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Mechanical Parameters Fitting for Layer-reduced Umbilical

Arteries Used for Grafting

Rene Alvarado, Kun Gou∗

Abstract

The umbilical artery (UA) functions to carry deoxygenated blood from the fetus to the placenta
during pregnancy. It is discovered that this artery can be used as an efficient by-pass graft to repair
the occluded or narrowed coronary artery for other patients to restore normal blood flow [1, 2]. The
outer layer of the UA is usually removed to get rid of the immunogenic cellular components in the
UA to minimize the immune cells’ biological activities on the extracellular matrix for the UA’s better
adaptation to the patient’s coronary artery [3]. The stiffness of the layer-reduced UA is different from
the original UA, and is difficult to measure directly by lab experiments due to its cylindrical shape.
However, understanding stiffness of the bypass graft is important to predict how it can successfully
adapt to the patient’s coronary artery for normal functionality [4]. This study aims at establishing
proper mathematical models and employing numerical optimization techniques to obtain the stiffness
parameters of the layer-reduced UA based on lab measurements. The artery wall is considered to
be of hyperelastic soft tissue [5] incorporated with two families of fibers. An objective function is
established employing the difference between the theoretical and lab results. Minimization of the
objective function then provides the shear modulus of the isotropic matrix and the fiber stiffness and
orientation parameters.

1 Constitutive modeling

The reference configuration of the UA is unloaded with traction-free inner and outer boundary conditions.
We also ignore the residual stress in this unloaded configuration due to experimental observation of no
obvious opening angle when cutting the UA radially. Under the loaded, deformed configuration, the UA
is subject to an inner pressure P in the inflating experiments (Fig. 1). The UA is nearly cylindrical. We
thus set up the model under the cylindrical coordinate system [6]. The coordinates in the radial, angular,
and axial directions are expressed by (R,Θ, Z) in the reference configuration, and the corresponding
coordinates in the deformed configuration are expressed by the related lower case letters (r, θ, z). The
basis vectors for the cylindrical coordinates in the reference and deformed configurations are, respectively,
“eR, eΘ, eZ”, and “er, eθ, ez”.

The mapping from the reference configuration to the deformed configuration is expressed as r =
r(R), θ = Θ, z = λzZ, where r(R) is the radial function, and λz is the axial stretch ratio. The deformation
gradient F is thus F = r′(R)er⊗eR+ r

Reθ⊗eΘ +λzez⊗eZ . The right Cauchy-Green tensor C satisfying
C = FTF, generating the first invariant I1 = trC. We further assume that the volume of the arterial
segment is preserved during the mapping from the reference configuration to the deformed configuration
satisfying detF = 1.

Two symmetric families of fibers are oriented in the wall. The unit direction vectors for these fiber
families are N(1) = sinϕeΘ + cosϕeZ , and N(2) = −sinϕeΘ + cosϕeZ , where ϕ is the acute angle between
the fiber unit direction vector and the axial axis. These oriented fibers contribute strain energy to the
UA. We take the fiber strain-energy density functions [7] to be

Wf =
k1

2k2

2∑
n=1

[
ek2E

2
n − 1

]
with En = κI1 + (1− 3κ)I

(n)
4 − 1, (1)
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where k1, k2, and κ in (1) are parameters for fibers in the wall. The pseudo-invariant I
(n)
4 (n =1, 2) for the

two families of fibers is defined as I
(n)
4 = N(n) ·CN(n) [8]. The wall consists of elastic groundmatrix and

the two families of fibers. We take the elastin groundmatrix contributed strain-energy density function to
be in the form of a neo-Hookean model We = µ

2 (I1−3), where µ is the shear modulus of the groundmatrix.
The total strain-energy density function is W = We +Wf .

For the incompressible hyperelastic material, the Cauchy stress tensor T is derived from the strain
energy density function W via the formula T = −pI+2F∂W

∂C FT, where p is a constraint parameter needing
determination, and I is the identity tensor. The Cauchy stress components in the radial, circumferential,
and axial directions are expressed by Trr, Tθθ, and Tzz, respectively. The Cauchy stress tensor T in a
static state with gravity ignored for the light UA tissue satisfies the equation div T = 0, where “div”
represents divergence of the related quantity. The inner boundary (R = Rin) of the UA is subjected to
the pressure in the vector form Per with P > 0, by which we obtain Trr|R=Rin = −P . Over the outer
boundary (R = Rout), the radial Cauchy stress is 0, and we have Trr|R=Rout

= 0.

2 Parameters fitting

The inflating experimental design is illustrated in Fig. 1. The left end is subject to a pressure P . We
denote the inner boundary radius of the inflated UA to be rin, and the outer boundary radius of the
inflated UA to be rout. The right end is closed with a total force L imposed on the UA. The force
generated by Tzz to the left end of the UA, the force generated by the left pressure to the UA, and the
force L on the right end satisfy the force equilibrium equation

2π

∫ rout

rin

Tzzrdr − Pπr2
in − L = 0. (2)

Figure 1: Simple illustration of the inflated arterial
wall. The wall is closed on the right end with a total
force L imposed over the wall. The left end is subject
to the pressure P . The axial Cauchy stress on the left
end of the inflated wall is Tzz . The inflated inner radius
and outer radius of the wall are denoted by rin and rout,
respectively.

The experiments recorded values of pressure P , the
inner radius of the pressurized UA rin, the outer radius
of the pressurized UA rout, the axial Cauchy stress value
Tzz, the circumferential Cauchy stress value Tθθ, and
the force at the closed end L. We define the objective
function for minimization to be

f =

m∑
k=1

(
ωL|Lkthe − Lklab|+ ωP |P kthe − P klab|

)
, (3)

where m is the number of equilibrium experiments per-
formed, Lkthe and Lklab are the force values for L from
the theoretical models and the lab experiments, respec-
tively, and P kthe and P klab are the pressure values P
from the theoretical models and the experiments, re-
spectively. The quantities ωL(= 1) and ωP (= 200) are
weights for the corresponding terms. The measured
radii of the inner and outer boundaries of the UA are used as input in the model. We use the opti-
mization toolboxes of Matlab for the layer-reduced UA to obtain parameters µ, ϕ, κ, κ1, and κ2.

2.1 Results and discussions

We study one sample of the UA. Over the traction-free configuration (P = 0), the layer-reduced UA
shows measure of rin = 1.02 mm and rout = 1.14 mm. Minimization of the objective function (3)
generates the parameter values: µ = 36.24 kPa, κ1 = 142.41 kPa, κ2 = 81.82, κ = 0.30, ϕ = 1.45
radians. These parameter results are subjected to change for different UA samples, different objective
functions, and even different initial input in the optimization [9]. In this short conference proceeding
paper, we skip the other fitting results. Average of all these different values for each parameter can
generate a more accurate value for that parameter. Statistical methods can be used to find a confidence
interval for each parameter under fitting with a specified confidence level. This confidence interval can
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provide a fundamental understanding how broadly each parameter may vary. Determination of the layer-
reduced UA stiffness critically facilitates prediction of compatibility and efficiency of the bypass graft as
a substitute coronary artery section for regular blood transport [10]. Our study applies mathematical
models to fit the stiffness parameters based on experimental data, and resolves the difficulty of obtaining
the mechanical parameters experimentally in the lab.
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