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Computational modeling of joints and their function, a developing field, is becoming a 

significant health and wellness tool of our modern age.  Due to familiarity of prior research 

focused on the lower extremity, a foot and ankle 3D computational model was created to explore 

the potential for these computational methods.  The method of isolating CT scanned tissue and 

rendering a patient specific anatomy in the digital domain was accomplished by the use of 

MIMICS™ , SolidWorks™, and COSMOSMotion™ – all available in the commercial domain.  

The kinematics of the joints are driven solely by anatomically modeled soft tissue applied to 

articulating joint geometry.  Soft tissues are based on highly realistic measurements of 

anatomical dimension and behavior.  By restricting all model constraints to true to life 

anatomical approximations and recreating their behavior, this model uses inverse kinematics to 

predict the motion of the foot under various loading conditions.  Extensive validation of the 



 

 xv

function of the model was performed.  This includes stability of the arch (due to ligament 

deficiency) and joint behavior (due to disease and repair).  These simulations were compared to a 

multitude of studies, which confirmed the accuracy of soft tissue strain, joint alignment, joint 

contact force and plantar load distribution.  This demonstrated the capability of the simulation 

technique to both qualitatively recreate trends seen experimentally and clinically, as well as 

quantitatively predict a variety of tissue and joint measures.  The modeling technique has further 

strength by combining measurements that are typically done separate (experimental vs. clinical) 

to build a more holistic model of foot behavior.  This has the potential to allow additional 

conclusions to be drawn about complications associated with repair techniques.  This model was 

built with the intent to provide an example of how patient specific bony geometry can be used as 

either a research or surgical tool when considering a disease state or repair technique.  The 

technique also allows for the repeated use of anatomy, which is not possible experimentally or 

clinically.  These qualities, along with the accuracy demonstrated in validation, prove the 

integrity of the technique along with demonstrating its strengths.    
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Chapter 1 ‐ Introduction 

1.1 Computational Modeling 

Investigative methods for studying health problems are numerous and diverse.  In the 

field of orthopaedics these methods include: prospective or retrospective clinical studies which 

report direct patient outcomes, which contain limits in evasive observation and measurement; in 

vitro tissue or cellular studies that allow for vastly increased ability to observe and measure 

outcomes, but are by definition limited to the target tissue or sample; and computational 

modeling, which grants the ability to reuse identical specimens in perpetuity as well as observe a 

multitude of effects in ways that are not feasible clinically and experimentally.  Such 

computational studies are limited by the knowledge base of material behavior as well as the 

modelers’ capability to realistically depict native tissue.  The focus of this work was at the 

computational level.  This work details the development of a simulation method which uses 

patient specific bone geometry and realistic ligament restraint to recreate native tissue behavior.  

This is an effort to develop a clinically and experimentally useful tool for disease/surgical 

outcome prediction and analysis. 

Considering the utility of computational modeling, these methods are capable of 

demonstrating extensive improvement in predicting the results of a study when used in 

conjunction with traditional forms of research (i.e. in vitro, in vivo, in situ etc…).  Such models 

could be used to investigate prototype improvements in surgical procedure by applying 

theoretical hardware and various tissue procedures (both soft tissue and bony) to an anatomical 

database.  These models could also be used in reconstructive surgery to visualize bony three-

dimensional architecture and soft tissue location, aiding the surgeon in the reconstructive 
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process.  As presented here, these models can evaluate soft tissue and bony anatomy in 

combinations of disease, injury and repair.  Such evaluation can be extremely potent in revealing 

joint angles/contact loads, overall foot morphology, ligament strain/load, and plantar contact 

distributions; quantities which are otherwise difficult to evaluate either in live subjects or 

experimentally.  These results can not only show the potential success for a treatment, but 

identify key areas of concern that can lead to complications later in life. 

The benefits of computational modeling have been recognized by researchers in the 

development of a variety of existing orthopaedic computational models.  Computational 

techniques are currently in use in four major ways in the field of orthopaedic joint kinematics. 

1.2 Computational Use 

The first major use of these methods is in Finite Element Analysis (FEA) of limb/joint 

structure.  A model for Total Knee Arthroplasty (TKA) contact stress and contact area was 

developed with FEA with comparison to a previously documented physical knee simulation1. 

Anderson et al. developed a FEA model of the tibio-talar joint for concurrent comparison with 

contact stress in the same anatomical geometry used with cadaveric experimentation2.  Cheung, 

et al. have published extensively in the past few years documenting a Magnetic Image (MR) 

derived foot model for FEA application3-8.  Their model was developed and validated with 

mechanically tested cadaver geometry.  Their technique was used to investigate the effects of a 

variety of footwear and shoe orthotics3-5. 

 The second major approach to joint level orthopaedic computational modeling is an 

experimental kinematics study.  These studies are ways of modeling and then viewing behavior 

that is otherwise difficult to observe and quantify, such as internal contact in the knee.    These 

techniques are a combination of Computed Tomography (CT) and/or Magnetic Resonance (MR) 
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scan imagery of live patient movement which are used in conjunction with various motion 

capture systems.  Li et al. have published extensively in this field to study knee kinematics.  This 

method uses a dual plane fluoroscopic motion capture on the femur and tibia during various 

activities and superimposes MR scan derived geometry onto these motion images.  From such 

data various measures of ACL, PCL, and medial & lateral menicscal contact can be made9-12.  

Similar methods are being explored by Tashman et al. using a CT based approach and high-

speed biplane radiography13.  Research focus for these works was cartilage interaction and 

determination of 3D spatial motion of bones during activities14,15.  These methods were also 

explored for the shoulder16.  These kinematic approaches for investigation exhibit strength in 

accurately quantifying 3D motion of bones at joints, which has yielded information about contact 

location, pressures, and tissue strains for in situ moving joints.  These methods provide excellent 

data to analyze the results of a procedure or the behavior of an injury state, but require significant 

patient contact pre- and postsurgical.  These methods are also pure motion studies with little 

investigation into joint internal loading. 

  The third major approach uses inverse kinematics.  These mathematical or computational 

models are predictors of internal tissue forces and strains.  Such prediction is made by using a 

purely motion capture kinematics method, then applying analytical dynamics to calculate the 

specific joint biomechanics such as contact forces and ligament strain.  They are used 

extensively in research of gait and other movement analysis.  Dao et al.17 performed a sensitivity 

study on the selection of patient parameters such as height and muscle cross sectional area.  That 

study highlighted the importance of physiological parameter selection in obtaining lower error 

rates when considering joint function and motion – this was a combination forward and inverse 

kinematics study.  Leanerts et al.18 performed an inverse kinematic study on the hip.  By varying, 
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again, patient parameters they established the importance of subject specific information in 

determining accurate hip contact force, moments, and muscular forces.  Stief et al.19 performed a 

combination motion and force study which used inverse kinematics to calculate moments during 

various methods of walking and running.  The biomechanical benefit of these techniques, to 

persons who may have weak lower extremities, was rated by the magnitude of moment and 

forces generated by the activities.  These methods again require extensive patient contact and 

measurement during activities to perform inverse kinematic investigation of joint function. 

The fourth major approach to joint level orthopaedic computational modeling is a 

forward kinematic approach.  The forward kinematic method is a predictive model of motion, 

based on pre-programmed material behavior and boundary/external constrains.  This is achieved 

by accurately reproducing the behavior of a joint or joint system, such that it is capable of 

predicting that structures response to internal or external perturbation.  Such works have been 

used in purely mathematical models of motion to predict how alterations in movement patterns 

from damage or training can impact gait or sports activities20-22.  The bulk of such methods use a 

simplified system of formulaic relations to describe joint motion and body position based on 

general limb dimensions, estimated joint torques and muscle activation.  There are examples of 

extensive models of this technique, which are used to create a simplified motion model of the 

human body.  Two commercially available motion analysis programs are SIMM (Software for 

Interactive Musculoskeletal Modeling) and VIMS (Virtual Interactive Musculoskeletal System).  

SIMM is a prefabricated musculoskeletal system that defines kinematics based on muscular 

activation.  This software contains a standardized skeleton and controls motion with simplified 

joint primates (i.e. ball/socket, hinge) and not by defining motion based on articulating 

anatomical geometry and corresponding ligament and musculature anatomy.  SIMM has 
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extensive utility in analyzing motion schemes based on muscular contraction and anatomy, and 

has been used to investigate joint contact force and internal bony loading23,24.  VIMS is a tool 

described as a database of anatomy and tissue mechanical behavior coupled with static and 

dynamic analysis tools.  The system has been used in several publications but it is not currently 

available to the public25-27. 

The modeling approach discussed in this work incorporates the strengths of 3D rigid 

body motion simulation, based on patient anatomy and coupled with a forward kinematic 

approach which approximates joint behavior to predict response.  This method provides a tool 

that will fill a niche in current modeling techniques.  The purpose of this tool is to augment 

research power by creating predictive musculoskeletal models.  As mentioned, the research 

community has tools to analyze soft and hard tissue deformation at a tissue and joint level and to 

inversely derive the conditions present at joints based on patient motion – but anatomically 

accurate patient specific motion predictors are currently not available.   

These methods can be applied to any joint of the human body and modified by any 

existing surgery or disease that alters material behavior and geometry.  For the purposes of this 

study and due to prior research in this area, the foot and ankle region was considered for 

modeling.  The creation of such a patient specific foot and ankle model, to which a variety of 

disease and injury states can be simulated, will prove to be an invaluable assistive tool in treating 

the particular deficiencies of that patient’s anatomy with tailored fit treatment.  The development 

of this approach is detailed in the following chapters and incorporates CT derived bony anatomy, 

anatomical ligament geometry and soft tissue behavior.  This technique recreates disease/repair 

states to generate a model that can be used in conjunction with reported experimental and clinical 

findings to obtain a more detailed perspective of common foot and ankle conditions.  This model 
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allows the user extensive freedom to create and apply external and internal loading as well as 

physical objects such as surgical hardware to simulate their effect on joint function.  The model 

was validated by several comparisons to experimental findings.  One area of validation was 

accomplished by simulating soft tissue contribution to arch stability and soft tissue strain in the 

presence of a fascia release surgery (fasciotomy).  Another validation was performed by 

simulating Adult Acquired Flatfoot Deformity (AAFD) and its repair methods.  The results of 

that model were compared to experimental and clinical findings.  From a developmental 

standing, throughout this work methods were identified to increasing model stability, 

automate/standardize model creation and reduce computation time.  All of the methods and 

software used in this development are in the commercial market. 
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Chapter 2 ‐ Background 

2.1 Previous Modeling Technique 

Computational modeling was first investigated in this laboratory with a previous foot 

model that focused on ankle function28.  This model used geometry from the male CT dataset of 

the National Library of Medicine’s, Visible Human Project (NLM-VHP) (U.S. National Library 

of Medicine, Bethesda, MD).   This data was processed in MIMICS (Materialise’s Interactive 

Medical Imaging Control System, Materialise, Ann Arbor MI) to create IGES (Initial Graphics 

Exchange Specification) files.  These files were arrays of stacked 2D curves of the bones of the 

foot which described high resolution axial profiles of long bone geometry.  This geometry was 

imported to SolidWorks (SolidWorks Corporation, Concord MA) to form surface geometries that 

were further processed to yield solid bone geometry.  These bones were then assembled to yield 

the hind-, midfoot and ankle.  In COSMOSMotion (a SolidWorks add-on) a network of linear 

spring elements were added to simulate the soft tissue constraint imparted by ligaments.  The 

ligaments and consequent bony motion modeled was restricted to the ankle joint and movement 

of the talus, tibia and fibula.  This technique and subsequent validation and sensitivity 

investigations were focused at the ankle level.  Validation was performed with a series of 

simulations of experimental and clinical studies.  Comparisons were made which showed that 

under a variety of simulated injury and surgical configurations the model demonstrated 

agreement with results pertaining to bony rotations and ligament contribution to ankle stability28. 

With the success of this previous model established and having cultivated a further 

interest in computational modeling, the work presented here is both a continuation of the 

previous model in terms of creating a more detailed and comprehensive foot simulation model, 
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and a vast divergence from much of this previously established methodology and technique.  

These new approaches and further depths of simulation detail increase flexibility, computational 

stability, and the potential usefulness for these simulations. 

2.2 Foot Anatomy 

To properly introduce the foot and ankle and put into perspective the task undertaken 

here, the following section will describe the anatomy which was studied and modeled.  The 

figures in the following section are 3D reconstruction of actual bone anatomy.  All images are of 

a right leg and have been drawn with guidance from anatomy text29,30, literature31-34 and in-house 

dissection.  This anatomical description should serve to put into perspective the scope of bony 

and soft tissue anatomy this technique seeks to address.  This includes the size disparity between 

some of the modeled bones, the variety of bony features, the combinations of both two 

dimensional and three dimensional ligament structures and the interplay between all of the 

architecture from distal knee to distal phalange.   Hopefully this description will also impart 

some of the reverence the author has developed for this intricate and beautiful structure which 

supports us in our daily lives. 

Bone and Joint 
Considering the lower extremity, there are a number of significant joints: the femoral 

acetabular articulation (hip), tibiofemoral (knee) and tibiotalar (ankle).  Further distal are the 

multitude of articulations of the foot.  For the scope of this work, our most proximal interest is in 

musculature originating from the femur.   The distal posterior supracondylar aspect of the femur 

is the origin of the dual heads of the gastrocnemius muscle.  The gastrocnemius is one of the two 

muscles which, distally, form the Achilles tendon.  From the floor of the knee joint down, the 
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two bones of the leg are the tibia and fibula (Figure 2.1).  The fibula is tied to the tibia with a 

thick sheet of material called the interosseous membrane and a proximal and distal fibrous 

articulation.   

  

Figure 2.1: Bones of the Leg.  The tibia and fibula, pictured above in the anterolateral (left) and 

the posteromedial (right) views.  These two bones comprise the bony anatomy of the leg.  The 

interosseous membrane runs the length of the facing surfaces of these bones (hatched).  Right 

leg, foot semi-transparent for orientation. 

 

The tibia is by far the larger of the two, making a clear supportive pillar between the knee 

and ankle.  The fibula is load bearing but functions more for stability at the ankle by creating 

portions of the ankle joints’ bony anatomy.  The fibula also provides, in conjunction with the 

tibia and the interosseous membrane, a broader bony field to which large muscles of the leg can 

originate.  Distally, the tibia and fibula each possess a bony prominence called a malleolus which 

Tibia 

 

Fibula 

 

Interosseus Membrane 
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serves both to restrict motion at the ankle as well as to provide ample bony anatomy for the 

anchoring of numerous ankle ligaments (discussed in the next section) (Figure 2.2).  The 

composite of these two joined bones is rigid enough to provide the support needed for 

ambulation, cooking pizza, fencing, gymnastics, etc… while simultaneously providing enough 

flexibility to allow for the ankle to operate in a full range of motion under such crushing impacts. 

 

Figure 2.2: Maleoli of the Ankle.   Anterior view of the medial and lateral maleoli clearly.  

These structures form the bony sides of the ankle joint as they encapsulate the talar body. 

 

Of greater role in this model are the bones of the foot and their articulations.  The talus 

and calcaneus together comprise the hindfoot.  Immediately forward of these bones are the bones 

of the midfoot: the cuboid, with its calcaneal articulation at the calcanealcuboid joint; the 

navicular which articulates against the anterior talus; and the cuneiforms - medial, intermediate 

and lateral.  The cuboid and cuneiforms together articulate with the forefoot.  The forefoot is 

composed of five metatarsals and fourteen phalanges, three phalanges to each toe except the 

great toe with only two (the same distribution as the hand).  Each metatarsal with its associated 

phalangeal column is known as a ray, with the great toe belonging to the first ray.  The smallest 

toe which is also the most lateral belongs to the fifth ray.  The first ray has its root almost 

exclusively on the medial cuneiform.  Rays two through four may share some slight overlapping 

Medial 

Malleolus of the Tibia 

 

Talus 

Lateral 

Malleolus of the Fibula 
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origin on the medial, intermediate and lateral cuneiform as well as the distal cuboid.  The fifth 

ray articulates exclusively with the distal cuboid (Figure 2.3).    

                

Figure 2.3: The Foot.   Anteromedial (left) and lateral (right) views of the right foot.  These 

perspectives help visualize the full bony anatomy.  The demarcations of the hind-, mid-, and 

forefoot bones are clear, as are the structures of the rays. 

 

Returning to the hindfoot and specifically the major articulator at the ankle joint is the 

talus, a distinct bone of the hindfoot that is sculpted with numerous articular facets above, fore, 

aft, astride and beneath.  The talus lies across the splayed anatomy of the calcaneus, the largest 

bone of the foot.  The talus articulates with the calcaneus at several of its extensive articular 

facets both on the superoanterior body as well as on the winging architecture of the 

sustentaculum tali and the anterior body of the bone.  The calcaneus, in addition to supporting 

the talus and with it forming the subtalar hindfoot articulation, also possesses an anterior 

articular facet for the cuboid.  The posterior of the calcaneus is a large prominent tuberosity that 

is the insertion site of the Achilles tendon (Figure 2.4). 
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Figure 2.4: The Hindfoot.   View of the talus (left) and the complete hindfoot articulation (talus 

and calcaneus, right).  Orientation is given with respect to Anterior (A), Posterior (P), Superior 

(S), Inferior (I) and Lateral (L) aspects.  Major articular features are identified on both of these 

bones.  The subtalar joint is a complex articulation between the talus and the calcaneus as 

depicted in the right set of images. 

 

The origin of the gasterocnemius, one of the muscles which form the Achilles tendon, 

was discussed prior as on the posterior femur.  The second muscle forming the Achilles tendon, 

the soleus, originates across the deep posterior compartment of the leg formed.  This 

compartment is formed by the interaction of the tibia, fibula, and interosseous membrane.  The 

tendon itself is quite robust, easily shouldering up to several hundred Newton’s of force – an 
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importance that will be more significant during discussion of a disease of the foot.  These bones 

act together to create some important supportive geometry.  The flow of the talus and calcaneus 

around each other forms the foundation of an arch lying in the sagittal plane and extending down 

the long axis of the foot.  Observing the architecture of the foot from the medial side one can see 

this arch clearly, formed by the line of the calcaneus, talus, navicular, medial cuneiform, and the 

first ray.  The apex of this arch is roughly centered on the talonavicular articulation (Figure 2.5, 

left).  From the lateral perspective, there is a very mild arch formed by the calcaneus, cuboid and 

fifth ray, this architecture has been referred to as an arch but more commonly as the lateral 

column due to its relative straightness (Figure 2.5, right). 

   

Figure 2.5: The arches of the Foot.  Views of the medial and lateral arches.  These are 

highlighted by a superimposed arch following the medial arch geometry, left; and the lateral 

column similarly, right.  Note the difference in distance to ground between the 1st and 5th 

metatarsal base as well as the distance of the navicular and cuboid bones to the ground. 

Ligament 
While the position of the bones is assisted by their interlocking shape and well mated 

articular surfaces, ligaments provide the bulk of the connective support between the bones.  At 

the deepest tissue levels these bones are small and close enough that their joint capsules merge 

almost completely to encase the foot in a mesh of soft tissue.  There are notable thickenings of 

this network around sites of importance of the ankle: the fibulocalcaneal, anterior and posterior 

fibiotalar, and medial talocalcaneal which act as a lateral counterpart to the deltoid ligament and 

Medial View        Lateral View 
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provide support against inversion; the tibiofibular which bind the bones of the leg distally 

(Figure 2.6); the anterior and posterior tibiotalar ligaments, which tie the leg and foot by crossing 

and supporting the medial ankle joint, in conjunction with the medial tibiocalcaneal; and the 

tibionavicular ligament.  These large groups of medial bands are known together as the deltoid 

ligament, which stabilize the ankle against eversion (Figure 2.7). 

 

Figure 2.6: Lateral Ankle Ligaments.   Major structures of the lateral ankle joint.  Ligament 

shape and placement represented from dissection, anatomy text29,30, and literature31-34. 

 

Figure 2.7: Medial Ankle Ligaments.   Major structures of the medial ankle joint, the deltoid 

ligament.  Shape and placement represented from dissection, anatomy text29,30, and literature31-34. 
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A structure of particular importance to the stability of the medial arch is the capsule 

network around the talonavicular joint, remembering that this site is the apex of the medial arch.  

The thickened bands of ligament about this structure are known as the spring ligament.  The 

spring ligament has superior, medial, and inferior portions.  The superior portions also include 

the tibionavicular ligament which passes over the talus.  The medial portions are slighter, 

supported by the tibialis posterior tendon (discussed in the next section), and include bands of the 

calcaneonavicular ligament.  The inferior portions are typically the thickest bands (Figure 2.8).  

The inferior spring ligament serves not only to maintain joint unity, but as part of the joint 

architecture itself.  This thickened ligament may contain thin regions of articular cartilage and 

even bone, which aid in supporting load as the talonavicular joint resists depression under 

loading.  The origin of the inferior spring ligament is centered around the anteromedial calcaneus 

and its sustentaculum tali.  Nearby ligament bands arise from the cuboid and are known as the 

cuboideonavicular ligament – these are not associated with the spring ligament complex. 

 

Figure 2.8: The Spring Ligament.  Major portions of the spring ligament complex as viewed 

medially.  Shape and placement represented from dissection, anatomy text29,30, and literature31-34 
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The physically more extensive ligaments of the foot are the long and short plantar 

ligaments, and the plantar fascia (aponeurosis).  The long and short plantar ligaments originate 

on the inferior and middle/posterior surface of the calcaneus; they are of middle depth in the arch 

of the foot.  The short plantar ligament (also known as the plantar calcaneocuboid ligament) 

crosses the calcaneocuboid joint with some bands crossing to and inserting into the cuneiforms.  

The long plantar ligament goes further, extending to the distal cuboid and cuneiforms distal with 

attachment into the proximal metatarsal bases (Figure 2.9). 

 

Figure 2.9: The Long and Short Plantar Ligaments.  Both short and long (cut to see short) 

portions of the plantar ligament (shown in an inferior perspective).  This is a very 3 dimensional 

structure with both proximal and distal midfoot insertions including attachment to metatarsal 

bases.  Shape and placement represented from dissection, anatomy text29,30, and literature31-34. 

 

The plantar fascia is a broad sheet that is very superficial, inferiorly, in the foot.  This 

tissue is found integrated onto the deepest layers of skin of the sole of the foot.  The plantar 

fascia has its origin inferior on the calcaneus and very posterior, tending to seat just under the lip 
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of the posterior calcaneal tuberosity – the Achilles insertion.  This band of tissue flows across the 

whole of the arch of the foot, passing the insertions of the long and short plantar ligament, 

around the metatarsal heads, to finally insert at the base of the proximal phalanges (Figure 2.10).  

By wrapping around the forefoot geometry this way, the fascia can be tightened by merely 

extending the toes with no other changes to foot position.  This extensive wrapping and toe 

tightening has been referred to as the “windlass mechanism” of the foot.  There are numerous 

other ligaments of note in the foot and ankle; however the abovementioned are not only the 

largest and most robust of the structures of the foot, but also play key roles both in the 

development of this model as well as in the injury and disease states simulated to validate it. 

  

Figure 2.10: The Plantar Fascia.  The structure of the plantar fascia shown in an inferior 

perspective.  This includes its common origin at the posterior tuberosity to its distal insertions 

around the metatarsal heads to the phalanges.  Note the splaying of the fibers at the midfoot / 

forefoot level.  Ligament shape and placement represented from dissection, anatomy text29,30, 

and literature31-34. 

Musculature 
A variety of musculature acts on the foot to provide arch support, balance, and 

locomotive power.  Mentioned previously were the gastrocnemius and soleus muscles which 
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together form the Achilles tendon.  Also of particular note to this work is the tibialis posterior 

muscle.  The tibialis posterior originates in the deep posterior compartment of the leg, its tendon 

runs medial, coursing around the medial malleolus of the tibia.  The tendon passes the talus to 

find insertion on the posteromedial border of the navicular (Figure 2.11).  This insertion is shared 

with elements of the spring ligament.  The location and line of action of this tendon allows the 

tibialis posterior to both stabilize the talonavicular joint, as well as the apex of the arch of the 

foot.  There are numerous other muscles in the below knee lower extremity but their involvement 

in passive supportive stance is minimal and for this reason and others, their function was not 

incorporated. 

 

Figure 2.11: The Posterior Tibial Muscle & Tendon.   The anatomy of the posterior tibial 

muscle and tendon.  Path of the tendon to the navicular around the medial Malleolus and astride 

the talar body (restrained by retinaculum, not shown), left.  Muscle body located posterior 

between the tibia and fibula in the deepest muscle level, right. Shape and placement represented 

from dissection, anatomy text29,30, and literature31-34.  Additional dissection images are provided 

(Appendix I). 
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Various biomechanical studies have been performed on aspects of the foot as a whole and 

with respect to individual tissues.  Several of these studies have played key roles in this work by 

defining the presentation and behavior of tissues to be modeled. 

 

2.3 Studies of the Intact Foot 

It is well established that soft tissues do not display a purely linearly elastic response to 

loading.  Their behavior is often simplified with the suggestion of a toe region and a linear 

region.  In addition to knowing the stiffness of this linear region and estimating a behavior for 

the toe region, it is equally important to understand where (within the total elongation range of 

the ligament) the ligament behavior follows these representations.  We see then, that not only are 

stiffness’ dependent on material and structure, but any pre-tension or pre-slack in these structures 

can be variable as well.  Soft tissue dampening behavior is also a feature of these tissues, but for 

the purposes of computationally modeling a semi-static state, its role is related to equilibrium 

time of the model (discussed later).  The following studies explore this in an effort to understand 

how and when ligaments demonstrate their behavior.  

 

Ankle Ligament Behavior 
Siegler et al.31 performed a study of 120 tensile tests on ligaments of 20 cadaveric ankles.  

The focus of the study was on collateral ankle ligaments and their mechanical characteristics.  

The average age (67.8 ± 15.2 years) weight (69.1 ± 15.1 kg) and height (1.71 ± 0.09 meters) of 

the population was recorded along with the results of mechanical tests on the lateral collateral 

ligaments: posterior fibulotalar (PFTL), fibulocalcaneal (FCL), and anterior fibulotalar (AFTL); 
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as well as on medial collateral ligaments: tibiocalacneal (TCL), tibiospring (TSL), posterior 

tibiotalar (PTTL), and the tibionavicular (TNL).  These ligaments were dissected from 

surrounding anatomy and care was made to leave their full bony origins and insertions intact.  

These bony insertions were separated such that each ligament structure (even those sharing a 

bone of attachment) could be tested individually.  Specimens were kept hydrated in a saline 

solution during testing.  For testing a low elongation rate of 0.32 cm/min which corresponded to 

a strain range of 7.8%/min to 27%/min was specifically chosen to negate the effect of viscous 

behavior and capture elastic behavior.  The specimens were preconditioned with 15 cycles then 

gradually cycled to higher load endpoints until failure.  This was done to ensure the repeatability 

of the force-elongation curve and to obtain full sub-failure behavior.  Extensive information was 

recorded during these tests including physical appearance and dimension, as well as a full 

spectrum of tensile properties such as ultimate load/elongation, yield stress/strain, and failure 

modes (ligament avulsions from bone vs. midsubstance tears).  Along with this information was 

a stiffness constant of the linear region (Table 2.1). 

122.6 ± 66.9
234.3 ± 77.6
39.1 ± 16.6

Stiffness (N/mm)
164.3 ± 55.5
126.6 ± 42.9
141.8 ± 79.3

tibiospring
posteror tibitalar

tibionavicular

posterior fibulotalar
fibulocalcaneal

anterior fibulotalar

Structure

 

Table 2.1: Reported Linear Stiffness Values.   Stiffness and standard deviations reported for 

tested structures31.  Early talocalcaneal ligament failure loads were <44.5N and thus this 

ligament was excluded from further study as it was deemed not a significant contributor. 
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A study by Nigg, et al.35 documented the elongation and load behavior of intact cadaveric 

ligaments at different ankle positions.  This study utilized three cadaveric ankles (age range 34-

73 years).  Ankles were dissected free of skin overlying the malleolar surfaces, the peroneal 

tendons, and surrounding retinaculum to give unrestricted visualization of the ankle ligaments.  

These ligaments were: lateral, the anterior talofibular ligament and calcaneofibular ligament; 

medial, the deltoid ligament.  The mounting system for these ankles allowed full dorsi- and 

plantarflexion, internal and external tibial rotation, as well as inversion and eversion.  Ligaments 

were kept moist by a phosphate buffered saline solution.  Syringe needles were inserted into 

bones at the centroid of the insertions for ligaments to mark locations and ensure a repeatable 

measurement site on bone.  Measurements were taken in a variety of 3D rotational combinations 

(36 in total).  At each rotation the origin to insertion distance was measured.  The study defined 

the shortest length found for a ligament as “anatomical zero distance” and the longest length as 

“maximum distance”.  The elongation was normalized between these in situ extremes.  As with 

the previous study these ligaments were dissected free and a bone-ligament-bone specimen was 

prepared for each for mechanical testing.  Each construct was elongated at a rate of 100mm/min 

until a load of 2N was reached.  Loading was first removed, and then slowly reapplied to find the 

distance at which the ligament experienced 0.1N of load.  The elongation of the ligament at this 

low load point was labeled “force-zero distance”.  This data identified the beginning of the toe 

region.  The normalized elongation point of the toe region was compared to the normalized 

elongation of the ankle joint at the neutral position (Table 2.2).  These values indicate that the 

anterior talofibular and deloid ligaments are either within or beyond the toe region with the ankle 

in the neutral position.  The calcaneofibular ligament is indicated as being slack in this position.  

Note however the large standard deviations, especially in functional laxity. 



Chapter 2 - Background 

 22 

Neutral Position
0.47 ± 0.09
0.46 ± 0.07
0.57 ± 0.07

calcaneofibular 0.54 ± 0.27
deltoid ligament 0.46 ± 0.12

Structure Functional Laxity
anterior talofibular 0.33 ± 0.27

 

Table 2.2: Functional Laxity Values.  Functional laxity (toe normalized elongation) and neutral 

position (also normalized elongation).  With a sample size of n = 3 these values indicate whether 

a structure has not yet entered the toe region, or is in/beyond it35. 

 

Further in situ strain characterization was sought.  A study performed by Butler et al.36 

investigated ligament properties from bone-ligament-bone constructs taken about the knee.  

Three knees from donors (range 21-30 years) of both sexes were studied.  Dissection of the 

anterior and posterior cruciate, as well as the lateral collateral ligament was performed (as was 

the patellar tendon).  These dissections were done under magnification to preserve fiber bundles 

and cleanly separate them from surrounding tissue to leave all but their origins and insertions 

intact.  These specimens were potted at their bony ends, and placed in a warmed, saline buffered 

testing bath.  The specimens were then failure tested, with no mentioned preconditioning, at 

100% strain/second.  Various data was analyzed from these tests, of note were a stress/strain 

curve of the specimens and the yield strain. 

From the data in Butler et al. as well as earlier data from Danylchuk et al., a study by 

Blankevoort et al.37 expanded on the analysis and identified a non-linear toe region and a linear, 

post toe, response of these knee ligaments.  In their study, which was a mathematical model of 

articular knee contact, they derived a two phase behavior for their ligaments.  A non-linear 

equation to establish ligament tension based on strain in the toe region, and a linear relationship 

upon leaving the toe region.  By referring back to previous experimental study38, Blankevoort et 

al. was able to match internal and external rotations between the mathematical model and 
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experimental findings by adjusting the initial ligament strain values.  For those knee ligaments, 

the linear region in situ pre-strain was determined by this method and listed as follows (Table 

2.3).  The posterior cruciate ligament as well as portions of the lateral collateral ligament were 

found to be slack and are not listed below [their initial strain range (-0.04 to -0.25)]. 

Ligament Linear Region Initial Strain 
Anterior Cruciate
  anterior bundle 0.06
  posterior bundle 0.1
Lateral Collateral Ligament
  lateral bundle 0.08
Medial Collateral Ligament
  anterior bundle 0.04
  intermediate bundle 0.04
  posterior bundle 0.03  

Table 2.3: Initial Ligament Strains.   Strain values for knee ligaments in tension.  Values 

shown all indicate a stretch in ligaments just leaving the toe region37. 

 

Li et al.39 considered similar behavior as part of a 3D MR driven knee model.  The three 

phase scheme developed by Blankevoort et al.37 (slack, toe, linear regions) was used here.  

Further classification of the transfer from toe into linear region was made by defining the end of 

the toe region to be 0.06 or 6% strain.  Here again the selection of initial strain lengths was done 

by matching model behavior to experimental. 

 Song et al.40 followed these works by summarizing them with “Typical residual strains 

are approximately 3-5% in the ligament of diarthrodial joints (Blankevoort et al., 1991; Li et al., 

1999).”  The study then proceeded to model neutral knee ligaments under an initial 3% in situ 

strain. 

 Following a separate line of research on a different joint, Savelberg et al.41 performed a 

study on the wrist ligaments.  This study’s purpose was to determine strains and forces in carpal 
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ligaments during various flexion and deviation movements.  Seven specimens were used for this 

study from a population of age range 63-78 years.  The joints were inspected for normalcy prior 

to testing.  Easily accessible ligaments including the palmar radiocapitate, palmar radiolunate, 

dorsal radiotriquetrum, and dorsal triquetrotrapezium ligaments were studied here.  Radioopaque 

beads were attached along the lengths of these ligaments from origin to insertion.  During 

manual movement of the specimens, several radiographs were taken to measure the 3D position 

of the beads at each angle.  Bone-ligament-bone specimens were then isolated and tested to 

determine both zero-force length and the force-elongation relationship of the ligament.  The in 

situ strains of these ligaments were reported for all positions.  For neutral position, the strains 

varied between approximately: -2% to 11% strain for the dorsal radiotriquetrum ligament, -4% to 

-12% for the palmar radiocapitate ligament, 5% to 6% for the palmar radiolunate ligament, and -

3% to 10% for the dorsal triquetrotrapezium ligament41. 

 

 Perfect representation of the ankle ligaments would require studying each of them in turn 

across a large population of specimens.  In the absence of this, the data presented from studies of 

the knee ligaments suggest that the linear region starts at approximately 3-5% in situ strain36-39.  

The study of both the knee and the wrist suggest that many of the ligament structures present in 

either joint exist with a neutral pre-strain at or above that level36-41.  The study of the ankle 

suggested that most (two out of three) of the ligament structures studies are in or beyond the toe 

region and thus also under some pre-strain35. 

 Without a full datasheet of ankle ligament behavior available, and for simplicity in 

agreement with literature, the range of approximately 2% to 6% in situ pre-strain was considered 

when formulating the models presented in this work. 
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Plantar Fascia Behavior 
The plantar fascia, the major ligament structure of the sole of the foot, was studied in 

detail by Kitaoka et al.42  In their study 12 cadaver feet with an average age of 75 years (range 

56-81 years) were prepared for mechanical testing with extensive dissection of the foot.  The 

origins and insertions of the plantar fascia were separated from the remainder of the foot by 

disarticulating the hindfoot at the transverse tarsal joint, and separating the forefoot with 

osteotomies of the metatarsal bases.  The bony portions of the specimen were affixed to a 

materials testing system, and visual markers were applied to the tissue.  These markers were 

placed in the medial, central and lateral portions of the fascia.  A variety of loading rates (11.1, 

111.2, 1112.0 N/sec) were used to axially load the specimen to 445N of tension.  With slight 

variation the stiffness of each zone was unchanged due to loading rate, further, no significant 

difference in zonal stiffness was found.  The concluded average stiffness of the intact fascia was 

203.7 ± 50.5 N/mm. 

Interosseous Ligament Behavior 
The interosseous membrane between the tibia and fibula has not, from a search of the 

literature, been experimentally tested to yield stiffness characteristics.  Such a study has however 

been performed on the forearm interosseous membrane.  Pfaeffle et al.43 dissected 18 fresh 

frozen cadavers (45-70 years old) to obtain forearms.  The forearm membrane further dissected 

to yield the “central band”, a distinct band of interosseous ligament approximately 3-5mm in 

width.  These band it its attached bone segments were mechanically tested in an axial load frame.  

Specimens were preloaded to 0.5N then loaded to failure at 30mm/min to obtain a load 

elongation curve.  The linear region stiffness of these specimens was calculated at 13.1 ± 3.0 

N/mm per millimeter of specimen width43. 
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Goals 

 Appreciating the final successes and limitations of the previous ankle simulator and with 

perspective on how to formulate a full foot model, a plan for the simulation presented here is 

formed.  The development of this forward kinematic approach, which uses patient specific 

geometry and constrains joint motion by anatomy and soft tissue behavior, was created around 

the following criteria.  These goals are, 

 

1) Development of a simulation method for investigation of the entire foot and ankle 

2) Determination of the means to rapidly generate such a model 

3) Improvement of these means to further reduce the potential for user error 

4) To validate the model in comparison to clinical and experimental findings 

5) Demonstrate the capability to model a variety of orthopaedic injuries and treatments 
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Chapter 3 ‐ Methods 

 The final technique presented here for creating a 3D anatomical model of the foot and leg 

represents the development of methods to capture, process and transfer geometry from scan data 

to motion simulation.  The motion simulation model evolved through multiple iterations which 

were explored for days, weeks, and months at a time.  At each model iteration, significant 

changes were made that reflected an increasing awareness in modeling efficiently using the 

various software programs to develop and run these simulations.  The initial conceptualization of 

much of this work includes extensive educated trial and error to create stable simulations.  In the 

course of this work there were forays into related areas of research (significant ones are 

documented in the appendices).  While presenting the successful stages of these models in a 

purely chronologically manner would be the simplest, attempts have been made to consolidate 

the progression of the model for the readers ease in following salient improvements at major 

steps.  Major sources of error or model failure are identified and presented with the solution 

devised to count them.  The “initial models”, which are presented first, were used as proof of 

concept and to obtain realistic behavior and model stability.  The “final refinements” 

methodology incorporates all of the refinements, learned from both the end product of initial 

models and adjustments to latter ones, which allow for the rapid simulation of model states with 

much improved stability.  These final refinements improved various aspects of model response 

and stability to bring the resultant behavior closer to that of live tissue, these are discussed. 
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3.1 Initial Models: Scan Geometry 

 The previous model developed by Peter Liacouras44 was built from CT scan data from the 

National Library of Medicine’s Visible Human Project.  The male CT dataset was performed 

with 1mm x 0.33mm x 0.33mm scan resolution45.  This was unfortunate as it lead to a 

dimensional non-uniformity when brought into 3D scan space, which results in rectangular 

voxels that have a lower axial scan resolution.  [NOTE: Voxels are the 3D version of pixels, the 

digitized 2D resolution of a scan.  When these 2D pixel views are layered and computed into 3D 

the axial scan resolution gives these pixels their 3D dimension, converting them to voxels.]  

Further, the scan data contains some registration errors whereby the tibia and fibula 

approximately 2 inches above the ankle are translated away from the rest of the leg (Figure 3.1).  

Lastly, the foot was positioned in a moderately plantarflexed position and the forefoot was curled 

in on itself slightly.   

         

Figure 3.1: NLM-VHP Male Dataset.   Digital images and 3D reconstructions of the male 

dataset.  The AP view of the male dataset, left, note the drawn appearance of the proximal tibia 

and fibula, the discontinuity above the ankle joint, and the inverted ankle joint.  The lateral view 

of the same scan, middle, also showing the scan discontinuity as well as excessive plantarflexion 
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of the ankle.  Rapid, low quality 3D rendering of this anatomy further shows the error associated 

with bony capture from this scan data, right images. 

 

In an effort to avoid some of the problems associated with manually resizing, aligning 

multiple bones and repositioning the ankle and toes, the female dataset was considered.  The 

female CT data was taken at 0.33mm axial resolution45 to yield cubic voxels which solved the 

proportions problem and improved axial resolution.  The female dataset also suffered from 

similar mis-matching of scan data, but in this scan the mismatch was higher in the leg, just below 

the tibial plateau.  Again the foot was plantar flexed, but to a lesser degree and with lesser 

curling of the toes (Figure 3.2).  Formulation of the early models proceeded with this dataset. 

         

Figure 3.2: NLM-VHP Female Dataset.   Improvements over the male data set both in 

resolution, distortion and position of the foot.  There is still some plantarflexion and inversion in 

this dataset, but forefoot position is better and more of the tibia is available. 

3.2 Initial Models: Scan Processing 

To view and ultimately capture anatomy from the scan data, the program MIMICS 

(Materialise’s Interactive Medical Imaging Control System, Materialise, Ann Arbor MI) was 
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used.  MIMICS is a fairly complex program which incorporates various thresholding, geometry 

recognition, pixel mapping and boundary algorithms to allow the user to isolate various shapes 

(especially organic) in 3D space from sources such as computed tomography or magnetic 

resonance imaging.  Importing the NLM-VHP female CT dataset was done manually.  The 

dataset for the entire body was available in quarters from superior to inferior and taken in the 

transverse plane.  Manual importing allowed for the isolation of slices only pertaining to the 

below knee lower extremity.  Manual isolation of the region of interest created a smaller virtual 

workspace which was easier to navigate and saved computation time throughout MIMICS 

processing.  The CT scans are a grayscale field, which can be navigated in a user assigned 

orientation of top/bottom, left/right and front/back.  Upon importing the scan field, MIMICS 

prompts the user to orient the model to these directions.  [NOTE:  while MIMICS allows you to 

assign this orientation to your dataset, there are no translational or rotational positioning 

functions to allow you to align the model in any way – thus scan orientation becomes somewhat 

important.]  Once directions are assigned, the default MIMICS workspace appears and MIMICS 

compiles 2D views for all orientations (Figure 3.3). 
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Figure 3.3: MIMICS Workspace.   Basic 4 pane workspace for processing scan data in 

MIMICS.  Upper right and left, and lower left panes are 2D views, lower right is reserved for 3D 

objects.  Stacked windows, far right, display various measurements, masks, threshold histogram, 

and 3D objects.  Prompt window for orientation of the scan allows orientation to be viewed and 

altered in any 2D view preview of the workspace (right callout). 

 

Step 1, Threshold 
The first step was to isolate cortical bone in the scan.  The profile line tool allowed the 

user to drag a line across a portion of the scan.  Typically a bicortical bone region was so lined to 

provide intensities for air, soft tissue, cortical bone, cancellous, then back through cortical and 

soft tissue – giving a thorough spread of tissue.  The grayscale intensity histogram across the 

length of the line was displayed, with the brighter cortical bone appearing as peaks in the 

background soft tissue and noise (Figure 3.4).  These tools allow the user to select upper and 

lower limits to threshold the entire dataset to select tissues of their choosing.  Cortical bone 
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shells were of interest for this scan.  The threshold tools often yielded clear bone edges and 

separated large bones from one another at their joints.   

 

Figure 3.4: Threshold Windows.   Workspace pane, in rear, showing the AP 2D view with a 

green profile line sketched across the cross section of the leg (red dashed box).  Plot of scan 

intensity across the length of the profile line (boxed in blue, center foreground).  This chart 

allows the user to adjust threshold levels (blue arrows) while viewing relation to scan data.  

Separate threshold box allows additional control with or without profile lines being used (boxed 

in yellow, lower foreground).  [NOTE:  Cartilage is not captured/seen from this CT scan 

technique.] 

 

There were some problem areas when using this technique.  Small bones or certain areas 

of larger ones (such as cancellous articular ends) which have thinner or less dense cortical bone 

can, from a thresholding perspective, merge into the bone they articulate with.  By varying the 

threshold to one end of the spectrum (brightest pixels), only cortical bone can be isolated; but in 
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doing this much of the articular ends of large bones and very large regions of the smaller bones 

of the foot are not captured (Figure 3.5). 

 

Figure 3.5: Threshold Effect with Large and Small Bones.   Threshold applied to foot, shown 

here in the medial view.  The foot contains both small bones and bones that experience a great 

deal of load in daily activity, there are numerous areas where dense cortical bones quickly yields 

to porous cancellous.  Selecting a single threshold value to isolate joints and preserve bony 

anatomy is problematic in the foot. 

 

By varying the lower threshold limit to the opposite end of the spectrum (dimmer pixels) 

most of the articular surfaces are captured, but they merge almost seamlessly with one another – 

so much so that manually separating them would entail unacceptable error (Figure 3.6). 

Missing 
Anatomy 

Well Separated 
Joint Surfaces
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Figure 3.6: Threshold Effect at the TibioTalar Joint.   Different threshold values applied to 

the foot, shown in the medial view.  More manual filling of voids is required in bone as 

epiphyseal data was lost with a narrower threshold.  However, more manual separation joints 

was also required with broader a threshold. 

 

Additionally, the dimmer threshold may capture portions of ligament and tendon entheses 

or slightly calcified soft tissues which render the diaphysis with a much rougher surface, and 

further occlude the epiphysis.  A middle ground must be chosen which defines most of the 

epiphyseal surfaces while separating them enough for accurate manual partition.  When choosing 

a middle ground for threshold several bony sites should be considered.  [NOTE:  multiple 

thresholds can be done in isolation to parse large bones and small bones.  This requires 

additional work to add up the discrete scan thresholds to obtain complete bones.  For these scans 

and this region of the body, this method was briefly explored but was not found to save time or 

simplify further capture.] 

The highlighted 3D overlay of the grayscale intensity is called a “mask” in MIMICS.  

This mask can be viewed in each of the 2D perspectives overlaid on the pixel background of the 

scan, but exists in the 3D volumetric pixel, or voxel, scan space.  Post-threshold, much of these 

further stages are functions performed on the initial mask.  While the scan itself is referenced for 

Voids
Well Separated 
Joint Surfaces

Merged Joint 
Surfaces
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refinement of joint surfaces and for accuracy checks, the accuracy of the initial mask is very 

important for final model realism, as well as reducing manual manipulation time. 

 

Step 2, Region Growing 
The first (primary) mask captures the cortical bone of the entire extremity segment.  The 

“region growing” tool will isolate bones from each other and any artifacts in the scan space 

(hardware, or anything radio opaque enough to threshold with the bone).  The tool creates a new 

mask by selecting portions of the first mask that are connected by a voxel side in 3D space, 

essentially growing a new region out of connected mask portions.  For large bones this was 

straightforward and separation is automatic, for small bones there may (and will) be voxels 

connecting articular surfaces (Figure 3.7). 

 

Figure 3.7: Region Growing.   Separation of large bones readily done as seen with the tibia 

(green mask) and talus (yellow mask).  Even with good threshold choice, connecting voxels will 

cause region growing to extend to more than one bone (red dotted region shows several instances 

of joints merging in the mask.  Note the clear division of subtalar joint surfaces. 

Tibia 

Talus 
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To separate smaller bones for region growing, manual deletion of connecting voxels was 

necessary.  At least two of the three 2D perspectives were checked by necessity, frame by frame, 

for any connectivity.  If a connecting voxel was found it was erased from the first mask.  

[NOTE:  It is useful to try region growing early, this can illuminate where such connecting 

voxels are before extra time is spent editing needlessly.]  Forming the primary mask, and then 

separating it at articular ends followed by region growing yield a set of secondary masks, one for 

each bone. 

 

NOTE:  It is approximately at this stage that this method begins to differ from the previous 

capture method.  The previous method used features of MIMICS to create profile curves for the 

bones which were then exported as .iges files.  The implications of this branching will be 

discussed further in the SolidWorks section of the methods.  For more information on the 

previous method refer to Liacouras, 200644 

Step 3, Surface Closure 
The secondary masks are separated bones but with varying porosity.  As mentioned in the 

thresholding section, a middle ground was found between articular detail and articular blurring.  

Thus the secondary masks are populated with voids located in the center of long bones and at 

epiphyseal ends (Figure 3.8).  These voids breach the external surface of the secondary masks 

and must be filled.  If proper thresholding is selected earlier then sealing these surfaces can be 

done rapidly with little error.   [NOTE: Even in the presence of the original scan and MIMICS 

tools the precise determination of sub millimeter shape from one pixel to the next may be left to 

user judgment and exhibits digitization error based on both user factors and scan resolution.]   
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Figure 3.8: Surface Breaching Voids.   Example image of the primary mask of the leg in the 

lateral view of the talus (upper left).  Surface voids (white arrow, callout) require manual closure 

through all slices to seal the external surface of the bone before the filling step is performed.  The 

bony borders from the underlying scan assists in the manual determination of where these edges 

lie.  The “edit masks” tool is employed here, and can be scaled in size to one pixel if necessary, 

example shown with a 2 pixel wide circular edit to fill voids (bottom left).  Diagonally connected 

pixels are also addressed while using the mask edit as they likely yield voids in other 2D views 

(yellow arrows, callout).  After editing the mask appears for inspection to determine if surface is 

sufficiently sealed (bottom middle).  This step is repeated for each scan layer as changing cross 

section anatomy prohibits propagation of the mask edit to multiple slices (bottom right). 

 
 

Slice x Slice x 

Slice x 

Slice x+1 
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NOTE: Formation of secondary masks can be done before or after surface closure.  For large 

bones with separated articular limits, closure is secondary to region growing to form secondary 

masks.  For smaller bones with extensive articular merging, closure of the surface may be 

incidental during the editing to separate bones.  In essence it may be more efficient to perform 

these functions in different orders depending on bone size, scan/bone quality. 

Step 4, Mask Filling 
Once a secondary mask has been completely sealed, the internal voids may be filled.  The 

“cavity fill” tool in MIMICS works the same way as the region growing tool but with un-masked 

scan areas.  [NOTE:  If a mask has not been fully sealed, the entire workspace will “fill” when 

the fill tool spills out of a missed breach.]  Due to the porous nature of trabecular bone, the voids 

will not always be connected, and there may be many more voids than just one large and clearly 

defined hole.  In fact, it is almost always the case that there will be numerous one to three voxel 

“holes” in the masks after sealing and filling (refer back to Figure 3.8).  These holes are 

problematic later on when 3D solids are rendered from the masks.  At that stage, the holes create 

additional internal geometric complexity which ultimately translates to greater computation time 

and may limit the resolution of the final 3D solid by splitting software resources between useful 

external detail and useless (for these purposes) internal architecture.  MIMICS contains features 

specifically designed for situations such as this.  The “open” and “close” features perform a 

sequence of “dilate” and “erode” sub-features.  The sub-features either at a void/mask interface 

remove a set number of pixels (erode), or add a set number of pixels (dilate).  The mechanism for 

the subtraction or addition can be performed under a variety of connectivity settings which 

essentially let the user choose if the operations are performed for edge only connectivity or edge 

and vertex connectivity.  “Open” is erosion followed by dilation, “close” is a dilation followed 
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by erosion.  For the purposes of mask filling, the close feature was used.  The 2D edge only 

closure was used for the secondary masks set at a depth of 1 pixel.  This was the least aggressive 

closure yet was completely effective for these masks.  The dilate step closed any imbedded voxel 

holes as well as expanded the surface of the bone by 1 pixel.  When the erode subroutine was 

performed, the surface shrank by 1 pixel, and the inner holes, which were now filled and thus 

had no void/voxel boundary, were unaffected (Figure 3.9).  The net result to the surface was a 

smoothing where small pits were filled.  By restricting the close feature to 1 pixel, the changes in 

the surface geometry were minute and did not alter articular surface shape. 



Chapter 3 - Methods 

 40 

 

 

Figure 3.9: Cavity Fill and Close Feature.   Final processing to yield complete masks.  The 

surface closed mask contained large voids (arrows, top) filled by the “fill cavity” feature 

(middle).  Remaining voxel voids closed with “close” morphology operation.  Note external 

surface change at very small features (arrows, middle and bottom image). 
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Step 5, 3D Preview 
There is a 3D object rendering preview in MIMICS which builds an object from a mask.  

This feature has very basic crude/medium/fine build options.  The feature is useful for rapidly 

building all the secondary bone masks and viewing them in 3D space.  This can draw attention to 

any large errors from the capture methods that were missed or unrecognized in the 2D views of 

the mask (Figure 3.10). 

 

Figure 3.10: 3D Preview of Geometry.  A high resolution preview of the talus in an oblique 

view shows surface contour and detail which distinguishes articular surfaces.  Additionally these 

surfaces are free of any large apparent artifact from processing (left).  Entire foot rendered in this 

manner with bones isolated (forefoot not yet separated).  No gross defects in the mask processing 

are seen in these images (right). 

Step 6, 3D Rendering 
MIMICS can render exportable geometry from either mask or 3D objects by using the 

STL+ module.  The masks were used as the template for this rendering to reduce compounded 

smoothing error from using the 3D objects (potential for “hidden” smoothing on top of 

smoothing).  These bone masks were rendered into stereolithographic file format for exporting.  
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The .stl format is a standard 3D mesh used in various manufacturing venues.  The mesh is a 

surface defined by triangles.  There are numerous options for rendering the output .stl from the 

mask (Figure 3.11). 

 

Figure 3.11: STL+ Option Window.   The options include preset quality templates, as well as a 

custom option.  Additional factors such as scaling, matrix reduction, smoothing, and triangle 

reduction allow for further choice in created the .stl mesh file. 

 

The majority of these options pertain to simplification features such as smoothing and 

triangle reduction.  There are software constrains such as memory allocation that may (and here 

did) limit the final complexity of the .stl files when opening them in another program.  As the 

tibia and fibula were so vastly larger than any of the bones of the foot (the unreduced tibia 

contained 29,000+ triangulated surfaces, an order of magnitude above the cuboid which 

contained 3,700+ number of triangulated surfaces (Figure 3.12), two sets of parameters were 
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created to scale the simplification features to bone size.  A separate scheme was developed for 

the long bones and a second scheme for the smaller bones of the foot (Table 3.1, Table 3.2). 

The interpolation method is an expanded 2D to 3D interpolation of images.  It was 

chosen over grey value interpolation initially over concerns about axial slice distance (which 

cause poor grey value rendering) and later kept with the cubic voxel masks as little to no 

difference was seen between methods.  Smoothing is a filter for noise reduction of the rough 

surfaces.  The smoothing factor used was 0.5, midway between the minimum (0) and maximum 

(1) values assign importance to determine how much smoothing to apply based on local 

geometry.  Smoothing of the surface reduces roughened geometry.  This smoothing may lead to 

a loss in total part volume.  The “compensate for shrinkage” selection maintains object volume if 

smoothing reduces it appreciably.  Triangle reduction reduces file size (vital for large high 

resolution bones) by considering two kinds of values: tolerance, which is how far out of plane 

two nearby triangles may be in millimeters (suggested to be ½ or ¼ pixel size, thus 0.15mm was 

chosen); and edge angle, which considers if two triangles are near the same plane using degrees.  

By considering both the distance and degree of deviation between two or more triangles, the 

reducer may find several that, under these parameters, several triangles lie in the same plane.  If 

this is the case, then the plane is remeshed with fewer triangles.  [NOTE: The use of the 

smoothing and reduction feature was initially determined and modified as other scans were 

processed to achieve a user selected middle ground between highest resolution of final geometry 

and reasonable model processing times.  These parameters can be improved by increased 

processing power which affects all stages of modeling and simulation.] 
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Figure 3.12: Raw .stl Mesh of Tibia and Cuboid.   The tibia (29,000+ surfaces) with no 

triangle reduction or smoothing applied, left.  Cuboid (3,700+ surfaces), also with no reduction 

or smoothing, coarse surface appearance is very visible here, right. 

 

Value
Long Bones (Tibia, Fibula, Metatarsals, Phalanges)

Contour
Accuracy
1 Shell

5 Iterations
0.5 Smoothing Factor

Compensate Shrinkage (yes)
Reduction Mode: Advanced Edge

Interpolation Method:

Smoothing:

Triangle Reduction:
Default (0.15mm) Tolerance

15 Degree Edge Angle
10 Iterations

Custom Parameter

Prefer:
Shell Reduction:

 

Table 3.1: Long Bone Rendering Parameters.   Scheme performed on the long bones and, in 

early models, on the rays.  Reduction choices were chosen to have greatest effect on simplifying 

the diaphysis and retaining detail at the epiphysis (limited reduction angle). 
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Value

None

Compensate Shrinkage (yes)

Accuracy
1 Shell

5 Iterations
0.5 Smoothing Factor

Triangle Reduction:

Small Bones (Calcaneus, Talus, Cuboid, Navicular, Cuneiforms)

Interpolation Method: Contour
Prefer:

Shell Reduction:

Smoothing:

Custom Parameter

 

Table 3.2: Small Bone Rendering Parameters.   Scheme performed on the small bones of the 

early model.  Reduction was not performed due to small default mesh size of these bones.  

Smoothing eliminated .stl mesh surface roughness. 

 

An add-on feature in MIMICS allows the user to open the .stl files in a remesher to 

perform further smoothing, reduction, or a host of other features to edit the mesh at a fine level 

(manipulation of individual triangles, triangulated regions, and several other powerful mesh 

manipulation tools). [NOTE: while future work in these models may benefit from performing 

bony manipulation at the remesher level, SolidWorks remains the more powerful tool in this 

domain.]  Through this remesher, the large and small bones schemes were initially designed 

(Figure 3.12 images are from the remesher).  The amount and extent of triangle reduction and 

smoothing were manually, iteratively adjusted to achieve a high degree of file reduction while 

maintaining articular contact surface detail for identifying prominences for soft tissue attachment 

(Figure 3.13). 
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Figure 3.13: Mesh Reduction and Smoothing Effects.   Several reduction and smoothing 

schemes were explored in the MIMICS remesher module.  Examples are shown here of applying 

the two reduction and smoothing schemes to the talus (small bone, left; long bone, right).  Later 

models incorporated triangle reduction used early just for long bones. Geometry was deemed 

unaffected as surfaces and volume were preserved. 

3.3 Initial Models: SolidWorks Assembly 

 The exported .stl files from MIMICS were imported to SolidWorks (SolidWorks 

Corporation, Concord MA) manually.  SolidWorks recognized .stl files and gave several options 

for opening these files and converting them.  These options are solid body, surface, and graphics.  

[NOTE:  If the mesh is completely sealed and does not contain extensive internal voids/surfaces, 

the solid body load can be used without difficulty – else it will fail with a warning to use a 

graphics or surface open.  A separate warning is given if the file size is too large (too many 

triangulated surfaces) which varies depending on factors such as memory allocation.]  

SolidWorks loaded each mesh and converted it automatically into a solid body.  This body was 

directly saved as a part file in SolidWorks file format.  All the bones were opened and saved in 

this manner.  After conversion, a new assembly was created and each bone was loaded in as a 

new part.  The origins of each new part were carried over from the scan coordinate system and 



Chapter 3 - Methods 

 47 

thus allowed registration of the bones in their scan orientation.  This was accomplished by using 

SolidWorks mate feature, and selecting “for positioning only” to move the part into position 

without adding constrains at this stage (Figure 3.14). 

   

Figure 3.14: Assembly of Bones into Foot and Leg.   Individual bone part files and final 

assembly.  The bones were brought into an assembly and their origins were mated which 

maintained their scan orientation.  [NOTE: As mentioned previously, the female dataset from 

the NLM-VHP was in slight plantarflexion.  To move the tibia and fibula into an anatomical 

neutral, they were first rigidly mated with one another and the assembly of leg bones was rotated 

in the sagittal plane about the ankle to a vertical position and translated into place based on 

anatomical text reference.] 

 

To ensure good articular coverage, the “Move Component” feature, a tool in SolidWorks’ 

arsenal “interference detection”, was used.  This feature has a collision detection algorithm that 

allowed for very close positioning of the tibia and fibula to the talus without contact.   The toe 

curling was also addressed in a similar manner.  In the neutral position, the phalanges of all five 
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rays were curled down into the floor plate.  It was desired for the metatarsals to, as they do in 

stance, be the strongest distal point of contact for the foot.  The phalanges were rotated into 

dorsiflexion just enough to clear them of floor plate contact, clearance visible in Figure 3.14. 

 

NOTE: .stl choice:  the previous foot model was created from .iges profile lines44.  These lines 

served as guide profiles to define a lofted surface.  This method had two potential drawbacks that 

were mentioned in the previous work.  The first is that while the profiles guided the creation of 

smooth lofted bone, at 1mm resolution there is the likelihood that some surface detail could be 

lost, particularly at articular ends.  Of even greater importance was the second drawback.  The 

guide curves were created only in the axial direction, thus the articular surfaces themselves (most 

at the ankle located superior or inferior) were missing.  The lofted surfaces required a manual 

“capping” that was a user created geometry and thus derived indirectly from the scanned 

anatomy.  Details of this process are available44.  The largest benefit of using the .stl method is 

that a 3D mesh of the entire surface of the bone, not just an axially wrapped surface description, 

is created.  No capping or individual attention is required at all to bony ends or articular surfaces.  

All procedures performed on the bones are smoothing and simplification algorithms - no manual 

editing of geometry on the gross scale to fill large missing geometry is required. 

Modeled Hardware 
 Two mechanisms were created in SolidWorks to act as external boundary conditions.  

The first was a simple plate for the foot to rest on and be loaded against during simulation.  To 

position this plate in near contact with the bottom of the foot, bones were briefly fixed 

immovable in space.  The plate’s upper surface was coincident mated with the most inferior 

points of the 1st metatarsal and calcaneus, then manually rotated against these two points to bring 
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it just into contact with the 5th metatarsal.  The mates were then deleted and the plate was 

manually backed off the foot approximately ¼ of a millimeter.  The importance of this is more 

clear in the COSMOSMotion section, but it removes a time zero contact force which can (and 

often did) cause simulation failure. 

 The second mechanism was a device to limit rotation and translation of the tibia and 

serve as a simulated load fixture, referred to here as a load indenter.  This fixture mimics the 

function of loading devices used experimentally in the literature46.  This device is a simple peg 

and collar that prevents translation of the tibia in all but the transverse plane and prevents all 

rotations (Figure 3.15).  [NOTE:  the initial load indenter was a concentric mate that did allow 

rotation about the z axis. As friction (discussed later) was not applied to the model, this would 

allow the foot to rotate or spin without warning during simulation.  This was corrected by fixing 

the indenter to the tibia in COSMOSMotion.] 

 

Figure 3.15: Foot and Leg with Indenter and Ground Plate.   Assembly finished in 

SolidWorks space and ready for COSMOSMotion.  Floor contact manually positioned for near-

touching contact (arrows).  Indenter in collar has a serrated arm for future origin of Achilles 

Collar 

Achilles arm of 
Indenter 

Ground Platform 

Indenter 
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tendon element location (next section).  Collar is distance mated to ground plate to be vertical 

and immobile. 

3.4 Initial Models: COSMOSMotion Parameters 

 COSMOSMotion is a rigid body motion simulation add-on to SolidWorks.  It is capable 

of transferring and converting mates and relations from SolidWorks assemblies into pre-defined 

joint types and joint primitives.  It allows the user to specify things such as contact between 

objects, gravity and other external perturbations (such as a load, torque, motion, etc…), internal 

relationships and boundary conditions with springs, dampeners, bushings and action-reaction 

forces and constraints in the model (i.e. a part that is fixed or “grounded” and parts that are 

moving).  Once a scenario is created, the interaction of the various internal and external 

conditions can be set into motion over a user specified time course.  Results from a simulation 

include such things as position, velocity, and acceleration of solid bodies, contact forces, and 

loads in spring elements or action reaction forces.  The following sections describe the basic 

parameters of model formulation in COSMOSMotion including ligament elements, 3D contacts 

and solver parameters. 

 

Soft Tissue Modeling 
 The network of ligament structures were added to the bony anatomy through 

COSMOSMotion using, over time, a variety of methods which are presented here.  The recreated 

soft tissue anatomy of these structures was developed with study of the aforementioned myriad 

of sources: illustrated anatomy text, text with both illustrated and pictured dissections, peer 

reviewed literature, and in house dissection of specimens – more significant structures were 

described in Chapter 2. 
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Spring Elements 
These ligaments, as modeled in previous work, were created with spring elements in 

COSMOSMotion that resisted both tension and compression as a function of displacement.  

They were defined on the anatomy by selecting a single vertex on the originating bone and a 

single vertex on the inserting bone.  For models that used a single spring to describe a ligament 

structure, the origin and insertion of the element was determined by the rough center of that 

ligament’s anatomy.  The spring elements operate based on typical linear spring behavior and 

some defining parameters (Figure 3.16). 

 

Figure 3.16: Spring Element Definition Pane.   Element placement selection boxes and spring 

behavior parameter inputs.  Spring elements are defined based on part and vertex parameters, a 

simple linear spring expression described the action of the element, where “F” is the force the 

spring applies in Newton’s, “k” is the spring constant (defined in the next entry block), and “x” 

is the displacement of the spring from its starting point.  User can also define the starting length 

Location 
Parameters 

Behavior and 
Visual 

Appearance 

Equation of Action 
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of the spring as well as a starting force.  Other options are purely for appearance of the element 

in the simulation window.   

 

Tension Only Elements 
 Action reaction force elements are a class of objects in COSMOSMotion that can be 

applied to simulations in the same way as spring elements.  These elements furthermore are very 

versatile and powerful with respect to how they can be defined (Figure 3.17) 

  

Figure 3.17: Tension Only Element Design Panes.   These element’s locations are defined the 

same way a spring element is.  The function expression however is much more powerful.  These 

elements can be defined by a constant, step, harmonic, spline, and expression.  The expression 

option allows you to formulate more complex expressions of function based on more 

customizable real-time simulation parameters (function callout). 

 

The action of these elements, when described by an equation, can be programmed to 

respond in tension only past a certain length.  Using markers, which are computational 

placeholder values that identify the origin and insertion of such an element, and a C or 

FORTRAN like expression was used to create more complex functions.  Programmable function 
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variables, such as “DM” which is the real-time distance between two markers, and “VR” which 

is the relative velocity between the two markers, were used to create a ligament expression 

(Figure 3.18) 

 

Figure 3.18: Marker Window.   Marker selection window with a tibiofibular ligament 

expanded to show marker numbers.  The marker window is a browser to find and select the 

vertices corresponding to the element being modeled.   

 

Tension Only Action Reaction Expression 
 

The following statement is the expression for the action reaction element’s to acting in tension 

only, defined by bony location, ligament stiffness, and a dampening expression (Equation 3.1) 

 

 

Equation 3.1: Full Action Reaction Expression. 

 

In the conditional expression, the “IF” statement is only ever equal to a non-zero number 

if the distance between markers 2284 and 2285 become greater than 5.56mm (measured length 

IF(DM(2284,2285)-5.56:0,0,-70*(DM(2284,2285)-5.56)-0.1*VR(2284,2285)) 
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between vertices of the element) during the course of the simulation.  For all other lengths where 

the ligament is “slack” or “just slack” when the distance is less than or equal to 5.56mm, the 

tension in the element is 0 N (first and second term past the colon).  Once passed 5.56mm of 

stretch, the force in the element is equal to some tension “X” (third term past the colon) 

(Equation 3.2). 

 

 

Equation 3.2: Conditional Portion of Action Reaction Expression. 

 

This portion of the expression determines the force response of the element after it passes 

its slack length.  The tension in the element (tension denoted by the minus sign), is equal to the 

stiffness constant (70N/mm) multiplied by the distance the ligament is elongated past the 

designed slack length of 5.56mm (Equation 3.3).   

 

 

Equation 3.3: Force Determining Expression. 

 

This tension value is further influenced by a dampening function.  The dampening 

function increases the tension of the ligament by 10% of the velocity between the two markers 

(adding a negative to a negative).   

 

Equation 3.4: Dampening Expression.  

 

…-0.1*VR(2284,2285)) 

…-70*(DM(2284,2285)-5.56)…

IF(DM(2284,2285)-5.56: 0,  0, X… 
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As the solid bodies joined by the element move past the elements slack length, tension 

increases to resist further displacement, effectively countering their movement as natural 

ligaments would.  This tension prevents such things as subluxation of joints, etc.  To increase the 

rapidity of this action, the dampening feature increases tension, and only allows it to relax as the 

bones are slowed in their displacement from one another.  The value of 10% was chosen (from 

trial and error) to be effective in reducing simulation instability while not greatly increasing the 

simulation time required to reach equilibrium. 

3D Bony Contact 
 COSMOSMotion requires the user to define a relationship between interacting objects in 

motion simulation.  This relationship can be a joint which is created either in COSMOSMotion 

by directly defining joint geometry, as well as from a series of mates in SolidWorks that can and 

will be automatically grouped into a joint (such as defining several mates to create the action of a 

hinge.  COSMOSMotion will realize that these mates describe a hinge, and substitute it upon 

first activating the add-on for that assembly).  Additionally, there is a second form of contact 

possible through 3D contact.  3D contact calculates contact based on solid body interaction that 

is completely free of any joint or joint primitive motion restrictions.  The intent of this model 

was for bony contact to be primarily stabilized by ligament constraint and bony articular 

anatomy.  To this end 3D contacts were used extensively, all bones which articulated were 

defined in a 3D contact “container” (Figure 3.19, left).  This means that COSMOSMotion looks 

for potential contact between any of these bones, against any other bone in the container, at each 

time step.  If contact is determined, there are a variety of simulation parameters which dictate 

how the contact is handled (Figure 3.19, right). 
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Figure 3.19: 3D Contact Parameters.   3D contact bin as well as behavior options and 

parameters.  The contact container is a list of all solid bodies which will be checked for 

interference (contact) during simulation for the simple ankle model, left pane.  The contact 

parameters are entered into the second tab of the property manager.  As contact was manually 

defined, the “Use Materials” was never employed.  The second area of the pane listed “Impact” 

properties allows the user to define how contact is handled during simulation.  As articular 

surfaces have a very low coefficient of friction, and in the interest of time (simple models with 

friction ran 10x longer, if ever), the contacts were assumed frictionless.  Note that simulating 

frictional behavior was prohibitive (does not complete) with respect to computational time. 

 

 The impact properties are “stiffness”, which generates a compressive, repelling force 

centered at the volume of 3D contact between 2 parts, given in N/mm.  The “exponent” 

determines the characteristics of the exponential force function for the collision.  “Max 

dampening” is the greatest dampening value that interacting parts will experience, and 
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“penetration” is the distance these parts will have to move through each other to reach the max 

value.  Selected values for these properties are given in later sections. 

Simulation Parameters 
 The final step after bony geometry modeling, ligament modeling and contact definition, 

is to set global commands and parameters for running the simulation.  These parameters are 

grouped in several tabs to allow the user to control the duration and quality of the simulation 

(Figure 3.20, Figure 3.21). 

 

Figure 3.20: Simulation Parameters, Simulation.  User adjustable parameters tab with typical 

simulation values entered.  This tab allows the user to specify information about simulation 

duration, and basic part interaction with the motion environment. 

 

The upper portion of this tab allows the user to dictate how long the simulation should 

allow motion (in simulation time) such that parts moving at 4m/s will travel 16m during a 4s 

simulation.  The number of simulation “frames” can be set, but this value can be increased by the 
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solver if further time steps are needed to resolve the simulation.  The “Use mass properties” 

checkbox prevents COSMOSMotion from taking additional time to re-calculate properties such 

as center of mass and moment of inertia.  As all these parameters were present in the part files, 

this was unnecessary and significantly reduced computation time (~5-10min).  “Use precise 3D 

geometry” and the slider bar associated with it allow the user to adjust the facet tolerance when 

the motion simulator determines how parts interact with each other.  Further details of the use of 

these parameters are found in the results of these models in the following sections. 

 

Figure 3.21: Simulation Parameters, Solver.   Solver control tab with common simulation 

values entered.  The solver tab allows the user to modify a multitude of parameters such as how 

the integrator attempts to solve the simulation and under what conditions it should seek a smaller 

time step or move to the next one. 

 

 The “integrator type” is based on what behavior the user expects and how much 

computation power is available for modeling. The options are GSTIFF, WSTIFF, and SI2 
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GSTIFF.  GSTIFF is the default and is most kind to computation time, WSTIFF has some 

strength in calculating oscillating systems, and SI2 GSTIFF is tailored slightly for small step size 

accuracy.  GSTIFF was used for these simulations.  “Maximum iteration” and the various time 

step parameters specify under which conditions and to what levels the simulator can modify step 

size in an attempt to find a solution for that particular simulation frame.  “Accuracy” is a scale 

between convergence speed and accuracy of results.  The remaining conditions refer to how 

failed simulations are reported and adjustments to the deeper mathematics of the solver which 

are not publicly available. 

3.5 Initial Models: Variants and Basic Performance 

The initial models are briefly discussed; depth is spared only in discussing significant 

improvements or difficulties.  In total, there were approximately 14 full models created from the 

female NLM-VHP scan data, many of which were tests of small changes, improvements in 

simulation stability, and explorations.  The bulk of their usefulness was in discovering the initial 

and final methods of model creation reported previously and in the “Final Refinements” sections. 

Initial Ankle Model 
The earliest model was an ankle recreation of the prior model by Liacouras44.  This model 

contained only 3 moving bones, the tibia, fibula, and talus (Figure 3.22).  It served as a test 

platform for tension only ligament elements.  An averaged stiffness was applied to all ligaments 

with the exception of the interosseous membrane which was modeled very stiff (Table 3.3).  This 

stiffness was chosen to reduce the oscillating movement between the tibia and fibula due to the 

lack of a proximal articulation for these bones.  Some variations of this model were created with 

2% in situ ligament strain. 
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Figure 3.22: Tension Only Ankle Model.   Tibia, green; fibula, blue; and talus, red, were the 

only bones allowed movement.  Most ligaments described with a single element. 

          

Ankle Only Model Stiffness
Anterior Tibiofibular 70
Anterior Talofibular 70
Anterior Tibiotalar 70
Calcaneofibular 70

Dorsal Talonavicular 1 70
Dorsal Talonavicular 2 70

Interosseus 1 400
Interosseus 2 400
Interosseus 3 400
Interosseus 4 400
Interosseus 5 400
Interosseus 6 400

Interosseus Talocalcaneal 1 70
Interosseus Talocalcaneal 2 70

Lateral Talocalcaneal 70
Medial Talocalcaneal 70
Posterior Tibiofibular 70

Posterior Talocalcaneal 70
Posterior Talofibular 70
Posterior Tibofibular 70

Tibiocalcaneal 70
Tibionaviuclar 70  

Table 3.3: Initial Models: Ankle Model Ligament Parameters.   Modeled ligaments listed 

along with stiffness values, left.  3D contact parameters and which bones were applied to the 

contact, right. 

 

Stiffness 8000
Exponent 2

Max Dampening 200
Penetration 0.001

3D Contact Parameters

tibia, talus, fibula, 
calcaneus, navicularBones / Solids
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 The main purpose of this model was a starting point that had been reached previously.  

This model was used for a variety of small adjustments in solver, contact, and ligament 

parameters and helped explore the computational capability of a newer version of SolidWorks, 

COSMOSMotion, and upgraded hardware. 

Initial Full Foot Model: Spring Elements 
Briefly setting aside tension only elements, springs were employed in the first several 

iterations of the full foot model.  This model permitted movement of all bones with the exception 

of the phalanges which were fused to their respective metatarsal.  Additional anatomy was added 

around the ankle, hindfoot, midfoot, and forefoot to account for the increase in bony mobility 

(Figure 3.23).  Increased anatomical detail, and thus added stability through ligament stiffness’ in 

more accurate 3D depiction, as reported in literature were applied to portions of the medial arch 

to bolster the spring ligament and short plantar ligament.  This model incorporated 84 spring 

elements to describe 33 structures of the foot (Table 3.4).  Extensive bundles were created to 

describe the small capsule / ligament network of the dorsal and plantar midfoot.  Major portions 

of the long and short plantar ligaments appear in this model, but the plantar fascia is absent.  The 

spring ligament was bolstered to include what will become the final description of its superior, 

medial, and inferior bands.  Many structures of the ankle were still described by a single 

ligament.  This model was explored with 2% in situ strain as well.  Use of spring elements gave 

difficulty in determining what effect, if any, the pre-strain caused.  These models continued to 

use generic 70N/mm stiffness for most tissues. Early changes to these values were based on the 

size of structures as found in dissection and literature text29-34.  Final models employed the full 

range of values found in later literature31,42,43. 
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Figure 3.23: Initial Models: Full Foot Model.   Foot on ground plate, ligament spring elements 

in black (visible through bony anatomy).  Note 3D contact groups (top).  Plantar structures were 

simplified in these models, plantar fascia was not yet incorporated (bottom). 
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Ligament Stiffness Ligament Stiffness
Anterior Talofibular 70 Interosseus Talocalcaneal 2 70
Anterior Tibiofibular 70 Lateral Talocalcaneal 70
Anterior Tibiotalar 70 Long Plantar 1 70
Calcaneal Cubiod 70 Long Plantar 2 70
Calcaneofibular 70 Long Plantar 3 70

Calcaneonavicular 70 Long Plantar 4 70
Dorsal Calcanealcuboid 70 Medial Talocalcaneal 70
Dorsal Cuboidenavicular 70 Plantar Calcaneocuboid 1 210
Dorsal Cuneocuboid 1 70 Plantar Calcaneocuboid 2 210
Dorsal Cuneocuboid 2 70 Plantar Calcaneonavicular (Spring) 1 140

Dorsal Cuneonavicular 1 70 Plantar Calcaneonavicular (Spring) 2 140
Dorsal Cuneonavicular 2 70 Plantar Calcaneonavicular (Spring) 3 140
Dorsal Cuneonavicular 3 70 Plantar Cubiocuneiform 70
Dorsal Cuneonavicular 4 70 Plantar Cuboideonavicular 1 70
Dorsal Intercuneiform 1 70 Plantar Cuboideonavicular 2 70
Dorsal Intercuneiform 2 70 Plantar Cuneonavicular 1 70

Dorsal Metatarsal 1 70 Plantar Cuneonavicular 2 70
Dorsal Metatarsal 2 70 Plantar Cuneonavicular 3 70
Dorsal Metatarsal 3 70 Plantar Cuneonavicular 4 70
Dorsal Metatarsal 4 70 Plantar Intercuneio 1 70

Dorsal Talonavicular 1 70 Plantar Intercuneio 2 70
Dorsal Talonavicular 2 70 Plantar Intermetatarsal 1 70

Dorsal Tarsometatarsal 1 70 Plantar Intermetatarsal 2 70
Dorsal Tarsometatarsal 10 70 Plantar Intermetatarsal 3 70
Dorsal Tarsometatarsal 11 70 Plantar Intermetatarsal 4 70
Dorsal Tarsometatarsal 12 70 Plantar Tarsometatarsal 1 70
Dorsal Tarsometatarsal 13 70 Plantar Tarsometatarsal 2 70
Dorsal Tarsometatarsal 14 70 Plantar Tarsometatarsal 3 70
Dorsal Tarsometatarsal 2 70 Plantar Tarsometatarsal 4 70
Dorsal Tarsometatarsal 3 70 Plantar Tarsometatarsal 5 70
Dorsal Tarsometatarsal 4 70 Plantar Tarsometatarsal 6 70
Dorsal Tarsometatarsal 5 70 Plantar Tarsometatarsal 7 70
Dorsal Tarsometatarsal 6 70 Plantar Tarsometatarsal 8 70
Dorsal Tarsometatarsal 7 70 Plantar Tarsometatarsal 9 70
Dorsal Tarsometatarsal 8 70 Posterior Talocalcaneal 70
Dorsal Tarsometatarsal 9 70 Posterior Talofibular 70

IOM 1 70 Posterior Tibiofibular 70
IOM 2 70 Posterior Tibiotalar 70
IOM 3 70 Tibiocalcaneal Part 1 70
IOM 4 70 Tibiocalcaneal Part 2 70
IOM 5 70 Tibionavicular Part 1 70

Interosseus Talocalcaneal 1 70 Tibionavicular Part 2 70

Foot Model with Spring Elements

 

Table 3.4: Initial Models: Full Foot Ligament Parameters.   List of ligaments and elements 

describing them.  Early elements constrained bony motion with 1 element per ligament, here 

arrays being to substitute ligament structures over single elements. 
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3.6 Initial Models: Failure Modes 

 Before describing the performance of these early models, the common failure modes 

must be defined.  These failures were common and quite similar, persisting throughout even the 

latest generation of model.  Over the course of the evolution of the foot model presented here, 

many of the reasons for these rather ambiguous failures have been gleaned through trial and 

error.  Failures and their known or suspected causes are listed here for reference when 

considering model performance in future sections. 

Failed simulation runs typically expressed a short list of failed messages / model 

breakdown.  These failures include sudden loss of 3D contact, violent model expansion, 

unbounded oscillation of one or more parts, as well as a cryptic failure window that would cite 

several possible failures with reference to hidden COSMOSMotion solver equations. 

Loss of 3D Contact:  This was visible when the model “fell” through the floor plate, or 

when bones of the model – which were in solid contact for several frames - suddenly passed 

through one another and crashed the simulation.  

Violent model expansion:  A variation on oscillation whereby sudden increases in contact 

forces or ligament tensions tore the model apart by displacing all the components.  This was 

rarely a gradual process, commonly one frame of simulation would be “normal” and the next 

would have bones displacing over several hundreds of meters. 

Unbound Oscillation:  If a solid object was poorly restrained, or a 3D contact partially 

failed and allowed a bone to dislocate past its ligaments ability to restrain, the part would “rattle” 

for the duration of simulation, with a significant increase in solver time (~5x) and poor model 

results. 
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3.7 Initial Models: Overall Performance 

 These early models were not intended to generate clinical and experimentally relevant 

data.  These models were early proofs of concept and explorations into how and the extent by 

which these programs could be used to represent and model physical tissue behavior.  Just as 

MIMICS techniques were explored to obtain complete bony geometry and minimizing user error 

in reconstructing lost geometry, these models explored issues of developing a complete foot 

model with increasingly realistic soft tissue constraint. 

Anatomy Capture Findings:  The exploration into using .stl derived geometry showed the 

concept was successful and very hands off with respect to the 3D geometry.  The use of the 

triangulated mesh did not impart any noticeable oscillation of bone contact or simulation failure 

due to geometric binding or problems with bone inter-digitations. The ankle model proved very 

stable, and most of the full foot spring element models did not exhibit unusual binding. 

SolidWorks Assembly:  The assembly of the foot and modeling of the associated 

hardware was done without significant difficulty. 

COSMOSMotion Simulation:  The ankle simulation with tension only elements excitingly 

demonstrated that this method could be used to define ligaments.  The 2% in situ strain however, 

was seemingly lost in bone gap closure because the articular cartilage is not visible on CT scans.  

Additionally the performance of the model using the “100% accurate geometry” slider-bar option 

improved simulation time.  No noticeable difference in model equilibrium position was found 

when “use precise geometry” checkbox was selected (the geometry can be slightly simplified 

based on a curvature tolerance setting which is adjusted by that slider).  The ankle model 

simulation with these parameters had a computation time of approximately 1 hour.    While 
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tension-only elements stabilized the ankle only model enough for simulation, conversion to the 

full foot was done with spring elements in a gradual approach.   

Though ligaments do not resist load to significant levels in compression, the spring 

elements were very helpful in stabilizing the model (preventing bony movement both in tension 

and compression) as the greatly increased mobility of the foot was explored.  This increasing 

mobility required extensive further description and modeling of ligaments in terms of the number 

of spring elements, to properly constrain the foot.  In the third model, even incorporating the 

early improvement of ligament arrays that would dominate final models, the entire structure of 

the foot was less stable during simulation and prone to various failures.  Furthermore, runtime 

was increased to approximately 2.5 hours. 

 Problematic to both simulations was the missing proximal tibial and fibular geometry.  

The two bones abruptly ended in space and were only tied together with the half portion of the 

interosseus ligament, which was modified for greater stiffness in an attempt to compensate for 

the lack of bony rigidity.  The absence of a proximal articulation and the associated ligaments 

binding it was suspected to be a significant source of the instability in the model.  In several 

failed runs, the fibula was seen to move or gyrate in extreme. 

As the model creation and simulation problems arose, strategies were developed to 

overcome them.  These significant changes bridge the gap between the early proof of concept 

models and the final simulation which was fit for validation. 

3.8 Final Refinements: Scan Geometry 

 The NLM-VHP male and female datasets were found to be inadequate for the needs of 

this simulation.  Primarily, the loss of data coherence at the tibial level precluded use of full 

below-knee anatomy without extensive manual scan processing.  Furthermore, the non-neutrally 
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aligned ankle and distorted position of the forefoot joints in both scans would also require 

extensive user manipulation to achieve neutral position.  And lastly, the foot in both scans was 

randomly oriented in the scan field. This lead to further difficulty in interpretation of data which 

is generated with respect to fixed global x,y,z axes.  There was no ability to reorient the assembly 

or assign a local orientation to view data in, further manual movement of the foot was necessary.  

Ultimately, these problems led to an unacceptable amount of adjustment of the original scan to 

yield usable results. 

Scan Fixture 
 An in-house CT scan was planned and performed to address all of these problems.  In 

preparation of the scan there was an interest in obtaining both an unloaded scan of the leg and a 

scan under simulated body weight.  To fit these needs as well as to maintain alignment of the 

specimen with respect to the scan field, a specimen holder was devised (Figure 3.24). 

 

Figure 3.24: Specimen Holder for CT scan.   Specimen holder with mounted specimen in 

place.  The holder was build to fit into the CT scanner and impart minimal artifact into the scan.  

PVC was used to support the sides to reduce this artifact.  Some metal components were 
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necessary, such as the clamp (not shown), cable, bolt fixtures, and scale.  Top and bottom plates 

were made of wood. 

 

The requirements for this holder were to apply 100 lbs of axial load on the specimen 

through the proximal tibia as well as to apply 100 lbs of pull on the Achilles tendon to simulate a 

standing plantarflexion.  The holder also had to be as radio-transparent as possible to minimize 

scan artifact.  To accomplish these goals a small frame was made of wood and PVC to enclose 

the leg.  This frame held a typical bathroom floor scale to display ground contact force to within 

5 lb increments. 

Proximally, a heavy screw and collar were built into the frame.  The end of the screw was 

fed through a plate and into a hole in the tibial plateau.  When the screw was tightened in the 

frame, the plate would push against the tibia, exerting an axial force, guided by the screw’s 

placement in the tibia.  In this manner, a simulated axial load could be applied proximally and 

monitored at the foot distally with the scale. 

To create a contractile force on the Achilles tendon, an aluminum crossbar was attached 

to the axial screw, this crossbar housed a second screw.  This screw was fed through the center of 

a stiff spring before passing through the crossbar.  The end of this second screw was drilled 

through with a 3/16th inch hole to allow a wire cable to be passed through it.  The cable was 

passed under and through the gasterocnemius / soleus complex and terminated at a steel clamp 

which was bolted around the distal Achilles tendon.  When the second screw was tightened in its 

crossbar housing, it compressed the spring.  By measuring the compression of the spring, and 

having calibrated the spring previously, ~100 lbs of force could be applied to the Achilles 

tendon. 
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Scan and Fixture Performance 
 Prior to the day of scanning, a cadaveric (61 year, female) fresh frozen right leg with 

foot, disarticulated at the knee, was thawed overnight.  The original intention was to scan an 

intact leg; however, due to a bookkeeping error on the part of the author-which was not 

discovered until the day of testing, the abovementioned leg had received a Medializing Calcaneal 

Osteotomy (MCO, visible in the following figures) for use in an experimental study.  The scan 

proceeded nonetheless and virtual restoration of this osteotomy to the intact state is discussed in 

the next section. 

 The CT scanning system was a SOMATOM Sensation 64 helical scanner (Siemens AG, 

Forchheim, Germany).  The frame and specimen fit well onto the patient table and through the 

scan aperture.  The scanner came equipped with a laser axis illuminator that assisted in aligning 

the specimen with the axis of the scan field. 

 Prior to scanning, the specimen was loaded by tightening both axial and Achilles tendon 

screws.  The frame ultimately was not rigid enough to maintain the axial and plantarflexion loads 

at 100lbs.  Due to frame deformation and specimen shifting under load, only approximately 

75lbs of load were achieved during scan, and the shifting of the specimen placed it off axis in 

orientation.  The unloaded scan proceeded without incident and near perfect alignment was 

easily achieved with the frame holding the specimen.  The helical scanner creates a virtual slice 

resolution, the finer scan resolution available, 0.6mm, was employed.  Several scan post 

processing options were performed in the scanner software in attempts to visualize the soft 

tissues.  These additional scans brightened the bulk of the soft tissue but demarcation between 

structures was not improved.  For processing, the default bone CT was used. 
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While an ideal loaded specimen scan was not achieved, the positioning and orientation of 

the specimen in the holder and in the scan field eliminated all of the problems associated with the 

earlier NLM-VHP scan data. 

3.9 Final Refinements: Scan Processing 

 The same methods in MIMICS used for earlier models derived from the NLM-VHP were 

applied to the in house scan.  The past experience of processing scan data allowed this process to 

proceed in a more rapid and organized manner.  Each bone was systematically isolated, filled to 

solid, and converted to .stl for export.  The two exceptions to this were the proximal tibia and the 

calcaneus.  The proximal tibia was in contact with the axial load plate and axial screw of the scan 

frame.  This frame was used even in the unloaded scan for alignment of the ankle joint and of the 

specimen in the scan field.  The presence of these steel components caused some scattering and 

artifact of the scan at this location (Figure 3.25).  Manual cleanup of this artifact was required-

not in an effort to preserve the proximal tibial joint surface (which was attempted) but to fill 

unusual voids left by the artifact, and remove artifact spikes extruding from the tibia. 
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Figure 3.25: Scan Artifact at Metal Components and MCO.   Proximal tibia distorted slightly 

due to the axial loading plate and screw.  This distortion was more due to the disruption of the 

tibial surface than scattering of the x-ray (arrows, left).  The MCO and hardware showed up very 

clearly in the calcaneus where the screw metal did not appear to significantly distort the image 

(arrows, right). 

Calcaneal Restoration 
The calcaneus was an interesting challenge.  The scanned calcaneus had a standard 1cm 

MCO applied to it.  The first challenge was “cleaning up” the same artifacts as were seen at the 

tibia, due to the addition of 2 unicortical screws to fix the MCO in place.  The second challenge 

was virtually un-doing the MCO to create an intact calcaneus.  It was here that the remeshing 

subroutine of MIMICS was explored extensively.  The triangulated .stl mesh of the rendered 

calcaneus could be manipulated at the mesh level in this subroutine.  The osteotomized interface 

between the body and fragment could be removed using the remesher, however, the fragment 

could not be translated back to its original position.  Additionally, using the remesher this way to 
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create smoothed geometry between the fragments would be very much done by eye.  The .stl was 

brought into SolidWorks, opened and converted to a part file. 

In SolidWorks, the osteotomy cut plane was built using a reference plane by selecting 

points around the calcaneus that were on the cut edge.  Using this reference plane a zone 

approximately 0.5mm in depth to either side of the plane was isolated.  This zone encompassed 

all of the rough edges of the MCO as obtained from MIMICS processing.  This 1mm zonal 

segment of the calcaneus was then deleted.  The depth of the MCO had been measured at the 

superior and inferior extends of the cut, and was verified at approximately 1cm.  In SolidWorks 

the move feature was used to translate the calcaneal tuberosity fragment 1cm lateral to re-align it 

with the body of the calcaneus.  On each zonal cut plane a fully enclosed multi-point spline 

sketch was drawn to create a detailed profile of the surface of the calcaneus.  These two sketch 

profiles were used to describe a loft feature, which smoothly bridged the 1mm gap to join the 

two fragments again as one solid body (Figure 3.26).  This solid was then converted into a new 

.stl output, and exported from SolidWorks back into MIMICS.  In MIMICS a smoothing and 

triangle reduction feature was applied to create an unblemished, intact calcaneus.  This smoothed 

.stl mesh was then re-opened and converted in SolidWorks back to a part file (Figure 3.27). 

      

Figure 3.26: Calcaneal Editing To Remove MCO.   Osteotomy zone cut and removed, then 

laterally translated 1cm to realign with the body, left two images – anterior view.  Sketches made 
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on the cut surfaces (sketches highlighted in green, second from the right) yield profile lines for 

lofting a surface between the fragments (loft highlighted in green, semi-transparent bones for 

visualization of the full cut and loft fragment, right). 

 

        

Figure 3.27: Stages of MCO Surface Smoothing and Remeshing.   Scanned and meshed 

calcaneus, left; after application of lateralization and zonal replacement of the MCO cut surfaces, 

middle; and final remeshed geometry from MIMICS re-imported as a part, right. 

 

To ensure that this second smoothing and reduction stage did not oversimplify the surface 

of the calcaneus, the original and final calcaneal surfaces were compared.  The two calcanei were 

mated in SolidWorks to equalize their orientations.  The original cut and lateralized calcaneus 

was colored yellow, and the remeshed intact was colored blue.  When superimposed, it is clear 

that the two are the same size and shape, with only minute surface differences between them 

with no loss of detail or volume (Figure 3.28).  While solving an unfortunate problem, the 

development of such a technique to use both SolidWorks and MIMICS in the editing and 

restoration of a bone was notable. 
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Figure 3.28: Calcaneal Registration For Surface Comparison.   Yellow original calcaneal 

body (after cut and slide), superimposed in place with remeshed geometry in blue. 

 

3.10 Final Refinements: SolidWorks Assembly 

 The assembly of converted bone part files followed the same course as the prior models.  

The mating of bone orientations to yield the scan position was followed by the addition of floor 

plate and proximal indenter virtual hardware.  Though neutral joint alignment was preserved, due 

to soft tissue depth the distal phalanges were lower than the metatarsal heads.  As in the prior 

model the phalanges were manually dorsiflexed a slight amount to allow metatarsal ground 

contact with the application of the floor plate. 
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Figure 3.29: Final Foot Model, Overview.   Complete SolidWorks assembly, including all 

bones and hardware.  This setup and orientation was used for all final bone models. 

 

[NOTE: In a further effort to reduce simulation failure via the bony anatomy losing its 3D 

contact with the floor plate and falling through (a problem that had for some time been attributed 

to the triangulated mesh contact with the ground) the contacting surfaces of the calcaneus and 

metatarsals were  briefly modified with the addition of small dome features.  These features 

replaced the underlying mesh geometry with a rounded dome described by a single rotated arc.  

It was thought that this SolidWorks created, simplified geometry would be handled more 

robustly by the 3D contact parameters in COSMOSMotion.  This did not prove to be the case, 
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and the dome features were abandoned when solutions presented themselves in 

COSMOSMotions’ definition of 3D contact (see next section).] 

3.11 Final Refinements: COSMOSMotion 

The bones of the foot model, as they are in the natural foot, are held in articulating 

opposition at their deepest layer by ligaments, and at increasingly superficial levels-and to a 

lesser degree-by stabilizing musculature, surrounding fatty tissue and even skin.  The inadequate 

stability of early simulations, and more specifically the movement and constraint (or lack 

thereof) present at joints, led to further study on accurately describing the architectural network 

ligaments of the foot.  At this stage a more extensive study of the anatomy through in house 

dissection and further ligament literature search was performed to describe the anatomy.  When 

the ligament network was created for the in house foot model, many previously modeled 

ligaments were divided into more complex and three dimensionally accurate arrays of tension 

only ligaments – as will be demonstrated.  Additionally, portions of joint capsule through the 

midfoot and forefoot were added wrapping these bones with action reaction elements to further 

link the tarsals and metatarsals in a more complete manner as they present naturally.  The 

completeness of the new scanned anatomy also allowed for modeling of the proximal tibiofibular 

articulation. 

Anatomy Refinements 

Interosseous Membrane and Tibiofibular Articulation 
For the interosseous membrane between the tibia and fibula, reported properties were 

found only for the interosseous membrane of the forearm.  These values suggest a stiffness of 

13.1 ± 3N/mm per mm of width.  This stiffness per length value was based on the thickest 
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structure of the forearm which was isolated from surrounding membrane.  The full distance 

between the proximal and distal tibialfibular articulations in the model is approximately 300mm.  

A buffer of about 20mm was applied to shorten both ends of this area to isolate the function of 

the interosseous membrane from these proximal and distal articulations.  Further taking into 

account the presence of foramen in the membrane as well as considering the forearm stiffness 

was found at a thick middle band and not representative of the whole structure, a value of 

3.5N/mm2 was chosen to describe the action of this structure.  This stiffness per length equated 

to an approximate 900N/mm total stiffness of the membrane. The composite stiffness of the 

membrane was divided amongst the seven elements representing the membrane (Figure 3.30).  

The proximal articulation was described with elements exhibiting 200N/mm of stiffness to put 

them in line with the stiffer structure of the ankle articulation (Figure 3.30). 

          

Figure 3.30: Interosseous Membrane and Proximal Tibiofibular Articulation.   The seven 

elements of the interosseous membrane in an anterior view, left.  The proximal tibiofibular 

articulation was described anterior, posterior and superior as seen laterally, right. 
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Ankle 
The final lateral ankle structure incorporated the anterior and posterior tibiofibular, 

anterior and posterior fibulotalar, fibulocalcaneal, talocalcanal, and talocalcaneal interosseous 

discussed in Chapter 2 as well as some supporting structures not highlighted there (Figure 3.31). 

 

Figure 3.31: Lateral Ankle Ligaments.  

 

The medial structures of the ankle including: anterior and posterior tibiotalar, 

talocalcaneal, tibiocalcaneal, tibionavicular, and tibiospring ligaments were modeled as arrays to 

describe the deltoid ligament and accessory medial and posterior structures (Figure 3.32). 
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Figure 3.32: Medial Ankle Ligaments.  

Spring Ligament Complex 
The various portions of the superior, medial and inferior portions of the spring ligament 

were modeled with extensive arrays (Figure 3.33). 

 

Figure 3.33: Spring Ligament Complex.  

Midfoot 
The capsular network of ligaments wrapping the mid- and forefoot were modeled with 

broad arrays to cover joint surfaces as seen from dissection and literature.  The majority of these 

tissues, which have no reported stiffness values, were given 90N/mm of stiffness per element 
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used to describe them in arrays of 2-3 elements.  If a single element was used for a structure it 

was given 120N/mm stiffness, slightly lower than the average 138N/mm stiffness of the reported 

ligaments.  If a larger array was needed to describe the tissue, 60N/mm stiffness was used.  

These choices were based on observed size of these structures and additionally modified based 

on how extensive the arrays to model them were (which in turn is based on the 3D anatomy of 

the structure).  These regions are shown superior (Figure 3.34, left) and inferior (Figure 3.34, 

right) below. 

   

Figure 3.34: Dorsal and Plantar Ligaments of the Midfoot.  

   

Ligament Wrapping 
 The long plantar ligament and the plantar fascia are both very large structures that span 

vast (on an anatomic scale) anatomy.  The long plantar ligament crosses the inferior intertarsal 

joint to attach across a span of proximal and distal midfoot locations.  A role this structure plays, 
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in addition to preventing separation of joints across these levels, is likened to a physical 

hammock for the central intertarsal joints.  Portions of the calcaneus, cuboid, navicular, and 

cuneiforms articulate just above the plantar ligament.  The ligament, as it exists in some amount 

of passive strain, acts in a fashion as a barrier to prevent large dislocation of these joints. The 

failure of the early model of this ligament to perform this function was seen as the bones of these 

joints (namely the cuboid) passed through the long plantar ligament array (recalling that the 

tension only arrays do not interact at all with the bony anatomy except at the origins and 

insertions). 

The plantar fascia experiences a different kind of wrapping.  Instead of a close proximity 

to bone as seen with the long plantar ligament, the plantar fascia experiences significant flaring 

of its three dimensional shape as it passes the midfoot level.  As previously described, the thick 

structure originating from just under the lip of the anterior aspect of the inferior calcaneal 

tuberosity broadens and thins as it passes the midfoot level.  Nearing the forefoot, this structure 

flares significantly in the transverse plane to send separate bands of fascia to each ray of the foot.  

This morphological change is the most significant for a single ligament in the structure of the 

foot and poses an additional challenge in capturing its anatomy. 

The following methods describe how these structures were modeled to account for their 

3D peculiarities thus allowing the design of the structure to act on their bones as intended. 

Long Plantar Ligament 
Small 1mm beads were created in SolidWorks to insert into the mid-substance of these 

ligaments.  The beads gave their ligament arrays greater 3D solid reaction and contact with 

nearby bony anatomy.  These beads were originally football shaped with a vertex on each end.  

An individual array element in the long plantar ligament would be broken into two tension only 



Chapter 3 - Methods 

 82 

elements.  The proximal element would retain the original elements proximal insertion, but 

attach distally to one of the points of the football shaped bead.  The distal element would attach 

proximally to the other vertex of the bead, and distally to the insertion of the original element.  

The length-tension equation describing the elements would be duplicated from the original 

element, and updated to reflect the new length of the shorter dual elements.  This length would 

also serve to promote the bead coming to “rest” in its designed position; these positions were 

chosen based on where the greatest penetration of the original elements into the bony structure 

occurred, thus preventing most of this penetration.  These beads were added to the 3D contact 

definitions in COSMOSMotion to allow them to interact as solid objects with the bony anatomy 

(Figure 3.35).  Such interaction enhances the “wrapping” behavior of long ligaments around 

bony geometry. 

 

Figure 3.35: Long Plantar Ligament with Beads.   Proximal and distal portions of the long 

plantar ligament are separated by bead solid geometry.  Linking springs (discussed below) join 

portions of the array (arrows). 
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Early performance of these bead elements was unsatisfactory.  The elements would 

ricochet wildly under the arch of the foot, spinning in all three direction and freezing simulations 

before their position and orientation ever began to equilibrate.  To account for this, a motion 

restriction was applied to the elements to prevent their 3D rotation.  The ends of the football 

shaped beads would always point towards the origins and insertions of their respective array 

elements.  Performance was still undesirable as the beads would bounce in a jump rope fashion 

curving back and forth independently of each other, at their design length.  The beads were 

linked with spring elements to simulate the connected sheet behavior of a ligament and maintain 

appropriate orientation (i.e. prevent the ligament from twisting over on itself).  The beads 

excessive bouncing, rotation and crossing translation were now stilled but simulations continued 

to fail.  The beads would hold true to the surface of the bone, essentially “wrapping” the surface 

for 20-30 frames of simulation, but would-without fail-suddenly fall through the bone and pop 

out the other side.  This behavior was reminiscent of early failure where the entire foot would all 

through the floor plate and disappear into simulation space, but was found to be of different 

causes.  Using simplified assemblies of one bone (cuboid) and a single bead, one such ligament 

element chain was recreated for rapid and repeated testing.  Through trial and error, it was 

discovered that when a revolved feature is used to make a bead (such as was done with the 

football shaped beads) the 3D contact would simply stop working after several frames of contact.  

But when an extrude feature (such as a simple square) was used, the 3D contact took and held 

through the entire simulation.  This seemed to be a unique reaction of these two methods of 3D 

featuring to .stl generated solid bodies.  The football shaped beads were modified with a small 

mid-substance addition of a square extrude feature.  This feature prevented the pass through 

failure immediately (Figure 3.36, left).  These beads wrapped bony anatomy and lent the tension 
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in the long plantar ligament as aid in preventing inferior movement of the tarsal bones they 

covered (Figure 3.36, right). 

          

Figure 3.36: Long Plantar Ligament Beads.   Final bead alone, left; bead in situ with ligament 

elements attaching to football shaped ends, and restraining springs on cubic body, center; beads 

during simulation preventing long plantar portions from penetrating the cuboid, right. 

Plantar Fascia 
The plantar fascia was added in these later models.  The geometry and function of this 

tissue was found, early on, to be complex across this anatomy.  To further investigate this, in 

house dissection and literature42 suggest that the portion of the fascia inserting in the 2nd and 3rd 

rays exhibits a marginally more robust tissue bulk.  As a result, the 200 N/mm stiffness of the 

plantar fascia (Chapter 2) was divided in the model to give the medial zone (1st ray) of the 

ligament a stiffness of 60 N/mm, each branch of the middle zone (2nd and 3rd rays) a stiffness of 

50 N/mm, and each of the remaining thin portions of the lateral zone (4th and 5th rays) a stiffness 

of 20 N/mm. 

To account for the mentioned 3D anatomy a similar method of using a SolidWorks 

intermediate structure, as was used for the long plantar ligament, was devised here.  A “ligament 

tie” was created as a single part.  This narrow, saw tooth extrude was equipped with plentiful 
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vertices to tie into the plantar fascia (Figure 3.37).  Like was done with the long plantar ligament, 

the individual array elements of the fascia were divided into a proximal and distal portion to 

incorporate the ligament tie.  The element length-tension definitions were updated to reflect the 

change and to account for the dimensions of the ligament tie. 

 

Figure 3.37: Plantar Fascia, Ligament Tie.   3D tie solid body, built with numerous vertices to 

promote close description of the plantar fascia, left.  The tie is shown in place in the model with 

proximal and distal plantar fascia array elements attached, right. 

 

A point was chosen from each the first metatarsal, fifth metatarsal, and calcaneus.  These 

points were selected as where the center of the portion of the plantar fascia would insert on that 

bone.  These three points were references for a plane which the flat bottom of the ligament tie 

was mated to.  The end effect is that the tie is free to rotate in the transverse plane along its line 

of action, but not the coronal or sagittal.  The allowance of transverse motion is important here to 

allow the medial and lateral portions of the plantar fascia to each reach their own equilibrium.  

The locations of this ligament tie in the plantar fascia was selected to correspond to the 

anatomical level that this structure sees its conversion from a single thick band to flared 

segments, just before the forefoot.  The distal insertions of the plantar fascia were on the 
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metatarsal heads.  The structure naturally inserts on the proximal phalanges but as the phalanges 

are fused in the model this was redundant and simplified (Figure 3.38). 

 

 

Figure 3.38: The Plantar Fascia, with Ligament Tie.   Views of the modeled plantar fascia 

with ligament tie solid.  The anatomy of the plantar fascia changing as it passes the midfoot level 

and flares to the forefoot was modeled with ligament tie, top – inferior view.  This structure is 

also seen with a lateral view of the origin of the fascia on the inferior lip of the posterior 

calcaneal tuberosity, bottom. 

 

This method of controlling the ligament tie was chosen over the method used for the long 

plantar ligament both because the geometry of the plantar fascia is very two dimensional and the 

extreme length of the plantar fascia described as proximal and distal segments caused great 

increases in computation time when modeled with separate beads. 
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Achilles tendon 
The Achilles tendon was modeled using four action reaction elements in an array.  The origin of 

the array was a common point on the proximal load fixture.  The insertion of the array is along 

the broad superior ridgeline of the calcaneal tuberosity (Figure 3.39).  

 

 

Figure 3.39: Achilles tendon. 

  

Ligament Function Definition Spreadsheet 
As the aforementioned ligament structures were enhanced by using more extensive 

arrays, and with modeling structures (such as the plantar fascia) that were not accounted for 

before, the ligament function definitions rapidly became unmanageable (in terms of 

updating/editing).  To ease the difficulty of future edits, the function definitions were 

programmed into an excel spreadsheet to allow them to be rapidly updated and to reduce error.  
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[NOTE: the definitions still require manual transfer via copy/paste to COSMOSMotion; this is a 

labor intense step.]  The spreadsheet contains columns for ligament name, stiffness, length and 

marker numbers.  The spreadsheet was used to create two additional quantities: an in situ strain 

calculation from the design length and an assembly of these individual columns into a single cell 

that could be copied and pasted as the whole ligament function equation.  To combine these 

cells, the Excel “concatenate” expression was used (Equation 3.5) to yield the same equation as 

was described previously with Equation 3.1. 

 

 

Equation 3.5: Concatenation of Spreadsheet Terms.   This form was used to create the output 

function equation.  I37 and J37 are the reference to marker number cells, E37 is the design length 

of the ligament element, and B37 is the stiffness of the element.  Quotation marks enclose and 

separate text from equation. 

Iterative Strain Tensioning 
In the last series of early models, where tension only elements were first used, it quickly 

became apparent that when a 2% strain was applied to the design length of the ligament elements 

that the strain was lost in the settling motion of the simulation in the very first frames of 

simulation.  In nearly all cases the settled length was shorter than the design length.  

Measurement verified that few if any of the ligaments were actually under 2% in situ strain at the 

start of body weight application. 

With this discovery was also the recognition of the ankle ligament’s neutral elongation 

data reported by Nigg et al.35, as well as consideration of further studies on in situ strains present 

=CONCATENATE("IF(DM(",$I37,",",$J37,")-",(E37*0.96),":","0,0,-

",$B37,"*(DM(",$I37,",",$J37,")-",(E37*0.96),")-0.1*VR(",$I37,",",$J37,"))") 
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in various joints36-41.  Consideration of these studies led to the decision to increase in situ strains 

from 2% to the 4% average range reported in that study, remembering that 4% was the average 

reported in situ strain in that study.  To obtain settled ligaments under 4% in situ strain a series of 

simulations were run.  After each simulation the settled length of all the ligaments were recorded 

and compared to the design length.  The settled lengths of the simulation were input as design 

lengths for the next simulation.  This process was repeated until the difference between design 

and settled lengths were minimized.  By performing this calibration process a model was 

developed where all ligaments were expressed under the 4% in situ tension. 

Bone Scaling 
The process of iteratively measuring each of the 144 ligament elements displacement 

during simulation to find their settled length was very involved.  A displacement plot for each 

ligament was created to distill a settled value into the excel database.  The new equation for the 

ligament element which took into account this updated settled length, was copied into the 

function expression for that element.  This process took ~45 seconds for each of the 144 

ligaments and was required three times to reach acceptable model equilibrium. 

The root of this problem stemmed from the gaps between the articular surfaces of the 

bones.  This gap is due to the CT scans inability to differentiate articular cartilage.  To reduce the 

extensive iterative work required to obtain the desired in situ strain as well as the user error 

associated with performing such a task, another method was devised to take the cartilage gaps 

into account.  By performing a scaling feature in SolidWorks on the bone part files, these gaps 

could be reduced.  The concept was that the application of only a small scaling factor would be 

necessary to reduce the near millimeter gaps between the bony anatomies.  There was a desire to 

avoid assigning each bone its own scaling factor, and instead blanket the model with 1 effective 
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scaling factor.  A concern identified early on was that the long bones, the tibia and fibula (as they 

exhibited dimensions an order of magnitude greater than the other bones), would experience very 

different dimensional changes in reaction to the scaling factor as compared to any of the much 

smaller bones of the foot.  A compromise was reached where 2 scaling factors would be used in 

the model, one for the long bones and one for the small bones (Table 3.5). 

Bone Scaling Factor
Tibia 0.5%

Fibula 0.5%
Talus 2.0%

Calcaneus 2.0%
Navicular 2.0%
Cuboid 2.0%

Cuneiforms 2.0%
Metatarsals 2.0%
Phalanges 2.0%  

Table 3.5: Bony Scaling Factors.   Factors used in the “scale” feature of SolidWorks to modify 

the leg, hind-, mid- and forefoot. 

 

As they constituted the majority of the bones and articulations the tarsals, metatarsals, 

and phalanges were scaled, as individual parts, by 1/4th a percent size at a time.  Each time they 

were scaled the assembly was reopened and a interference check was performed at several joints.  

This check was ensuring that the scaling was not excessive enough to create large interference 

between bones in the neutral position.  At a +2% scaling factor the joints of the hindfoot, 

midfoot, and forefoot just began to touch with sub cubic millimeter overlap.  This scaling factor 

was kept.  The same process was applied to the long bones, and monitored at the tibiotalar and 

fibulotalar articulations as these articulations were at the end of the long bones they would 

experience the greatest change in dimension.  At +0.5% scaling factor the subtalar joint just 

began to touch, again at sub cubic millimeter levels (Figure 3.40, Figure 3.41).  The scaling 
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closed a visible amount of the gapping between bones (Figure 3.42).  The application of these 

scaling factors to the bones required only one iteration of the ligament settling and adjusting 

process to achieve 4% in situ strain, most of the correction was due to the changed design length 

of the structures from the scaled growth-very little actually bony settling occurred after the 

scaling. 

 

Figure 3.40: Example of Interference Check between Scaled Bones.   Interference detection 

window opened and detection performed for several bony surfaces.  Checked here are 

interferences between the tibia, fibula, talus, calcaneus, cuboid and navicular.  With the scaling 

factors applied via Table 3.5 only two small bony contacts are made, each with less than 0.1mm3 

of volume associated with it. 
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Figure 3.41: Overscaling of Bones.   Interference detection window with multiple new 

interferences calculated.  Example showing the effect of 3.0% (1% larger than what was 

selected) increase to just the talus, calcaneus, cuboid and navicular.  Large volumes of 

interferences are introduced, 37.5mm3 at the calcaneocuboid joint and > 1mm3 interferences 

elsewhere. 
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Figure 3.42: Bone Gap Closure Images.   Midfoot viewed from an oblique superior, left; and 

of the medial midfoot, right.  Images are of un-scaled original scan bone, top; and with scaling 

scheme applied for gap closure, bottom.  Note gap closure depending on bone size and gap size. 

 

The prior several sub sections discuss the final form of the function expressions which 

were developed from the re-addressed anatomy, ligament wrapping, iterative straining, and bone 

scaling; a complete example of these expression spreadsheets can be found in Appendix II 

Simulation Rapidity and Stability 
By allowing a simulation to run with no significant external loads [NOTE:  it was found 

useful to have a constant 10N downward axial load applied in all simulations, this prevented the 
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model from literally floating away into simulation space before external loads are applied] for 

several frames a settled length would be reached in the ligaments. 

Computational time for the early simulations of the entire foot could easily take 2-3 

hours.  As the models complexity increased with greater detail for ligament arrays and the 

addition of beads and ligament tie to describe this anatomy, the simulation time could draw out 

by another few hours or even require overnight processing.  Additionally, there were a class of 

simulation failures that appeared (to one not well versed in the source code of SolidWorks and 

COSMOSMotion algorithms) to be random.  An unchanged assembly could be simulated several 

times and experience a spontaneous simulation failure 30-60% of the time.  The estimated cause 

of these failures was thought to likely be an inability of the solver to find a convergent solution 

to a 3D contact or resolution of a ligament load/elongation (particularly in the case of the beaded 

ligaments which still have greater 3D movement available than any other ligament).  In an effort 

to address both of these issues, several alterations were made to the default choice of simulation 

parameters. 

The geometric accuracy was changed from “use exact geometry” to 100% geometric 

accuracy on the slider-bar.  This was first tested on a simple construct which included a talus 

allowed one degree of translation and rotation about the axis of translation, which was move into 

contact with a fixed talus.  This simple two bone system required 10 minutes of solver time to 

finish with the “use exact geometry” option chosen.  When this option was unselected and the 

accuracy slider bar was moved to 100% the solver time dropped to 10 seconds.  The motion and 

contact of the two talar tests were compared and found to be near identical.  This single change 

in simulation parameters brought solver time down from 4-5 hours to 15-45 minutes, still orders 

of magnitude longer than the 10 second talar experiment, but a vast improvement from 5+ hours. 
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In the solver parameters tab, two changes were made.  The first was a decrease in the 

accuracy value from 0.0001 to 0.01.  The accuracy value considers how the solver determines if 

a time step has reached convergence in order to move to the next time step.  Smaller numbers are 

listed as being more “accurate”.  The exact computational change this imparted at the solver 

level is largely unknown (again a lack of source code and very limited description in help files 

and online documentation) but in similar small talar tests there were no apparent changes in 

performance or the results of measured data. 

The second change made here was an decrease in minimum step size from 1e-8 to 1e-9 

(the smallest step size possible in COSMOSMotion).  This allows the solver to break the time 

steps down further in areas it has trouble reaching convergence.  Both of these changes 

significantly reduced the rate of sudden simulation failure and program freeze.  The accuracy 

reduction potentially loosened restrictions that prevented the solver from advancing to the next 

frame.  The time step size decrease reduced the number of 1st frame failures and failures during 

the application of load, both of which suddenly perturb the system.  The GSTIFF integrator 

method was kept as a compromise between handling oscillation and describing 3D movement 

and intermittent contact. 

A final series of changes was made in the 3D contact parameters.  These changes were in 

reflection of two problem areas.  The simulation failure wherein the foot lost 3D contact with the 

floor plate and fell into simulation space was one such area.  The second was simulation failure 

caused by sudden spikes in contact force (which were responsible for rapidly and violently 

displacing the bony anatomy from itself) which would fail the simulation also at the 1st frame or 

during applications of load, with some instances during settling periods.  The parameter of 

contact stiffness was reduced from 1000 N/mm to 800 N/mm, the penetration distance for 
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dampening was 0.1mm and the dampening coefficient itself was increased from 50N•sec/mm to 

100N•sec/mm . These were not in an effort to approximate any cartilage contact, but instead to 

reduce and soften the contact between bony anatomies.  It was estimated that, sometimes, the 

beginnings of a bony contact or the rotation of that contact which led to less surface area/volume 

for contact would create sudden load spikes which would drive the bones away from each other.  

Whether this was the case, these changes did remarkably reduce the occurrence of simulation 

failure at those specific times.  And the model has not passed through the floor plate since. 

3.12 Final Refinements: Failure Modes 

Preliminary simulations of the in-house scanned model had a slightly lower failure rate 

than the earlier models.  With the improvement in modeling technique, anatomical description 

(for constraint of bony anatomy), and the various performance addressing investigations the 

failure rate has steadily dropped from early rates of near 70% to current rates that are 5% at 

most.  The most common source of failure currently is when a new osteotomy or other minor 

change (such as a mate, joint, tension only element expression update or 3D contact - not a 

widespread model alteration) is incorrectly defined in COSMOSMotion.  The 5% failure rate of 

these established models is almost exclusively a failure in the first 10-20 frames of simulation 

and is thought to be due to the development of an unchecked bony or ligament oscillation.  With 

the addition of the proximal tibiofibular articulation ligament arrays the models were no longer 

plagued with random occurrences of violent proximal dislocation of these bones and the 

associated simulation failure due to an oscillating fibula.  Ligament wrapping, as described, also 

reduced computation time and failure rate. 
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3.13 Final Refinements: Model Performance 

With the development and performance of the models ability to simulate a loaded stance 

documented and repeatable, validation of the results of this model to clinical and experimental 

findings is discussed in the upcoming chapters. 
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Chapter 4 ‐ Arch Stability Study 

4.1 Introduction 

While the whole of the ligament structure of the foot is important to mobility, stability, 

and function, the plantar structures are some of the most vulnerable to overuse and injury47.  As 

described in Chapter 2, the anatomical architecture of these soft tissue structures is critical to 

arch stability by the role they play in resisting the elongation of the foot and therefore the 

collapse of the bony arch under load32,48,49.  Traumatic damage or overuse leading to chronic 

degradation of these structures can cause a variety of symptoms and injuries such as heel pain, 

plantar fasciitis and pes planus.  Unrelieved, these can lead to severe functional deficits over 

time50-54. The structures of the medial arch play a particularly important role in arch stability and 

have been the focus of much research encompassing both tissue disease and surgical 

intervention.  Three major ligaments contribute strongly to plantar arch stability: the spring 

ligament, the long and short plantar ligaments (referred to collectively here out as the plantar 

ligament), and the plantar fascia.  Various experimental studies have been performed to isolate 

and elucidate the role these structures play, some of which were incorporated in the design of 

this computational model55-62. 

Two studies on arch stability and soft tissue behavior were considered for early validation 

of this model.  Huang et al investigated arch height and overall arch stiffness under varying 

ligament transection combinations and varying axial compressive loads in a cadaver model to 

determine the relative contributions of each structure with respect to the intact foot59.  Crary et al 

experimentally loaded cadaver feet in a similar manner while investigating the effect of plantar 
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fascia release on the strain in the spring and long plantar ligament57.  Strain gauges were attached 

to these ligaments along their bulk fiber direction to record unloaded and loaded lengths before 

and after fascia release, further details of the recreation of these studies is described below.   

4.2 Materials and Methods 

Modeling Arch Stability  
The first validation focused on simulating the experimental cadaveric study performed to 

investigate the contribution of plantar soft tissue structures to arch stability.  As done 

experimentally, an axial load of 690N was applied to the load fixture on the proximal tibia 

during simulation59.  Arch height was calculated in the experimental study as the vertical 

distance between a Kirschner wire placed in the talar neck and the platform the foot rested on, as 

measured by a potentiometer.  Arch height was measured in the computational model by 

marking a point on the talar neck and a point on the foot platform in the medial view, and 

tracking the vertical displacement between these points over the duration of simulation (Figure 

4.1). 

 

 

 

 

 

 

Figure 4.1: Height Measurement Method.  The point of application in the talar neck as 

described in Huang et al. is located at the center of the talar neck cross section when viewed 

medially.  This was recreated by choosing the center of a triangulated surface that was located in 

 Arch Height 
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the middle of the neck in this perspective.  For all models this exact surface was the same point 

of measure.  The same was true of the point on the ground plate. 

 

To simulate sequential release of structures, entire ligament arrays were suppressed from 

action in corresponding to the variation of sectioning those ligaments in the experimental study.  

The suppressing of an element from simulation effectively removes its interaction in any way 

with the simulation.  These modeled combinations were: intact, single structure suppressed 

states, dual structure suppressed states, and all structures suppressed.   The contribution to arch 

stability is based on the ratio of one structure’s additional displacement to the total displacement 

created in the absence of the three plantar structures59 (Equation 4.1).  This measure was 

described in Huang et al as a method of comparing these structures. 

 

 

Equation 4.1: Percent Contribution.   Where Sad is the selected structures additional 

displacement from intact; SP, PL, and PF terms are the additional displacements of each the 

spring ligament, plantar ligament, and plantar fascia.  Additional displacements are calculated by 

subtracting the difference between the end height of the cut state and that of the intact foot. 

Modeling Fascia Release  
The second validation recreated the experimental cadaveric study to investigate the strain 

present in plantar structures of loaded cadaver feet before and after plantar fascia release.  As 

done experimentally, an axial load of 920N was applied to the load fixture on the proximal 

tibia57.  In the literature, strain was measured over a portion of the bulk fiber direction of the 

spring and plantar ligaments.  The study states in text, 

Percent Contribution = ( Sad) / (SPad + PLad +PFad) * 100 
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“One DVRT strain gauge … was placed on the plantar medial aspect of the spring 

ligament just proximal to its insertion into the navicular” and “A second DVRT … was 

placed on the medial side of the long plantar ligament overlying the calcaneocuboid joint.  

Gauges were oriented parallel to the major longitudinal bundles of the ligaments being 

tested.” 

 

To mimic the anatomical choices made experimentally to measure strain, the portions of 

the computational arrays that represented the common fiber direction of the spring and plantar 

ligaments at the locations selected in literature were averaged to yield total ligament elongation 

(Figure 4.2); however, unlike the experimental study, the strains over the entire origin and 

insertion, as opposed to a 5-6mm region57, were measured.  Simulations were run on both the 

intact structure and with the plantar fascia suppressed from simulation. 

  

Figure 4.2: Plantar Strain Measurement Sites.  The portions of the modeled spring ligament 

anatomy described in Crary et al57 as a placement site for strain measurement, left; and the 

portions of the modeled plantar ligament chosen for strain measurement, right.  These structures 

were tracked in simulation for determination of model predicted strain in these tissues.  Visible 

also are ligament arrays of the medial ankle, other structure hidden for clarity. 
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Model Sensitivity  

As mentioned in Chapter 3, the range of in situ strains reported by Nigg et al35 (2% - 6% 

in situ strain) was determined for only a selected group of the more mobile ankle joint ligaments.  

Additionally, reported ligament stiffness values have a large range31,42.  To explore how the 

range of reported global in situ strain and ligament stiffness values would affect model outcome, 

two sequences of additional simulations were performed on the computational model that 

mimicked the experimental setup of Huang et al59.  Simulations of global ligament in situ strains 

of 2%, 4%, and 6% - encompassing the range found by Nigg et al35 - were performed.  The 

second sensitivity tests were modifications of ligament stiffness.  Siegel et al31 reported stiffness 

values for major ankle ligaments that had an average standard deviation of ±43% while Kitaoka 

et al42 reported values for plantar fascia stiffness with a standard deviation of ±35%.  These 

sequences were created by editing the versions of the master spreadsheet to update the function 

expression for all structures.  These expressions were then applied to a series of simulations and 

behavior was noted. 

4.3 Results 

Arch Stability 
 The displacement of the arch, (drop in talar neck height when loaded), was used as a 

measure of arch stability experimentally59.  In the computational model, the measured arch 

height of the intact foot decreased by 6.46mm as a simulated body load of 690N was applied.  In 

subsequent simulations, each plantar ligament deficient state exhibited a greater displacement of 

the arch than the intact state (Figure 4.3).  In the single structure deficient states, the spring 

ligament’s removal led to a 6.83mm arch displacement.  The plantar ligament’s removal had a 
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greater impact of 7.04mm, followed by the plantar fascia, which had the greatest displacement 

with 10.18mm of arch deformation. 

 

Figure 4.3: Selected Changes in Arch Height.   Arch height changes in a loaded intact 

specimen (upper left); with suppression of the spring ligament (upper right); plantar fascia (lower 

left), and all three plantar structures (lower right).  Note measurement of mid-talar neck to 

ground superimposed over the intact distance, denoted by black line, and orientation of calcaneus 

during successively weakened arch simulations. 

 

For dual structure deficient states: the arch displayed the greatest displacement when only 

the spring ligament remained, 16.27mm; was more stable when only the plantar ligament 

remained, 12.14mm; and most stable when only the plantar fascia remained, 7.18mm.  The 

simulation of all three of these structures deficient exhibited the greatest displacement of the 

arch, 19.11mm.  In this simulation, enough displacement was generated to allow the base of the 

fifth metatarsal to begin engaging the floor plate at the point of maximum load.  This arch 

collapse was reported in the literature under 920N axial loading for the all structures transected 
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in the experimental setting.  The relative contribution of these structures to arch stability 

followed trends seen experimentally59 (Figure 4.4). 

 

Figure 4.4: Contribution to Arch Height.   This plot is the comparison between relative 

contributions of the three plantar structures to arch stability as seen in the computational model 

and experimental cadaver study.  As discussed in Equation 4.1 this was calculated as the ratio of 

that deficient state’s displacement to the total displacement created in the absence of all three 

plantar structures59. 

Fascia Release 
 In the intact model, with a baseline of 2% in situ strain in all ligament tissues, the spring 

ligament demonstrated an average additional strain of 1.51% when loaded to 920N.  The model 

plantar ligament demonstrated an average additional loaded strain of 1.61%.  With the plantar 

fascia suppressed from simulation, the spring ligament’s additional strain rose to 3.02% under 

loading and the plantar ligament’s additional strain rose to 4.89% under loading (Figure 4.5).  Of 

note also with the removal of the plantar fascia in the model, the resting strain of the spring and 
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plantar ligaments increased, respectively, by an additional 0.1% and 0.5% from their 2% in situ 

baseline.  The conditioned ligaments in the experimental study increased in strain by 0.7% for 

the spring and 0.8% for the plantar ligament57.  In both the computational model and in the 

reported literature, the plantar ligament’s increase in loaded strain between states (intact and 

plantar fascia release) was double that of the spring ligaments increase in strain57. 

 

Figure 4.5: Tissue Strain Following Fascia Release.   Strain response of the spring ligament 

and plantar ligament in the intact state and after plantar fascia was removed, under 920N axial 

compressive loading.  In both the computational model and experimental study, the increase in 

strain in the plantar ligament was double the increase seen in the spring ligament57. 

Load Sharing Measurements 
 While not a measure made in either study, one of the benefits of this computational 

modeling technique is the ease by which both elongation and load data can be collected from the 
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ligament arrays.  Measurements of load present in the plantar structures after one of the 

structures was transected were thus readily available from the computational model (Figure 4.6).  

For all the various transection states, the maximum load present in the plantar fascia was ~380N, 

the maximum for the plantar ligament was almost 600N, and the maximum for the spring 

ligament was 258N. 

 

Figure 4.6: Plantar Tissue Loads.   Load present in the three plantar structures at different 

simulation states.  Load magnitude appears as zero when the structure is in its transected 

simulation state.  Note the apparent priority of the plantar fascia in the different states. 

Sensitivity Tests 
In situ strain: The results of the sensitivity tests varying global in situ strain from 2% to 

4% and then 6% affected the contribution of all structures.  The spring ligament experienced a 

continuous decrease from 8.0% at 2% strain, to 0.9% at 6% strain.  The plantar ligaments 
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contribution increased from 12.5% to 18.7% across the same range, with a greater jump between 

4% and 6%.  The plantar fascia fluctuated, starting at 79.5% at 2%, peaking at 84.4% 

contribution at 4%, and dropping to 80.3% contribution at 6% global strain, which corresponded 

to the interplay between the spring and plantar ligaments at 4% (Figure 4.7). 

 

Figure 4.7: Global in situ Strain Sensitivity.   Arch height contribution of single structures 

(spring ligament, plantar ligament, and plantar fascia) for sensitivity tests of 2%, 4%, and 6% 

global in situ strain. 

 

Ligament stiffness: The second set of simulations varied the stiffness of the ankle 

ligaments by reported standard deviations for the bulk of the soft tissue (±43%31). and plantar 

fascia (±35%42).  For test simulations a standard deviation less than the average value, the spring 

ligament was recorded with a higher contribution of 3.9%; at average and increased global 

stiffness, the spring ligament dropped to 2.4% and 0% contribution respectively.  The plantar 
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ligament fluctuated, starting at 11.8% contribution with less global stiffness, 13.1% at the 

average, and dropping back to 11.1% at higher global stiffness.  The plantar fascia remained 

somewhat constant at 84.2% and 84.4% for increased and average stiffness respectively, 

increasing in contribution with higher global stiffness to 88.9% (Figure 4.8). 

 

Figure 4.8: Stiffness Sensitivity Results.   Arch height contribution of single structures (spring 

ligament, plantar ligament, and plantar fascia) for sensitivity tests of global stiffness where 

stiffness values are a standard deviation below and above the average for the plantar fascia 

(±35%) and remaining ligaments (±43%). 

4.4 Discussion 

Contribution to Stability:  From the arch stability simulation, the order of contribution 

strength from the plantar structures was shown to be predictive of the response of these tissues in 

experimental studies.  This was seen both in the single structure and dual structure deficient 
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states; the plantar fascia was always the greatest contributor to arch stability and the spring 

ligament was always the weakest – which is in agreement with experimental findings. 

Ligament Strain:  The comparison with the ligament strain study during fascia release 

also demonstrated the model’s robust ability to predict both that the plantar ligament would 

experience double the increase in strain as the spring ligament, as well as the increase in resting 

length of these ligaments after fascia release.  In the literature, this increase of strain after fascia 

release both under loading and during rest was attributed to the spring and plantar ligaments 

taking up intrinsic and extrinsic function, respectively, of the transected plantar fascia.   

Sensitivity tests: demonstrated how values within the range of reported ankle ligament in 

situ strains and stiffness can affect the results of a simulation.  In situ strain deviations across the 

reported spectrum of 2%-6% minimally influenced the magnitudes of model behavior but did not 

alter the overall conclusion.  Minimal influence was also seen by varying ligament stiffness, 

which from literature showed a very large standard deviation of 43% for ankle ligaments and 

35% for the plantar fascia.  While lower stiffness and in situ strains allowed greater deformation 

of the arch under loading, and conversely higher stiffness and strain allowed less deformation, 

trends in soft tissue structural importance remained unchanged and in agreement with literature.   

Literature that investigates the plantar fascia does so in general terms of arch stability and 

mechanical function, seldom with investigation into how its disease or removal affects deeper 

plantar structures32,42,57,62,63.  Experimental work on these plantar structures is confined to 

indirect measures of contribution59 and strain over small, superficial portions57.  The spring 

ligament, plantar ligament and plantar fascia are three dimensional structures.  Each of these 

structures engages a different group of bones, at different depths in the arch of the foot.  This 

suggests that these plantar structures have an overlapping function and are not affected 
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independently by the strengths or weakness of their constituents.  As these tissues fail, the fewer 

remaining structures become engaged with a higher load as shown computationally, increasing 

their propensity to fail as these loads surpass the ultimate strength of the ligament. 
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Chapter 5 – Simulation of Flatfoot 

5.1 Introduction 

As with all tissues or system of the body, diseases can afflict at any level of the structure.  

Of the numerous maladies of the foot, the one chosen as a validation tool for this model was 

Adult Acquired Flatfoot Deformity (AAFD).  AAFD, also known as pes planus, and posterior 

tibial tendon insufficiency (PTTI) is a multi-stage degenerative disease which leads to improper 

joint alignment causing pain and affecting mobility of the foot and ankle.    This disease was 

chosen due to its extensive prior study both at clinical and experimental levels.  Such study has a 

broad focus in the treatments of this disease.  As the disease has affect on multiple joints and 

structures in the foot, surgical treatment is extensive.  Clinical and experimental studies have 

yielded an expanse of data for comparing these differing methods.  While much documentation 

has been performed about the benefits of these treatments, significant ambiguity remains of the 

origins of complications related to them. 

5.2 Background: Flatfoot and its Treatments 

Presentation and Involvement 
AAFD is a degenerative disease of the foot with greatest occurrence in ages commonly 

ranging from the early to mid 40’s into the 60’s years of age64-69.  The classification of 

“degenerative” is given because without treatment both the underlying tissue injury and the 

abnormal physical morphology continue to exacerbate over time.  The exact conditions leading 

to the onset of AAFD are not fully understood; however, an emergent weakness in the posterior 

tibial tendon (PTT) is considered to be a key indicator/origin50,67,70-75.  AAFD is a four stage 
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disease; stage I is marked by a chronic pain or tenderness along the posterior tibial tendon (PTT) 

pathway, with no visible foot deformity and correction possible through foot orthotics and rest; 

by stage II the chronic weakening of the PTT has progressed far enough to start weakening 

underlying soft tissues, this leads to gross foot deformities that can be observed in the clinic and 

usually necessitates surgical intervention.  The deformities include forefoot abduction, medial 

arch collapse, external rotation, and hindfoot valgus67,70,71,76.  At Stage II these deformities are 

still flexible and the foot can be manually manipulated into its pre-disease configuration.  Stage 

III is a continuance of the degeneration of these structures, the beginnings of soft tissue scarring 

and arthritis due to significantly out of alignment articular surfaces begins to stiffen the 

deformation into a more permanent and rigid configuration.  Stage IV sees a rigid, fixed 

deformity of the foot and the beginnings of joint damage further upwards into the ankle level.  

Stages III and IV require more extensive surgical correction, Stage II is the earliest that surgical 

intervention is necessary67,70,73,74,77. 

The origins of the mechanical failure in this disease are centered about that early 

indication of weakening of the PTT50,55,67,69-71,73-75,78-80.  The posterior tibialis muscle acts 

through the PTT at the talonavicular joint to stabilize and support the alignment of the medial 

arch.  This muscle also provides some adduction and internal rotation at the midtarsal joint level.  

The tendon is thought to incur mounting micro damage that overcomes the rate of regeneration 

over a long period of time, this tendon frays and will eventually fully rupture81.    The PTT is not 

the only supportive structure of the medial arch, the aforementioned spring ligament, long and 

short plantar ligaments, plantar fascia, deep tarsal ligaments, and portions of the medial and 

lateral collateral ligaments also play a role in the support of the medial arch32,67,70,75,76,80-82.  

These tissues degrade as their load increases during gait and stance in the absence of support 
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from the PTT69,83.  In the duration preceding PTT rupture, there is a transfer of deformation-

resisting load from that weakening tendon to these ligaments.  When the PTT fails, these 

structures no longer have muscular support and now fully resist the deforming load of stance and 

gait.  Over time the same overwhelming micro damage that lead to the degeneration of the PTT 

will break down these ligament structures, furthering the course of the disease81,82. 

A study was performed by Deland et al.82 on a pool of 31 subjects which were diagnosed 

with AAFD and 31 control subjects who had ankle and hindfoot MR for reasons unrelated to 

flatfoot.  Many ligaments in the foot were analysed with this MR data including: the spring 

ligament (divided into superomedial and inferomedial calacaneonavicular parts), long and short 

plantar ligaments, plantar fascia, deltoid ligament (divided into anterior, posterior, and deep 

parts), the plantar naviculocuneiform ligament, talocalcaneal interosseus ligament, and the 

tarsometatarsal ligaments.  The bulk of these tissues, which experienced some instances of 

tearing, were divided up into a grade 0-IV classification of damage.  Grade 0 denoted no visible 

alteration; grades I & II denote altered appearance (as seen by altered signal intensity on MR) of 

less than or more than 50% of the cross sectional area of the ligament, respectively; grades III & 

IV denote partial tearing of less than or more than 50%, respectively.  A few tissues (plantar 

fascia, long and short plantar ligament) showed no tearing on imaging.  These tissues were thus 

given a different gradation, mild (<25% altered appearance), moderate (25% - 50% altered 

appearance), and severe (>50% altered appearance)82.  A summary of the results showed: the 

bulk of the superomedial spring ligament of subjects were grade IV; the inferomedial spring 

ligament at grade II; the majority of the talocalcaneal interosseus and anterior superficial deltoid 

ligaments at grade I; the deep deltoid, posterior superficial deltoid, plantar metatarsocuneiform, 

and naviculocuneiform ligaments at grade 0.  For the mild/moderate/severe gradations the long 
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and short plantar ligaments were all mild, and the plantar fascia exhibited the majority of its 

findings to be moderate damage.  The study also analyzed the PTT and found it to be, in the 

flatfoot group, mostly either grade III or IV.  (Note that all measurements were primarily or 

solely grade 0 or mild, with the exception of the talocalcaneal interossues which was 12 subjects 

for grade 0, 17 subjects for grade I, and 2 subjects for grade II, an interesting finding)82.  Even 

with these findings, the study asserted that there is no method of correlating these results with the 

functional behavior of ligaments. 

Diagnosis, Stage II 
Diagnosis at Stage II can be done early in the clinical setting with an examination.  Under 

loading, such as relaxed standing, the degenerative signs of flatfoot including forefoot abduction, 

medial arch collapse, and hindfoot valgus are readily seen (Figure 5.1). 

 

Figure 5.1: Diagram of Flatfoot.   This diagram is a typical clinical presentation of flatfoot 

during relaxed stance.  The left foot is showing the common indicators; forefoot abduction, 

hindfoot valgus, medial arch collapse.  The right foot is “normal”.  Diagram is redrawn from 

common flatfoot imagery in the public domain. 
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The examining physician can manually manipulate the foot and determine the degree of 

flexibility remaining in the joints.  For further measure and as a surgical guide, the degree of 

deformity at these joints can be quantified by joint angles measured radiographically.  This 

method of diagnosis was standardized by Sangeorzan et al84 in 1993 and has been used often 

since69-72,76,79,85,82,83.  These quantifying measurements are made in two views, a lateral view and 

a “dorsoplantar” view.  The lateral view is a standard image to show the mid-saggital plane of 

the foot.  The second view is at an angle between observing the transverse plane and the coronal 

plane.  For the purposes of simplification this view will be called an anteroposterior view tilted 

down 70° and lifted to above the foot (Figure 5.2).   

   

Figure 5.2: X-Ray Orientations for Flatfoot.   Angles of orientation for capturing x-rays for 

diagnosis of flatfoot severity.  The lateral view taken horizontally of the foot, left; the AP view 

taken from a 70° raised angle from the AP direction and centered over the midfoot, right. 

 

This view captures the tilted superior view of the bones of the mid- and forefoot.  In these 

views there are five major joint measures that can be made to describe the common deformities 

of AAFD.  Talar 1st Metatarsal Angle: as seen in the lateral view.  The talar axis is defined by the 
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following: the midpoint of a line passing through the dome of the talus to the inferior beak of the 

lateral process; and second midpoint, from a line which bisects the head of the talus and is 

identified at the articular borders.  These 2 midpoints describe a talar axis.  The metatarsal axis is 

described by 2 points, which are both midpoints of lines which terminate on the superior and 

inferior borders of the proximal and distal diaphyseal limits.  The angle between these axes is the 

Talar 1st Metatarsal Angle (L-T1MT) in the lateral view (Figure 5.3, top).  Calcaneal Pitch:  seen 

from the lateral view.  A line drawn from the inferior border of the calcaneal tuberosity to the 

anterior inferior articular process; is compared to a line drawn from the inferior border of the 

calcaneal tuberosity to the distal inferior articular border of the first metatarsal.  This compared 

angle is calcaneal pitch (L-CP) in the lateral view (Figure 5.3, middle).  TaloCalcaneal Angle:  

seen from the lateral view.  A line drawn from the midpoint of a line connecting the superior and 

inferior aspects of the posterior calcaneal tuberosity, and a second midpoint from a line drawn 

between the superior and inferior borders at the level of the sustentaculum tali form the calcaneal 

axis.  This axis and the talar axis described for L-T1MT angle describe the TaloCalcaneal (L-TC) 

angle in the lateral view (Figure 5.3, bottom). 

Talo 1st Metatarsal Angle:  as seen in the AP view.  An axis is defined as normal to the 

midpoint of a line drawn between the medial and lateral borders of the talar articular surface.  

The metatarsal axis is described by 2 points, which are both midpoints of lines which terminate 

on the medial and lateral borders of the proximal and distal diaphyseal limits.  The angle 

between these 2 axes is the Talo 1st Metatarsal angle (AP-T1MT) in the AP view (Figure 5.4, 

left).  Talonavicular Angle:  seen from the AP view.  A line perpendicular to the midpoint of a 

line bisecting the proximal articular borders of the navicular describes a navicular axis.  The 

same talar axis from the AP-T1MT view is used as well.  The angle between these axes is the 
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talonavicular angle (AP-TN) in the AP view, also known as talonavicular coverage angle (Figure 

5.4, right).   

 

 

 

Figure 5.3: Lateral x-ray Angle Measurement Technique.   The diagrams presented here 

illustrate the methods mentioned in literature67,84 to create the lateral angle measurements for L-

T1MT, L-TC, and L-CP angles.  Dotted lines and bullets show anatomical landmarks and 

measurements used to generate angle axes (solid), with accompanying angle measure θ1-3. 

Talar-1st Metatarsal Angle (L-T1MT) 

TaloCalcaneal Angle (L-TC)

Calcaneal Pitch (L-CP) 

θ1 

• 

• 
• 

• 

θ2 

• 

• 
• 

• 

θ3 
• • 

• 



Chapter 5 – Simulation of Flatfoot 

 118 

 

Figure 5.4: AP and Angle Measurement Techniques.   The diagrams presented illustrate the 

methods mentioned in literature67,84 to create the AP angle measurements for AP-T1MT, and AP-

TN angles.  For these the talar and navicular axis, the axis itself is drawn normal to the single 

dotted lines connecting the medial and lateral borders of the articular surfaces.  Dotted lines and 

bullets show anatomical landmarks and measurements used to generate angle axes (solid), with 

accompanying angle measure θ4-5. 

 

Treatments 
As mentioned, surgical intervention at Stage II AAFD is capable of relieving many of the 

symptoms and underlying causes of the disease and preventing its further progression into Stage 

III and IV.  This intervention is accomplished by a series of soft tissue and bony procedures 

which work in conjunction to correct the morphology seen in AAFD and strengthen the 

architecture of the foot. 

θ4 

• 

• 

• 

θ5 

• • 

Talar-1st Metatarsal Angle       TaloNavicular Angle 

          (AP-T1MT)                  (AP-TN)  
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A survey of 104 orthopaedic surgeons in 2003 gave the following breakdown in 

treatment choices when presented with a typical Stage II AAFD case: of soft tissue procedures, 

94% would perform some reconstruction of the PTT, 53% would repair the spring ligament; of 

bony procedures, 73% would perform a medializing calcaneal osteotomy (MCO) and 41% would 

perform a lateral column lengthening procedure74.  This study identifies a short list of bony 

procedures which are of particular importance to this simulation. 

Medializing Calcaneal Osteotomy 
 The hindfoot valgus deformity mentioned in association with AAFD is of particular 

concern when treating this disease.  Hindfoot valgus is a positive feedback deformity.  Once the 

line of action of the Achilles tendon is no longer centered through the ankle center, the 

gastrocnemius and soleus apply an externally rotating moment about this joint, through the 

tendon, which acts to further hindfoot valgus.  The Medializing Calcaneal Osteotomy (MCO) is 

often performed as a hindfoot valgus corrective procedure70,73,74,79,86.  The primary objective of 

the MCO is to alter the insertion location of the soleus / gastrocnemius complex in an effort to 

re-establish the neutral pull direction of the Achilles tendon.  This maintains its strength as a 

plantorflexor and diminishes its capability of causing hindfoot valgus.  The osteotomy is 

accomplished by removing the entire calcaneal posterior tuberosity from the body of the 

calcaneus.  The tuberosity is “slid” medially approximately 1cm then screwed in place through 

the posterior heel to reduce and stabilize the fragment in its new location.  The movement of this 

fragment, the insertion of the Achilles tendon, effectively realigns the tendon pull with the ankle 

rotational center to restore joint appearance as in the right foot of Figure 5.1. 
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Lateral Column Lengthening 
 Two other major morphological deformities of the presenting Stage II AAFD are very 

significant forefoot abduction and medial arch collapse.  These deformities can be treated with a 

lateral column procedure, which in essence expands the lateral column to drive the forefoot into 

adduction and shore up the medial arch in the process.  The Evans opening wedge osteotomy 

(Evans), and CalcaneoCuboid Distraction Arthrodesis (CCDA) are the most common of these 

LCL procedures69,68,70,73,74,79,87-89,86.   

The Evans procedure is performed by creating an osteotomy in the anterior calcaneus, in 

the coronal plane usually ~1cm behind the anterior articular facet.  The calcaneus is then 

“opened” laterally and a wedge (usually an auto graft bone wedge) is inserted into the osteotomy.  

The wedge is approximately 1cm in width at its external side.  The graft and calcaneus are held 

in place to heal with a small plate and unicortical screws.  This wedging expands the length of 

the lateral column and is thus a lengthening procedure. 

The difference between the CCDA procedure and the Evans osteotomy is location.  The 

CCDA wedge is inserted between the calcaneus and the cuboid.  To accomplish this fusion, the 

calcaneocuboid joint capsule is opened laterally and the articular surfaces are shaved back to 

subchondral bone.  The typical ~1cm wedge, as created for the Evans procedure, is inserted into 

this joint space and the fusion is reduced by a small plate and unicortical screws.  This wedging 

procedure, as Evans, expands the length of the lateral column and is thus classified as a 

lengthening procedure.  While a wide range of angle changes results, correction of excessive 

forefoot abduction is the most significant outcome following a LCL procedure.  The Evans 

procedure has been reported to result in a 12.5 to 26° correction at the talonavicular joint66,68,84 

while the CCDA procedure results in 11.2 to 26.2° correction at this level69,68.     
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Complications associated with both Evans and CCDA include non- or delayed union, 

incision site problems (sural nerve damage, infection, painful hardware), arthritic development, 

and tightness or pain in the lateral foot69,66,68,90.  It has been demonstrated experimentally that the 

Evans procedure increases passive tension in the lateral portion of the long plantar ligament with 

a decrease or slackening in the medial portion91.   A slackened medial plantar fascia was created 

experimentally after application of either a CCDA or MCO, with more loosening seen after the 

CCDA58.  These findings may describe phenomenon that correspond to reported lateral foot pain 

following surgery66.  In addition to ligament strain, the Evans procedure has been shown to 

experimentally increase calcaneocuboid joint contact force, which is an arthritic risk 

factor64,65,68,92,93.  Finally, these corrections can alter not only tissue loading and joint contact, but 

gait and foot biomechanics by impacting plantar pressure distributions94-96,89,90. 

Soft Tissue Procedures 
Soft tissue repair re-establishes the support once granted by the failed posterior tibial 

tendon.  Restoring the function of the PTT is almost exclusively accomplished by a tendon 

transfer, commonly from the flexor digitorum longus67,69,70,73,79,97.  This transfer is performed by 

removing the flexor digitorum tendon from its distal insertion, and binding the tendon to the 

damaged tibialis posterior insertion.  This serves to utilize the muscular pull of the flexor 

digitorum to reestablish the stability granted to the medial arch by the tibialis posterior. 

5.3 Materials and Methods 

Loading Parameters:  For bodyweight, a downward force vector of 690N was applied at 

the proximal tibia to load the foot and ankle as in stance.  The Achilles soft tissue element array 

was set to ½ body weight or 345N.  For a relaxed weight-bearing stance, muscle activation 
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beyond that of the soleus / gastrocnemius complex is minimal and was excluded from the 

simulation83,92. 

Modeling Stage II Flatfoot:  The approach to creating the soft tissue flatfoot model 

hinged around the MR study performed by Deland et al.82 which investigated which and to what 

degree soft tissue structures displayed possible damage.  Those categories of altered appearance 

of the ligament tissue as well as degree of full thickness tearing served as a template to adjust the 

stiffness values of affected ligaments in the model (Table 5.1). 

Structure Average Damage Level Stiffness Modification

Superomedial Spring Stage IV -7/8th
Inferomedial Spring Stage II -3/8th

Talocalcaneal Interosseus Stage I -1/8th
Plantar Fascia Stage I -1/8th

Plantar metatarsocuneiform Stage 0 None
Plantar naviculocuneiform Stage 0 None

Long and Short plantar Stage 0 None
Deep deltoid Stage 0 None

Anterior superficial deltoid Stage I -1/8th
Posterior superficial deltoid Stage 0 None  

Table 5.1: Flatfoot Damage Classification and Stiffness Modification.  This table shows the 

“flatfoot scheme” applied to the model to simulated ligament deficiency with this disease.  

Stiffness modification was used to alter the behavior of the ligament arrays in the properties 

spreadsheet for these simulations. 

 

To create this template a scaling of ligament stiffness was applied to the grade 0-IV 

experimental findings.  The scaling started at 100% intact stiffness for grade 0 and ramped up to 

12.5% intact stiffness (1/8th) for grade IV.  This 12.5% assumed a slightly less than full thickness 

dissection of the tissue.  For simplicity (as stated in the study no correlation can be made, only 

assumed, between MR appearance and ligament function) a linear scale was applied between the 
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endpoints.  Intermediate grades were thus scaled in eights.  The only tissue to show non-intact 

levels in the mild/moderate/severe grading was the plantar fascia, its stiffness was scaled to 

87.5% (7/8th) to reflect a grade I degradation (Table 5.2).  As with the arch stability study, these 

scaling factors were applied to a copy of the master ligament properties sheet to yield updated 

formulation reflective of flatfoot (Table 5.3). 

Ligament Stiffness Stiffness Adj Flatfoot Stiffness
Interosseus Talocalcaneal 1 90 -12.5% 78.75
Interosseus Talocalcaneal 2 90 -12.5% 78.75
Interosseus Talocalcaneal 3 90 -12.5% 78.75

Plantar Calcaneonavicular (Spring) 1 50 -37.5% 31.25
Plantar Calcaneonavicular (Spring) 2 50 -37.5% 31.25
Plantar Calcaneonavicular (Spring) 3 50 -87.5% 6.25
Plantar Calcaneonavicular (Spring) 4 50 -37.5% 31.25

Plantar Fascia Base 1 40 -12.5% 35
Plantar Fascia Base 2 40 -12.5% 35
Plantar Fascia Base 3 40 -12.5% 35
Plantar Fascia Base 4 40 -12.5% 35
Plantar Fascia Base 5 40 -12.5% 35
Plantar Fascia End 1 60 -12.5% 52.5
Plantar Fascia End 2 50 -12.5% 43.75
Plantar Fascia End 3 50 -12.5% 43.75
Plantar Fascia End 4 20 -12.5% 17.5
Plantar Fascia End 5 20 -12.5% 17.5
Tibionavicular Part 1 40 -12.5% 35
Tibionavicular Part 2 40 -12.5% 35

Tibiospring 1 200 -12.5% 25
Tibiospring 2 61 -87.5% 7.625  

Table 5.2: Ligament Element Spreadsheet, Flatfoot Stiffness Adjustments.   The ligament 

arrays and elements this scheme effected.  Showing original stiffness values, adjustment based 

on Table 5.1 and final flatfoot stiffness values for affected ligaments 
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Ligament
Interosseus Talocalcaneal 1
Interosseus Talocalcaneal 2
Interosseus Talocalcaneal 3

Plantar Calcaneonavicular (Spring) 1
Plantar Calcaneonavicular (Spring) 2
Plantar Calcaneonavicular (Spring) 3
Plantar Calcaneonavicular (Spring) 4

Plantar Fascia Base 1
Plantar Fascia Base 2
Plantar Fascia Base 3
Plantar Fascia Base 4
Plantar Fascia Base 5
Plantar Fascia End 1
Plantar Fascia End 2
Plantar Fascia End 3
Plantar Fascia End 4
Plantar Fascia End 5
Tibionavicular Part 1
Tibionavicular Part 2

Tibiospring 1
Tibiospring 2

Flatfoot Ligament Equation
IF(DM(4421,4422)-7.6512:0,0,-78.75*(DM(4421,4422)-7.6512)-0.1*VR(4421,4422))
IF(DM(4423,4424)-6.0192:0,0,-78.75*(DM(4423,4424)-6.0192)-0.1*VR(4423,4424))
IF(DM(4425,4426)-4.9536:0,0,-78.75*(DM(4425,4426)-4.9536)-0.1*VR(4425,4426))

IF(DM(4487,4488)-22.1568:0,0,-31.25*(DM(4487,4488)-22.1568)-0.1*VR(4487,4488))
IF(DM(4489,4490)-19.9968:0,0,-31.25*(DM(4489,4490)-19.9968)-0.1*VR(4489,4490))

IF(DM(4491,4492)-17.664:0,0,-6.25*(DM(4491,4492)-17.664)-0.1*VR(4491,4492))
IF(DM(4493,4494)-17.2512:0,0,-31.25*(DM(4493,4494)-17.2512)-0.1*VR(4493,4494))

IF(DM(5515,5516)-62.2752:0,0,-35*(DM(5515,5516)-62.2752)-0.1*VR(5515,5516))
IF(DM(5517,5518)-59.2992:0,0,-35*(DM(5517,5518)-59.2992)-0.1*VR(5517,5518))
IF(DM(5519,5520)-57.4656:0,0,-35*(DM(5519,5520)-57.4656)-0.1*VR(5519,5520))
IF(DM(5521,5522)-55.3728:0,0,-35*(DM(5521,5522)-55.3728)-0.1*VR(5521,5522))
IF(DM(5523,5524)-55.1328:0,0,-35*(DM(5523,5524)-55.1328)-0.1*VR(5523,5524))
IF(DM(5525,5526)-63.024:0,0,-52.5*(DM(5525,5526)-63.024)-0.1*VR(5525,5526))

IF(DM(5527,5528)-68.2176:0,0,-43.75*(DM(5527,5528)-68.2176)-0.1*VR(5527,5528))
IF(DM(5529,5530)-64.464:0,0,-43.75*(DM(5529,5530)-64.464)-0.1*VR(5529,5530))

IF(DM(5531,5532)-59.5584:0,0,-17.5*(DM(5531,5532)-59.5584)-0.1*VR(5531,5532))
IF(DM(5533,5534)-51.12:0,0,-17.5*(DM(5533,5534)-51.12)-0.1*VR(5533,5534))
IF(DM(4625,4626)-27.84:0,0,-35*(DM(4625,4626)-27.84)-0.1*VR(4625,4626))

IF(DM(4627,4628)-25.7088:0,0,-35*(DM(4627,4628)-25.7088)-0.1*VR(4627,4628))
IF(DM(4629,4630)-18.1728:0,0,-25*(DM(4629,4630)-18.1728)-0.1*VR(4629,4630))
IF(DM(4631,4632)-25.536:0,0,-7.625*(DM(4631,4632)-25.536)-0.1*VR(4631,4632))  

Table 5.3: Ligament Element Spreadsheet, Flatfoot Ligament Equations.   Grouped element 

function equations for the modeled ligaments affected by the flatfoot scheme as they would be 

entered in COSMOSMotion. 

 

Modeling the Medializing Calcaneal Osteotomy:  This hindfoot osteotomy was created in 

SolidWorks by directly modifying the calcaneus.  A line in the lateral view was manually 

positioned to isolate the Achilles tuberosity from the body of the calcaneus.  Using this line, 

three points around the tuberosity were chosen to define a plane.  The plane was used as a guide 

for a “split” feature which detached the fragment of the tuberosity.  The “copy/move” feature 

was then applied to the fragment to move it medially (along a medial line entity) 10mm.  A 

“combine” feature was then used to reaffix the fragment to the body of the calcaneus to form the 

MCO (Figure 5.5). 
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Figure 5.5: Creation of the MCO.   The MCO was created in SolidWorks using a variety of 

cut, move, and combine features along with some reference geometry.  The intact geometry with 

window from a medial view (upper left), separated tuberosity fragment (upper right), MCO slide 

performed with the “move/copy” feature window shown in an oblique view (lower left), and 

final medialized osteotomy with highlighted (black) cut face (lower right). 

 

Modeling the Evans Procedure:  In a manner similar to the MCO, a line was used to 

isolate the anterior facet of the calcaneus approximately 10mm behind the anterior articular 

surface (calcaneocuboid articulation).  From this line a reference plane was created to be parallel 

to the articular surface and existing at the osteotomy depth.  The isolated portion was detached 

with the “split” feature, and the fragment became a second body.  This fragment was rotated 
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internally about its medial most edge.  Through measurement, a rotation of 21.5° was found to be 

necessary to open the lateral cut surface of the calcaneus by 10mm.  The wedge was extruded as 

a solid feature with a rectangular cross section, inside the osteotomy space.  On attempting to use 

the “combine” feature to resolve the wedge, fragment, and body of the calcaneus into one solid 

body a “zero thickness geometry” error was tripped.  This error was due to the body to body 

point contact at the medial border of the osteotomy, SolidWorks does not allow bodies to be in 

point contact and still joined.  To account for this the small flaring section of the medial fragment 

border was removed with a cut to separate that contact between fragment and body, and the 

“combine” proceeded without further error as the solid bodies were fused to form the Evans 

osteotomy (Figure 5.6). 
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Figure 5.6: Evans Opening Wedge Osteotomy, Calcaneus.   All images are superior views.  

The opening wedge osteotomy was performed with a similar line to plane formation for 

osteotomy reference as the the MCO.  The cut plane for this osteotomy was placed 1cm posterior 

to the anterior articular facet, A and B.  The fragment was rotated about the medial edge of the 

cut, C - bullet.  Body-body point contact causing “zero thickness geometry” error shown within 

red dashed box, D.  Final wedge fragment trimmed to be within the bony borders of the 

calcaneus, E.  Rotation to fit the 1cm osteotomy was found to be 21.5° (lower right).   
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Modeling the CCDA:  In a similar manner as previous, approximately 3mm of the most 

superficial shared articular joint surfaces of the cuboid and calcaneus were removed to leave flat 

geometry.  The cuboid was then rotated internally about its medial border with the calcaneus 

such that a 10mm wide, full depth wedge could be placed between the two bones.  Wedge, 

cuboid, and calcaneus were then fused to form the CCDA (Figure 5.7). 

     

           

Figure 5.7: Modeling the CCDA.   All views superior except D which is anterior.  The 

calcaneocuboid distraction arthrodesis was performed by first simulating the shaving of articular 

surfaces calcaneus and cuboid.  Points on the calcaneal anterior articular surface were chosen 
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Medial Lateral 
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which represented the plane of that surface.  These points were used to create a reference plane 

which was used in an “extrude cut” feature to remove the anterior 0.5mm of surface, A and B.  

This was done to the cuboid as well to yield flat articular geometries.  These flat geometries were 

mated to a 1cm wide wedge in a similar manner to the Evans osteotomy to cover the articular 

surface, C through E.  To prevent excessive initial 3D body interference from failing simulation, 

the mid and forefoot were manually translated ~1cm to remove this time zero interference, F.  

Bony articulations were reestablished in the first frame of simulation, G. 

 

Simulations and Measurements:  Seven configurations were simulated in total: normal 

intact, flatfoot, and flatfoot at various osteotomy states (MCO, Evans, CCDA, Evans & MCO, 

CCDA & MCO).  Radiographic views of flatfoot were created and measurements were 

standardized by adding referencing markers to anatomic landmarks used for flatfoot diagnosis.  

Such markers described the following measures: in the Lateral view; Talo-1st MetaTarsal (L-

T1MT), Calcaneal Pitch (L-CP), and TaloCalcaneal (L-TC) joint angles; in the AnteroPosterior 

(AP) view: Talo-1st MetaTarsal (AP-T1MT) and TaloNavicular coverage (AP-TN) angles); refer 

back to Figure 5.3 and Figure 5.4.  Soft tissue strain was measured directly from the elongation 

of soft tissue ligament arrays across both the long plantar ligament and plantar fascia.  Total 

contact force between the calcaneus and cuboid were measured in all simulations except those 

containing the CCDA where the joint was fused.  Plantar load magnitudes were measured 

through bony ground contact at the distal rays and at the calcaneus.  Calcaneal varus / valgus: is 

often mentioned as a clinically observable marker but radiographs are typically not used to 

measure this.  A method was devised computationally by using the posterior ground surface and 

an axis from a manually positioned mid-sagittal plane in the calcaneal body (Figure 5.8). 
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Figure 5.8: Hindfoot Valgus Measurement Technique.   Hindfoot valgus measure as seen in 

the posterior view.  Angle is measured in this method from the lateral side.  Horizontal axis 

represents the level of the ground, vertical axis is created in the calcaneal part file from a sagittal 

plane located at the center of the geometry, from these axes the hindfoot valgus angle is 

determined θ6 

5.4 Results 

Radiographic Joint Angles:  The joint angle data showed the changes the flatfoot model 

imparted in comparison to intact and the subsequent changes imposed by the simulated surgical 

corrections (Table 5.4).  The flatfoot model resulted in a 9.1° drop in the arch when considering 

the L-T1MT angle. This change was accompanied by a 1.6° plantarflexion of the talus seen in 

the L-TC and a 2.6° reduction in L-CP.  In the AP view, both the AP-T1MT and the AP-TN 

angles abducted by 8.9° and 1.9°, respectively. 
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Joint Angle ( ° ) † Normal
Intact Intact MCO Evans CCDA Evans & MCO CCDA & MCO

L-T1MT (θ1) 0.5 -8.6 -3.7 2.9 6.8 1.2 0.8
L-TC (θ2) 

†† 39.4 41.0 37.9 43.2 37.5 41.3 35.8
L-CP (θ3) 16.6 14.0 13.1 19.5 15.7 17.0 13.7

AP-T1MT (θ4) 7.2 -1.7 7.2 11.9 16.8 13.5 20.5
AP-TN (θ5) -7.0 -8.9 -6.5 2.4 -2.4 3.5 -0.4

Hindfoot (θ6) 
†† 93.4 96.4 87.7 94.7 93.1 90.9 86.9

Flatfoot

 

Table 5.4: Joint Angles For Simulation States.  Joint angles measured for normal and flatfoot 

surgical stages, in degrees, as depicted in Figure 2.  Angles are: Lateral Talo-1st MetaTarsal (L-

T1MT), θ1; Lateral TaloCalcaneal (L-TC), θ2; Lateral Calcaneal Pitch (L-CP), θ3; 

AnteroPosterior Talo-1st MetaTarsal (AP-T1MT), θ4; AnteroPosterior TaloNavicular angle (AP-

TN), θ5, Hindfoot varus / valgus (Hindfoot), θ6.  † Negative values denote crossing a neutral 

axis: for L-T1MT, this signifies a drooping medial arch; for AP-T1MT and AP-TN, this signifies 

abduction.  †† neither the L-TC nor hindfoot angles have an associated neutral axis.  L-TC 

values greater than intact normal indicate talar plantarflexion. Hindfoot less or greater than intact 

indicate more varus and valgus, respectively. 

 

With the MCO: L-T1MT angle improved by 4.9° not reaching the normal intact level; the 

talus dorsiflexed by 3.1° at the L-TC angle passing the normal intact; L-CP worsened 0.9°; AP-

T1MT angle improves by 8.9° in a return to normal intact; AP-TN improves by 2.4 to near 

normal.  The Evans and CCDA: both improve L-T1MT angle by 11.5° and 15.4° from flatfoot, 

surpassing intact; L-TC angle worsened 2.2° with the Evans while improving by 3.6° with 

CCDA to pass normal intact; L-CP improved in both cases, 5.5° with Evans and 1.7° with 

CCDA to beyond intact normal; both procedures also improved AP-T1MT and AP-TN by 

adducting these joints, 13.6° and 18.5° at the AP-T1MT for Evans and CCDA respectively; 11.3° 
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and 6.5° at the AP-TN for Evans and CCDA respectively –  AP angles all surpassing intact 

levels.   

For Evans & MCO and CCDA & MCO: trends were similar, L-T1MT angles were 

improved by 9.8° and 9.4° for Evans & MCO and CCDA & MCO respectively to near intact 

normal; at the L-TC angle, Evans & MCO worsened by 0.3° while CCDA & MCO improved by 

5.2° surpassing intact normal; a reverse was seen at L-CP with Evans & MCO improving 3.0° to 

near normal intact while CCDA & MCO worsened by 0.3°; Evans & MCO improved AP-T1MT 

by 15.2° and CCDA & MCO by 22.2° both surpassing intact normal; Evans & MCO improved 

AP-TN by 12.4° and CCDA & MCO by 8.5° both surpassing intact normal.    

Calcaneal varus/valgus was also influenced by these procedures.  In the intact normal 

foot, the calcaneal angle was 93.4°.  The flatfoot model brought the calcaneus 3° further into 

valgus.  The MCO alone corrected this angle with 8.7° of varus rotation from flatfoot, surpassing 

intact normal.  Evans and CCDA both also corrected this angle by 1.7° and 3.2° respectively.  

Evans & MCO affected this angle less than MCO alone but greater than Evans, with a 5.5° varus 

rotation.  CCDA & MCO affected this angle greater than either procedure alone, with a 9.5° 

varus rotation from flatfoot. 

Ligament Strain:   Soft tissue strains in the long plantar ligament and plantar fascia were 

calculated from resting and loaded stance lengths (Table 5.5).  Medial / lateral tissue strain 

distribution was relatively equal in the intact normal simulation.  With flatfoot, an overall 

increase in tissue strain was seen with medial ligament portions being affected more than lateral 

portions.  The MCO countered this somewhat, shifting the greater strains to the lateral portions 

and slightly easing medial portions.  Both Evans and CCDA followed this trend but with slightly 

less lateral strain in the long plantar ligament and slightly more in the plantar fascia.  Evans or 
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CCDA with MCO procedures affected a lessening of medial strains in the long plantar ligament 

close to intact normal levels whereas medial strain in the plantar fascia lessened past intact 

normal levels.  Lateral strain for the combination procedures was highest in the long plantar 

ligament and relatively unchanging in the plantar fascia compared to either procedure without 

MCO. 

% Strain in Ligament 
Structures Normal

Long Plantar Array Intact Intact MCO Evans CCDA Evans & MCO CCDA & MCO
Long Plantar 1 (med) 1.0 2.8 2.1 2.4 2.1 1.9 1.4

Long Plantar 2 1.0 2.8 2.5 2.7 2.3 2.2 2.2
Long Plantar 3 1.5 2.8 2.5 3.0 2.5 2.7 2.0
Long Plantar 4 1.8 2.3 3.1 3.4 2.9 3.3 2.2
Long Plantar 5 1.7 2.9 2.7 3.5 2.9 3.5 2.6
Long Plantar 6 1.8 2.7 3.0 3.9 3.2 4.0 3.2
Long Plantar 7 0.6 1.2 2.1 2.7 2.0 3.5 3.1

Long Plantar 8 (lat) 1.7 1.7 5.3 4.1 4.0 5.6 6.0

Plantar Fascia Array Intact Intact MCO Evans CCDA Evans & MCO CCDA & MCO
Plantar Fascia 1 (med) 3.9 7.2 3.4 2.5 2.0 1.6 0.4

Plantar Fascia 2 2.1 4.3 2.1 2.2 1.8 1.2 0.5
Plantar Fascia 3 2.7 4.5 3.5 3.5 3.3 2.5 1.5
Plantar Fascia 4 2.7 4.0 3.6 4.7 4.1 5.1 3.8

Plantar Fascia 5 (lat) 3.2 3.7 4.2 4.7 4.7 4.7 4.8

Flatfoot

 

Table 5.5: Ligament Strain.   Soft tissue strains calculated from resting to loaded, in percent 

strain, for the long plantar ligament and plantar fascia for all computational simulations.  

Elements of these ligaments are listed medial (med) to lateral (lat). 

 

Calcaneocuboid Contact Load:  The calcanealcuboid joint load in the intact normal 

loaded foot was 763N.  This load rose 16% to 888N in flatfoot and dropped to near intact normal 

levels (772N) with an MCO.  Calcanealcuboid joint load increased 111% to 1608N, more than 

doubling, with the Evans procedure.  The addition of the Evans procedure to an MCO only 

slightly reduced this increase, to 93% above intact normal or 1471N. 

Plantar Ground Loads:  In the intact normal foot, forefoot load was well balanced with 

116N in the first ray and 125N in combined rays 4 & 5 (Table 5.6).  Flatfoot raised the 1st ray 

ground contact by 7.8%, to 125N and also doubled 2nd ray ground contact.  With respect to intact 
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normal, the MCO halved the 1st ray load while increasing 4th & 5th ray combined loads by 131%.  

Also with respect to intact normal, both Evans and CCDA reduced flatfoot forefoot loading by 

greater than 67% and 84% respectively, while increasing 4th & 5th ray loading by 105% and 

114% respectively.  The combinations of Evans or CCDA with MCO exhibited the greatest 

redistribution with respect to normal intact –  93% and 100% reduction of 1st ray loading and 

154% and 171% increase in 4th & 5th ray combined loading, respectively.  In the lateral 4th and 

5th rays, the 5th ray always exhibited the greater ground contact load. 

Load in Plantar 
Region Normal

Intact Intact MCO Evans CCDA Evans & MCO CCDA & MCO
Ray 1 116 125 58 38 18 8 0
Ray 2 8 16 2 6 9 4 0
Ray 3 40 36 23 38 47 25 26
Ray 4 24 30 79 52 49 56 53
Ray 5 61 60 117 122 133 160 177

Calcaneus 428 422 410 431 448 443 441

Flatfoot

 

Table 5.6: Plantar Ground Contact Loads.  Plantar ground contact loads, in Newtons.  Listed 

are loads under rays 1-5 as well as the heel. 

5.5 Discussion 

In this validation study, model predicted several biomechanical functions of the foot and 

ankle in these simulated states – intact, flatfoot, and four different surgical corrective procedures 

for Stage II AAFD. 

Radiographic Joint Angles:  The joint angles found in the intact simulation were 

compared to available definitions of the clinically “normal” foot.  The L-T1MT angle is 

considered normal at close to 0 degrees70 and has been reported at 3.3° ± 4.9° in a study of 56 

normal feet76, and 0.0° ± 0.5° in a study of 1174 normal feet85.  The intact L-T1MT angle in the 

simulation was 0.5°.  L-TC angles are found from 50.3° ± 5.6° to 45.8° ± 0.4° in literature76,85; 

this angle in simulation was 39.4°.  L-CP is reported to be 22.8° ± 4.7° for intact76; in simulation, 
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this angle was 16.6°.  AP-T1MT angle is not as widely reported for intact feet for which the 

simulation angle was 7.2° into adduction from neutral.  AP-TN coverage angles have been 

reported at 10.4° ± 4.2° for intact feet85 and was 7.0° in simulation.  Hindfoot valgus angle was 

reported at 5° (range 3° to 7°) for an intact population of 56 feet and 9° (range 4° to 15°) for a 

clinical flatfoot population of 39 feet.  That angle was measured with goniometer aligned to the 

Achilles tendon and the axis of the calcaneus with center placement over the talus76.  The tibia in 

the computational simulation was aligned vertical (normal to the ground plate), thus the apparent 

hindfoot angle with respect to the long axis of the tibia was 3.4° for the intact, and 6.4° for the 

flatfoot simulations. 

The following morphological changes from the intact normal limb were observed in the 

simulated flatfoot: drop in the L-T1MT angle, diminishing L-CP, plantarflexion of the talus seen 

with L-TC angle, uncovering of the talonavicular joint surface with AP-TN abduction, abduction 

of the forefoot from the AP-T1MT angle, and hindfoot valgus.  These changes all correlate to 

clinical signs of Stage II AAFD67,70,72,73,76,85.  A study of 25 clinically presenting flatfoot subjects 

(39 feet) yielded a L-T1MT angle of 17.5° ± 6.4° of downward collapse (indicated as a negative 

value in our simulation); L-TC angle of 36.2° ± 30.5°; L-CP angle of 16.3° ± 6.3°; and a AP-TN 

angle of 22.3° ± 6.7° of abduction (indicated as a negative value in our simulation) with no 

reported AP-T1MT angle.  The direction these measurements were seen to change from the 

normal foot to the diseased state was predicted in the flatfoot simulations, with the exception of 

L-TC which was seen to increase in simulation but decrease in clinical findings, although 

standard deviations were extremely large.  The increasing L-TC angle seen in our simulation is 

an indicator of talar plantarflexion, which other investigators67,69,70 corroborate as a key feature 

of adult acquired flatfoot deformity.    



Chapter 5 – Simulation of Flatfoot 

 136 

The MCO improved all joint angles with the exception of L-CP, which was likely 

influenced by the observed calcaneal varus rotation.  Clinically, the MCO is used to stabilize the 

line of action of the Achilles tendon to eliminate the positive feedback mechanism for hindfoot 

valgus74,98,99,94.  In this foot, simulation of the MCO reduced hindfoot valgus and brought the 

calcaneus into several degrees of varus (i.e. angle measure less than flatfoot), providing the same 

benefit as is sought clinically.   

The LCL procedures also provided correction to these joint angles.  Both surgical 

methods adjusted the L-T1MT angle to beyond intact levels creating a higher arch.  The Evans 

procedure failed to prevent talar plantarflexion and contributed to the deformity slightly when 

considering L-TC angle, while the CCDA showed correction by imparting talar dorsiflexion.  

Clinically and experimentally, both the Evans and CCDA have been seen to improve L-T1MT 

angle64,66,68,69,84,92 Talar plantarflexion also experiences a small correction for both procedures, 

but with a large standard deviation in the literature68,92 which may explain the models’ 

discrepancy for the Evans procedure.  L-CP was restored to a higher than intact level with LCL 

procedures.  Clinically and experimentally, L-CP has been seen to increase with either lateral 

column procedure68,92.   

The AP-T1MT and AP-TN forefoot abduction angles as well as L-T1MT angle were 

impacted the most by Evans and CCDA in the simulations.  Clinically, these AP angles have 

received the most correction for AAFD by targeting the lateral column64,66,68,69,84,92.  Calcaneal 

varus / valgus rotations for the Evans and CCDA were slightly improved over flatfoot to near 

normal intact levels.  Measurements for hindfoot valgus changes for these bony procedures are 

not commonly reported although it is widely accepted that the MCO improves hindfoot valgus70.  

This was seen in the model as the only changes in this angle more than ~1.5° were when an 
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MCO was performed alone or in combination with a lateral column procedure – all of these 

angle changes were in a varus direction.   

Evans & MCO and CCDA & MCO exhibited a blend of each procedures’ separate effects 

in influencing joint angle change.  Both methods demonstrated a middle ground effect on the L-

T1MT angle, more improvement than MCO alone, but less than the LCL procedure alone.  The 

L-TC measure of talar plantarflexion was unchanged with the opposing effects of Evans & 

MCO, while CCDA & MCO combined to dorsiflex the talus further than either had separately – 

again these effects were small in the model and clinically68,92.  L-CP saw a similar interplay 

where the falling MCO and raising Evans resulted in a near intact normal angle.  The CCDA & 

MCO however resulted in a pitch angle close to that of the original flatfoot.  Both AP angles 

exhibited constructive interference with the combination procedures, again with the CCDA & 

MCO bringing greater adduction to the forefoot as measured by the AP-T1MT angle.  The Evans 

& MCO exhibited greater adduction of the AP-TN angle.  The forefoot corrections for these 

combination procedures were the greatest among all simulations.  Finally, the addition of the 

MCO to either LCL procedure yielded more calcaneal varus rotation than either lateral column 

procedure alone, with the CCDA & MCO having the greatest varus rotation of all simulations.  

Currently, combination procedures such as these are somewhat common, with the MCO treating 

hindfoot valgus and LCL correcting forefoot abduction66,67,70,74 but reports of angular corrections 

are not readily available.   

Ligament Strain:  The model simulations suggest that the lateral column lengthening 

procedures also lengthen the lateral portions of the long plantar ligament and plantar fascia, 

which cross both the Evans and CCDA sites, as does the MCO.  The simulations showed more 

than doubling of strain values in the lateral portions of the long plantar ligament, and a 
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slackening of the medial portions compared to flatfoot.  This agrees with DiNucci et al.91 where 

tightening was found in the lateral bands of the long plantar ligament while the medial portions 

were visibly slack.  The model showed a decrease of more than 52% of the strain in the medial 

portions of the plantar fascia with the MCO and a drop of 66-73% with Evans and CCDA 

respectively.  These findings agree with Horten et al.58 who found that MCO and CCDA 

slackened the medial band of the plantar fascia, with a greater drop in strain attributed to the 

CCDA; no values were reported for lateral portions of the fascia in that study.   

Calcaneocuboid Contact Load:  LCL procedures are considered to be a likely cause of 

accelerated arthritic development in the mid and hindfoot, of particular note is the Evans 

osteotomy.  The joint contact force in both model of Evans and Evans & MCO more than 

doubled as compared to levels at intact normal, intact flatfoot, or MCO alone.  Cooper et al.93 

experimentally found a quadrupling of contact load at the calcanealcuboid joint, and clinical 

follow-up has discovered arthritic development in this joint after at follow-up with patients who 

received the Evans procedure64,65,68.   

Plantar Ground Loads: The flatfoot model showed a shifting of loading towards the 1st 

ray. This was overcorrected by the subsequent MCO, Evans, CCDA, and combination 

procedures to shift the load laterally, in most cases at least doubling 4th and 5th ray ground 

contact.  Tien et al.95 found an increase in cadaveric 5th metatarsal average pressure by 46% ± 

42% (range -4% to 141%) for the Evans procedure, and 104% ± 58% (range 9% to 216%) for the 

CCDA.  In the model, the contact loads increased by 100% at the 5th metatarsal for Evans and 

122% for CCDA.  Arangio et al.89 experimentally found a drop in % bodyweight carried by the 

1st metatarsal and an increase to the 4th and 5th metatarsals with the application of an MCO; this 

too agrees with the simulations’ prediction of shift in body weight distribution.  Hadfield et al.94 
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found a significant offloading of average pressure to the 1st and 2nd metatarsal heads with an 

MCO and a significant increase in lateral hindfoot pressure but no change to medial hindfoot 

pressure and a trend for an increased lateral forefoot forefoot pressure.  In the absence of soft 

tissue, directly comparing pressure to simulated plantar loading can be problematic.  The heel in 

the model made ground contact in one area of the calcaneus which area did shift slightly lateral 

as the calcaneus rolled in the varus direction and θ6 changed from 96.4° to 87.7° from flatfoot to 

MCO states.  This roll would likely result in similar pressure changes as seen experimentally94 as 

more lateral regions of the heel pad are loaded.  Scott et al.96 found an increase in lateral forefoot 

pressures after both Evans and CCDA, with no significant difference between the procedures; in 

the model, 5th metatarsal contact loads were similar between the two procedures, 122N for Evans 

and 133N for CCDA. 
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Chapter 6 ‐ Overall Discussion 

The areas of research that could benefit from computational modeling are as diverse as 

the fields themselves.  In the field of orthopaedics, these models continue to demonstrate their 

utility.  Describing an accurately modeled anatomical system by digital means is a tremendous 

accomplishment alone in terms of storage, handling, and re-use of anatomy.  The digital models 

take up very little space (a current solved simulation is approximately 20-30 megabytes of disk 

space, ready-to-run setups are ~7 megabytes) the storage of hundreds of reassembled anatomies 

would fit on a handful of digital discs – which do not require 24 hours to thaw.  Related is the 

notion that the anatomy can be reused.  Hundreds of surgical configurations can be performed on 

the exact same “specimen” or vastly different surgical studies can be performed across the same 

database of specimens over years.  With improvements in software and our knowledge of the 

behavior of tissues, the resultant predictions from these models will continue to converge with 

live tissue behavior. 

Of the computational methods, rigid body modeling suffers the same weaknesses of all 

computational models, a reliance on measured physical characteristics for input to modeling 

parameters such as stiffness values, in situ strains, fiber direction, and three-dimensional 

architecture.  There are several similarities and differences between this method and the FEA 

model presented by Cheung et al.3-8.  Both methods used high resolution medical scans to isolate 

bony geometry (here with CT, there with MR).  Both methods add soft tissue behavior (here with 

elements arrays to simulate ligament and capsule, there with some ligaments individually 

addressed and others’ behavior approximate through a soft tissue volume).  Specific differences 
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occur in two areas; the material differences between FEA and rigid body simulation, and the 

target behavior of interest.  The first is defined by the challenges associate with using the chosen 

simulation method.  FEA has tremendous strength in calculating internal stress and strain, but 

suffers from prolonged computation time especially when computing large motions in a more 

dynamic model; and in nonlinear analyses with multiple 3D contact conditions for example.  In 

contrast, the rigid body method is insensitive to internal stress and strain, but is aptly suited for 

calculating large construct kinematics very rapidly.  The second area of difference is concerned 

with behavior studied, for the FEA studies the focus was plantar soft tissue deformation (through 

stress/strain and contact area) and ligament strain for various footwear studies3-5, surgical release 

of fascia8, and sensitivity studies6,7.  For the method presented in this work, the focus was joint 

movement, ligament strain, joint contact and plantar load distribution through rigid bony 

anatomy.  This approach was applied to AAFD and the consequences of the disease as well as its 

surgical corrections; this was also coupled with prior comparison to construct and structural 

properties of the medial arch.  Both sets of measurements are valuable to research and to answer 

questions in orthopaedics.  The ability to measure these different quantities depends on the 

simulation technique used, though some overlap exists (such as with ligament strains).   

Anatomy capture:  The benefits of obtaining complete scan data were emphasized in the 

transition from the Visible Human Project’s data sets to the in-house capture of leg and foot 

anatomy.  The programs used – MIMICS and SolidWorks - were not designed by the same 

corporations which required a degree of finesse in processing the data from one to the other.  By 

aligning the specimen with respect to the scan field, and obtaining neutral position of the ankle, 

much of the scan processing and model assembly hardships were avoided altogether. 
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  Model creation in SolidWorks.  Assembly of the bones in 3D space and 

building/connecting various indenters and ground plates for external control of the assembly was 

straightforward.  Some of the greatest difficulties in preparing simulations were the creation of 

osteotomies.  Surgical guidelines as discussed in the literature leave questions about osteotomy 

cut plane position and angle, as well as other bone dressing (how osteotomies are shaped) and 

fracture reducing issues (amount of fusion, precise bone placement).  These are overcome in the 

surgical arena by mentoring and extensive practice.  For an outside experimenter without years 

of practice in the operating room, re-creating these osteotomies was more difficult.  Descriptions 

of “1cm posterior to the anterior facet” and “bulk of the posterior calcaneal tuberosity” were not 

SolidWorks input fields.  Even without operating room experience, there are enough literature 

and book descriptions of these techniques available (including surgical residents to question) that 

the primary means and methods of creating these surgical repairs are anticipated to closely 

approximate common surgical technique.  Creating various cut surfaces and wedges for 

procedures required the addition of a framework of reference geometry to the bones to describe 

the surgical guidelines for such procedures.  Once this framework was in place, such procedures 

could be simulated.  This leads to the potential necessity of either close collaboration of 

simulators and surgeons, or the availability of a vast quantity of post surgical scan data for 

statistical analysis of technique.  Most likely, a combination of these methods will yield the best 

results. 

Simulation in COSMOSMotion.  The progression from spring elements to action reaction 

elements was delayed early by slack length issues and adequate soft tissue modeling.  As in situ 

strains were added, they first were wholly ineffective in generating a pre-strained state in tissues, 

but did act to reduce joint gaps somewhat.  This early closure stabilized both spring and tension 
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only models even though it was not immediately recognized as doing so.  With development of 

the final models, the deficiency of maintaining the in situ strains were first addressed with 

iterative reduction of joint gaps by refreshing the pre-strain.  A more robust final solution was 

found in the combination of mild iterative reduction and slight scaling of bony size. 

Adequate soft tissue modeling was a challenge on two fronts.  Increasing the size of 

element arrays to define a single anatomical structure with multiple “fibers” was a trade between 

reducing computation time and failure with shorter times to equilibrium, and increasing 

computation time due to complexity as well as modeler effort in defining and updating the 

increasing list of element functions.  The author foresees the potential of future research in this 

area to utilize custom programming to automate much of this complexity; it was a difficult 

balance in the development stage.  The behavior of these soft tissues, from a perspective of 

tension/compression springs vs. tension only elements with action reaction forces (once it could 

be successfully implemented) –was a straightforward and readily logical choice.  The reported 

studies on stiffness and slack length were very helpful but incomplete.  Further data was 

considered from more common sources such as ligament modulus of elasticity, but this required 

detailed information about ligament cross sectional area – information that was just as 

incomplete and error prone in the literature as stiffness.  The tensile behavior of ligaments 

demonstrates a toe region before entering into a linear region, whereas a linear stiffness was 

assumed for ligament tensile behavior in the computational models.  The literature reports that 

the in situ strain of ligaments in the beginning of the linear region is between 3-5%9,36-39.  Study 

of the wrist and ankle has demonstrated that many of these ligaments are in strain beyond the toe 

region in the neutral position35,41.  Further, the toe region is very sensitive to experimental testing 

protocols, such as tare load, and data in this region is not sufficiently quantified. Thus, a linear 
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stiffness was the most appropriate choice.  The concept of considering the toe region of tissue 

behavior leads to the prospect of creating bi-linear behavior of the tension only expressions.  

This was considered and briefly explored for the model.  Using a more detailed function 

expression, a toe region can be created to describe a more true three phase behavior (slack, toe, 

linear region – example of this is given in Appendix III).  However, this more complex behavior 

is less supported by quantitative measures in literature than the previous method, and was thus 

not adopted in this model. 

The literature leaves much to be desired in terms of quantitative behavior of the entire 

network of ligaments for the foot and ankle.  Challenges due to the small size of ankle tissues 

have long retarded the exhaustive study of the individual components of the foot and ankle in 

vitro.  Even with these deficiencies, this model has demonstrated an ability to use high resolution 

3D geometry and reported ligament properties to create results that are in close agreement with 

many reported experimental findings. 

An additional area for improvement lies with the inclusion of muscular action on the 

target joint.  For the foot, the Achillies tendon was easily added due to its simple line of action to 

the calcaneus.  Most other foot muscle, notably the posterior tibial tendon which is seen to play a 

role in flatfoot, act on the foot at several locations as their tendon bodies wrap around anatomy.  

This behavior is similar to the ligament wrapping discussed in earlier chapters.  The difficulty 

here is preserving the tension in the muscle elements while adding their stability to the various 

joints they cross in various sheathes and retinacula.  Those tendon paths in fact are much more 

extensive 3D paths than the wrapping considered for the plantar ligament and plantar fascia.  

Adding such elements was explored with the addition of sheath-simulating guide features which 

were manually added to bone, to direct the force of the tendon along its path.  The addition of 
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these pathways and additional tendon elements was successfully, but imparting their behavior 

lead to some simulation instability and overall poor performance.  Images of this technique are 

given in Appendix VI. 

Experimental Validation.  The predictive power of the final model variations was tested 

with consideration to experimental findings of arch stability granted by plantar structures, 

ligament strains in the presence of fascia release, and a multitude of experimental and clinical 

findings related to aspects of AAFD and its corrections. 

Arch Stability:  An additional strength of the developed computational models is the 

measurement of other parameters of interest such as ligament loads in the various injured states.  

Experimentally, the ultimate loads of ligaments have been measured, such as the plantar fascia at 

1189 ± 244N [20].  In the computational simulation of arch stability the plantar fascia was not 

seen to exceed 400N, suggesting that with either one of the spring or plantar ligaments 

transected, this tissue will not suffer failure under one cycle of stance loading.  Likewise, the 

tibio-spring part of the spring ligament, which originates from the medial/anterior angle of the 

distal tibia and inserts into the bulk of the anterior posterior spring ligament complex, is reported 

to have a yield load of 351 ± 231N [23].  When considering all the single and dual structure 

deficient simulations, these modeled spring ligament bands experienced a maximum of 258N of 

load, which falls within the standard deviation of reported yield.  This may be further 

exacerbated by cyclic loading to damage the spring ligament over time.  The plantar ligament, 

being a deep and complex band of tissues, is not easily measured experimentally and thus no 

experimental values are available for comparison. However, due to its robust size – less than the 

plantar fascia, but more than the tibio-spring and spring ligaments – a yield load can be estimated 

between that of the plantar fascia and spring ligament portion.  In the computational model, the 
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maximum load in the plantar ligament during all simulations was nearly 600N when the plantar 

fascia was transected, which is almost twice the yield load of the spring ligament portion, but 

half that of the plantar fascia.  Thus, under these conditions the plantar ligament could well be at 

risk for chronic damage. 

Flatfoot Simulations.  This computational model is an aid in understanding the complex 

weave of cause and effect seen with these surgical complication precursors.  Joint angle 

corrections, which influence or are influenced by soft tissue tension, conspire in some manner to 

alter gait characteristics.  Some side effects of this include the commonly seen complications, 

fixation failure, accelerated joint arthritis, and pain.  This model successfully predicted the 

various clinical and experimental joint angles changes that result from these common surgical 

techniques, including agreement with the strengths of each technique.  The soft tissue 

components of the model exhibited strain alterations across their bulk that correspond to 

experimental findings of how these tissues behave with lateral column procedures.  Altered 

ground contact was simulated in close agreement with experimental and clinical findings of these 

corrective procedures.  The exact interplay between these various factors, which is still largely 

unknown, is difficult to unravel in the clinical population.  Ellis et al.24 found significantly higher 

lateral midfoot average pressures in patients with lateral foot pain, which is a significant 

correlative finding in the potential source of this pain.  The degree of deformity for flatfoot in 

this model suggests that the standard sizes for the MCO and lateral column procedures would 

lead to overcorrection of deformity.  When considering the range of flatfoot deformity from the 

literature, this suggests the importance of size choice when assessing deformity to avoid the 

related complications mentioned here.  Future work both clinically and with computational 
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modeling as presented here, will further enlighten the community to the potential complications 

of these procedures and aid in the discovery of new treatments and tailoring of current ones. 

The overall performance of the model was good, with most results falling very near or 

within reported standard deviations.  The trends of plantar contribution to stability, ligament 

strain values from fascia release, flatfoot and corrected joint angle changes, medial to lateral 

ligament strain, and plantar load distribution were all very similar to reported findings, and 

complimented each other overall. 

The notable exceptions were total arch deformation in the stability model and 

calcaneocuboid contact force in the osteotomy simulations of AAFD repair.  A possible 

explanation for excessive arch deformation can lie either with the incomplete body of data 

reporting ligament behavior, or the level of modeled dissection when compared to experimental 

conditions.  An area of weakness in the model is that it only models ligament and bone behavior; 

the effects of musculature, fatty tissue, and skin layers are totally absent from the simulation.  

This may describe a somewhat less-stiff overall structure, and certainly comes into play when 

analyzing ground contact distribution.  Calcaneocuboid contact force was found to be several 

times higher in simulation than experimentally determined.  Possible explanations include 3D 

contact parameters which may not be restrictive enough in allowing bony interference, improper 

choices of slack length for ligaments crossing the calcaneocuboid joint (recalling that such data 

are only available for major ankle structures), or modeled ligament linearity which may be 

inadequate to predict realistic load magnitudes.  Even with such magnitude errors, the trends of 

these effects correctly predicted. 

This model methodology, now established and verified within certain parameters, is set to 

take the next steps in comparison to more complex experimental simulations.  With these further 
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simulations, additional data and relative changes unique to this model’s predictive ability will be 

able to investigate the biomechanical consequences of numerous bony and soft tissue pathologies 

and repairs to the foot.  The long-term goal of this computational modeling approach is for it to 

serve not only as a powerful research tool, but as a pre-surgical predictive planner for corrective 

procedures of the foot/ankle complex. 
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Appendix I: Ankle and Foot Dissection 
 

 

 

   

The plantar fascia exposed from calcaneal origin into metatarsal region, left.  Close up view 

of the distal dispersion of the fibers into the forefoot, right. 
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(Left is anterior, bottom is lateral) Superficial portions of the plantar ligament, probe is 

approximately at the calcaneocuboid joint level. 

 

 

 

(Tibia is at the top, left is anterior, medial view) Edge-on cut of the robust deltoid ligament 
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Appendix II: Ligament Definition Spreadsheet 
 

 

Ligament Stiffness Physical Length Settle 1 Length Settled 3 (Gen 5) Marker 1 Marker 2
Anterior Talofibular 142 25.157 23.800 22.77 4323 4324

Anterior Tibiofibular 1 120 10.342 15.000 14.08 4325 4326
Anterior Tibiofibular 2 120 8.936 13.000 12.30 4327 4328
Anterior Tibiotalar part 90 13.421 12.100 11.13 4329 4330

Calcaneal Cubiod 90 15.880 15.600 14.64 4331 4332
Calcaneofibular 1 64 19.102 16.100 15.68 4333 4334
Calcaneofibular 2 64 17.630 14.000 14.60 4335 4336
Calcaneonavicular 120 21.481 19.200 19.08 4337 4338

Distal Intermetatarsal 5 90 15.931 15.710 15.86 4339 4340
Distal Intermetatarsal 6 90 9.934 9.300 9.63 4341 4342
Distal Intermetatarsal 7 90 11.099 10.700 10.93 4343 4344
Distal Intermetatarsal 8 90 21.431 20.300 20.80 4345 4346

Dorsal Calcanealcuboid 1 90 8.014 7.300 7.05 4347 4348
Dorsal Calcanealcuboid 2 90 8.533 7.900 7.83 4349 4350
Dorsal Cuboidenavicular 120 10.607 10.300 10.30 4353 4354
Dorsal Cuneocuboid 1 120 6.243 6.200 6.10 4351 4352
Dorsal Cuneocuboid 2 120 6.283 5.900 6.02 4355 4356

Dorsal Cuneonavicular 1 120 8.398 8.070 8.18 4357 4358
Dorsal Cuneonavicular 2 120 7.735 7.700 7.70 4359 4360
Dorsal Cuneonavicular 3 120 6.778 7.200 6.80 4361 4362
Dorsal Cuneonavicular 4 120 9.385 8.400 8.15 4363 4364
Dorsal Cuneonavicular 5 60 9.480 9.800 9.800 4369 4370
Dorsal Cuneonavicular 6 60 8.420 8.200 8.200 4371 4372
Dorsal Cuneonavicular 7 60 7.840 7.600 7.600 15875 15876
Dorsal Cuneonavicular 8 60 7.240 6.900 6.900 15877 15878
Dorsal Intercuneiform 1 120 5.850 5.300 5.34 4373 4374
Dorsal Intercuneiform 2 60 5.440 4.900 4.900 4375 4376
Dorsal Intercuneiform 3 60 5.320 6.000 6.000 15873 15874

Dorsal Metatarsal 1 90 4.974 4.400 4.40 4377 4378
Dorsal Metatarsal 2 90 5.571 5.800 5.69 4379 4380
Dorsal Metatarsal 3 90 4.848 4.800 4.79 4381 4382
Dorsal Metatarsal 4 90 7.125 7.700 7.85 4383 4384

Dorsal Talonavicular 1 120 4.868 5.200 3.71 4385 4386
Dorsal Talonavicular 2 120 6.312 6.200 6.20 4387 4388

Dorsal Tarsometatarsal 1 90 10.528 9.600 9.57 4389 4390
Dorsal Tarsometatarsal 10 90 6.342 7.500 7.29 4411 4412
Dorsal Tarsometatarsal 11 90 6.347 4.700 4.73 4413 4414
Dorsal Tarsometatarsal 12 90 13.113 10.000 8.98 4415 4416
Dorsal Tarsometatarsal 13 90 13.300 9.800 8.97 5639 5640
Dorsal Tarsometatarsal 14 90 10.870 7.600 7.600 5641 5642
Dorsal Tarsometatarsal 2 90 7.926 7.330 7.07 4391 4392
Dorsal Tarsometatarsal 3 90 5.588 5.700 5.63 4393 4394
Dorsal Tarsometatarsal 4 90 6.713 5.800 5.47 4395 4396
Dorsal Tarsometatarsal 5 90 6.166 6.400 6.35 4397 4398
Dorsal Tarsometatarsal 6 90 5.322 5.400 5.18 4399 4400
Dorsal Tarsometatarsal 7 90 7.428 8.100 7.93 4403 4404
Dorsal Tarsometatarsal 8 90 5.824 5.200 4.84 4405 4406
Dorsal Tarsometatarsal 9 90 4.959 5.200 5.52 4407 4408
Inferior Calcaneocuboid 90 6.210 4.900 5.25 4419 4420

IOM 1 126 20.367 14.000 13.94 4429 4430
IOM 2 126 27.130 19.000 19.11 4431 4432
IOM 3 126 26.437 18.000 18.35 4433 4434
IOM 4 126 20.482 14.000 14.42 4435 4436
IOM 5 126 14.350 10.000 9.50 4437 4438
IOM 6 126 9.837 6.800 6.67 4439 4440
IOM 7 126 6.606 6.800 6.59 4441 4442  
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Ligament Stiffness Settled 3 4% strain
Anterior Talofibular 142 IF(DM(4323,4324)-21.8592:0,0,-142*(DM(4323,4324)-21.8592)-0.1*VR(4323,4324))

Anterior Tibiofibular 1 120 IF(DM(4325,4326)-13.5168:0,0,-120*(DM(4325,4326)-13.5168)-0.1*VR(4325,4326))
Anterior Tibiofibular 2 120 IF(DM(4327,4328)-11.808:0,0,-120*(DM(4327,4328)-11.808)-0.1*VR(4327,4328))
Anterior Tibiotalar part 90 IF(DM(4329,4330)-10.6848:0,0,-90*(DM(4329,4330)-10.6848)-0.1*VR(4329,4330))

Calcaneal Cubiod 90 IF(DM(4331,4332)-14.0544:0,0,-90*(DM(4331,4332)-14.0544)-0.1*VR(4331,4332))
Calcaneofibular 1 64 IF(DM(4333,4334)-15.0528:0,0,-64*(DM(4333,4334)-15.0528)-0.1*VR(4333,4334))
Calcaneofibular 2 64 IF(DM(4335,4336)-14.016:0,0,-64*(DM(4335,4336)-14.016)-0.1*VR(4335,4336))
Calcaneonavicular 120 IF(DM(4337,4338)-18.3168:0,0,-120*(DM(4337,4338)-18.3168)-0.1*VR(4337,4338))

Distal Intermetatarsal 5 90 IF(DM(4339,4340)-15.2256:0,0,-90*(DM(4339,4340)-15.2256)-0.1*VR(4339,4340))
Distal Intermetatarsal 6 90 IF(DM(4341,4342)-9.2448:0,0,-90*(DM(4341,4342)-9.2448)-0.1*VR(4341,4342))
Distal Intermetatarsal 7 90 IF(DM(4343,4344)-10.4928:0,0,-90*(DM(4343,4344)-10.4928)-0.1*VR(4343,4344))
Distal Intermetatarsal 8 90 IF(DM(4345,4346)-19.968:0,0,-90*(DM(4345,4346)-19.968)-0.1*VR(4345,4346))

Dorsal Calcanealcuboid 1 90 IF(DM(4347,4348)-6.768:0,0,-90*(DM(4347,4348)-6.768)-0.1*VR(4347,4348))
Dorsal Calcanealcuboid 2 90 IF(DM(4349,4350)-7.5168:0,0,-90*(DM(4349,4350)-7.5168)-0.1*VR(4349,4350))
Dorsal Cuboidenavicular 120 IF(DM(4353,4354)-9.888:0,0,-120*(DM(4353,4354)-9.888)-0.1*VR(4353,4354))
Dorsal Cuneocuboid 1 120 IF(DM(4351,4352)-5.856:0,0,-120*(DM(4351,4352)-5.856)-0.1*VR(4351,4352))
Dorsal Cuneocuboid 2 120 IF(DM(4355,4356)-5.7792:0,0,-120*(DM(4355,4356)-5.7792)-0.1*VR(4355,4356))

Dorsal Cuneonavicular 1 120 IF(DM(4357,4358)-7.8528:0,0,-120*(DM(4357,4358)-7.8528)-0.1*VR(4357,4358))
Dorsal Cuneonavicular 2 120 IF(DM(4359,4360)-7.392:0,0,-120*(DM(4359,4360)-7.392)-0.1*VR(4359,4360))
Dorsal Cuneonavicular 3 120 IF(DM(4361,4362)-6.528:0,0,-120*(DM(4361,4362)-6.528)-0.1*VR(4361,4362))
Dorsal Cuneonavicular 4 120 IF(DM(4363,4364)-7.824:0,0,-120*(DM(4363,4364)-7.824)-0.1*VR(4363,4364))
Dorsal Cuneonavicular 5 60 IF(DM(4369,4370)-9.408:0,0,-60*(DM(4369,4370)-9.408)-0.1*VR(4369,4370))
Dorsal Cuneonavicular 6 60 IF(DM(4371,4372)-7.872:0,0,-60*(DM(4371,4372)-7.872)-0.1*VR(4371,4372))
Dorsal Cuneonavicular 7 60 IF(DM(15875,15876)-7.296:0,0,-60*(DM(15875,15876)-7.296)-0.1*VR(15875,15876))
Dorsal Cuneonavicular 8 60 IF(DM(15877,15878)-6.624:0,0,-60*(DM(15877,15878)-6.624)-0.1*VR(15877,15878))
Dorsal Intercuneiform 1 120 IF(DM(4373,4374)-5.1264:0,0,-120*(DM(4373,4374)-5.1264)-0.1*VR(4373,4374))
Dorsal Intercuneiform 2 60 IF(DM(4375,4376)-4.704:0,0,-60*(DM(4375,4376)-4.704)-0.1*VR(4375,4376))
Dorsal Intercuneiform 3 60 IF(DM(15873,15874)-5.76:0,0,-60*(DM(15873,15874)-5.76)-0.1*VR(15873,15874))

Dorsal Metatarsal 1 90 IF(DM(4377,4378)-4.224:0,0,-90*(DM(4377,4378)-4.224)-0.1*VR(4377,4378))
Dorsal Metatarsal 2 90 IF(DM(4379,4380)-5.4624:0,0,-90*(DM(4379,4380)-5.4624)-0.1*VR(4379,4380))
Dorsal Metatarsal 3 90 IF(DM(4381,4382)-4.5984:0,0,-90*(DM(4381,4382)-4.5984)-0.1*VR(4381,4382))
Dorsal Metatarsal 4 90 IF(DM(4383,4384)-7.536:0,0,-90*(DM(4383,4384)-7.536)-0.1*VR(4383,4384))

Dorsal Talonavicular 1 120 IF(DM(4385,4386)-3.5616:0,0,-120*(DM(4385,4386)-3.5616)-0.1*VR(4385,4386))
Dorsal Talonavicular 2 120 IF(DM(4387,4388)-5.952:0,0,-120*(DM(4387,4388)-5.952)-0.1*VR(4387,4388))

Dorsal Tarsometatarsal 1 90 IF(DM(4389,4390)-9.1872:0,0,-90*(DM(4389,4390)-9.1872)-0.1*VR(4389,4390))
Dorsal Tarsometatarsal 10 90 IF(DM(4411,4412)-6.9984:0,0,-90*(DM(4411,4412)-6.9984)-0.1*VR(4411,4412))
Dorsal Tarsometatarsal 11 90 IF(DM(4413,4414)-4.5408:0,0,-90*(DM(4413,4414)-4.5408)-0.1*VR(4413,4414))
Dorsal Tarsometatarsal 12 90 IF(DM(4415,4416)-8.6208:0,0,-90*(DM(4415,4416)-8.6208)-0.1*VR(4415,4416))
Dorsal Tarsometatarsal 13 90 IF(DM(5639,5640)-8.6112:0,0,-90*(DM(5639,5640)-8.6112)-0.1*VR(5639,5640))
Dorsal Tarsometatarsal 14 90 IF(DM(5641,5642)-7.296:0,0,-90*(DM(5641,5642)-7.296)-0.1*VR(5641,5642))
Dorsal Tarsometatarsal 2 90 IF(DM(4391,4392)-6.7872:0,0,-90*(DM(4391,4392)-6.7872)-0.1*VR(4391,4392))
Dorsal Tarsometatarsal 3 90 IF(DM(4393,4394)-5.4048:0,0,-90*(DM(4393,4394)-5.4048)-0.1*VR(4393,4394))
Dorsal Tarsometatarsal 4 90 IF(DM(4395,4396)-5.2512:0,0,-90*(DM(4395,4396)-5.2512)-0.1*VR(4395,4396))
Dorsal Tarsometatarsal 5 90 IF(DM(4397,4398)-6.096:0,0,-90*(DM(4397,4398)-6.096)-0.1*VR(4397,4398))
Dorsal Tarsometatarsal 6 90 IF(DM(4399,4400)-4.9728:0,0,-90*(DM(4399,4400)-4.9728)-0.1*VR(4399,4400))
Dorsal Tarsometatarsal 7 90 IF(DM(4403,4404)-7.6128:0,0,-90*(DM(4403,4404)-7.6128)-0.1*VR(4403,4404))
Dorsal Tarsometatarsal 8 90 IF(DM(4405,4406)-4.6464:0,0,-90*(DM(4405,4406)-4.6464)-0.1*VR(4405,4406))
Dorsal Tarsometatarsal 9 90 IF(DM(4407,4408)-5.2992:0,0,-90*(DM(4407,4408)-5.2992)-0.1*VR(4407,4408))
Inferior Calcaneocuboid 90 IF(DM(4419,4420)-5.04:0,0,-90*(DM(4419,4420)-5.04)-0.1*VR(4419,4420))

IOM 1 126 IF(DM(4429,4430)-13.3824:0,0,-126*(DM(4429,4430)-13.3824)-0.1*VR(4429,4430))
IOM 2 126 IF(DM(4431,4432)-18.3456:0,0,-126*(DM(4431,4432)-18.3456)-0.1*VR(4431,4432))
IOM 3 126 IF(DM(4433,4434)-17.616:0,0,-126*(DM(4433,4434)-17.616)-0.1*VR(4433,4434))
IOM 4 126 IF(DM(4435,4436)-13.8432:0,0,-126*(DM(4435,4436)-13.8432)-0.1*VR(4435,4436))
IOM 5 126 IF(DM(4437,4438)-9.12:0,0,-126*(DM(4437,4438)-9.12)-0.1*VR(4437,4438))
IOM 6 126 IF(DM(4439,4440)-6.4032:0,0,-126*(DM(4439,4440)-6.4032)-0.1*VR(4439,4440))
IOM 7 126 IF(DM(4441,4442)-6.3264:0,0,-126*(DM(4441,4442)-6.3264)-0.1*VR(4441,4442))  
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Ligament Stiffness Physical Length Settle 1 Length Settled 3 (Gen 5) Marker 1 Marker 2
Interosseus Talocalcaneal 1 90 8.901 7.700 7.97 4421 4422
Interosseus Talocalcaneal 2 90 6.559 5.400 6.27 4423 4424
Interosseus Talocalcaneal 3 90 5.701 4.200 5.16 4425 4426

Lateral Talocalcaneal 90 4.985 4.100 4.45 4449 4450
PL1 Distal 40 28.54 25.500 26.32 11449 11450

PL1 Proximal 40 39.83 36.000 37 11451 11452
PL2 Distal 40 28.58 27.000 27.43 11453 11454

PL2 Proximal 40 45.04 40.000 41.68 11455 11456
PL3 Distal 40 25.13 22.000 23.16 11457 11458

PL3 Proximal 40 48.42 44.000 46.23 11459 11460
PL4 Distal 40 24 22.000 22.3 11461 11462

PL4 Proximal 40 59.18 54.800 56.64 11463 11464
PL5 Distal 40 15.41 14.000 14.3 11465 11466

PL5 Proximal 40 56.03 52.000 53.88 11467 11468
PL6 Distal 40 18.33 17.000 17.31 11469 11470

PL6 Proximal 40 52.7 48.600 50.34 11471 11472
Long Plantar Ligament 5-1 40 47.270 42.000 43.70 5429 5430
Long Plantar Ligament 5-2 40 55.640 50.000 52.20 5431 5432

Medial Talocalcaneal 120 9.602 7.800 8.27 4471 4472
Planar Cuneocuboid 1 90 12.558 11.900 12.15 4473 4474
Planar Cuneocuboid 2 90 9.304 9.370 9.23 4475 4476

Plantar Calcaneocuboid 1 90 28.220 26.300 27.10 4479 4480
Plantar Calcaneocuboid 2 90 47.195 40.700 41.78 4481 4482
Plantar Calcaneocuboid 3 90 46.228 38.800 40.15 4483 4484

antar Calcaneonavicular (Spring 50 25.472 22.500 23.08 4487 4488
antar Calcaneonavicular (Spring 50 22.576 20.100 20.83 4489 4490
antar Calcaneonavicular (Spring 50 18.302 18.600 18.40 4491 4492
antar Calcaneonavicular (Spring 50 18.566 16.900 17.97 4493 4494

Plantar CalcCub Capsule 1 90 8.680 8.500 8.57 5597 5598
Plantar CalcCub Capsule 2 90 7.870 7.000 7.31 5599 5600
Plantar CalcCub Capsule 3 90 8.130 6.400 6.88 5601 5602

Plantar Cuboideonavicular 1 90 23.266 18.000 17.90 4497 4498
Plantar Cuboideonavicular 2 90 23.450 19.000 18.91 4499 4500

Plantar Cuneonavicular 1 90 8.337 6.900 7.92 4501 4502
Plantar Cuneonavicular 2 90 5.500 3.900 3.900 4503 4504
Plantar Cuneonavicular 3 90 8.450 6.400 6.400 15881 15882

Plantar Fascia Base 1 40 67.660 63.000 64.87 5515 5516
Plantar Fascia Base 2 40 64.560 60.000 61.77 5517 5518
Plantar Fascia Base 3 40 62.510 58.000 59.86 5519 5520
Plantar Fascia Base 4 40 60.070 56.000 57.68 5521 5522
Plantar Fascia Base 5 40 59.750 56.000 57.43 5523 5524
Plantar Fascia End 1 60 69.550 63.000 65.65 5525 5526
Plantar Fascia End 2 50 74.070 69.000 71.06 5527 5528
Plantar Fascia End 3 50 70.730 65.000 67.15 5529 5530
Plantar Fascia End 4 20 64.560 61.000 62.04 5531 5532
Plantar Fascia End 5 20 57.660 52.000 53.25 5533 5534  
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Ligament Stiffness Settled 3 4% strain
Interosseus Talocalcaneal 1 90 IF(DM(4421,4422)-7.6512:0,0,-90*(DM(4421,4422)-7.6512)-0.1*VR(4421,4422))
Interosseus Talocalcaneal 2 90 IF(DM(4423,4424)-6.0192:0,0,-90*(DM(4423,4424)-6.0192)-0.1*VR(4423,4424))
Interosseus Talocalcaneal 3 90 IF(DM(4425,4426)-4.9536:0,0,-90*(DM(4425,4426)-4.9536)-0.1*VR(4425,4426))

Lateral Talocalcaneal 90 IF(DM(4449,4450)-4.272:0,0,-90*(DM(4449,4450)-4.272)-0.1*VR(4449,4450))
PL1 Distal 40 IF(DM(11449,11450)-25.2672:0,0,-40*(DM(11449,11450)-25.2672)-0.1*VR(11449,11450))

PL1 Proximal 40 IF(DM(11451,11452)-35.52:0,0,-40*(DM(11451,11452)-35.52)-0.1*VR(11451,11452))
PL2 Distal 40 IF(DM(11453,11454)-26.3328:0,0,-40*(DM(11453,11454)-26.3328)-0.1*VR(11453,11454))

PL2 Proximal 40 IF(DM(11455,11456)-40.0128:0,0,-40*(DM(11455,11456)-40.0128)-0.1*VR(11455,11456))
PL3 Distal 40 IF(DM(11457,11458)-22.2336:0,0,-40*(DM(11457,11458)-22.2336)-0.1*VR(11457,11458))

PL3 Proximal 40 IF(DM(11459,11460)-44.3808:0,0,-40*(DM(11459,11460)-44.3808)-0.1*VR(11459,11460))
PL4 Distal 40 IF(DM(11461,11462)-21.408:0,0,-40*(DM(11461,11462)-21.408)-0.1*VR(11461,11462))

PL4 Proximal 40 IF(DM(11463,11464)-54.3744:0,0,-40*(DM(11463,11464)-54.3744)-0.1*VR(11463,11464))
PL5 Distal 40 IF(DM(11465,11466)-13.728:0,0,-40*(DM(11465,11466)-13.728)-0.1*VR(11465,11466))

PL5 Proximal 40 IF(DM(11467,11468)-51.7248:0,0,-40*(DM(11467,11468)-51.7248)-0.1*VR(11467,11468))
PL6 Distal 40 IF(DM(11469,11470)-16.6176:0,0,-40*(DM(11469,11470)-16.6176)-0.1*VR(11469,11470))

PL6 Proximal 40 IF(DM(11471,11472)-48.3264:0,0,-40*(DM(11471,11472)-48.3264)-0.1*VR(11471,11472))
Long Plantar Ligament 5-1 40 IF(DM(5429,5430)-41.952:0,0,-40*(DM(5429,5430)-41.952)-0.1*VR(5429,5430))
Long Plantar Ligament 5-2 40 IF(DM(5431,5432)-50.112:0,0,-40*(DM(5431,5432)-50.112)-0.1*VR(5431,5432))

Medial Talocalcaneal 120 IF(DM(4471,4472)-7.9392:0,0,-120*(DM(4471,4472)-7.9392)-0.1*VR(4471,4472))
Planar Cuneocuboid 1 90 IF(DM(4473,4474)-11.664:0,0,-90*(DM(4473,4474)-11.664)-0.1*VR(4473,4474))
Planar Cuneocuboid 2 90 IF(DM(4475,4476)-8.8608:0,0,-90*(DM(4475,4476)-8.8608)-0.1*VR(4475,4476))

Plantar Calcaneocuboid 1 90 IF(DM(4479,4480)-26.016:0,0,-90*(DM(4479,4480)-26.016)-0.1*VR(4479,4480))
Plantar Calcaneocuboid 2 90 IF(DM(4481,4482)-40.1088:0,0,-90*(DM(4481,4482)-40.1088)-0.1*VR(4481,4482))
Plantar Calcaneocuboid 3 90 IF(DM(4483,4484)-38.544:0,0,-90*(DM(4483,4484)-38.544)-0.1*VR(4483,4484))

antar Calcaneonavicular (Spring 50 IF(DM(4487,4488)-22.1568:0,0,-50*(DM(4487,4488)-22.1568)-0.1*VR(4487,4488))
antar Calcaneonavicular (Spring 50 IF(DM(4489,4490)-19.9968:0,0,-50*(DM(4489,4490)-19.9968)-0.1*VR(4489,4490))
antar Calcaneonavicular (Spring 50 IF(DM(4491,4492)-17.664:0,0,-50*(DM(4491,4492)-17.664)-0.1*VR(4491,4492))
antar Calcaneonavicular (Spring 50 IF(DM(4493,4494)-17.2512:0,0,-50*(DM(4493,4494)-17.2512)-0.1*VR(4493,4494))

Plantar CalcCub Capsule 1 90 IF(DM(5597,5598)-8.2272:0,0,-90*(DM(5597,5598)-8.2272)-0.1*VR(5597,5598))
Plantar CalcCub Capsule 2 90 IF(DM(5599,5600)-7.0176:0,0,-90*(DM(5599,5600)-7.0176)-0.1*VR(5599,5600))
Plantar CalcCub Capsule 3 90 IF(DM(5601,5602)-6.6048:0,0,-90*(DM(5601,5602)-6.6048)-0.1*VR(5601,5602))

Plantar Cuboideonavicular 1 90 IF(DM(4497,4498)-17.184:0,0,-90*(DM(4497,4498)-17.184)-0.1*VR(4497,4498))
Plantar Cuboideonavicular 2 90 IF(DM(4499,4500)-18.1536:0,0,-90*(DM(4499,4500)-18.1536)-0.1*VR(4499,4500))

Plantar Cuneonavicular 1 90 IF(DM(4501,4502)-7.6032:0,0,-90*(DM(4501,4502)-7.6032)-0.1*VR(4501,4502))
Plantar Cuneonavicular 2 90 IF(DM(4503,4504)-3.744:0,0,-90*(DM(4503,4504)-3.744)-0.1*VR(4503,4504))
Plantar Cuneonavicular 3 90 IF(DM(15881,15882)-6.144:0,0,-90*(DM(15881,15882)-6.144)-0.1*VR(15881,15882))

Plantar Fascia Base 1 40 IF(DM(5515,5516)-62.2752:0,0,-40*(DM(5515,5516)-62.2752)-0.1*VR(5515,5516))
Plantar Fascia Base 2 40 IF(DM(5517,5518)-59.2992:0,0,-40*(DM(5517,5518)-59.2992)-0.1*VR(5517,5518))
Plantar Fascia Base 3 40 IF(DM(5519,5520)-57.4656:0,0,-40*(DM(5519,5520)-57.4656)-0.1*VR(5519,5520))
Plantar Fascia Base 4 40 IF(DM(5521,5522)-55.3728:0,0,-40*(DM(5521,5522)-55.3728)-0.1*VR(5521,5522))
Plantar Fascia Base 5 40 IF(DM(5523,5524)-55.1328:0,0,-40*(DM(5523,5524)-55.1328)-0.1*VR(5523,5524))
Plantar Fascia End 1 60 IF(DM(5525,5526)-63.024:0,0,-60*(DM(5525,5526)-63.024)-0.1*VR(5525,5526))
Plantar Fascia End 2 50 IF(DM(5527,5528)-68.2176:0,0,-50*(DM(5527,5528)-68.2176)-0.1*VR(5527,5528))
Plantar Fascia End 3 50 IF(DM(5529,5530)-64.464:0,0,-50*(DM(5529,5530)-64.464)-0.1*VR(5529,5530))
Plantar Fascia End 4 20 IF(DM(5531,5532)-59.5584:0,0,-20*(DM(5531,5532)-59.5584)-0.1*VR(5531,5532))
Plantar Fascia End 5 20 IF(DM(5533,5534)-51.12:0,0,-20*(DM(5533,5534)-51.12)-0.1*VR(5533,5534))  
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Ligament Stiffness Physical Length Settle 1 Length Settled 3 (Gen 5) Marker 1 Marker 2
Plantar Fascia Lateral 1 40 60.320 56.000 56.000 4529 4530
Plantar Fascia Lateral 2 40 57.110 53.000 53.000 4531 4532

Plantar Intercuneio 1 90 7.783 6.100 6.21 4539 4540
Plantar Intercuneio 2 90 7.638 5.600 5.90 4541 4542
Plantar Intercuneio 3 90 8.680 6.100 6.100 4543 4544
Plantar Intercuneio 4 90 6.010 4.500 4.500 4545 4546

Plantar Intermetatarsal 1 90 9.277 8.900 8.85 4549 4550
Plantar Intermetatarsal 2 90 9.782 7.500 7.68 4551 4552
Plantar Intermetatarsal 3 90 8.142 6.200 6.03 4553 4554
Plantar Intermetatarsal 4 90 14.654 13.300 14.15 4555 4556
Plantar Tarsometatarsal 1 90 11.200 8.500 8.500 4559 4560
Plantar Tarsometatarsal 2 90 6.645 5.600 5.48 4561 4562
Plantar Tarsometatarsal 3 90 10.714 7.000 7.80 4563 4564
Plantar Tarsometatarsal 4 90 6.348 5.500 5.52 4565 4566
Plantar Tarsometatarsal 5 90 5.635 3.900 4.44 4567 4568
Plantar Tarsometatarsal 6 90 6.897 5.000 5.17 4569 4570
Plantar Tarsometatarsal 7 90 12.551 10.800 10.75 4571 4572
Plantar Tarsometatarsal 8 90 8.820 6.500 7.55 4573 4574
Plantar Tarsometatarsal 9 90 8.693 8.100 8.36 4575 4576

Plantar Tarsometatarsal 10 90 8.600 7.900 8.07 4577 4578
Plantar Tarsometatarsal 11 90 13.569 11.800 11.98 4579 4580
Posterior Talocalcaneal 1 90 6.421 5.800 5.28 4583 4584
Posterior Talocalcaneal 2 90 7.877 7.600 7.08 4585 4586

Posterior Talofibular 1 82 15.243 13.100 13.38 4587 4588
Posterior Talofibular 2 82 17.279 15.600 15.54 4589 4590
Posterior Tibiofibular 90 11.384 8.900 9.28 4593 4594

Posterior Tibiotalar Part 1 117 17.392 15.500 15.42 4595 4596
Posterior Tibiotalar Part 2 117 18.800 17.700 17.52 4597 4598

Proximal Tibiofibular 1 200 15.929 15.000 14.16 4599 4600
Proximal Tibiofibular 2 200 7.518 7.900 7.48 4601 4602
Proximal Tibiofibular 3 200 16.493 5.000 5.68 4623 4624
Proximal Tibiofibular 4 200 14.110 13.600 13.34 4903 4904
Proximal Tibiofibular 5 200 16.530 11.500 11.74 4905 4906
Proximal Tibiofibular 6 200 15.120 12.200 12.15 4907 4908

Superior Fibular Retinaculum 1 90 16.824 13.200 13.53 4607 4608
Superior Fibular Retinaculum 2 90 19.063 17.400 17.57 4609 4610

Tibiocalcaneal Part 1 200 25.961 22.000 22.30 4621 4622
Tibiocalcaneal Part 2 200 26.507 17.400 22.67 4623 4624
Tibionavicular Part 1 40 29.678 28.600 29.00 4625 4626
Tibionavicular Part 2 40 27.788 26.900 26.78 4627 4628

Tibiospring 1 200 22.810 18.100 18.93 4629 4630
Tibiospring 2 61 28.388 25.600 26.60 4631 4632  

 



 

 165 

Ligament Stiffness Settled 3 4% strain
Plantar Fascia Lateral 1 40 IF(DM(4529,4530)-53.76:0,0,-40*(DM(4529,4530)-53.76)-0.1*VR(4529,4530))
Plantar Fascia Lateral 2 40 IF(DM(4531,4532)-50.88:0,0,-40*(DM(4531,4532)-50.88)-0.1*VR(4531,4532))

Plantar Intercuneio 1 90 IF(DM(4539,4540)-5.9616:0,0,-90*(DM(4539,4540)-5.9616)-0.1*VR(4539,4540))
Plantar Intercuneio 2 90 IF(DM(4541,4542)-5.664:0,0,-90*(DM(4541,4542)-5.664)-0.1*VR(4541,4542))
Plantar Intercuneio 3 90 IF(DM(4543,4544)-5.856:0,0,-90*(DM(4543,4544)-5.856)-0.1*VR(4543,4544))
Plantar Intercuneio 4 90 IF(DM(4545,4546)-4.32:0,0,-90*(DM(4545,4546)-4.32)-0.1*VR(4545,4546))

Plantar Intermetatarsal 1 90 IF(DM(4549,4550)-8.496:0,0,-90*(DM(4549,4550)-8.496)-0.1*VR(4549,4550))
Plantar Intermetatarsal 2 90 IF(DM(4551,4552)-7.3728:0,0,-90*(DM(4551,4552)-7.3728)-0.1*VR(4551,4552))
Plantar Intermetatarsal 3 90 IF(DM(4553,4554)-5.7888:0,0,-90*(DM(4553,4554)-5.7888)-0.1*VR(4553,4554))
Plantar Intermetatarsal 4 90 IF(DM(4555,4556)-13.584:0,0,-90*(DM(4555,4556)-13.584)-0.1*VR(4555,4556))
Plantar Tarsometatarsal 1 90 IF(DM(4559,4560)-8.16:0,0,-90*(DM(4559,4560)-8.16)-0.1*VR(4559,4560))
Plantar Tarsometatarsal 2 90 IF(DM(4561,4562)-5.2608:0,0,-90*(DM(4561,4562)-5.2608)-0.1*VR(4561,4562))
Plantar Tarsometatarsal 3 90 IF(DM(4563,4564)-7.488:0,0,-90*(DM(4563,4564)-7.488)-0.1*VR(4563,4564))
Plantar Tarsometatarsal 4 90 IF(DM(4565,4566)-5.2992:0,0,-90*(DM(4565,4566)-5.2992)-0.1*VR(4565,4566))
Plantar Tarsometatarsal 5 90 IF(DM(4567,4568)-4.2624:0,0,-90*(DM(4567,4568)-4.2624)-0.1*VR(4567,4568))
Plantar Tarsometatarsal 6 90 IF(DM(4569,4570)-4.9632:0,0,-90*(DM(4569,4570)-4.9632)-0.1*VR(4569,4570))
Plantar Tarsometatarsal 7 90 IF(DM(4571,4572)-10.32:0,0,-90*(DM(4571,4572)-10.32)-0.1*VR(4571,4572))
Plantar Tarsometatarsal 8 90 IF(DM(4573,4574)-7.248:0,0,-90*(DM(4573,4574)-7.248)-0.1*VR(4573,4574))
Plantar Tarsometatarsal 9 90 IF(DM(4575,4576)-8.0256:0,0,-90*(DM(4575,4576)-8.0256)-0.1*VR(4575,4576))

Plantar Tarsometatarsal 10 90 IF(DM(4577,4578)-7.7472:0,0,-90*(DM(4577,4578)-7.7472)-0.1*VR(4577,4578))
Plantar Tarsometatarsal 11 90 IF(DM(4579,4580)-11.5008:0,0,-90*(DM(4579,4580)-11.5008)-0.1*VR(4579,4580))
Posterior Talocalcaneal 1 90 IF(DM(4583,4584)-5.0688:0,0,-90*(DM(4583,4584)-5.0688)-0.1*VR(4583,4584))
Posterior Talocalcaneal 2 90 IF(DM(4585,4586)-6.7968:0,0,-90*(DM(4585,4586)-6.7968)-0.1*VR(4585,4586))

Posterior Talofibular 1 82 IF(DM(4587,4588)-12.8448:0,0,-82*(DM(4587,4588)-12.8448)-0.1*VR(4587,4588))
Posterior Talofibular 2 82 IF(DM(4589,4590)-14.9184:0,0,-82*(DM(4589,4590)-14.9184)-0.1*VR(4589,4590))
Posterior Tibiofibular 90 IF(DM(4593,4594)-8.9088:0,0,-90*(DM(4593,4594)-8.9088)-0.1*VR(4593,4594))

Posterior Tibiotalar Part 1 117 IF(DM(4595,4596)-14.8032:0,0,-117*(DM(4595,4596)-14.8032)-0.1*VR(4595,4596))
Posterior Tibiotalar Part 2 117 IF(DM(4597,4598)-16.8192:0,0,-117*(DM(4597,4598)-16.8192)-0.1*VR(4597,4598))

Proximal Tibiofibular 1 200 IF(DM(4599,4600)-13.5936:0,0,-200*(DM(4599,4600)-13.5936)-0.1*VR(4599,4600))
Proximal Tibiofibular 2 200 IF(DM(4601,4602)-7.1808:0,0,-200*(DM(4601,4602)-7.1808)-0.1*VR(4601,4602))
Proximal Tibiofibular 3 200 IF(DM(4623,4624)-5.4528:0,0,-200*(DM(4623,4624)-5.4528)-0.1*VR(4623,4624))
Proximal Tibiofibular 4 200 IF(DM(4903,4904)-12.8064:0,0,-200*(DM(4903,4904)-12.8064)-0.1*VR(4903,4904))
Proximal Tibiofibular 5 200 IF(DM(4905,4906)-11.2704:0,0,-200*(DM(4905,4906)-11.2704)-0.1*VR(4905,4906))
Proximal Tibiofibular 6 200 IF(DM(4907,4908)-11.664:0,0,-200*(DM(4907,4908)-11.664)-0.1*VR(4907,4908))

Superior Fibular Retinaculum 1 90 IF(DM(4607,4608)-12.9888:0,0,-90*(DM(4607,4608)-12.9888)-0.1*VR(4607,4608))
Superior Fibular Retinaculum 2 90 IF(DM(4609,4610)-16.8672:0,0,-90*(DM(4609,4610)-16.8672)-0.1*VR(4609,4610))

Tibiocalcaneal Part 1 200 IF(DM(4621,4622)-21.408:0,0,-200*(DM(4621,4622)-21.408)-0.1*VR(4621,4622))
Tibiocalcaneal Part 2 200 IF(DM(4623,4624)-21.7632:0,0,-200*(DM(4623,4624)-21.7632)-0.1*VR(4623,4624))
Tibionavicular Part 1 40 IF(DM(4625,4626)-27.84:0,0,-40*(DM(4625,4626)-27.84)-0.1*VR(4625,4626))
Tibionavicular Part 2 40 IF(DM(4627,4628)-25.7088:0,0,-40*(DM(4627,4628)-25.7088)-0.1*VR(4627,4628))

Tibiospring 1 200 IF(DM(4629,4630)-18.1728:0,0,-200*(DM(4629,4630)-18.1728)-0.1*VR(4629,4630))
Tibiospring 2 61 IF(DM(4631,4632)-25.536:0,0,-61*(DM(4631,4632)-25.536)-0.1*VR(4631,4632))  
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Appendix III: Bi-Linear ligament behavior  
 

 

 

The bi-linear behavior is essentially a nested “if” statement in the function expression, 

bottom.  This allows a simple test part (top left) to provide a slack, low-linear toe and high-

linear region across a range of displacements (top right). 
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Appendix VI: Muscle Inclusion  
 

 

 

 

Musculature modeled for peroneal longus and brevis, flexor hallucis longus, flexor 

digitorum longus and tibiailis posterior.  Wrapping at each bone level accomplished by a 

curved slider bar and slider shuttle.  Distal tendon segments given high stiffness’ to reflect 

the low elongation of these structures naturally. 
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