency of all
of the skills at the advanced level.

Table 2
Percent of Students whose Programs Met the Required Specifications

Programming Assignment Fully met the
specifications

Met 80% of the
specifications

At least one
feature met the
specifications

Program 1: Key-value store 80% 86% 93%
Program 2: Flat File System 60% 80% 80%
Program 3: Reliable File System 6% 20% 53%

It is difficult for me to evaluate the success of this course compared to a more traditional

approach because this was the first time that I taught Computer Networks and my university only
offers one section of the course each academic year. As a result, I do not have data from a
traditional networks class for comparison. However, I also teach the Distributed Systems and
Operating Systems courses which are of a similar difficulty and have a similar audience. So I
compared student performance in Computer Networks to student performance in my previous
two sections of Distributed Systems and my previous two sections of Operating Systems.
Distributed Systems uses a similar interactive assessment style, but with rigid due dates and
without unlimited regrades. Operating Systems uses a traditional time-restricted, summative
assessment system where students submit their work and I grade it without them being present.

In order to compare these courses, I defined two metrics: completion percent and passing
percent. I defined completion percent to be the percentage of students who finished the course
with a grade better than an F divided by the number of students who started the course. The
passing percent is the percentage of students who finished the course with a grade better than an
F divided by the number of students who did not withdraw from the course. In should be noted

 Meehean | Computer Networks Flexible Assessment | 43

that at my university, students who are struggling are allowed to withdraw during the first two-
thirds of the semester, so passing percent should be higher than the completion percent.

Table 3
Pass, Fail, and Withdraw Data for Three Similar Computer Science Courses

Course Students Pass Fail Withdraw Completion % Passing %
Distributed Systems* 29 19 4 6 65% 82%
Operating Systems* 30 14 1 15 47% 93%
Computer Networks 15 13 1 1 87% 93%

* Two sections combined.

Table 3 shows the student completion percent for Computer Networks with flexible

assessment was much higher than the rates for the comparable courses, but the passing rates were
similar. Together, the comparable courses had a completion rate of 56% and a passing rate of
87%. Flexible assessment resulted in an increase of over 30 percentage points in the completion
rate compared to the other two courses combined. This resulted in roughly five more students per
section completing this course with a passing grade. The sample sizes here are, of course, small
and it can be difficult to infer from these results whether future sections of the course will have
similar results.

Table 4 shows the similarities and differences in grades across these three courses.
Extracting meaningful patterns from this data is a bit more difficult. It appears that the flexible
assessment approach is pushing students up from the bottom. It appears that withdrawals become
Fs or Ds while Fs and Ds become Bs. This matches expectations from previous research which
applied modified specification grading to computer science courses (Sanft et al., 2021).
However, data from my course is likely too small to draw any conclusions about specific grades.

Table 4
Student Grade Distributions

Course Students A B C D F W
Distributed Systems* 29 35% 10% 10% 10% 14% 21%
Operating Systems* 30 14% 27% 3% 3% 3% 50%
Computer Networks 15 32% 47% 0% 7% 7% 7%

* Two sections combined.

I also solicited student feedback on the flexible assessment aspect of Computer

Networks. I asked students to evaluate different aspects of the flexible assessment features of the
course. In particular, I asked if they found flexible assessment to be helpful to their learning
process. They rated interactive grading, the lack of exams, and the lack of due dates on a Likert
scale ranging from No Help to Great Help. The results appear in Table 5.

Students were somewhat split on the flexible assessment style of this course. Students
liked not having exams and they had no complaints about the interactive grading. However, their
feedback reflects that, overall, the class had a mixed view about the lack of due dates for the
programming assignments. From their comments, it appears that some students felt that the
absence of due dates caused them to procrastinate too much.

44 | Journal of Mathematics and Science: Collaborative Explorations 19

Table 5
Student Evaluation of How Much Each Aspect of the Course Helped Their Learning

Flexible Assessment
Feature No Help A Little

Help
Moderate

Help Much Help Great Help

Interactive Grading 0% 0% 14% 29% 57%
No exams 0% 0% 0% 29% 71%
No due dates 14% 29% 14% 14% 29%

Percentages are based on the number of students that selected each category.

These results are similar to other studies where modified specification grading was used

in computer science courses (Berns, 2020; Santf et al., 2021). To this point I would note that
procrastinating students are the ones who are most likely to fall behind on the first assignment in
a traditional course and are, therefore, the students who are most likely to withdraw from a
traditional course. Through this alternative approach, while procrastination is still painful, it is
not academically fatal.

Along with this criticism came some student suggestions for improvement. They
suggested requiring the first programming assignment be completed before the course
withdrawal deadline. They also recommended putting suggested due dates on the assignments as
a guide.

Difficulties and Limitations

This instructional approach is not without its difficulties and limitations. As stated above,

the biggest limitation is that flexible assessment will not work for a course that is a prerequisite
for another course.

A difficulty I had not considered when I decided to use flexible assessment for this
course is the limits placed on in-class preparation for assignments and post-assignment review.
The crux of this problem is that students are really spread out in their progress through the
programming assignments: I had students who completed all of the assignments with weeks to
spare and others who were working on the first assignment right up until the last day. In my
other classes, I often provide code-along days to prepare for difficult assignments. I could only
do that for the first programming assignment in this course. Doing a code-along for the second or
third assignments would have given away too much information to the students still working on
the earlier assignments. Similarly, in my other classes I often perform post-assignment reviews
after an assignment has been submitted and graded. In these reviews, I discuss areas in which the
class as a whole struggled and better approaches they could have taken. There was never a point
during the semester where all my students had completed the first programming assignment, so I
could not hold a review session without giving away too much information to students still
working on the assignment.

An unsurprising difficulty with teaching a course using an interactive grading system
with an unlimited number of regrades is that the grading takes a long time. Early in the semester,
grading sessions were taking 30 minutes per student. The typical student scheduled three grading
sessions for each assignment they completed. Later in the semester, I made modifications which
reduced the time to 15 minutes; this still resulted in spending 45 minutes with each student per
assignment over the course of the semester.

 Meehean | Computer Networks Flexible Assessment | 45

Another difficulty I had not considered was justifying to the students the use of the
grading system. I naively assumed students would love it and so there would not be any
concerns. Nearly all of the students accepted that the system was fair, even if they thought it had
shortcomings. However, I did have one student who procrastinated to the point of failing the
course. He was, of course, unhappy and so was his father. In a traditional course, I could point to
a series of assignments with Fs that led to the final grade. With a different grading system, it can
be hard to explain to a concerned person that the problem is not “this one assignment” but the
fact that the student waited way too long to try to complete one assignment and, therefore, failed.
Not to mention the student did not even attempt the other two assignments. So, this approach
requires some thought on the professor’s part about how they will explain the grading process to
students, parents, and administrators. It also requires support from the institution. If the
administration does not encourage innovation or will not support faculty during a grade appeal, it
may be better to stick to a more traditional assessment system.

Lessons Learned

As discussed earlier, grading takes a significant amount of time using the flexible

assessment approach. During the course, I made some adjustments to speed up the grading
process. First, I began to take and keep notes on each student’s project including how they
defined their protocol and their work on the program features. This reduced the amount of time
spent at the beginning of the grading session reviewing how the student’s project worked. I could
simply ask what had changed since our last session. Second, I required a portion of the students’
assignments to meet a specific Application Programming Interface (API), a set of function or
method signatures. For example, the client-side of the key value store needed to have a method
called get that took a key as a parameter, sent the request to the server, and returned the server’s
response. Prior to establishing a simple API, students had a myriad of ways of asking the client
to retrieve a key’s value, several of which made grading slow. These required APIs sped up
grading considerably and provided some additional structure for the students.

Reducing student procrastination is a much more difficult task. I have several
improvements I intend to make to address this problem in future courses. Based on student
suggestions, I will add recommended due dates to each of the programming assignments.
Moreover, I intend to incentivize students to conduct their first grading session before the
recommended completion date and the rubric for an assignment will award a few points for
doing so. It would be tempting to view these points as a late penalty. I intend to discourage that
in two ways. First the points will not be worth a full letter grade; they will be worth a half-letter
grade, separating a B from B– for example. Secondly, the assignment does not need to work to
specification by the suggested completion date to earn these points. The student only needs to
sign up for and attend the first grading session to earn these points.

My final improvement for reducing student procrastination consists of modifications to
the student suggestion that I require the first assignment to be completed by the withdrawal
deadline. I want students to be able to pass this class, albeit with a D, even if it takes the entire
semester for them to complete the first programming assignment. So, instead of requiring
students to complete the first programming assignment by the withdrawal deadline, I will require
students to attend at least one grading session and strongly encourage them to complete the first
programming assignment before mid-semester. If the student’s first programming assignment is
not graded prior to mid-semester, they will be withdrawn from the course for failing to make

46 | Journal of Mathematics and Science: Collaborative Explorations 19

satisfactory academic progress. The program does not need to work completely during the
grading session and the student can schedule additional grading sessions for the assignment after
mid-semester. However, if I grade their first programming assignment and it does not work to
specification by mid-semester, the student will receive an F for their mid-semester grade, and I
will email the student, their academic advisor, and the university’s advising department stating
that the student is on track to fail this course. These tiered requirements should create a strong
incentive for students to attempt to finish the first programming assignment prior to mid-
semester. Getting students to start an assignment is often the hardest part, and I am hoping that
once they start the assignment they will follow through and finish it. Additionally, if the student
still has not completed the first programming assignment by the withdrawal deadline (i.e., about
three weeks after mid-semester), I will recommend to the student and their academic advisor that
the student withdraw from the class. This policy should also help mitigate the problem with
students who claim to be surprised that they failed at the last moment because they did not finish
“one assignment.” There will be a paper trail indicating that the student has known for weeks
that they are in danger of failing.

Conclusion

Flexible assessment directly addresses a common difficulty encountered when teaching

Computer Networks with overall positive results and limited drawbacks. I have adapted modern
pedagogical techniques to improve the course which allows students with varied skills and
abilities to pass. The heart of this approach is the flexible assessment of programming
assignments which eliminates due dates and allows students to have their work graded and
regraded without penalty. Flexible assessment also defines an interactive approach to grading
which gives students immediate formative feedback and does not penalize initial failure. Using
these techniques, I have increased the course completion percentage by 30 points when
compared to similar courses. This approach also improved the learning outcomes for middle to
low performing students. These results are similar to those found by researchers who modified
specification grading for use in their computer science courses (Sanft et al., 2021). Overall,
students liked the formative assessment style of this course, but some found the lack of deadlines
to be an obstacle. Again, this matches other researcher’s findings for mastery learning and
specifications grading in computer science courses (Berns, 2020; Morais et al., 2014; Sanft et al.,
2021). This type of flexible assessment works best for upper-level courses that are not
prerequisites for other courses because a student can pass without mastering all of the skills; their
grade reflects the number of skills mastered rather than an average of the competency over all the
skills taught. Other drawbacks of flexible assessment include, limited in-class preparation and
review of programming assignments and an increase in the time required for grading. Providing
the students with a required API for each programming assignment will help improve the grading
times. Students have noted that they prefer specific guidance about when projects should be
completed to prevent procrastination.

Acknowledgments

I would like to thank Kevin Peterson of the University of Lynchburg and the JMSCE reviewers
for their valuable feedback on early drafts of this article. I would also like to thank my students
and the faculty in the Computer Science Department at the University of Lynchburg.

 Meehean | Computer Networks Flexible Assessment | 47

References

Berns, A., (2020). Scored out of 10: Experiences with binary grading across the curriculum. In J.
Zhang et al. (Eds.), SIGCSE ‘20: Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (pp. 1152 – 1157). Association for Computing Machinery.
https://doi.org/10.1145/3328778.3366956

Bloom, B. S. (1968). Learning for mastery. Evaluation Comment, 1(2), 1 – 11.
Garner, J., Denny, P., & Luxton-Reilly, A. (2019). Mastery learning in computer science

education. In Simon & A. Luxton-Reilly (Eds.), ACE ‘19: Proceedings of the Twenty-
First Australasian Computing Education Conference (pp. 37 – 46). Association for
Computing Machinery. https://doi.org/10.1145/3286960.3286965

Gervais, J. (2016). The operational definition of competency-based education. The Journal of
Competency-based Education, 1(2), 98 – 106. https://doi.org/10.1002/cbe2.1011

Keller, F. S. (1968) “Good-bye, Teacher…” Journal of Applied Behavior Analysis, 1(1), 79 – 89.
https://doi-org.proxy.library.vcu.edu/10.1901/jaba.1968.1-79

Lionelle, A., Ghosh, S., Moraes, M., Winick, T., & Nielsen, L. (2023). A flexible
formative/summative grading system for large courses. In M. Doyle & B. Stephenson
(Eds.), SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer
Science Education (pp. 624 – 630). ACM Special Interest Group on Computer Science
Education. https://doi.org/10.1145/3545945.3569810

Lombardi, M. (2002). NIST time and frequency services. National Institute of Standards and
Technology. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=105432

Morais, L., Figueiredo, J., & Guerrero, D. D. S. (2014). Students’ satisfaction with mastery
learning in an introductory programming course. XXV Simpósio Brasileiro de Informática
na Educação.

Nilson, L. (2014). Specifications grading: Restoring rigor, motivating students, and saving
faculty time (1st edition). Routledge. https://doi.org/10.4324/9781003447061

Postel, J. & Reynolds, J. (1985). File transfer protocol (FTP). Internet Engineering Task Force.
https://www.ietf.org/rfc/rfc959.txt

Sanft, K. R., Drawert, B. & Whitely, A. (2021). Modified specifications grading in computer
science: Preliminary assessment and experience across five undergraduate courses.
Journal of Computing Sciences in Colleges, 36(5), 34 – 46.
https://ccsc.org/publications/journals/SE2020.pdf

https://doi.org/10.1145/3328778.3366956
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1002/cbe2.1011
https://doi-org.proxy.library.vcu.edu/10.1901/jaba.1968.1-79
https://doi.org/10.1145/3545945.3569810
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=105432
https://doi.org/10.4324/9781003447061
https://www.ietf.org/rfc/rfc959.txt
https://ccsc.org/publications/journals/SE2020.pdf

48 | Journal of Mathematics and Science: Collaborative Explorations 19

Appendix A

Programming Assignment: Simple Key-Value Datastore Server Feature Set (11 pts)

Description
A key-value store is a simple database. It can store key-value pairs. A user can ask a key-value
store to save a key like “ITR” associated with a value like “itrhelp@lynchburg.edu”. Later the
user can ask the key-value store to retrieve the value for the key (ITR) to get back the associated
value (itrhelp@lynchburg.edu). If you are familiar with maps or dictionaries, you can think of a
key-value store as a program that behaves like a map or dictionary. You will be building a simple
key-value store with a network API.

Grading
This project will be graded interactively in class or during office hours. When you are ready for
me to grade it, let me know during class or sign up for office hours.

Required Features

● Server must accept serial connections, without restarting
● Server on cake/pie, client on desktop/laptop
● A client that demonstrates the features
● Client must have the following methods:

○ get(String key)
○ set(String key, String value)
○ put(String key, String value)

● You must be able to answer the following questions:
○ What is your message format?
○ What is your protocol?
○ How do you handle message framing?

■ How can you tell when you’ve received the entire message?

Features for Points

● 3 pts: set command
○ set a key-value pair

■ a get should be able to retrieve the value later
○ server should reject “” and null keys

■ server should tell the client the error
■ client should print the error message

○ server should reject keys that are already in the store
■ server should tell the client the error
■ client should print the error message
■ different error message from “” and null keys

● 2 pts: get command

○ given a key, provide the value
○ server should return an error if key is not in kv-store

■ server should tell the client the error

 Meehean | Computer Networks Flexible Assessment | 49

■ client should print the error message

● 2 pts: put command
○ provide a new value for a key already in the kv-store

■ replaces the old value
■ a get should be able to retrieve the new value later

○ server should return an error if key is not in kv-store
■ server should tell the client the error
■ client should print the error message

● 3 pts: All UTF-8 characters are allowed in keys and values

○ including control characters like \n and \r

● 1 pt: Submitted code to Moodle as a zip file

Not Required Features
● Persistent connections
● Key-value store data does not need to be persistent

○ if the server is terminated, the data is lost
● Concurrent connections
● Keys or values that are not UTF-8 strings
● A nice user interface for the client

○ your client can just be code with no user input
○ it should output enough information so that I can be sure your server works

Appendix B

Rubric Example: Simple Key-Value Datastore Server Rubric Feature Set (11 pts)

Prep notes

● None

Required Features (Double check these before starting)
● Server must accept serial connections, without restarting
● Server on cake/pie, client on desktop/laptop
● A client to that demonstrates the features

Questions to ask before starting

● What is your message format?
● What is your protocol?
● How do you handle message framing?

○ How can you tell when you’ve received the entire message?
○ How can you tell when one message ends and another begins?

50 | Journal of Mathematics and Science: Collaborative Explorations 19

Features for Points
● 2 pts: simple set-get

○ set “dog”->small
○ set “mouse”->alive
○ get “dog”
○ get “mouse”

● 2 pts: invalid sets

○ set “”->small & set null->small
○ set “dog”->large

■ different message than “” and null keys
○ ask to see code where server handles invalid keys

■ no points if server is not the one that handles invalid keys

● 1 pt: invalid get: key not in the kv
○ get “cat”
○ how can client differentiate between error messages and non-error messages

■ what if my value is an error message?
○ ask to see code where server handles invalid keys

■ no points if server is not the one that handles invalid keys

● 1 pt: put and get
○ put “mouse”->”dead”
○ get “mouse”

● 1 pt: invalid put: key not in kv

○ put “cat”->”small”
○ ask to see code where server handles invalid keys

■ no points if server is not the one that handles invalid keys

● 3 pts: All UTF-8 characters are allowed in keys and values
○ set-get: "split\r\nkey" -> "split\r\nvalue"
○ set-get: "double\r\n\r\nsplit" -> "double\r\n\r\nsplit"
○ set-get: "period\r\n.\r\nsplit" -> "period\r\n.\r\nsplit"
○ ask how messages encoded

■ if using Strings, ask them how they delimited between cmd, key, value
■ what happens if that delimiter appears in key or value
■ if it cannot appear in key or value, no points

● 1 pt: Code in Moodle

