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Figure 6. Intrafractional geometric uncertainty: the root-mean-square (rms) uncertainty of the
unresolved motion for an inline orientation: (a) 0-10, (b) 10-20 and (c) 20-30 min for a single
patient fraction (patient no. 5 (left upper lung lobe), fraction no. 1) and (d) 0-10, (e) 10-20 and
(f) 20-30 min for a single patient fraction (patient no. 32 (right lower lung lobe), fraction no. 3).

(figure 5(c)). As for patient no. 33, the second (figure 5(e)) and third (figure 5(f)) fraction
showed the opposite phase of the geometric uncertainty; the treatment beam angle with the
lowest uncertainty at the second fraction showed the highest at the next fraction.

3.4. Geometric uncertainty of 2D projection imaging for patient motion with inline
orientation: intrafraction variation

Figure 6 shows intrafractional geometric uncertainty for the inline orientation. Figures 6(a)—
(c) show the rms uncertainty of the unresolved motion for 0—10, 10-20 and 20-30 min for
a single patient fraction, respectively, and figures 6(d)—(f) are the same from another single
patient fraction. The magnitude and phase of the geometric uncertainty show variation during
the single patient fraction and also between the patients. In the case of patient no. 5, for each
of 10 min intervals during the single fraction the uncertainty did not show significant changes
(figures 6(a)—(c)) unlike interfractional variation: all three time terms showed somewhat AP-
like motion. Still, for 10-20 min (figure 6(b)) tumor moved more in the LR direction and
for 20-30 min (figure 6(c)) more in the SI direction than for 0—10 min (figure 6(a)). For
patient no. 32, tumor motion which was predominantly in the LR direction for the first 10 min
(figure 6(d)) changed to predominantly SI motion in 10 min (figure 6(f)).

3.5. Geometric uncertainty of 2D projection imaging for the patient cohort studied

Table 2 shows the rms, minimum and maximum values of Ry ., ;, the rms uncertainty of the
unresolved motion for each fraction i and for each time interval ¢ for non-coplanar treatments,
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Table 2. The root-mean-square (rms), minimum and maximum values of R, ., ; (rms uncertainty
of the unresolved motion for each fraction i and for each time interval # for non-coplanar treatments)
for 01, 0-10 and 0-30 min by sites (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0—1 min 0-10 min 0-30 min

Lungs 30/105 0.14 (0.01, 0.64) 0.13 (0.01, 0.43) 0.12 (0.01, 0.24)
Liver 2/8 0.13 (0.04,0.17) 0.16 (0.05, 0.27) 0.19 (0.14, 0.27)
Retroperitoneum 11/36 0.10 (0.01, 0.22) 0.11 (0.01, 0.25) 0.12 (0.02, 0.24)

Chest wall/internal 3/11

mammary nodes

0.04 (0.02, 0.07)

0.04 (0.03, 0.06)

0.05 (0.04, 0.05)

Total 46/160 0.13 (0.01, 0.64) 0.13 (0.01, 0.43) 0.12 (0.01, 0.27)
Table 3. The root-mean-square (rms), minimum and maximum values of R, ;; (rms uncertainty
of the unresolved motion for each fraction i and for each time interval ¢ for coplanar treatments)
for 01, 0-10 and 0-30 min by sites (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0-1 min 0-10 min 0-30 min

Lungs 30/105 0.11 (0.01, 0.46) 0.11 (0.01, 0.35) 0.09 (0.01, 0.24)

Liver 2/8 0.09 (0.03, 0.13) 0.12 (0.04, 0.18) 0.14 (0.11, 0.18)

Retroperitoneum 11/36 0.07 (0.01, 0.21) 0.08 (0.01, 0.19) 0.09 (0.02, 0.18)

Chest wall/internal 3/11

mammary nodes

0.04 (0.01, 0.07)

0.04 (0.03, 0.07)

0.05 (0.04, 0.05)

Total 46/160 0.10 (0.01, 0.46) 0.10 (0.01, 0.35) 0.09 (0.01, 0.24)
Table 4. The root-mean-square (rms), minimum and maximum values of Ry ., ; (rms uncertainty
of the unresolved motion for each fraction i and for each time interval # for non-coplanar treatments)
for 0—1, 0—10 and 0-30 min by sites whose average breathing peak—trough ranges are more than
0.5 cm (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0—1 min 0-10 min 0-30 min

Lungs 16/45 0.19 (0.09, 0.64) 0.18 (0.10, 0.43) 0.16 (0.10, 0.24)

Liver 2/6 0.15(0.12,0.17) 0.18 (0.13,0.27) 0.19 (0.14, 0.27)

Retroperitoneum 8/14 0.14 (0.08, 0.22) 0.15 (0.09, 0.25) 0.16 (0.11, 0.24)

Total 26/65 0.18 (0.08, 0.64) 0.18 (0.09, 0.43) 0.17 (0.10, 0.27)

and table 3 shows those of R, ;;, the rms uncertainty of the unresolved motion for each
fraction i and for each time interval ¢ for coplanar treatments, for 0—1, 0—10 and 0-30 min
by sites. Overall rms values of R, .,; were 0.13 cm, 0.13 cm and 0.12 cm and those of
R, i were 0.10 cm, 0.10 cm and 0.09 cm for each time interval, respectively. As the time
interval increases, the rms, minimum and maximum values show decreasing tendencies for
the lungs while they show increasing tendencies for the liver and retroperitoneum, in general.
For the chest wall/internal mammary nodes, all the values are small and about the same for
different time terms. Comparing these two tables demonstrates that most values in table 3,
which is for coplanar treatments, are smaller than those in table 2, which is for non-coplanar
treatments.

Table 4 shows the rms, minimum and maximum values of R, ., ; and table 5 shows those
of Ry, ; for 0—1, 0-10 and 0-30 min by sites whose average breathing peak—trough ranges
are more than 0.5 cm. Overall rms values of R, .,; were 0.18 cm, 0.18 cm and 0.17 cm and
those of R, ;; were 0.14 cm, 0.13 cm and 0.12 cm for each time interval, respectively. These
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Table 5. The root-mean-square (rms), minimum and maximum values of R, ;; (rms uncertainty
of the unresolved motion for each fraction i and for each time interval ¢ for coplanar treatments)
for 0—1, 0—10 and 0-30 min by sites whose average breathing peak—trough ranges are more than
0.5 cm (cm): rms (minimum, maximum).

Sites Patient no./fraction no. 0—1 min 0-10 min 0-30 min

Lungs 16/45 0.15 (0.01, 0.46) 0.14 (0.02, 0.35) 0.12 (0.03, 0.24)
Liver 2/6 0.10 (0.08, 0.13) 0.13 (0.09, 0.18) 0.14 (0.11, 0.18)
Retroperitoneum 8/14 0.10 (0.03, 0.21) 0.11 (0.03, 0.19) 0.12 (0.08, 0.18)
Total 26/65 0.14 (0.01, 0.46) 0.13 (0.02, 0.35) 0.12 (0.03, 0.24)

two tables show the same tendencies as the previous two tables. Again, all values in table 5
are smaller compared to those in table 4.

Figure 7 shows the cumulative probability of the distributions of the rms of R, ., ; or
R, , ; for different time intervals of 0—1 (red), 0—10 (blue) and 0-30 (green) min. All four plots
show the similar patterns for the different time terms, still showing a tendency that the shorter
the time interval the smaller the rms, in general. One noticeable thing is that patient-to-patient
variation is much larger than variation from different time terms. Even for the fractions whose
average breathing peak—trough ranges are more than 0.5 cm (figures 7(c) and (d)), patient-to-
patient variation is still much larger. All the plots show the wide ranges of variation for the
rms, and even figures 7(c) and (d), which are for coplanar treatments, show wide variation.
Obviously, the geometric uncertainty is larger for non-planar treatments (figures 7(a) and (c))
and for the larger tumor motion (figures 7(c) and (d)).

4. Discussion

With the advance in radiation treatment techniques, more and more highly conformal dose
distribution is possible. This also implies that even minor geometric uncertainty can have an
effect on the tumor control and normal tissue complications (Stroom et al 1999, van Herk
2004). Consequently, target localization is more important than ever before and tumor motion
compensation is one of the demanding problems in radiation oncology field especially for
thoracic and abdominal tumors. Several techniques have been proposed to compensate for the
tumor motion, such as respiratory gating (Vedam et al 2001, Kubo and Wang 2002, Ozhasoglu
and Murphy 2002, Giraud et al 2003, Hugo et al 2003, Nill et al 2005, George et al 2006,
Jiang 2006) and tumor tracking (Schweikard ez al 2000, 2004, Keall et al 2001, 2005, Murphy
2004, Suh et al 2004, Papiez and Rangaraj 2005, Papiez et al 2005, Webb 2005b, 2005a,
Kamino et al 2006, Neicu et al 2006, Xu et al 2006). In order to implement these, however,
monitoring the target is essential, and 2D x-ray imaging during treatment is a widely available
method to quantify internal motion as shown in table 1.

Nill et al (2005) compared the imaging systems in two different geometries (figure 1) in
their study to look at the possibility of using them for online correction in real-time tumor
tracking radiotherapy. They concluded that both systems had the ability to correct for most
of the motion, still inline geometry (figure 1(a)) was better. Though they did some dosimetric
studies to compare the different systems, they used only one patient with simulated AP tumor
motion. In our study, the accuracy of 2D projection imaging methods in 3D tumor motion
monitoring has been investigated by quantifying the unresolved motion due to the limitation
of 2D projection to monitor the motion in 3D, using the same assumptions as Nill et a/ (2005),
but with a tumor motion database of 160 treatment fractions having estimated 3D patient tumor
motion.
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Figure 7. Cumulative probability of the distributions of the rms of ((a) and (c)) Ry ¢ ; (rms
uncertainty of the unresolved motion for each fraction i and for each time interval ¢ for non-
coplanar treatments) or ((b) and (d)) R ,; (rms uncertainty of the unresolved motion for each
fraction i and for each time interval # for coplanar treatments) for O—1 (red), 0—10 (blue) and 0-30
(green) min for an inline orientation: (a) all fractions for non-coplanar treatments, (b) all fractions
for coplanar treatments, (c) fractions whose average breathing peak—trough ranges are more than
0.5 cm for non-coplanar treatments, and (d) fractions whose average breathing peak—trough ranges
are more than 0.5 cm at each time term for coplanar treatments.

Berbeco et al (2004) investigated the magnitude of the localization error when a single
x-ray imager was used for tumor tracking and determined the optimal geometric configuration
of a dual x-ray imaging system. They found out that because tumor motion was 3D and
irregular a single source/imager system was ‘inadequate’ and two source/imager pairs with
angles between two imaging beam central axes of 90° were desirable for robust 3D target
localization. The findings from the current study agree with Berbeco et al in that a single
x-ray imaging system is limited; however, the magnitude of geometric uncertainty for a single
x-ray imaging system, an overall rms error of 0.13 cm, is not ‘inadequate’, but will be a useful
tool for estimating internal target position during radiotherapy.

In this study, the unresolved motion due to the geometric limitations of 2D projection
imaging systems was calculated as displacement in the imaging beam axis for each of given
treatment beam angles, assuming that 3D online patient positioning was performed prior to
the treatment. As other sources of geometric uncertainty are ignored, such as measurement
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Figure 8. Dosimetric impact of the unresolved motion: probability density function (pdf), p(7),
can be divided into (a) the component parallel to the beam (along the dose fall-off), p(z), and
(b) the component perpendicular to the beam, p(x). If an anatomic point, ro, moves with the pdf

in dose distribution, Dggaic (7), the dose delivered to rg is Dgelivered (ro) = f p(?)Dsmic (?) dr;
Daelivered  Dstatic for p(z) and Dgelivered # Dstatic for some p(x).

uncertainty, imaging/treatment beam alignment etc, the geometric uncertainty quantified in
this study represents the lower limits of overall treatment uncertainty possible with a single
X-ray imager.

In figure 1, both inline and orthogonal imaging and treatment beam orientations are
shown. The geometric uncertainty for the inline and orthogonal orientation is the same;
however, how the geometric uncertainty manifests itself as dosimetric uncertainty is different
for the two orientations. The dosimetric impact of the unresolved motion is generally higher
for the orthogonal orientation (Nill et al 2005). Figure 8 shows the dosimetric impact of the
unresolved motion by the probability density function (pdf) (Bortfeld er a/ 2002). Let an
anatomic point move with the pdf, p, in dose distribution, Dy.(7'); then the dose delivered
to any point is Dgelivered(r) = [ p(r — ') Dsuic(r')dr’. Here, p(r — r') can be divided
into the components parallel to beam, p(z) (figure 8(a)), and perpendicular to beam, p(x)
(ﬁgure S(b))’ Ddelivered ~ Dstatic for P(Z) and Ddelivered 7é Dstatic for some P(x)- Thus, in
the orthogonal orientation the geometric uncertainty from the unresolved motion can be in
a high dose gradient direction (figure 8(b)), whereas in the inline orientation it is along the
dose fall-off in the beam direction where the gradient is lower (figure 8(a)). Still, the dose
delivery is varying temporally as well as spatially, and the beam angles, beam modulation, and
order of beam delivery will all affect the dosimetric impact of the unresolved motion from 2D
projection imaging.

Considering that most conventional abdominal and thoracic treatments are coplanar,
the tumor motion in the SI direction is always resolved in coplanar treatments for both
orientations (Nill er al 2005) shown in figures 3(c) and (f) and 4(c). This may guarantee the
smaller geometric uncertainty from the unresolved motion for 2D projection imaging in both
orientations because the patient respiratory tumor motion is usually thought to be the largest
in the SI direction. Figure 4(a), however, shows that there are some patients whose tumor
motion is the largest in the LR direction, and figure 4(b) the largest in the AP direction, which
indicates there could be large uncertainty from LR and AP motion components as well. This
reveals that patient-to-patient variation of respiratory tumor motion is substantial, and there is
a wide variability of patient respiratory motion patterns (Chen et al 2001, Stevens et al 2001,
Seppenwoolde et al 2002, Ahn et al 2004, Mageras et al 2004). Patient-to-patient variation
is also shown in figure 7. The outspread ranges of the rms in cumulative probability of the
distributions demonstrate that patient-to-patient variation is more significant than variation
with increasing time. It is also evident for the fractions whose average breathing peak—trough
ranges are more than 0.5 cm (figures 7(c) and (d)).

Comparing the interfractional uncertainty in figure 5 and the intrafractional uncertainty in
figure 6, the changes in magnitude and phase of the geometric uncertainty are more noticeable
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for interfractional variation, as the scales in the axis of the rms uncertainty in figure 5 double
those in figure 6 and the shapes of the plots vary more in figure 5 than in figure 6.

Tables 2—5 show the geometric uncertainty depending on the tumor sites, tumor motion
ranges, time intervals and beam angles. Overall rms values of the rms uncertainty of the
unresolved motion was around 0.13 cm for all treatment fractions, 0.10 cm for all coplanar
treatment fractions, 0.18 cm for the fractions whose average breathing peak—trough ranges
were more than 0.5 cm, and 0.13 cm for the coplanar treatment fractions whose average
breathing peak—trough ranges were more than 0.5 cm. As the time interval increases, the
rms, minimum and maximum values show decreasing tendencies for the lung patients, but
increasing for the liver and retroperitoneal patients. This can potentially be explained by
the fact that the lung patients often have limited lung function and thus breathe heavily after
physical activity, such as climbing on the treatment couch. They relax after several minutes
and finally breathe more quietly. In contrast, the liver and retroperitoneal patients, usually
with normal lung function, may be relaxed from the start of the treatment and have abdominal
breathing. For the chest wall/internal mammary nodes, all the values are small and about the
same for different time terms. This is obvious because in general the motion of those sites
is relatively small and so results in small geometric uncertainty. In addition, interpretation of
the results is limited by small patient numbers.

The smaller values in tables 3 and 5 than in tables 2 and 4, respectively, and noticeably
larger minima of R, ., ; in table 4 than those of R, ;; in table 5 indicate that the geometric
uncertainty is smaller for the coplanar treatments than for the non-coplanar treatments. This
means that the predominant motion is in the SI direction, which is resolved for coplanar
treatments. It also points that for the cohort of patients studied, SI tumor motion, which is
resolved in both orientations for coplanar treatments, contributes to the geometric uncertainty
most.

Clinical application for the results can be the quantification of geometric uncertainty
margins when a single 2D projection imager is used for tumor tracking. The use of a single
2D imager to estimate internal position will require margins of the order of 0.3 cm, which is
about twice the rms values of Ry .;; or R, ; ;.

The results of this study assume the acquisition of continuous x-ray images to monitor the
tumor, which would cause high dose to the patient. Alternatively, it is possible to use periodic
x-ray images and continuous optical tracking by integrating a single 2D x-ray imaging system
and 3D optical monitoring system (the commercially available Cyberknife system (Schweikard
et al 2000, 2004, Murphy 2004) integrates dual x-ray imaging with 3D optical monitoring in
the Synchrony system).
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Real-time tumor targeting involves the continuous realignment of the radiation beam with the
tumor. Real-time tumor targeting offers several advantages such as improved accuracy of tumor
treatment and reduced dose to surrounding tissue. Current limitations to this technique include
mechanical motion constraints. The purpose of this study was to investigate an alternative treatment
scenario using a moving average algorithm. The algorithm, using a suitable averaging period,
accounts for variations in the average tumor position, but respiratory induced target position varia-
tions about this average are ignored during delivery and can be treated as a random error during
planning. In order to test the method a comparison between five different treatment techniques was
performed: (1) moving average algorithm, (2) real-time motion tracking, (3) respiration motion
gating (at both inhale and exhale), (4) moving average gating (at both inhale and exhale) and (5)
static beam delivery. Two data sets were used for the purpose of this analysis: (a) external
respiratory-motion traces using different coaching techniques included 331 respiration motion
traces from 24 lung-cancer patients acquired using three different breathing types [free breathing
(FB), audio coaching (A) and audio-visual biofeedback (AV)]; (b) 3D tumor motion included
implanted fiducial motion data for over 160 treatment fractions for 46 thoracic and abdominal
cancer patients obtained from the Cyberknife Synchrony. The metrics used for comparison were the
group systematic error (M), the standard deviation (SD) of the systematic error (%) and the root
mean square of the random error (o). Margins were calculated using the formula by Stroom er al.
[Int. J. Radiat. Oncol., Biol., Phys. 43(4), 905-919 (1999)]: 23, +0.7¢. The resultant calculations for
implanted fiducial motion traces (all values in cm) show that M and % are negligible for moving
average algorithm, moving average gating, and real-time tracking (i.e., M and %=0 c¢m) compared
to static beam (M=0.02 cm and X =0.16 cm) or gated beam delivery (M =-0.05 and 0.16 cm at
both exhale and inhale, respectively, and %=0.17 and 0.26 cm at both exhale and inhale, respec-
tively). Moving average algorithm ¢=0.22 cm has a slightly lower random error than static beam
delivery 0=0.24 cm, though gating, moving average gating, and real-time tracking have much
lower random error values for implanted fiducial motion. Similar trends were also observed for the
results using the external respiratory motion data. Moving average algorithm delivery significantly
reduces M and 3 compared with static beam delivery. The moving average algorithm removes the
nonstationary part of the respiration motion which is also achieved by AV, and thus the addition of
the moving average algorithm shows little improvement with AV. Overall, a moving average algo-
rithm shows margin reduction compared with gating and static beam delivery, and may have some
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mechanical advantages over real-time tracking when the beam is aligned with the target and patient
compliance advantages over real-time tracking when the target is aligned to the beam. © 2008
American Association of Physicists in Medicine. [DOI: 10.1118/1.2921131]

Key words: moving average algorithm, tumor tracking, implanted fiducial motion, external respi-

ratory motion, real time tracking, gating

I. INTRODUCTION

Radiation therapy treatment using real-time tumor targeting
offers several advantages towards the improvement of accu-
racy during radiotherapy, especially for lung cancer patients
where the tumor moves continuously throughout the
treatment.'~° During real-time tracking, the treatment beam
continuously realigns to the tumor throughout the
treatment.'”® The advantages to such a treatment technique
include improved accuracy of tumor treatment and reduced
dose to surrounding tissue by reducing the margin added for
tumor motion. However, currently there are certain practical
limitations to this technique.

Bortfeld ez al.* showed that if the systematic error com-
ponent of interfraction motion can be removed; according to
margin formulas the residual random error is not signifi-
cantly deleterious to the dose delivered to the patient. The
problem of the above conclusions is that the systematic error
component correction, i.e., mean target position of the in-
trafraction motion, cannot be known a priori before com-
mencing each fraction of treatment. Thus, the most accurate
static beam delivery scenario of online pretreatment target-
beam alignment may still result in systematic errors. How-
ever, by tracking using a continuously updated estimate of
the mean target position during treatment the systematic er-
ror could possibly be reduced to negligible levels.*" This
reasoning prompted the investigation of a moving average
algorithm.

Van Herk ef al.*' have described systematic errors as er-
rors mainly due to the preparation of the treatment and ran-
dom errors as errors during the delivery of the treatment on
every treatment day. Using patient measurements taken on a
daily basis for a number of patients over a number of frac-
tions, three parameters were quantified: group systematic er-

time! fimet:4

ror, systematic error, and random error. Group systematic
error, M, is a mean of all the means of the daily measure-
ments and is expected to be very small. It deviates often
from mean because of imprecision in equipment and proce-
dure. Systematic error, 2, is the standard deviation (SD) of
the means and is an assessment of reproducibility of the
treatment preparation. Random error, o, is the root mean
square of the SD of the daily measurements.*!

Though motion exceeding mechanical constraints is pos-
sible for motion parallel and perpendicular to the leaf motion
direction, motion parallel to the leaf direction is clearly the
most sensitive. There are several options where multileaf
collimator (MLC) tracking in any direction is not possible.
An obvious solution is to ignore the motion or use gating. An
approach to essentially eliminate the systematic tracking er-
ror and treat the respiration motion as residual random error
is to use a moving average algorithm with a time scale of
several breathing periods. This approach significantly re-
duces the mechanical requirements on the MLC, and can
also be combined with respiration gating.

The moving average algorithm may be appropriate in situ-
ations of significant target motion to either:

(1) account for either mechanical limitations of MLC, linac
or treatment couch (from a number of manufacturers
whose mechanical limitations may vary) to deliver mo-
tion compensated radiotherapy where the beam and tu-
mor are continuously aligned, or

(2) for practical considerations, such as for couch tracking,
moving the patient with the negative velocity of the tu-
mor motion may be uncomfortable for the patient.

For one MLC type, Wijesooriya et al.*? estimated that
target motion parallel to leaf motion could be achieved for

i

me fime 144

FIG. 1. A demonstration of the challenge of using a multileaf collimator to track motion perpendicular to the leaf direction for conformal radiotherapy (left)
and IMRT (right). If a target being tracked at time # moves perpendicular to the leaf motion (in this case ~1.5 leaf widths for the conformal case and 1 leaf
for the IMRT case) at time 7+ A, then the target motion can result in a much larger motion of some of the individual leaves. The leaves with the largest motion
are light shaded, and the magnitude of motion of these leaves is shown with arrows. This problem can be further exaggerated by IMRT delivery (right), where
the leaf sequencing process can result in adjacent leaves having positions several centimeters apart.
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up to 97% of respiratory motion, however no attempt was
made to investigate the efficiency for motion perpendicular
to the leaf direction—or the real case of motion parallel and
perpendicular to the leaf direction. A demonstration of the
challenge of using a MLC to track motion perpendicular to
the leaf direction is shown in Fig. 1. If a target being tracked
at time ¢ moves perpendicular to the leaf motion (in this case
~1.5 leaf widths) at time t+A, then a given target motion
can result in a much larger motion of some of the individual
leaves. If the difference in position of individual leaves di-
vided by the time to achieve the motion is greater than the
maximum leaf velocity (~3.5 cms™!), a beam hold will oc-
cur. Any one leaf not being in position will cause a beam
hold, and thus MLC tracking efficiency is governed not by
the average maximum velocity of the leaves, but the maxi-
mum velocity of an individual leaf. If there are a significant
number of beam holds, the delivery efficiency will be sub-
stantially decreased, to the point of not being able to com-
plete a given treatment. This problem can be further exag-
gerated by IMRT delivery, where the leaf sequencing process
can result in adjacent leaves having positions several centi-
meters apart.

The study of Wijesooriya et al.** was for only one MLC
type. It is likely that there will be variability between manu-
facturers, and even individual MLCs, so that in general it is
not valid to state that MLCs are capable of real-time tracking
of respiratory-induced target motion.

The moving average algorithm was chosen since, despite
its simplicity, the moving average algorithm is optimal for a
common task: reducing random noise while retaining a sharp
step response. This makes it the premier filter for time do-
main encoded signals.43 Though there are other options for
such filters, the moving average algorithm achieves the de-
sired goal, to essentially eliminate systematic error caused by
any nonstationary signals (e.g., base line drift) and the mo-
tion of each respiration cycle is treated as a residual random
error. Moving average can be considered as an intermediate
state between real-time tumor tracking and static beam de-
livery. While the moving average algorithm does not follow
the tumor on a moment by moment basis it does follow the
general trend of the tumor motion. This is an important ad-
vantage over static beam delivery especially during period of
base line drift where based on the theory of moving average
algorithm the beam would follow the general trend of the
motion pattern.

The advantages and disadvantages of a moving average
algorithm compared with real-time tracking and static beam
delivery with pretreatment correction are:

Advantages of moving average algorithm for tracking:

(1) More accurate than pretreatment correction.

(2) Less mechanical motion and therefore possibly longer
motor life than real-time tracking.

(3) Less issue of moving MLC leaves,
or couch* at high velocities since an average period is
used. The couch motion may also affect patient compli-
ance and secondary-induced skeletal motion.

(4) An additional issue for DMLC IMRT real-time tumor

19202223 .. 1,17,3334
’ linac
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tracking is that the mechanical limitations of MLC*
motion may be exceeded, and motion perpendicular to
the MLC leaf travel direction can also cause beam holds
during delivery and therefore the moving average algo-
rithm may be more efficient than real-time tumor track-
ing in terms of delivery time.

Disadvantages of moving average algorithm for tracking:

(1) Less precise than continuous tracking.

(2) Still requires feedback mechanism for target motion reg-
istration to align the beam and the target during
treatment.

Given the advantages (and disadvantages) of the moving
average algorithm listed above, the aim of this study is to
quantify the accuracy and precision of radiation therapy
treatment delivery using a moving average algorithm for
tracking in comparison with real-time tracking algorithm,
gated beam delivery, moving average gating, and static beam
delivery with online pretreatment target-beam alignment.

Il. METHOD AND MATERIALS

ll.A. Data acquisition

Two sets of respiration motion data were used for the
purpose of analyzing the accuracy of moving average algo-
rithm.

IlLA.1. External respiratory motion

This motion data consisted of 331 4 min abdominal wall
(respiratory) anterior-posterior motion traces from 24 lung
cancer patients using the Varian RPM system. Each patient
was initially asked to breathe without instructions called free
breathing (FB) and the respiration motion was recorded.
Then audio (A) instructions were given followed by audio-
visual (AV) biofeedback based on the frequency and dis-
placement of respiration motion during the FB session. For
each type of instruction the respiration motion was recorded.
The respiration rate for this set of patients varied between 6
and 24 breaths per minute. The displacement for this set of
patients varied between 0.6 and 3 cm peak-to-peak motion.
The process was repeated five times for each patient with
each session typically spaced a week apart. Further details on
the data collected can be found in George et al.*** The
main application of these data was to study the link between
the systematic and random error and the breathing training
types, and it is important to note that the data are not tumor
motion, for which a separate data set described below was
used.

Il.A.2. Implanted fiducial motion

This 3D target motion were was acquired from 46 tho-
racic and abdominal cancer patients treated with stereotactic
body radiotherapy using the Cyberknife Synchrony (Accuray
Inc. Sunnyvale, CA) system at Georgetown University Hos-
pital and shared under an IRB-approved protocol. Between
July 2005 and January 2006 implanted fiducial motion data
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were acquired for patients with the following tumor loca-
tions: lung (30 patients), retroperitoneum (11), liver (two),
chest wall (two) and internal mammary nodes (one). The
number of fractions for each patient was anywhere from one
to seven treatment fractions with a total of 160 treatment
fractions. The Synchrony system, which was used to acquire
the implanted fiducial motion information, is a subsystem of
respiration tumor tracking in the Cyberknife system.33’34’49’50
The Synchrony system estimates the tumor positions by a
correlation between the external patient motion and im-
planted fiducial locations and a prediction algorithm. The
data contained patient 4D target motion information (3D tar-
get positions versus time) and its duration time was 31.4 min
(5.0-106.4 min).”" For each of 160 treatment fractions,
overall mean of the means of motion extent was 0.47 cm
(0.02—1.44 cm), and overall means of the means of percent
contributions from left-right, anterior-posterior, and superior-
inferior motion to 3D motion were 26.6%, 30.5%, and
42.9%, respectively.

1.B. Data analysis
Il.B.1. Comparison of treatment scenarios

A depiction of the five treatment delivery scenarios is
shown in Fig. 2. The study assumes a real-time target posi-
tion monitoring system is present for all five delivery sce-
narios. The target motion information is used to investigate
five treatment scenarios:

(i) Moving average algorithm for tracking: In this case
the position of the beam at time ¢ is calculated as the mean of
the position during the past m seconds. The value for m is
assumed to be 15 s for this analysis. The number of points
included in the moving average was m X f, where f is the
sampling frequency (30 Hz for the respiratory signals and
25 Hz for the tumor motion data). Thus, for moving average
algorithm the equation was
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xest(t) = mX f
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where x.(f) is the estimated position at time 7, x, is the
actual position, and RT is the number of sample points in the
system response time, assumed here to be 0.16 5.2 From the
equation above, the beam position x.(#) has been calculated
as the average of the past 15 seconds of position information.
(ii) Real-time tracking: The treatment beam responds to
the target position after a system response time R7, which is
assumed to be 0.16 s as above. No motion prediction algo-
rithm is assumed, and thus the estimated tumor position is

xest(t) = xact(t - RT) .

Therefore from the equation for real-time tracking above it
can be seen that x.(7) is the beam position after a system
response time of RT.

(iii) Gated beam delivery at inhale and exhale: Clinically
it has been suggested and also studied by various institutions
that the standard range of duty cycle for a gated patient
should be between 30% and 50%."*>® This is in order to
provide the benefits of gating while mitigating the effects of
intra fraction motion by limiting the treatment time. Thus for
the purpose of studying respiration motion gating along with
the other techniques, a duty cycle of 40% was utilized. The
phase information for the purpose of this analysis was ob-
tained from the RPM phase file for the external respiratory
motion data. For the Cyberknife Synchrony data, the phase
was obtained by finding the motion peak for each respiratory
cycle and linearly assigning phase from 0 to 27 between
successive motion peaks. Ruan et al>* have, however, noted
the nonstationary nature of respiration motion. Ruan et al>
observed that various phases of respiration were predicted
with various accuracies. Similarly, in Fig. 2, which displays
the effect of the moving average algorithm with respect to
other techniques, we can see that during the base line shift
the gating window is less accurate (very slightly) as com-
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TABLE I. The formalism used to calculate the metrics M, % and o, where A is the displacement between the
beam and target at a given time, and A(P;,F)) is the set of displacements for a given fraction F; for patient P;
(see Ref. 41) (M: mean; SD: standard deviation; RMS: root mean square).

Patient 1 Patient 2
Fraction 1 A(P,,F)) A(P,,F5)
Fraction 2 A(P,,F,) A(P,,F)
Ve M=A(P,... Py, F,...Fy)
Mean AP, . F,...Fy) A(P,.F,...Fy) - S=SD(A(P,...Py.F)...Fy)
SD SD(A(P,,F,...Fy))  SD(A(P,,F,...Fy) —  a=RMS(A(P,...Py.F,...Fy))

pared to when the base line is constant. In terms of percent-
age, inhale gating used phases from 80% to 20%, and exhale
gating 30%—70%. The real-time calculation of phase has an
associated uncertainty, particularly in the presence of varying
base line, changing period, and peak-to-trough magnitude,
and may not be centered about the peak, but is generally
close to the peak.

The position of the beam at time 7 is calculated as the
mean of the position during the first n seconds of gated mo-
tion. Gating beam position is calculated at both inhale and
exhale. The position of the beam is determined by

S xaali) X H

Xeg(t) = T
where H is the Heavyside function that equals 1 when the
respiratory phase is within the gate and O otherwise. From
equation for gated beam delivery at inhale and exhale above,
the beam position x.(f) has been calculated as the average
of the first n seconds of beam position within the 40% duty
cycle information.

In spite of issues during base line drift, phase-based gat-
ing was used in this study for the gating techniques.
Displacement-based gating also has a problem with baseline
drift, as the gating thresholds need to be adjusted during
treatment which takes extra time, particularly if imaging
verification is required. In a previous work,*® we found a
slight advantage to displacement-based gating, however the
difference was less than 0.5 mm. Hence phase based gating
is used as it is the more viable and also currently clinically
used with the RPM system. From the study by George et
al.*® comparing phase with displacement-based gating, there
was little difference in the overall uncertainty of these two
approaches thus justifying the use of phase-based gating.

(iv) Moving average gating at inhale and exhale: The
moving average gating technique involves using a moving
average algorithm over the respiration motion in the gated
window (obtained from iii above) and is given by

SIRT o eXa(D) X H
xest(t): i=t—-mXf—RT"*act )

—RT
i=1-mx f-rTH

In this treatment scenario the position is updated every 15 s
similar to moving average tracking algorithm (Sec. ILB.1.i).
From equation for gated beam delivery at inhale and exhale
above, the beam position x.(f) has been calculated as the
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average of the most recent n seconds (i.e., from t—RT—m
X f to t—RT) of beam position within the 40% duty cycle
information.

This technique will reduce the systematic error and ran-
dom error. The velocity can be similarly calculated as for the
moving average. However, as only respiratory points at a
given breathing phase (Fig. 2) are included, the overall ve-
locity will be less for moving average gating than for the
moving average algorithm.

(v) Static beam delivery with online pretreatment target-
beam alignment: The first n seconds of target position infor-
mation is used to align the beam with the target pretreatment,
but the beam does not respond to target motion. Thus the
position of the beam is determined as the mean of the posi-
tion during the first n seconds. The position of the beam is
determined by:

E?;lfxact(i)

Xeg(t) = Tuxf

From equation for static beam delivery with online pretreat-
ment target-beam alignment above, the beam position x.(%)
has been calculated as the average of the first n seconds of
position information.

I.B.2. Evaluation metrics

The metrics evaluated for each of the five motion com-
pensation scenarios: the group systematic error, M, the SD of
the systematic error, %, and the root mean square of the
random error, o, were calculated as shown in Table LY

The displacement of the beam and the target at a given
time is indicated as A. A for the purpose of this analysis was
evaluated for a given fraction F; for a given patient P; and is
represented as A(P;,F;). To calculate the group systematic
error, M, A(Pj,F ;) was averaged over all fractions and over
all patients

M=A(P1PN,F1FM)

For the SD of the systematic error, 2, the first SD was ob-
tained over all fractions of each patient A(Pj,F ;), and then
SD was obtained over all patients
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