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Abstract

ZERO DIVISORS AMONG DIGRAPHS

By Heather C. Smith, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2010.

Director: Richard H. Hammack, Associate Professor, Department of Mathematics and
Applied Mathematics.

This thesis generalizes to digraphs certain recent results about graphs. There are special

digraphs C such that A×C∼=B×C for some pair of distinct digraphs A and B. Lovász named

these digraphs C zero-divisors and completely characterized their structure. Knowing that

all directed cycles are zero-divisors, we focus on the following problem: Given any directed

cycle
−→
Cn and any digraph A, enumerate all digraphs B such that A×−→Cn ∼= B×−→Cn. From our

result for cycles, we generalize to an arbitrary zero-divisor C, developing upper and lower

bounds for the collection of digraphs B satisfying A×C ∼= B×C.
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Introduction

This thesis explores products of digraphs and their isomorphisms. Lovász first pointed out

that there are certain digraphs C for which you can find different digraphs A and B with

A×C ∼= B×C. From this property, he coined the term "zero-divisor" for such digraphs C.

Examining these zero-divisors more closely, Lovász was able to completely characterize

their structure. Working from a slightly different angle, our goal is to find all pairs A and

B for zero-divisors of the form
−→
Cn such that A×−→Cn ∼= B×−→Cn. We do this by fixing A and

determining the possibilities for B based upon some of the properties of A. As found in

chapter 3, we make use of power graphs Aα from automorphisms and anti-automorphisms

α . Then we generalize our theorem using the factorial A!. From this digraph, we are able to

fully characterize all B given a digraph A and a zero-divisor which is a cycle. Using another

theorem from Lovász, we are able to develop upper and lower bounds for the collection of

digraphs B given any zero-divisor.

1.1 Basic definitions from graph theory

Let us pave the way for our results by first stating a few definitions that will be useful in

later sections. We will start at the beginning with some basic terminology from graph theory.

A graph is uniquely defined by its vertices and edges. The vertices are points typically

denoted v0,v1, . . . ,vn. Edges occur between pairs of vertices, connecting one to another. An

edge between vertices vi and v j is written as an unordered pair {vi,v j} or, for shorthand,

viv j (which is the same as v jvi). The vertex set of a graph G is denoted V (G), while the
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G

v0

v1

v2

v3

v4

Figure 1.1: A graph G with V (G) = {v0,v1,v2,v3,v4} and E(G) =
{v1v2,v2v3,v2v2,v3v1,v4v1}

edge set of G is denoted E(G). The cardinality of the vertex set is called the order of a

graph. Similarly, the cardinality of the edge set is the size of a graph. A visual representation

of a graph G of order 5 and size 5 is drawn in Figure 1.1. You will notice that among the

edges in G, there is an edge that begins and ends with v2. Such an edge is called a loop.

In addition, the vertex v0 is not found in any edge pair. Such a vertex is referred to as an

isolated vertex. Because graphs are uniquely determined by their vertices and edges, the

spacial arrangement of the vertices is irrelevant.

A directed graph, more commonly referred to as a digraph, differs from a graph in

that each edge is given a direction. Thus the edge (vi,v j) begins at vertex vi and ends with

vertex v j. Directed edges, also known as arcs, are drawn with arrows to indicate direction.

Note that, in a digraph, edges must be written as ordered pairs because the edges viv j and

v jvi are distinct based upon their direction. The edge viv j is the edge from vertex vi to vertex

v j whereas the edge v jvi will have an arrow pointing away from v j and toward vi. Consider

the representation of a typical digraph in Figure 1.2. Observe there is a loop on vertex v2. In

a digraph, the direction of the loop is not specified because it is symmetric with itself. Many

times it is useful to consider only those graphs and digraphs without loops. We call this set

Γ . If loops are allowed, we are looking at the larger set of graphs and digraphs Γ0.
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v0

v1

v2

v3

v4

D

Figure 1.2: A digraph D with V (D) = {v0,v1,v2,v3,v4} and E(D) =
{v2v2,v2v1,v1v3,v0v1,v4v0,v0v4}

G

v0

v1

v2

v3

v4

Figure 1.3: A symmetric digraph representation of G from Figure 1.1

Every graph can be drawn as a symmetric digraph. For any edge viv j in a graph, the

symmetric digraph counterpart would have corresponding arcs viv j and v jvi. Because both

arcs are present for each edge in the graph, the digraph is considered symmetric. (See the

digraph representation of graph G in Figure 1.3.) So, graphs comprise a subset of digraphs.

Two vertices in a graph are said to be adjacent if there is an edge between them. For

example, the edge v1v3 in G from Figure 1.1 indicates that v1 is adjacent to v3 and v3 is

adjacent to v1. We can also say that vertex v1 is incident with the edge v1v3. The degree of

a vertex is equal to the number of edges with which it is incident. Again in Figure 1.1, the

degree of vertex v1 in G is 3.
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Keep in mind that the direction of an edge in a digraph is important. In the digraph D

from Figure 1.2, the edge v1v3 exists, but v3v1 is not an edge. So v1 is said to be adjacent to

v3, but v3 is not adjacent to v1. Because of the direction of edges in a digraph, here we talk

more specifically about the indegree and outdegree of vertices. The indegree of a vertex vi is

equal to the number of edges with the arrows pointing away from vi, whereas the outdegree

of a vertex vi is equal to the number of edges with arrows pointing toward vi. Referencing D

in Figure 1.2, the indegree of v1 is 2 and the outdegree of v1 is 1.

From the adjacencies in a digraph, we can define a walk.

DEFINITION 1.1. A walk in a digraph A is a finite sequence of vertices v0v1v2 · · ·vn such

that vivi+1 is an edge for all i ∈ {0,1,2, . . . ,n−1}. Within the sequence, vertices may be

repeated. The length of a walk is equal to the number of edges traversed while going from

v0 to vn, thus n. A closed walk is a walk that begins and ends with the same vertex.

For instance, v1v4v1v2v2v3 is a walk of length 5 in G as seen in Figure 1.3. A closed

walk of length 3 in G could be represented by v1v2v3v1. A path is a type of walk where no

vertex is repeated. So v4v1v2v3 is a path of length 3 in G in Figure 1.3.

Now we can define connectedness and connected components.

DEFINITION 1.2. A graph is connected if and only if there is a sequence of edges between

every pair of vertices that can be traversed either forwards or backwards to travel from one

vertex to the other.

DEFINITION 1.3. A connected component of a graph or digraph is a maximal connected

subgraph (a subset of the vertices from the original graph together with any edges among

them).

A connected digraph and a disconnected digraph with 3 components can be found in

Figure 1.4. You may notice, in G there is path from 0 to 4. This path consists of the edges
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0 1 2

3 4

G
0 1 2 3

4 5 6 7

H

Figure 1.4: A connected digraph G and a disconnected digraph H with 3 components,
{4},{0,1,5},{2,3,6,7}

{10,13,43}. This collection of edges, though not forming a directed path, does provide

a connection between vertices 0 and 4. Because some collection of edges exists between

every pair of vertices in G, we say G is connected. In H, there is no connection between

vertices 1 and 2, so H is disconnected. However, we can identify the components of H by

looking for connected subgraphs. The vertices in the set {2,3,6,7} and the edges among

them form a connected component, as do the vertices in {0,1,5}. By definition, the isolated

vertex 4 is itself a connected component. Vacuously, it is connected and there is no other

vertex in H that could be included without causing the subgraph to be disconnected. So it is

a maximal connected subgraph, and thus a component of H.

Cycles make up a special class of graphs with directed cycles being their analogues in

digraphs.

DEFINITION 1.4. A graph is a cycle if it is connected and the degree of every vertex is two.

A cycle of length n, where n is the number of edges in the cycle, is denoted Cn. A digraph is

a directed cycle if the outdegree and indegree of every vertex is one. Such a digraph on n

vertices is denoted
−→
Cn.

For consistency, we will label the vertices of a cycle Cn or directed cycle
−→
Cn with

{0,1,2, . . . ,n−1} consecutively so that {01,12, . . . ,(n−1)(0)} are edges. Figure 1.5 gives

an example of a cycle and a directed cycle.
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0

1

2

3 4

C5
0

1

2

3 4

−→
C5

Figure 1.5: A cycle C5 and a directed cycle
−→
C5

K5

0

1

2

3 4

0

12

3

4

5 6

7

K8

Figure 1.6: Examples of complete graphs on 5 and 8 vertices

Another special class of graphs are the complete graphs.

DEFINITION 1.5. A complete graph has every vertex adjacent to every other vertex. A

complete graph on n vertices is denoted Kn.

A couple examples of complete graphs are found in Figure 1.6. A few special cases of

cycles and complete graphs, drawn as digraphs, are presented in Figure 1.7.

Given two distinct graphs, we can combine them in many different ways to create a new

graph. One way is to take the product of the graphs. In particular, this paper focuses on the

0
−→
C1

0

1

−→
K2

0

1

−→
C2 ∼= K2

0

1

2−→
C3

0

1

2
C3 ∼= K3

Figure 1.7: A few special cases of cycles and complete graphs
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K2

K2 K2×K2
−→
K2

−→
C3

−→
C3×

−→
K2

Figure 1.8: The direct product of graphs and digraphs

direct product. The direct product of two digraphs, A and B, is denoted A×B.

DEFINITION 1.6. The direct product A×B is defined as follows:

V (A×B) = {(a,b) : a ∈V (A) and b ∈V (B)}

E(A×B) = {(a,b)(a′,b′) : aa′ ∈ E(A) and bb′ ∈ E(B)}

A couple examples of direct products can be found in Figure 1.8. Interestingly, you may

notice that the direct product of K2 with itself is exactly the symbol for the direct product.

1.2 Mappings between digraphs

As was described in the abstract, our intent is to work with isomorphic direct products of

graphs and digraphs whose factors may not be isomorphic. In order to develop the idea of

an isomorphism, we first need the concept of a function between graphs and subsequently

homomorphisms. We can define a function ψ from one graph (or digraph) A to another B by

mapping the vertices in A to vertices in B. A homomorphism is a special type of function.

DEFINITION 1.7. A function ψ : V (A)→ V (B) is a homomorphism if it preserves ad-

jacencies. In other words, if aa′ is an edge in A, then ψ(a)ψ(a′) must be an edge in

B.
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0

12

3

4 5

−→
C6

0

1

2

3

4

C

Figure 1.9: There is a homomorphism ψ : V (
−→
C6)→V (C)

For the digraphs in Figure 1.9, there is a homomorphism ψ : V (
−→
C6)→V (C) defined by

ψ(0) = 1 ψ(1) = 2 ψ(2) = 3

ψ(3) = 1 ψ(4) = 2 ψ(5) = 3

More specific than homomorphisms are isomorphisms.

DEFINITION 1.8. A map ψ : V (G)→ V (H) is an isomorphism if ψ is a bijection and a

homomorphism, and ψ−1 is also a homomorphism. If such a function exists, then we say G

and H are isomorphic or G∼= H.

In Figure 1.10, you will see two products that are isomorphic. The isomorphism

ψ : A×K2→ B×K2 is defined as follows.

ψ(1,1) = (1,1) ψ(2,1) = (3,1) ψ(3,1) = (2,1)

ψ(1,0) = (1,0) ψ(2,0) = (2,0) ψ(3,0) = (3,0)

1.3 Extracting new digraphs from existing digraphs

There are many ways of extracting a new digraph from an existing one by focusing on some

particular characteristic or imposing an additional structure on the digraph.
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K2

A
1 2 3

0

1
A×K2 K2

B
1 2 3

0

1
B×K2

Figure 1.10: Two products A×K2 and B×K2 that are isomorphic

As we work toward ennumerating all digraphs B such that A×C ∼= B×C, the power

graphs Aµ will be essential. The definition of Aµ , a digraph extracted from A, is given below

as presented in [3].

DEFINITION 1.9. Given a permutation µ on the vertices of A, the power graph Aµ is

defined as follows:

V (Aµ) =V (A)

E(Aµ) = {aµ(a′) : aa′ ∈ E(A)}

Recall a permutation on the vertices of A is a bijection from V (A) to V (A).

An illustration of one such digraph, that will appear in later sections, is found in Figure

1.11. Observe (23) is a permutation of the vertices of A, mapping 1→ 1, 2→ 3, and 3→ 2.

1

2 3

A

1

2 3
A(23)

Figure 1.11: A digraph A and permutation (23) giving A(23)
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Then, the edges in A(23) are found as follows:

12 ∈ E(A)⇐⇒ 13 ∈ E(A(23)) 13 ∈ E(A)⇐⇒ 12 ∈ E(A(23))

23 ∈ E(A)⇐⇒ 22 ∈ E(A(23)) 32 ∈ E(A)⇐⇒ 33 ∈ E(A(23))

We can also define a quotient graph for A given a partition of its vertices. Recall a

partition on the vertices of A is a collection of subsets of V (A), say A1,A2, . . . ,An, such

that the subsets are pairwise disjoint, but their union is the entire set V (A). The following

definition is based upon [1].

DEFINITION 1.10. For any digraph A, given a partition Ω = {A1,A2, . . . ,An} on V (A), the

quotient digraph A/Ω is defined as follows:

V (A/Ω) = {A1,A2, . . . ,An : Ai ∈Ω for all i}= Ω

E(A/Ω) = {AiA j : ∃u ∈ Ai and ∃v ∈ A j with uv ∈ E(A) for Ai,A j ∈Ω}

For example, consider the digraph A and partition Ω = {{1,2,5,6},{3},{7},{4,8}} in

Figure 1.12. From these parameters, we develop the quotient graph A/Ω . For example, the

edge ({3})({4,8}) exists in the quotient because (3)(4) is an edge in A. The loop on {4,8}

in the quotient graph results from the edge (4)(8) in A.

5 6 7 8

1 2 3 4
A

{7}

{3}

{1,2,5,6} {4,8}

A/Ω

Figure 1.12: A digraph A with partition Ω = {{1,2,5,6},{3},{7},{4,8}} and the corre-
sponding quotient graph A/Ω
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Survey of Known Results

This chapter includes some existing results and corresponding proofs that will be referenced

to in Chapter 3.

2.1 Collections of homomorphisms

These first three results pertain to the collection of homomorphisms between pairs of

digraphs. Recall, a homomorphism from one digraph X to another A is a function from the

vertices of X to the vertices of A that preserves adjacencies. There are often several different

homomorphisms between two digraphs. The collection of these homomorphisms forms

the set Hom(X ,A). Then, the cardinality of this set is denoted hom(X ,A). We begin with a

lemma that will be useful in the next theorem. The proof for Lemma 2.1 for homomorphisms

is based upon a proof for weak homomorphisms given in [1].

LEMMA 2.1. For digraphs X and A, let P be the set of all partitions of V (X) and let

inj(X ,A) be the number of injective homomorphisms X → A. Then

hom(X ,A) = ∑
Ω∈P

inj(X/Ω ,A)

where quotients are taken in Γ0.
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Proof. We begin by defining two sets. Let Hom(X ,A) denote the collection of all homomor-

phisms X → A. So |Hom(X ,A)|= hom(X ,A). Let

ϒ = {(Ω , f ∗) : Ω ∈P , f ∗ is an injective homomorphism X/Ω → A}.

Looking closely at this collection ϒ , one can see that for any given partition Ω ′, there is a pair

(Ω ′, f ∗) for each injective homomorphism f ∗ : X/Ω ′→ A. So |ϒ |= ∑Ω∈P inj(X/Ω ,A).

In order to prove the equality hom(X ,A) = ∑Ω∈P inj(X/Ω ,A), we will develop a

bijection β : Hom(X ,A)→ϒ . Given any homomorphism f : X → A, the function f creates

a partition on the vertices of X , specifically Ω f = { f−1(a) : a ∈V (A)}. We can correlate

this to an injective homomorphism f ∗ : X/Ω f → A where, for any U ∈ Ω f , the function

f ∗ is defined as f ∗(U) = f (u) for any u ∈U . So our mapping β : Hom(X ,A)→ϒ will be

defined by β ( f ) = (Ω f , f ∗) as described above.

Let us prove β is a bijection to complete the proof. First, for any (Ω , f ∗) ∈ ϒ , let

f (u) = f ∗(U) for all u∈U ∈Ω . Then f : X→A is a homomorphism because f ∗ : X/Ω→A

is a homomorphism. Specifically, for any edge uv in X , if u ∈U and v ∈ V where U and

V are different sets in Ω , then clearly f (u) f (v) = f ∗(U) f ∗(V ) is an edge in A. If both u

and v come from the same set U , then X/Ω must have a loop on vertex U . So f ∗(U) must

also have a loop since f ∗ is a homomorphism. Then f (u) f (v) = f ∗(U) f ∗(U) which is in

fact an edge in A. So f is a homomorphism in Hom(X ,A) that maps to (Ω , f ∗) allowing us

to conclude that β is surjective. Second, for any two functions f ,g ∈ Hom(X ,A), suppose

β ( f ) = β (g). So (Ω f , f ∗) = (Ωg,g∗) giving us the same partition on V (X) and f ∗ = g∗.

In this case, for any U ∈ Ω f and any u ∈U , we conclude f (u) = f ∗(U) = g∗(U) = g(u).

So f = g making β injective. Therefore our function β : Hom(X ,A)→ϒ is a bijection

implying
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hom(X ,A) = |Hom(X ,A)|= |ϒ |= ∑
Ω∈P

inj(X/Ω ,A)

completing the proof.

The following theorem and subsequent proof are based on [1] and [3] but have been

rephrased for this thesis.

THEOREM 2.2. If G and H are digraphs, then G∼= H if and only if hom(X ,G) = hom(X ,H)

for every digraph X .

Proof. Let G and H be digraphs. First assume that G ∼= H. Then there exists a bijective

homomorphism ψ : G→ H such that ψ−1 : H→ G is also a homomorphism. Then observe

for any homomorphism φ : X → G, the composition ψφ : X → H is a homomorphism. So

hom(X ,G)≤ hom(X ,H). Likewise, for any homomorphism µ : X → H, the composition

ψ−1µ : X → G is a homomorphism. So hom(X ,H)≤ hom(X ,G). And finally, we have the

equality hom(X ,G) = hom(X ,H).

Conversely, assume hom(X ,G) = hom(X ,H) for every digraph X . We will show

inj(X ,G) = inj(X ,H) for all digraphs X . Using this and the fact that identity maps are in-

jective homomorphisms, we have 1≤ inj(G,G) = inj(G,H) and inj(H,G) = inj(H,H)≥ 1.

Thus there exists an injective homomorphism ψ : G→ H giving |V (G)| ≤ |V (H)| and

|E(G)| ≤ |E(H)|. And there is an injective homomorphism µ : H → G which gives

|V (G)| ≥ |V (H)| and |E(G)| ≥ |E(H)|. So |V (G)| = |V (H)| and |E(G)| = |E(H)|. Thus

ψ : G→ H must be surjective. So we have a bijective homomorphism between G and H.

Suppose there is an edge xy in H where ψ−1(x)ψ−1(y) is not an edge in G. Because ψ is an

injective homomorphism, every edge in G maps to a unique edge in H. With the existence of

this edge xy, we are saying there is at least one more edge in H than in G, which contradicts

our earlier conclusion that |E(G)|= |E(H)|. So ψ−1 must be homomorphism. And finally,

by definition, ψ is an isomorphism, so G∼= H.
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In order to prove inj(X ,G) = inj(X ,H), we will induct on the number of vertices in X ,

|V (X)|. First, observe for |V (X)| = 1, every homomorphism from X to another digraph

is injective because X has only a single vertex. Then by our earlier assumption that

hom(X ,G) = hom(X ,H), we have

inj(X ,G) = hom(X ,G) = hom(X ,H) = inj(X ,H).

Suppose for every X with fewer than n vertices, inj(X ,G) = inj(X ,H). Now consider a

digraph X with order n. Let ι ∈P be the trivial partition where each class consists of a single

vertex. So the quotient graph X/ι is isomorphic to X . But for any other partition Ω ∈P\ι ,

there will be at least one class with more than one vertex, so |V (X/Ω)|< n. Recall from

Lemma 2.1, hom(X ,G) = ∑Ω∈P inj(X/Ω ,G). By separating the partition ι from the rest,

we get hom(X ,G) = inj(X/ι ,G)+∑Ω∈P\ι inj(X/Ω ,G) which by our induction hypothesis

equals inj(X ,G)+∑Ω∈P\ι inj(X/Ω ,H). Likewise,

hom(X ,H) = ∑
Ω∈P

inj(X/Ω ,H) = inj(X ,H)+ ∑
Ω∈P\ι

inj(X/Ω ,H).

By our original assumption, hom(X ,G) = hom(X ,H), so

inj(X ,G)+ ∑
Ω∈P\ι

inj(X/Ω ,H) = inj(X ,H)+ ∑
Ω∈P\ι

inj(X/Ω ,H).

And finally, inj(X ,G) = inj(X ,H). By the above argument, the proof is complete.

The next theorem and proof are based on a proposition and proof in [1] for strong

products, but they have been reworked for direct products.
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THEOREM 2.3. If X ,G, and H are digraphs, then

hom(X ,G×H) = hom(X ,G) ·hom(X ,H).

Proof. Let X ,G, and H be digraphs. Let Hom(X ,G×H) be the set of homomorphisms

from X to G×H. Likewise, the sets Hom(X ,G) and Hom(X ,H) will be the collections of

homomorphisms from X to G and to H, respectively. In order to prove the desired result

hom(X ,G×H) = hom(X ,G) ·hom(X ,H), we will define a bijection from the collection of

functions Hom(X ,G×H) to the Cartesian product of functions Hom(X ,G)×Hom(X ,H)

giving us equal cardinalities and completing our proof.

First, observe there are natural homomorphisms πG : V (G×H)→ V (G) defined as

πG(g,h) = g and πH : V (G×H)→ V (H) with πH(g,h) = h called projections. Keeping

this in mind, define

µ : Hom(X ,G×H)→ Hom(X ,G)×Hom(X ,H)

as µ( f ) = (πG f ,πH f ). Suppose there are two homomorphisms f ,g ∈ Hom(X ,G×H)

with µ( f ) = µ(g). Then (πG f ,πH f ) = (πGg,πHg) and consequently πG f = πGg giv-

ing us f = g. So µ is injective. Next let (k, l) ∈ Hom(X ,G)×Hom(X ,H). Define a

function f : V (X)→ V (G×H) as f (x) = (k(x), l(x)). Observe because k and l are ho-

momorphisms, k(xy) = k(x)k(y) is an edge in G and l(xy) = l(x)l(y) is an edge in H, so

f (xy) = (k(x), l(x))(k(y), l(y)) is an edge in G×H by the construction of edges in a direct

product. So f is a homomorphism in Hom(X ,G×H). Then observe that πG f = k and

πH f = l, so µ( f ) = (k, l) and µ is surjective.
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Because µ is a bijection, the cardinalities of Hom(X ,G×H) and Hom(X ,G)×Hom(X ,H)

are equal. So hom(X ,G×H) = hom(X ,G) ·hom(X ,H).

2.2 Product graph isomorphisms

As we lay the foundation for working with isomorphic direct products, the following

theorems of Lovász will be beneficial. Recall the following Theorem of Lovász from [4].

Our proof takes a more direct approach.

THEOREM 2.4. (Lovász [4], Theorem 6) Let A,B,C and D be digraphs. If A×C ∼= B×C

and there is a homomorphism from D to C, then A×D∼= B×D.

Proof. Suppose A×C∼= B×C and there is a homomorphism from D to C where A,B,C and

D are digraphs. Then by Theorem 2.2, hom(X ,A×C) = hom(X ,B×C) for any digraph X .

And by Theorem 2.3, hom(X ,A)hom(X ,C) = hom(X ,B)hom(X ,C). Consider two cases:

(1) hom(X ,C) = 0, and (2) hom(X ,C) 6= 0.

Case (1): If hom(X ,C) = 0 then hom(X ,D) = 0 since, for any homomorphism from X

to D, the composition of this with the homomorphism from D to C is itself a homomorphism

from X to C. Thus hom(X ,C) = hom(X ,D) = 0, so

hom(X ,A)hom(X ,D) = hom(X ,B)hom(X ,D).

By Theorem 2.3, this implies that hom(X ,A×D) = hom(X ,B×D) for all X such that

hom(X ,C) = 0.

Case (2) If hom(X ,C) 6= 0 then hom(X ,A)hom(X ,C) = hom(X ,B)hom(X ,C) becomes

hom(X ,A) = hom(X ,B). Now, we can multiply both sides by hom(X ,D) giving us the

equation

hom(X ,A)hom(X ,D) = hom(X ,B)hom(X ,D).
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So by Theorem 2.3, this implies that hom(X ,A×D) = hom(X ,B×D) for all X such that

hom(X ,C) 6= 0.

Together, Cases (1) and (2) show that for all X , hom(X ,A×D)= hom(X ,B×D). Finally,

by Theorem 2.2, A×D∼= B×D.

Lovász presented Theorem 2.5 which can greatly simplify the structure of isomorphisms

between product graphs. It may prove helpful to reexamine Figure 1.10 and the isomorphism

ψ presented in the previous chapter in order to better understand this theorem.

THEOREM 2.5. (Lovász [4], Theorem 7) Let A, B, and C be digraphs. If A×C ∼= B×C

then there is an isomorphism Ψ : V (A×C) → V (B×C) with Ψ(a,c) = (βc(a),c) for

homomorphisms βc : V (A×B)→V (C) for each c ∈V (C).

2.3 Zero-divisors

The following theorem and subsequent corollary are the main results of [5]. As will be seen

in the next chapter, our work seeks to extend this result from
−→
K2 to directed cycles and then

to any given zero-divisor.

THEOREM 2.6. For any digraph A, we have A×−→K2 ∼= B×−→K2 if and only if B∼= Aα for some

permutation α on V (A).

Proof. Given a digraph A, suppose first A×−→K2 ∼= B×−→K2. So, there is an isomorphism

ψ : V (A×−→K2)→ V (B×−→K2). By Theorem 2.5, this isomorphism can be expressed as

ψ(a, i) = (βi(a), i) where i ∈ {0,1}. Thus the functions β0 and β1 are bijections from V (A)

to V (B). Observe π = β
−1
0 β1 is a permutation on V (A). Now consider the digraph Aπ . In

order to show that Aπ ∼= B, we develop a isomorphism from V (Aπ) to V (B).
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Because V (A) =V (Aπ), we have a bijection β0 : V (Aπ)→V (B). In order to show that

β0 and β
−1
0 are homomorphisms, consider the following equivalences:

aa′ ∈ E(Aπ) ⇐⇒ aπ
−1(a′) ∈ E(A)

⇐⇒ aβ
−1
1 β0(a′) ∈ E(A)

⇐⇒ (a,0)(β−1
1 β0(a′),1) ∈ E(A×−→K2)

⇐⇒ ψ(a,0)ψ(β−1
1 β0(a′),1) ∈ E(B×−→K2)

⇐⇒ (β0(a),0)(β1β
−1
1 β0(a′),1) ∈ E(B×−→K2)

⇐⇒ (β0(a),0)(β0(a′),1) ∈ E(B×−→K2)

⇐⇒ β0(a)β0(a′) ∈ E(B).

So β0 and β
−1
0 are both homomorphisms by the equivalences above. Thus β0 is an isomor-

phism, allowing us to conclude B∼= Aπ for some permutation π on V (A).

Conversely, assume B∼= Aπ for some permutation π on V (A). We will show A×−→K2 is

isomorphic to Aπ×−→K2 by developing an isomorphism ψ : V (A×−→K2)→V (Aπ×−→K2). Define

ψ as follows:

Ψ(a,ε) =

 (a,ε) if ε = 0

(π(a),ε) if ε = 1

Clearly ψ is a bijection because π is a permutation. Now we show that ψ and ψ−1 are

homomorphisms. Let (a,0)(a′,1) be an arbitrary edge in A×−→K2. Observe:

(a,0)(a′,1) ∈ E(A×−→K2) ⇐⇒ aa′ ∈ E(A)

⇐⇒ aπ(a′) ∈ E(Aπ)

⇐⇒ (a,0)(π(a′),1) ∈ E(Aπ ×−→K2)

⇐⇒ ψ(a,0)ψ(a′,1) ∈ E(Aπ ×−→K2)



19

So ψ and ψ−1 are in fact homomorphisms, showing that ψ is an isomorphism. Thus we

may conclude A×−→K2 ∼= Aπ ×−→K2.

COROLLARY 2.7. Given any zero-divisor C with a surjective homomorphism onto
−→
K2 and

any digraph A, then A×C ∼= B×C if and only if B∼= Aα for some permutation α on V (A).

Proof. Let C be a zero-divisor with a surjective homomorphism onto
−→
K2. First, assume

A×C ∼= B×C. Because we have a surjective map C→ −→K2, the digraph C has at least

one edge. Thus, there is a homomorphism
−→
K2→C. By Theorem 2.4, we are guaranteed

A×−→K2 ∼= B×−→K2. And by Theorem 2.6, B is necessarily isomorphic to Aα for some

permutation α on the vertices of A.

Conversely assume B ∼= Aα for some permutation α on V (A). Then by Theorem

2.6, A×−→K2 ∼= Aα ×−→K2. Because there is a homomorphism C → −→K2, by Theorem 2.4,

A×C ∼= B×C and the proof is complete.

This completes our review of standing results, many of which are attributed to the work

of Lovász. Keep these results in mind as we will employ many of them in the upcoming

chapter.
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Statement of Problem and Results

The purpose and goal of this thesis is to examine isomorphisms of the form A×−→Cn ∼= B×−→Cn

and, for fixed A and
−→
Cn, enumerate digraphs B for which the isomorphism holds. Lovász did

some work in this area when he introduced the idea of a zero-divisor, providing conditions on

C such that there exist A and B, with A� B, for which the isomorphism A×C∼= B×C holds.

Specifically, all directed cycles are zero-divisors. In the search for an answer to our question,

we first examine automorphisms of digraphs. Secondly, we look at anti-automorphisms.

Together, these special functions lead us to a final theorem involving the factorial of a

digraph. We conclude this chapter with a summary of our results and thoughts on extending

these results to zero-divisors in general.

3.1 Zero-divisors

In [4], Lovász introduced the idea of a zero-divisor. He said that any digraph C for which

there exist nonisomorphic digraphs A and B with A×C∼= B×C is called a zero-divisor. As

you can see in Figure 3.1, the graph K2 is a zero-divisor because A� B but A×K2 ∼= B×K2.

K2

A

A×K2

0 1 2 3 4 5

0

1
K2

B

B×K2

0 1 2 3 4 5

0

1

Figure 3.1: A×K2 ∼= B×K2, so K2 is a zero-divisor
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0

1

2

3

4

Figure 3.2: A representation of the disjoint union
−→
C3 +

−→
C2

Exploring the properties of these zero-divisors, Lovász was able to characterize all

zero-divisors with the following theorem.

THEOREM 3.1. (Lovász [4], Theorem 8) A digraph C is a zero-divisor if and only if there is

a homomorphism C→−→Cp1 +
−→
Cp2 + · · ·+

−→
Cpk for prime numbers p1, p2, . . . , pk. Note that the

operation + is the disjoint union of graphs where each graph is drawn separately without

any edges connecting vertices of one to vertices of another. The result is the disjoint union.

An example can be see in Figure 3.2.

We will focus our attention on connected zero-divisors. Once we have results for these,

they can be easily extended to disconnected zero-divisors by applying our result to each

component separately. Suppose C is a connected zero-divisor. Not only do we have a

homomorphism C→−→Cp1 +
−→
Cp2 + · · ·+

−→
Cpk , but by Lemma 4.1, the image of C must be in

one component of
−→
Cp1 +

−→
Cp2 + · · ·+

−→
Cpk . So we need only consider single directed cycles

−→
Cp for some prime p. As we do, keep in mind the following theorem from Lovász that was

proved in Chapter 2.

THEOREM 2.4. (Lovász [4], Theorem 6) Let A,B,C and D be digraphs. If A×C ∼= B×C

and there is a homomorphism from D to C, then A×D∼= B×D.

The next corollary follows directly from Theorem 2.4. The proof is trivial but the

corollary is stated in a manner that pertains more directly to our purpose.
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COROLLARY 3.2. If A×−→Cn ∼= B×−→Cn and there is a homomorphism from C into
−→
Cn, then

A×C ∼= B×C.

Now by our Corollary 3.2, any results that we develop for
−→
Cn can be easily extended to

all zero-divisors that have a homomorphism into
−→
Cn.

3.2 Automorphisms

In our quest to classify all digraphs B, dependent upon A, such that A×C ∼= B×C for

zero-divisors C, we begin by considering a type of permutation on the vertices of A, called

an automorphism.

DEFINITION 3.3. An automorphism, α , on a digraph A is a permutation on the vertices

of A with the added requirement that aa′ is an edge of A if and only if α(a)α(a′) is also an

edge of A. We denote the collection of all automorphisms on a given digraph A as Aut(A).

As an example of an automorphism, consider the digraphs A and
−→
C6 in Figure 3.3. For

digraph A, the permutation α = (23) is an automorphism by the following:

12 ∈ E(A)⇐⇒ α(1)α(2) = 13 ∈ E(A)

13 ∈ E(A)⇐⇒ α(1)α(3) = 12 ∈ E(A)

23 ∈ E(A)⇐⇒ α(2)α(3) = 32 ∈ E(A)

32 ∈ E(A)⇐⇒ α(3)α(2) = 23 ∈ E(A)

By a similar argument, (03)(14)(25) is an automorphism for
−→
C6.

Given an automorphism α for a digraph A, recall that we can create a new digraph Aα

with V (Aα) =V (A) and E(Aα) = {aα(a′) : aa′ ∈ E(A)}. For the digraph A in Figure 3.3,

consider the products A×K2 and A(23)×K2 found in Figure 3.4. Observe these two are
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isomorphic, as pointed out in Chapter 1, even though A� A(23). Keeping in mind that (23)

is an automorphism of order 2 and K2 ∼=
−→
C2, consider the following Proposition 3.4.

1

2 3

A

0 1

2

34

5 −→
C6

1

2 3
A(23)

0 1

2

34

5

−→
C6

(03)(14)(25)

Figure 3.3: Digraph A with automorphism (23) and corresponding power graph. Digraph
−→
C6 with automorphism (03)(14)(25) and corresponding power graph.

K2

A
1 2 3

0

1
A×K2 K2

A(23)
1 2 3

0

1
A(23)×K2

Figure 3.4: A digraph A and automorphism (23) with A×K2 ∼= A(23)×K2
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PROPOSITION 3.4. Suppose A is a digraph and φ ∈ Aut(A) for which φ k = id. Then

A×−→Ck
∼= Aφ ×−→Ck.

Proof. Let A be a digraph and φ ∈Aut(A) with φ k = id. In order to prove A×−→Ck
∼= Aφ ×−→Ck,

we need to provide an isomorphism from the vertices of A×−→Ck to the vertices of Aφ ×−→Ck.

Define µ : V (A×−→Ck)→V (Aφ ×−→Ck) such that

µ(a, i) = (φ i(a), i)

where φ 0(a) = id(a) = a. Because φ is an automorphism for A, we know that φ is a

permutation on the vertices of A. So for any vertex a in A, we must also have the vertices

φ−1(a) and φ−i(a) in V (A). And, for any vertex (a, i) in Aφ×−→Ck, there is a vertex (φ−i(a), i)

in A×−→Ck such that µ(φ−i(a), i) = (φ i(φ−i(a)), i) = (a, i). Thus µ is surjective.

Next suppose there are two distinct vertices (a, i) and (b, j) in A×−→Ck that map to the same

place, µ(a, i) = µ(b, j). Then by our definition of µ , we must have (φ i(a), i) = (φ j(b), j).

This is only true if i = j and φ i(a) = φ j(b) which together give us φ i(a) = φ i(b). And since

φ is a permutation, a = b. So (a, i) = (b, j) and µ is injective.

In order to show that µ is a homomorphism, consider any edge (a, i)(a′, i+1) in A×−→Ck

and see if it maps to an edge in Aφ ×−→Ck. Note if i = k− 1 then i+ 1 = 0. Consider the
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following equivalences. (Recall φ is an automorphism.)

(a, i)(a′, i+1) ∈ E(A×−→Ck) ⇐⇒ aa′ ∈ E(A)

⇐⇒ φ
i(a)φ i(a′) ∈ E(A)

⇐⇒ φ
i(a)φ i+1(a′) ∈ E(Aφ )

⇐⇒ (φ i(a), i)(φ i+1(a′), i+1) ∈ E(Aφ ×−→Ck)

⇐⇒ µ(a, i)µ(a′, i+1) ∈ E(Aφ ×−→Ck).

And thus µ is a homomorphism.

Finally we need to show that µ−1 is also a homomorphism. Consider any edge

(a, i)(φ(a′), i+1) in Aφ ×−→Ck. Then,

(a, i)(φ(a′), i+1) ∈ E(Aφ ×−→Ck) ⇐⇒ aφ(a′) ∈ E(Aφ )

⇐⇒ aa′ ∈ E(A)

⇐⇒ φ
−i(a)φ−i(a′) ∈ E(A)

⇐⇒ φ
−i(a)φ−i−1

φ
1(a′) ∈ E(A)

⇐⇒ φ
−i(a)φ−(i+1)(φ(a′)) ∈ E(A)

⇐⇒ (φ−i(a), i)(φ−(i+1)(φ(a′)), i+1) ∈ E(A×−→Ck)

⇐⇒ µ
−1(a, i)µ−1(φ(a′), i+1) ∈ E(A×−→Ck)

So µ−1 is also a homomorphism, enabling us to conclude that µ is an isomorphism. Conse-

quently, A×−→Ck
∼= Aφ ×−→Ck.

Observe
−→
C6 and the automorphism (03)(14)(25) provide another illustration of Proposi-

tion 3.4 as can be seen in Figure 3.5.
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0 1 2 3 4 5−→
C6

0

1
K2

−→
C6×K2

0

1
K2

0 1 2 3 4 5−→
C6

(03)(14)(25)

−→
C6

(03)(14)(25)×K2

Figure 3.5: An automorphism on
−→
C6 and isomorphic products (Some edges are drawn dashed

to emphasize the isomorphism.)

Using Theorem 2.4 mentioned above, we can extend Proposition 3.4 with the following

corollary.

COROLLARY 3.5. Suppose A is a digraph and φ ∈ Aut(A) for which φ k = id. If n is a

multiple of k, then

A×−→Cn ∼= Aφ ×−→Cn.

Proof. Define θ : V (
−→
Cn)→ V (

−→
Ck) by θ(i) = i mod k for any vertex i ∈ V (

−→
Cn) where i ∈

Zn. Observe for any edge (i)(i+ 1) ∈ −→Cn, we can express the integers as i = sk+ t and

consequently i+1 = sk+ t +1 where t < k. Then

θ(i)θ(i+1) = θ(sk+ t)θ(sk+ t +1) = (t)(t +1)

Note if t +1 = k, then θ(sk+ t +1) = (t +1) mod k = 0. And finally (t)(t +1) ∈ E(
−→
Ck) by

the structure of
−→
Ck. So θ is a homomorphism from

−→
Cn to

−→
Ck. Together with Proposition 3.4,

the conditions in Theorem 2.4 are fulfilled and thus A×−→Cn ∼= Aφ ×−→Cn.

To illustrate a result of this corollary, consider Figure 3.6. Digraphs A and A(23) are
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identical to those in Figure 3.4. Because (23) is an order 2 automorphism and 4 is a

multiple of 2, Corollary 3.5 provides us with isomorphic products A×−→C4 and A(23)×−→C4.

The isomorphism ψ : V (A×−→C4)→V (A(23)×−→C4) is defined in a manner similar to the one

described in the proof of Proposition 3.4:

ψ(1,0) = (1,0) ψ(2,0) = (2,0) ψ(3,0) = (3,0)

ψ(1,1) = (1,1) ψ(2,1) = (3,1) ψ(3,1) = (2,1)

ψ(1,2) = (1,2) ψ(2,2) = (2,2) ψ(3,2) = (3,2)

ψ(1,3) = (1,3) ψ(2,3) = (3,3) ψ(3,3) = (2,3)

−→
C4

A
1 2 3

0

1

2

3
A×−→C4 −→

C4

A(23)
1 2 3

0

1

2

3
A(23)×−→C4

Figure 3.6: A digraph A and automorphism (23) with A×−→C4 ∼= A(23)×−→C4

3.3 Anti-automorphisms

Next we turn to another type of permutation called an anti-automorphism. These were first

introduced in [2].

DEFINITION 3.6. A bijection µ : V (A)→V (A) is an anti-automorphism on the digraph

A if µ has the property that aa′ ∈ E(A) if and only if µ(a)µ−1(a′) ∈ E(A) for all pairs
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a,a′ ∈V (A). The collection of all anti-automorphisms on A is denoted Ant(A).

An example of an anti-automorphism on the graph C6 is given in Figure 3.7. The

permutation (0341)(25) is an anti-automorphism on C6 that can be seen as follows. Keep in

mind that each edge in the graph is equivalent to two edges in the corresponding digraph.

The digraph edges are used to verify that α = (0341)(25) is in fact an anti-automorphism

on C6.

01 ∈ E(C6) ⇐⇒ 34 ∈ E(C6) 10 ∈ E(C6) ⇐⇒ 01 ∈ E(C6)

12 ∈ E(C6) ⇐⇒ 05 ∈ E(C6) 21 ∈ E(C6) ⇐⇒ 54 ∈ E(C6)

23 ∈ E(C6) ⇐⇒ 50 ∈ E(C6) 32 ∈ E(C6) ⇐⇒ 45 ∈ E(C6)

34 ∈ E(C6) ⇐⇒ 43 ∈ E(C6) 43 ∈ E(C6) ⇐⇒ 10 ∈ E(C6)

45 ∈ E(C6) ⇐⇒ 12 ∈ E(C6) 54 ∈ E(C6) ⇐⇒ 23 ∈ E(C6)

50 ∈ E(C6) ⇐⇒ 21 ∈ E(C6) 05 ∈ E(C6) ⇐⇒ 32 ∈ E(C6)

0

12

3

4 5

C6 0

12

3

4 5

C(0341)(25)
6

Figure 3.7: An anti-automorphism (0341)(25) on C6 and the corresponding power graph
C(0341)(25)

6 (both drawn as graphs)

Recall Lovászs’ characterization that a digraph C is a zero-divisor if and only if there

is a homomorphism C→−→Cp1 +
−→
Cp2 + · · ·+

−→
Cpk for prime pi. Also recall that every graph

can be expressed as a symmetric digraph. Of the directed cycles
−→
Cp for a prime p, only

−→
C2
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is symmetric. So for a graph to be a zero-divisor, there must be a homomorphism into
−→
C2

which is isomorphic to K2.

Focusing our attention on zero-divisors that are graphs, as opposed to digraphs, the

following result is specifically for the zero-divisor K2. It was first proved for graphs A and B

in [2]. Here we generalize to digraphs A and B.

PROPOSITION 3.7. For digraphs A and B, A×K2 ∼= B×K2 if and only if B∼= Aµ for some

µ ∈ Ant(A).

Proof. To begin, suppose A×K2 ∼= B×K2. In order to show B∼= Aµ for some µ ∈ Ant(A)

we will create an isomorphism B→ Aµ . Because A×K2 ∼= B×K2, there is an isomorphism

ψ : V (A×K2)→ V (B×K2) such that ψ(a, i) = (π(a, i), i), for i ∈ {0,1}, where π is the

projection of ψ(a, i) into B. Now define functions α,β : V (A)→V (B) where α(a) = π(a,0)

and β (a) = π(a,1). Because ψ is an isomorphism, α and β must be bijections.

Now consider the composition α−1β : V (A)→V (B)→V (A). Then,

aa′ ∈ E(A) ⇐⇒ (a,0)(a′,1) and (a,1)(a′,0) ∈ E(A×K2)

⇐⇒ ψ(a,0)ψ(a′,1) and ψ(a,1)ψ(a′,0) ∈ E(B×K2)

⇐⇒ (π(a,0),0)(π(a′,1),1) and (π(a,1),1)(π(a′,0),0) ∈ E(B×K2)

⇐⇒ (α(a),0)(β (a′),1) and (β (a),1)(α(a′),0) ∈ E(B×K2)

⇐⇒ α(a)β (a′) and β (a)α(a′) ∈ E(B).

So for any edge aa′ in A, we have edges α(a)β (a′) and β (a)α(a′) in B. Hence for any edge

bb′ in B, the edges α−1(b)β−1(b′) and β−1(b)α−1(b′) are in A.
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To conclude that α−1β is an anti-automorphism, we know

aa′ ∈ E(A) ⇐⇒ α(a)β (a′) and β (a)α(a′) ∈ E(B)

⇐⇒ β
−1

α(a)α−1
β (a′) and α

−1
β (a)β−1

α(a′) ∈ E(A)

⇐⇒ (α−1
β )−1(a)(α−1

β )(a′) and (α−1
β )(a)(α−1

β )−1(a′) ∈ E(A).

So α−1β is in fact an anti-automorphism. Let µ = α−1β . Now we show that there is an

isomorphism V (Aµ)→V (B).

Recall α : V (A)→V (B) so α : V (Aµ)→V (B) since V (A) =V (Aµ) and α is a bijection.

Then for any edge aa′ in A, aµ(a′) = aα−1β (a′) is in Aµ . Then mapping this edge to B

using α , we see α(a)α(µ(a′)) = α(a)α(α−1β (a′)) = α(a)β (a′) which is an edge in B. So

α is a homomorphism.

On the other hand, for any edge bb′ in B, α−1(b)β−1(b′) is an edge in A. And thus

α−1(b)µ(β−1(b′)) = α−1(b)α−1(b′) is an edge in Aµ . This shows that α−1 is a homomor-

phism. So α is an isomorphism and B∼= Aµ = Aα−1β .

Conversely, for any µ ∈ Ant(A), show that A×K2 ∼= Aµ ×K2. Define a function

ψ : A×K2 → Aµ ×K2 by ψ(a, i) = (µ i(a), i) where i ∈ {0,1} and µ0 = id. Then for

any edge (a,0)(a′,1) in A×K2, observe

(a,0)(a′,1) ∈ E(A×K2) ⇐⇒ (a,a′) ∈ E(A)

⇐⇒ (a,µ(a′)) ∈ E(Aµ)

⇐⇒ (a,0)(µ(a′),1) ∈ E(Aµ ×K2)

⇐⇒ ψ(a,0)ψ(a′,1) ∈ E(Aµ ×K2)
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Then for any edge (a,1)(a′,0) in A×K2, since µ is an anti-automorphism, observe

(a,1)(a′,0) ∈ E(A×K2) ⇐⇒ (a,a′) ∈ E(A)

⇐⇒ (µ(a),µ−1(a′)) ∈ E(A)

⇐⇒ (µ(a),a′) ∈ E(Aµ)

⇐⇒ (µ(a),1)(a′,0) ∈ E(Aµ ×K2)

⇐⇒ ψ(a,1)ψ(a′,0) ∈ E(Aµ ×K2)

From these two equivalences, ψ is a homomorphism.

On the other hand, for any edge (a,0)(µ(a′),1) in Aµ ×K2, observe

(a,0)(µ(a′),1) ∈ E(Aµ ×K2) ⇐⇒ aµ(a′) ∈ E(Aµ)

⇐⇒ aa′ ∈ E(A)

⇐⇒ (a,0)(a′,1) ∈ E(A×K2)

⇐⇒ ψ
−1(a,0)ψ−1(µ(a′),1) ∈ E(A×K2)

Finally, for any edge (a,1)(µ(a′),0) in Aµ ×K2, observe

(a,1)(µ(a′),0) ∈ E(Aµ ×K2) ⇐⇒ aµ(a′) ∈ E(Aµ)

⇐⇒ aa′ ∈ E(A)

⇐⇒ µ
−1(a)µ(a′) ∈ E(A)

⇐⇒ (µ−1(a),1)(µ(a′),0) ∈ E(A×K2)

⇐⇒ ψ
−1(a,1)ψ−1(µ(a′),0) ∈ E(A×K2)

which comes from the fact that µ is an anti-automorphism. By the last two equivalences,
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ψ−1 is also a homomorphism. And thus ψ : A×K2→ Aµ ×K2 is an isomorphism implying

A×K2 ∼= Aµ ×K2.

We presented an example of an anti-automorphism on
−→
C6 in Figure 3.7. Using these

same graphs, their products with K2 can found in Figure 3.8. As emphasized by the solid

and dashed lines, the graph products are isomorphic which follows directly from Proposition

3.7.

0 1 2 3 4 5
C6

0

1
K2

C6×K2

0

1
K2

0 1 2 3 4 5
C(0341)(25)

6

C(0341)(25)
6 ×K2

Figure 3.8: An anti-automorphism for C6 and isomorphic products

3.4 Factorial of a digraph

Remember our goal of finding all B, dependent upon A, such that A×−→Cp ∼= B×−→Cp. We have

results in this direction using automorphisms and anti-automorphisms. In this section, we

will generalize the proof for anti-automorphisms as we extend it from the zero-divisor K2 to

zero-divisors
−→
Cp for any number p. In order to do this, we need to define the factorial of a

digraph. This was first developed by Hammack in [2].

DEFINITION 3.8. Given any digraph A, the factorial of A, denoted A!, is defined as follows:

V (A!) = {α : α is a permutation on V (A)}

E(A!) = {αβ : aa′ ∈ E(A) if and only if α(a)β (a′) ∈ E(A)}.
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0 1 2

A

id (02) (01) (12) (012)(021)

A!

0 1 2
−→
C3

id (02) (01) (12) (012)(021)

−→
C3!

Figure 3.9: Examples of digraphs and their corresponding factorials

For example, consider the digraphs in Figure 3.9 and their corresponding factorials. For

digraph
−→
C3, let α = (02) and β = (01). Observe

01 ∈ E(
−→
C3) ⇐⇒ α(0)β (1) = 20 ∈ E(

−→
C3)

12 ∈ E(
−→
C3) ⇐⇒ α(1)β (2) = 12 ∈ E(

−→
C3)

20 ∈ E(
−→
C3) ⇐⇒ α(2)β (0) = 01 ∈ E(

−→
C3)

resulting in the edge (α)(β ) = (02)(01) in
−→
C3!.

Now consider the following theorem:

THEOREM 3.9. For digraphs A and B, and directed cycle
−→
Cp of length p, A×−→Cp ∼= B×−→Cp

if and only if B∼= Aα0 where A! has a closed walk of length p beginning and ending at α0,

say (α0)(α1)(α2) . . .(αp−1)(α0), such that α0α1α2 · · ·αp−1 = id.

Before we begin the proof, let us clarify exactly how this theorem extends the previous

results. Recall Proposition 3.4 says for any digraph A and φ ∈ Aut(A) for which φ k = id

then A×−→Ck
∼= Aφ ×−→Ck. Now if φ is an automorphism on A, then for all aa′ in E(A), the

edge φ(a)φ(a′) is also in A. So (φ)(φ) is a loop in the factorial. And thus we have a

closed walk of length k beginning and ending with φ , namely (φ)(φ) · · ·(φ)(φ), such that

(φ)(φ) · · ·(φ) = (φ)k = id. So the conditions in Theorem 3.9 have been met, giving us
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A×−→Ck
∼= Aφ ×−→Ck as was proven in Proposition 3.4.

Likewise, recall Theorem 3.7 which states: For digraphs A and B, A×K2 ∼= B×K2 if

and only if B∼= Aµ for some µ ∈Ant(A). Because µ is an anti-automorphism, aa′ is an edge

in A if and only if µ(a)µ−1(a′) is an edge in A. Thus (µ)(µ−1) is an edge in the factorial.

Similarly, any edge can be written µ(a)µ−1(a′) given that aa′ is an edge in A. Then the edge

aa′ is equivalent to µ−1µ(a)µµ−1(a′), so we also have the edge (µ−1)(µ) in A!. From

these two edges in the factorial, we have a walk (µ)(µ−1)(µ) of length 2 beginning and

ending with µ . And clearly µµ−1 = id. So A×K2 ∼= B×K2 as proved in Theorem 3.7 and

as generalized in Theorem 3.9.

With the connections to previous sections, consider the following proof of Theorem 3.9

which is based upon the proof for Theorem 3.7.

Proof. First, suppose A×−→Cp ∼= B×−→Cp. Then there is an isomorphism Ψ : A×−→Cp→ B×−→Cp

such that, by Theorem 2.5 from Lovász, Ψ(a, i) = (βi(a), i) where βi is the projection of Ψ

onto B. Now consider βi : V (A)→V (B). Because Ψ : A×−→Cp→ B×−→Cp is an isomorphism,

the cardinalities |V (A×−→Cp)| and |V (B×−→Cp)| are equal and thus |V (A)| = |V (B)|. Now

suppose there exist two vertices in A, say a and a′, such that βi(a) = βi(a′). Then

βi(a) = βi(a′) ⇐⇒ (βi(a), i) = (βi(a′), i)

⇐⇒ Ψ(a, i) =Ψ(a′, i)

⇐⇒ (a, i) = (a′, i)

⇐⇒ a = a′

So βi is injective. And together with the fact that |V (A)|= |V (B)|, we may conclude that

βi : V (A)→V (B) is a bijection for all i ∈ {0,1, . . . , p−1}.
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Now consider β
−1
i βi+1 : V (A)→V (B)→V (A). Each of these is a bijection from V (A)

to V (A) and thus a permutation on V (A). Consequently we have vertices β
−1
i βi+1 in the

digraph A!.

Now observe, for any aa′ ∈ E(A):

aa′ ∈ E(A) ⇐⇒ (a, i)(a′, i+1) ∈ E(A×−→Cp)

⇐⇒ Ψ(a, i)Ψ(a′, i+1) ∈ E(B×−→Cp)

⇐⇒ (βi(a), i)(βi+1(a′), i+1) ∈ E(B×−→Cp)

⇐⇒ βi(a)βi+1(a′) ∈ E(B)

(3.1)

Similarly, for any edge bb′ ∈ E(B):

bb′ ∈ E(B) ⇐⇒ (b, j)(b′, j+1) ∈ E(B×−→Cp)

⇐⇒ Ψ−1(b, j)Ψ−1(b′, j+1) ∈ E(A×−→Cp)

⇐⇒ (β−1
j (b), j)(β−1

j+1(b
′), j+1) ∈ E(A×−→Cp)

⇐⇒ β
−1
j (b)β−1

j+1(b
′) ∈ E(A).

(3.2)

Using the above Equivalence 3.1 from edges in A to edges in B, we find that for any

aa′ ∈ E(A) there is a corresponding edge βi(a)βi+1(a′) in B. And from this edge, by

Equivalence 3.2, we can map back to the edge β
−1
i−1βi(a)β−1

i βi+1(a′) in A. By the definition

of edges in A!, we now have (β−1
i−1βi)(β

−1
i βi+1) is in fact an edge in A!. This is true for any

i ∈ {0,1, . . . , p− 1}. So we have the walk (β−1
0 β1)(β

−1
1 β2)(β

−1
2 β3) · · ·(β−1

p−1β0)(β
−1
0 β1)

in A!. Also notice that β
−1
0 β1β

−1
1 β2β

−1
2 β3 · · ·β−1

p−1β0 = β
−1
0 β0 = id.

Thus β
−1
0 β1 meets the criteria in the theorem. Now we just need to provide an isomor-

phism Aβ
−1
0 β1 → B. Consider the map β0. Recall V (A) =V (Aβ

−1
0 β1). The function β0 is a

bijection as noted above, and β0 : V (Aβ
−1
0 β1)→V (B).

Observe, for any edge aa′ in A, aβ
−1
0 β1(a′) is an edge in Aβ

−1
0 β1 . Then, taking β0 of both



36

vertices, we see β0(a)β0β
−1
0 β1(a′) = β0(a)β1(a′) which is an edge in B by Equivalence 3.1.

So β0 is a homomorphism.

On the other hand, for any edge bb′ in B, by Equivalence 3.2, we have the edge

β
−1
0 (b)β−1

1 (b′) in A. This subsequently gives us the edge β
−1
0 (b)β−1

0 β1β
−1
1 (b′) in Aβ

−1
0 β1

which equals β
−1
0 (b)β−1

0 (b′). So β
−1
0 is also a homomorphism. Thus β0 is an isomorphism

from Aβ
−1
0 β1 to B. So we conclude Aβ

−1
0 β1 ∼= B.

Conversely, consider a digraph A with α0 a permutation on V (A) such that there is a

closed walk (α0)(α1)(α2) · · ·(αp−1)(α0) in A!, and α0α1α2 · · ·αp−1 = id. We want to show

that A×−→Cp ∼= Aα0×−→Cp. In order to do this, define the function ψ : A×−→Cp→ Aα0×−→Cp where

ψ((a, i)) = (α0α1 · · ·αi(a), i).

Because each αi is a permutation on the vertices of A, the composition α0α1 · · ·αi of

permutations is itself a permutation on the vertices of A. So, ψ must be a bijection.

Recall aa′ ∈ E(A) and (α0)(α1)(α2) · · ·(αp−1)(α0) is a walk in A!. So for any edge aa′

in A, we have the following statements:

aa′ ∈ E(A) ⇐⇒ αi(a)αi+1(a′) ∈ E(A)

⇐⇒ αi−1αi(a)αiαi+1(a′) ∈ E(A)
...

⇐⇒ α0α1 · · ·αi−1αi(a)α1α2 · · ·αiαi+1(a′) ∈ E(A)

⇐⇒ α0α1 · · ·αi−1αi(a)α0α1α2 · · ·αiαi+1(a′) ∈ E(Aα0)
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Keeping in mind (αp−1)(α0) is an edge in A! and α0α1α2 · · ·αp−1 = id, note that if i= p−1:

aa′ ∈ E(A) ⇐⇒ αp−1(a)α0(a′) ∈ E(A)

⇐⇒ αp−2αp−1(a)αp−1α0(a′) ∈ E(A)
...

⇐⇒ α0α1 · · ·αp−1(a)α1α2 · · ·αp−1α0(a′) ∈ E(A)

⇐⇒ α0α1 · · ·αp−1(a)α0α1α2 · · ·αp−1α0(a′) ∈ E(Aα0)

⇐⇒ α0α1 · · ·αp−1(a)α0(a′) ∈ E(Aα0)

Then for any edge (a, i)(a′, i+1), i ∈ {0,1, . . . , p−2}, in A×−→Cp, observe

ψ(a, i)ψ(a′, i+1) = (α0α1 · · ·αi−1αi(a), i)(α0α1α2 · · ·αiαi+1(a′), i+1)

is an edge of Aα0 ×−→Cp. Again, if i = p− 1, for any edge (a, p− 1)(a′,0), we have the

edge ψ(a, p− 1)ψ(a′,0) = (α0α1 · · ·αp−1(a), p− 1)(α0(a′),0) in Aα0 ×−→Cp. So ψ is a

homomorphism.

Finally, for any edge (a, i)(α0(a′), i+ 1) in Aα0 ×−→Cp, where i ∈ {0,1,2, . . . , p− 2},

observe:

(a, i)(α0(a′), i+1) ∈ E(Aα0×−→Cp)

⇐⇒ aα0(a′) ∈ E(Aα0)

⇐⇒ (α0α1 · · ·αi)
−1(a)(α0α1 · · ·αi+1)

−1(α0(a′)) ∈ E(A)

⇐⇒ ((α0α1 · · ·αi)
−1(a), i)((α0α1 · · ·αi+1)

−1(α0(a′)), i+1) ∈ E(A×−→Cp)

⇐⇒ ψ
−1(a, i)ψ−1(α0(a′), i+1) ∈ E(A×−→Cp)
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Then similarly if i = p−1:

(a, p−1)(α0(a′),0) ∈ Aα0×−→Cp

⇐⇒ aα0(a′) ∈ E(Aα0)

⇐⇒ (α0α1 · · ·αp−1)
−1(a)α−1

0 (α0(a′)) ∈ E(A)

⇐⇒ ((α0α1 · · ·αp−1)
−1(a), p−1)(α−1

0 (α0(a′)),0) ∈ E(A×−→Cp)

⇐⇒ ψ
−1(a, p−1)ψ−1(α0(a′),0) ∈ E(A×−→Cp)

Thus any edge (a, i)(α0(a′), i+1) in Aα0×−→Cp gives us the edge ψ−1(a, i)ψ−1(α0(a′), i+1)

in A×−→Cp. So ψ−1 is also a homomorphism. Thus ψ is an isomorphism, and consequently

A×−→Cp ∼= Aα0×−→Cp.

To illustrate the results of this theorem, consider the directed cycle
−→
C3 whose fac-

torial is given in Figure 3.9. There is a closed walk (02)(01)(12)(02) of length 3 in

the factorial, but (02)(01)(12) 6= id. So, by Theorem 3.9,
−→
C3×

−→
C3 �

−→
C3

(02)×−→C3. But,

(02)(01)(12)(02)(01)(12)(02) is a closed walk of length 6 in the factorial with the com-

position (02)(01)(12)(02)(01)(12) equaling the identity. So Theorem 3.9 does guarantee

the isomorphism
−→
C3×

−→
C6 ∼=

−→
C3

(02)×−→C6 as can be seen in Figure 3.10. Again line style is

present merely to emphasize the isomorphism.

As a second example, consider the digraph
−→
C6. Within the factorial, we have the

following closed walk of length 6:

(0124)(1235)(2340)(3451)(4502)(5013)(0124)

With this one, the composition (0124)(1235)(2340)(3451)(4502)(5013) does in fact give
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us the identity. So, Theorem 3.9 ensures the isomorphism
−→
C6×

−→
C6 ∼=

−→
C6

(0124)×−→C6 as shown

in Figure 3.11. As the different style lines emphasize, each product consists of 6 copies of
−→
C6.

−→
C6

0

1

2

3

4

5

−→
C3

0 1 2

−→
C3×

−→
C6

−→
C6

0

1

2

3

4

5

−→
C3

(02)
0 1 2

−→
C3

(02)×−→C6

Figure 3.10: Isomorphic products guaranteed by Theorem 3.9

3.5 Future directions

Given any zero-divisor of the form
−→
Cn and any digraph A, Theorem 3.9 ennumerates all

digraphs B for which A×−→Cn ∼= B×−→Cn. The ultimate goal is to develop a theorem similar

to Theorem 3.9 that will hold for all zero-divisors. Let’s look specifically at those that

are connected. Once a theorem is developed for connected zero-divisors, it can be easily

extended to disconnected ones by looking at the components individually. As a step in this

direction, recall Lovászs’ characterization of zero-divisors, and more specifically connected

zero-divisors as developed from Lemma 4.1: A connected digraph C is a zero-divisor if and

only if there is a homomorphism C→−→Cp for some prime p.
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−→
C6

0

1

2

3

4

5

−→
C6

0 1 2 3 4 5

−→
C6×

−→
C6

−→
C6

0

1

2

3

4

5

−→
C6

(0124)

0 2 3 4 5 1

−→
C6

(0124)×−→C6

Figure 3.11: Another pair of isomorphic products guaranteed by Theorem 3.9

We already have a result, Theorem 2.6, for zero-divisors with a homomorphism into
−→
K2.

This theorem, first proven in [5], can be found with a proof in chapter 2. Note that these

zero-divisors would not have any directed cycles of length 2 or greater.

Suppose C is a zero-divisor with at least one cycle. Let that cycle have length n. By

Lemma 4.2, there is a homomorphism
−→
Cn→

−→
Cmi if and if n is a multiple of mi. So there are

finitely many possible integers mi for which a homomorphism
−→
Cn→

−→
Cmi exists. And the fact

that ψ : C→−→Cmi is a homomorphism implies that ψ|−→Cn
is a homomorphism because

−→
Cn is a

subgraph of C. So there are finitely many integers mi for which there is a homomorphism

C→−→Cmi . Find the largest value m for which there is a homomorphism C→−→Cm. (Note that

the value m will be the greatest common divisor of the integers mi.) Then by Theorem 3.9

we can find all the digraphs B for which A×−→Cm ∼= B×−→Cm. By Theorem 2.4, these same

digraphs B will result in A×C ∼= B×C.
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Now consider the size of every cycle in C. If there is a homomorphism into
−→
Cm then

every cycle in C must have length which is a multiple of m by Corollary 4.3. So the cycles

in C have lengths mk1,mk2, . . . ,mkn where each ki is an integer greater than or equal to 1.

From these cycle lengths, we have homomorphisms
−−→
Cmki →C for each i by mapping the

vertices of
−−→
Cmki directly to the vertices of the cycle in C of length mki. So for every B that

satisfies A×C ∼= B×C, those same digraphs B will satisfy A×−−→Cmki
∼= B×−−→Cmki for every i.

To summarize, consider the relation of sets.

n⋂
i=1

Γ =
n⋂

i=1

{Aα : A×−−→Cmki
∼= Aα ×−−→Cmki}

⊆

Λ = {Aα : A×C ∼= Aα ×C}

⊆

ϒ = {Aα : A×−→Cm ∼= Aα ×−→Cm}

The goal is to explicitly define Λ by determining all Aα such that A×C∼= Aα×C. Right

now this set is sandwiched between two known sets. Now if some ki is 1, meaning there is a

cycle of length m in C, then
n⋂

i=1

Γ =ϒ , so we know Λ . But if there is not a cycle of length

m in C, the intersection
n⋂

i=1

Γ will likely have more digraphs than ϒ , leaving a gap for the

exact set Λ . The refining of these bounds remains an open problem.
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C

Figure 3.12: A zero-divisor C with homomorphisms
−→
C6,
−→
C10,
−→
C16→C→−→C2

For example, consider the zero-divisor in Figure 3.12. The cycles in C have lengths 6,

10, and 16. The largest m for which there is a homomorphism C→−→Cm is 2. There is not a

cycle of length 2, so
n⋂

i=1

Γ %ϒ . Examining the factorials and difference between the sets

may prove useful.
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Auxiliary Results

4.1 Additional results for zero-divisors

As mentioned in Chapter 3, below are some additional results proven during the work of

this thesis. We begin with some results for cycles and zero-divisors in general.

LEMMA 4.1. For digraphs C and G, if C is connected and there is a homomorphism

φ : V (C)→V (G) then φ(V (C)) lies in one component of G.

Proof. Let C be connected and let φ : V (C)→ V (G) be a homomorphism. Because C is

connected, there is a path (with direction unimportant) between every pair of vertices. Since

φ is a homomorphism, every edge in C maps to an edge in G. So for any two vertices in C,

the edges forming the path between them must map to edges in G, forming a corresponding

path in G. Because this is true for every pair of vertices, the image of C is connected. And

thus φ(V (C)) lies in one component of G.

LEMMA 4.2. There is a homomorphism ψ :
−→
Cm→

−→
Cp if and only if m is a multiple of p.

Proof. First, let ψ :
−→
Cm→

−→
Cp be a homomorphism. Label the vertices in

−→
Cm as v0,v1, . . . ,vm−1

and the vertices in
−→
Cp as u0,u1, . . . ,up−1. Because of the symmetry of the graphs, we can

assume that ψ(vi) = ui mod p for all i ∈ {0,1, . . . ,m− 1} without loss of generality. Now

because ψ is a homomorphism, the edge vm−1v0 in
−→
Cm maps to a corresponding edge

ψ(vm−1)ψ(v0) = u(m−1) mod pu0 mod p in
−→
Cp. We know that u(m−1) mod pum mod p must be an

edge in
−→
Cp. Because the out degree of every vertex in a cycle is exactly 1, u0 mod p = um mod p

so 0 mod p = m mod p and thus m must be a multiple of p.
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Conversely, assume that m is a multiple of p. Define a function ψ :
−→
Cm→

−→
Cp so that

ψ(vi) = ui mod p. Thus ψ is a well defined function. Now for any i ∈ {0,1, . . . ,m− 2},

the edge vivi+1 maps to ui mod pu(i+1) mod p which is an edge in
−→
Cp. Finally, consider the

edge vm−1v0 in
−→
Cm which maps to u(m−1) mod pu0 mod p. Because m is a multiple of p, then

m mod p = 0 mod p. So u(m−1) mod pu0 mod p = u(m−1) mod pum mod p which is clearly an

edge in
−→
Cp. So ψ :

−→
Cm→

−→
Cp is a homomorphism.

COROLLARY 4.3. Let C be a zero-divisor with at least one cycle. If ψ : C → −→Cp is a

homomorphism then every cycle in C has a length which is a multiple of p.

Proof. Suppose ψ : C→−→Cp is a homomorphism. Then for any cycle S in C, the restriction

ψ|S is a homomorphism into
−→
Cp. Then by Lemma 4.2, we know that the length of S is a

multiple of p. Because the cycle S in C was arbitrary, this holds for the length of any cycle

in C.

4.2 Additional results for power graphs Aα

Because the power graphs Aα played such a large part in this thesis, below are a few

additional results for power graphs where α is an anti-automorphism.

LEMMA 4.4. For any i, Aα i ∼= Aα i+2
.

Proof. Recall α : V (A)→ V (A) is a bijection such that aa′ is an edge in A if and only if

α(a)α−1(a′) is an edge in A. Because V (Aα i
) = V (A) for any i, consider the bijection
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α : V (Aα i
)→V (Aα i+2

). Now for any edge aα i(a′) in Aα i
, observe

aα
i(a′) ∈ E(Aα i

) ⇐⇒ aa′ ∈ E(A)

⇐⇒ α
1(a)α−1(a′) ∈ E(A)

⇐⇒ α(a)α i+1(a′) ∈ E(Aα i+2
)

⇐⇒ α(a)α(α i(a′)) ∈ E(Aα i+2
)

because α is an anti-automorphism of A. So α : V (Aα i
)→V (Aα i+2

) is a homomorphism.

On the other hand, for any edge aα i+2(a′) in Aα i+2
, we see that

aα
i+2(a′) ∈ E(Aα i+2

) ⇐⇒ aa′ ∈ E(A)

⇐⇒ α(α−1(a))α−1(α(a′)) ∈ E(A)

⇐⇒ α
−1(a)α1(a′) ∈ E(A)

⇐⇒ α
−1(a)α i+1(a′) ∈ E(Aα i

)

⇐⇒ α
−1(a)α−1(α i+2(a′)) ∈ E(Aα i

)

because α is an anti-automorphism of A. So α−1 : V (Aα i
)→V (Aα i+2

) is also a homomor-

phism. Thus α is an isomorphism. So Aα i ∼= Aα i+2
.

COROLLARY 4.5. If α has odd order, then Aα ∼= A.

Proof. Let α be an anti-automorphism with odd order. By definition, there must be an odd

number p for which α p = id. And thus Aα p
= Aid = A. Then by Lemma 4.4,

Aα1 ∼= Aα3 ∼= Aα5 ∼= · · · ∼= Aα p

since p is odd. Thus we have Aα ∼= Aα p
= A.
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COROLLARY 4.6. If α has order 2p where p is odd, then Aα ∼= Aα p
where α p has order 2.

Proof. Because p is odd, again by Lemma 4.4, Aα ∼= Aα p
. Then because α has order 2p,

α2p = id. And thus (α p)2 = id. So α p has order 2, which in turn gives us the fact that α p

is an anti-automorphism as well as an automorphism of order 2.

This final result does not require α to be an anti-automorphism. In chapter 3, we found

that for every B satisfying A×C ∼= B×C there is a special permutation α such that B∼= Aα .

When enumerating all these digraphs Aα , we are not interested in those that are isomorphic

to one another. The following lemma proved in [5] helps divide these digraphs Aα into

classes so that we can focus our attention on those digraphs Aα that are different.

LEMMA 4.7. For any digraph A and permutations µ and λ on the vertices of A, then

Aµ ∼= Aλ if and only if α−1µβ = λ for some permutations α and β with (α)(β ) ∈ E(A!).

Proof. First assume that Aλ ∼= Aµ for permutations λ and µ on the vertices of A. Then there

exists an isomorphism ψ : V (Aλ )→V (Aµ). Observe λ = (ψ−1)µ(µ−1ψλ ). We will show

(ψ)(µ−1ψλ ) ∈ E(A!) to complete the proof. First observe ψ and µ−1ψλ are permutations

on the vertices of A, so they are in fact vertices in A!. In order to show the edge exists in the

factorial, consider any edge aa′ in A. Then,

aa′ ∈ E(A) ⇐⇒ aλ (a′) ∈ E(Aλ )

⇐⇒ ψ(a)ψλ (a′) ∈ E(Aµ)

⇐⇒ ψ(a)µ−1
ψλ (a′) ∈ E(A).

So (ψ)(µ−1ψλ ) is an edge in A!.

Conversely, assume α−1µβ = λ for some permutations α and β with (α)(β ) ∈ E(A!).

Recall V (A) = V (Aλ ) = V (Aµ). So consider the mapping α : V (Aλ )→ V (Aµ). This
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is a bijection because α is a permutation on V (A). Once we show that α and α−1 are

homomorphisms, we will have an isomorphism between Aλ and Aµ . Consider the following:

aa′ ∈ E(Aλ ) ⇐⇒ aλ
−1(a′) ∈ E(A)

⇐⇒ α(a)βλ
−1(a′) ∈ E(A)

⇐⇒ α(a)µβλ
−1(a′) ∈ E(Aµ)

⇐⇒ α(a)αα
−1

µβλ
−1(a′) ∈ E(Aµ)

⇐⇒ α(a)(α)(α−1
µβ )(λ−1)(a′) ∈ E(Aµ)

⇐⇒ α(a)(α)(λ )(λ−1)(a′) ∈ E(Aµ)

⇐⇒ α(a)α(a′) ∈ E(Aµ)

So α and α−1 are homomorphisms. Thus α is an isomorphism, giving us Aλ ∼= Aµ .
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