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Abstract 
 

 

 

DENSITY FUNCTIONAL STUDIES OF THE STABILITY OF CLUSTERS 

By P. A. Clayborne, M.S. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Chemistry at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2009 

 

Director:  Shiv N. Khanna, Ph.D. 

Professor, Department of Physics 

 

 

 

 

Theoretical studies using the Kohn-Sham density functional formalism have been carried out to 

identify and investigate the stability of a variety of atomic clusters for their use in cluster 

assembled materials.  The stable behavior found in a cluster system provides a way to classify 

inorganic clusters.  The clusters in this study can be categorized in one of the following, jellium, 

all-metal aromatic, Zintl analogue or as a covalent metal-carbide.  By understanding the 

electronic structure and ultimately the stable nature of a cluster first, it is proposed one can 

construct assemblies based on the stable cluster.  The methodology presented is a viable way to 

design future nanomaterials with a variety of architectures and precise control over properties 

based on stable cluster motifs.      
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Chapter 1  Introduction 
 

 

1.1 Motivation 
 

Over the past few decades many of the significant scientific and technological 

developments have been inspired by developments in material science.  The motivation is rooted 

in the need for the design and synthesis of nanoscale materials with precise desired properties.  

One of the most promising prospects to meet this challenge is using stable atomic clusters as 

building blocks in a ―bottom-up‖ approach leading to nanoscale cluster assemblies. 

Atomic clusters are aggregates of atoms with a variation in size from a few to a few 

thousands of atoms.  It is well know that the thermodynamic, electronic, magnetic and optical 

properties of clusters can differ extensively from their macroscopic bulk phase counterparts.  In 

fact the properties of atomic clusters have been shown to vary as a function of size, composition, 

and geometrical shape. The most interesting systems of clusters are those in which the properties 

vary dramatically with the number of atoms and composition, instead of linearly with size. In 

order to understand how properties evolve, it is important to know how a specific desired 

property behaves, like magnetism, geometry or ionization potential, as the number of atom 

increase one by one.  A few examples include Au, Rh, and Fe clusters.  In the bulk, Au is a noble 

metal, however small clusters of Au are highly effective catalysts for the conversion of CO to 

CO2 [1].  While bulk Rh is non-magnetic, small Rh clusters are magnetic with magnetic moments 

per atom comparable to other itinerant ferromagnetic solids [2]. Another example is found using 

aluminum clusters and its bulk counterpart.  In the bulk, aluminum is readily oxidized forming a 

variety of reactive aluminum-oxides [3 - 5]. However, aluminum clusters are very different.  
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Aluminum cluster anions containing 13, 23, and 37 atoms, for example, are unreactive towards 

oxygen [6].   

The differences between atomic clusters and the bulk counterpart is grounded in the small 

volume of the potential well that confines the electrons in clusters, which result in the emergence 

of discrete one-electron energy levels instead of bands seen in bulk [7].  This realization leads to 

the question; How does this difference between clusters and bulk change the properties in a 

cluster assembled material? In order to answer that question one must compare the various 

properties in a solid versus those expected of a cluster assembled material.  In a solid the energy 

bands are the results from the overlap of atomic energy levels. However, in a cluster assembled 

material, the energy bands would result from the overlap of the discreet cluster energy levels.  

The nature of bonding in a solid between atoms is well understood and characterized, but in a 

CAM the bonding within the individual cluster may be covalent, but between clusters it may be 

different, such as van der Waals in character.  The vibrations in CAMs can combine the intra- 

and inter-cluster modes.  If one were able to design a magnetic solid, the combination of weak 

inter-cluster couplings with the strong intra-cluster interactions could lead to novel 

characteristics [8].   

The task of designing and synthesizing cluster assemblies appears on the surface to be a 

simple task; however this is far from true.  The problem:  Many clusters are metastable!  Thus, 

once a cluster is introduced to other clusters, the group of clusters tend to conglomerate and lose 

all reference to the original cluster used in the attempt at synthesizing the material.  However 

over the recent two decades there are discoveries that show promise such as the fullerene C60. 

Molecular beam experiments conducted by Kroto and co-workers showed an intense magic peak 

for clusters containing sixty carbon atoms in the mid eighties [9]. This discovery led to the 
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identification of a ―soccer ball‖ like structure containing sixty carbon atoms with remarkably 

different properties than that of graphite or diamond.  C60 proved to be not only stable in the gas 

phase, but even stable when exposed to the environment.  This has since led to the development 

of using other fullerenes as novel ways to aid in various fields including cancer identification and 

treatment [10 – 11].  Fullerites, the crystal form of fullerenes, are formed and governed by Van 

der Waals forces that weakly bond the clusters together.  Fullerites have been known to form fcc 

structures, as well as other stable structures with the hope of various device applications [12 – 

13].  There are other more recent examples possible clusters that may and have been used in 

cluster assemblies, such as Superatoms, and the unique cluster Te2As2
2- 

[14 – 15].   

The success of these small cluster assembled materials leads us to the nature of a cluster’s 

unique stable behavior. In the case of fullerenes, superatoms and even Te2As2
2-

, they were found 

to be extremely stable using experimental and theoretical techniques and consequently the source 

of their stable behavior was identified as well [15]. These results have placed heavy implications 

on understanding the mechanism of stability within a cluster.  In becoming knowledgeable of the 

precise stability mechanism, a designer can better create cluster assemblies with the optical, 

magnetic and catalytic properties of choice.  Even more advantageous, is the possibility to better 

predict cluster-cluster interaction, opening the door to a series of cluster assembled architectures 

that potentially would be resistant to oxygen etching. 

At the core of cluster assemblies is the cluster’s ability to maintain its inherent geometry 

and electronic character when interacting with other atoms and clusters.  This idea originated 

with two pioneers in cluster science, Khanna and Jena [16].  These authors eloquently pointed 

out that the clusters needed to achieve this goal must be required to exhibit an enhanced stability.  

Thus, the mechanism of stability within a cluster system is met with great importance.  In order 
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to take advantage of a cluster’s stability, one must first become aware of the different stability 

classifications.  In the remainder of this chapter, I will introduce three common mechanisms of 

stability, which is the framework of this thesis.  

1.2 The Jellium model  
 

When the idea of stable clusters as building blocks was introduced, it was proposed by 

Khanna and Jena it was indeed possible to design stable clusters [16].  These unique clusters 

would interact weakly instead of coalescing, when introduced to each other.  At the time there 

was one cluster class that showed extreme promise in this endeavor; jellium ―magic‖ metallic 

clusters.   

Magic metallic clusters were first observed by Knight and co-workers [17]. Knight an co-

workers noticed when the number of sodium atoms in a cluster were 2, 8, 18, 20, etc., these 

particular clusters were more abundant.  These ―magic‖ numbers were interpreted as reflecting 

an electronic shell structure, much like in atoms or nuclei in nucleons as predicted by Ekardt [18 

– 19].  Knight, Clemenger and co-workers developed an empirical jellium model based on 

quantum mechanics from the boundary conditions imposed by a potential [20].    The empirical 

jellium model is based on single particle potentials and solving the one-electron Schrodinger 

equation for a particle inside a sphere.
A
  The jellium wavefunctions or orbitals (i.e.- the solutions 

to the Schrodinger equation) can be separated into radial (R) and angular (Y) parts, due to the 

spherical nature of the potential via, 

Ψ𝑛𝑙𝑚  𝑟, 휃, 𝜑 = 𝑅𝑛𝑙  𝑟 𝑌𝑙𝑚  휃, 𝜑  

                                                           
A
 For more information on the Schrodinger equation please refer to Chapter 3 of this text. 
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where n, l, and m are the principal, angular momentum and magnetic quantum numbers, 

respectively.  Notice these are analogous to the atomic quantum numbers and the jellium orbitals 

are labeled as such.  The allowed values for the jellium quantum numbers are, 

𝑛 = 1, 2, 3 …. 

𝑙 = 0, 1, 2, 3, … 

𝑚 = 0, … ± 𝑙 

with no restriction on l, which is different from the atomic case.  Thus, the first few orbitals in 

the jellium case would correspond to:  

1𝑠:  𝑛 = 1 𝑙 = 𝑚 = 0  

1𝑝: 𝑛 = 1 𝑙 = 1 𝑚 = 0, ±1 

1𝑑: 𝑛 = 1 𝑙 = 2 𝑚 = 0, ±1, ±2 

in which the number of orbitals resemble the number of orbitals found in atomic shells.  From 

this model, magic numbers arise once a jellium level is completely filled by electrons (1s, 1p, 1d, 

2s, 1f, etc.).  It should be noted in the spherical jellium model the energies of the jellium orbitals 

increase with increasing principal quantum number (n) and angular momentum quantum number, 

while orbitals with the same m value are degenerate, similar to the atomic case.  However, the 

ordering of the jellium levels are dependent on the radial form of the assumed effective jellium 

potential [21]. 

 There are three types of radial jellium potentials, the 3-D harmonic potential, the 3-D 

square well potential, and the Woods-Saxon potential.  The Woods-Saxon potential is the most 

widely used and most successful radial potential for the empirical jellium model.  The Woods-

Saxon potential is a finite, almost square well with rounded sides, which is an intermediate 

between the harmonic and square well potentials, with the form 
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𝑈 𝑅 =
−𝑈0

𝑒𝑥𝑝  𝑅 − 𝑅0 𝜍  + 1
 

where σ is a constant scaling factor with the approximate value of 7.94 × 10−11m, R0 is the 

effective radius of the cluster sphere, with U0 dependent upon the Fermi energy and the work-

function of the bulk metal via, 

𝑈0 = 𝐸𝐹 − 𝑊. 

When comparing the three commonly used potentials for the jellium model, one realizes 

there is a slight difference in the order of the jellium levels.  As for the square well potential, 

shell closings occur when the number of electrons correspond to 2, 8, 18, 20, 34, 40, 58, etc, 

while for the 3-D harmonic potential magic numbers are predicted for 2, 8, 20, 40, and 70.   The 

difference between the square well and Woods-Saxon potential occurs above the 2d orbital or 

more than 68 electrons [22].   

The Spherical Jellium Model (SJM) has been used in understanding the stability for many 

metal clusters, including the alkali and noble metal clusters.  However, it has played a significant 

role in one of the most significant discoveries in the realm of cluster science, the Superatom. The 

superatom concept was born out of the initial idea of a ―unified atom‖ from experiments 

performed on aluminum cluster anions by the Castleman group in the eighties [6]. From 

experimental observations, cluster anions containing 13, 23, and 37 atoms were found to be 

unreactive when oxygen (O2 gas) was introduced in the chamber.  It was deduced that since the 

Al atom contains three valence electrons ([Ne] 3s
2
 3p

1
), the number of electrons in the observed 

stable cluster systems corresponded to the magic numbers 40, 70, and 112 within the jellium 

model.  This was followed by the introduction of the ―superelement‖ concept from a group of 

papers beginning in 1992 from Khanna and Jena [16].  In their work, they proposed it was 

possible to design stable clusters by combing the geometric and electronic stability.  In fact, upon 
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further theoretical investigations it was discovered that the electron affinity of the Al13 cluster 

was close to that of the Cl atom (3.7 eV), which for the first time suggested the Al13 cluster was 

analogous to a halogen atom or a ―superhalogen‖ (Figure 1.2.1). This was followed by a 

multitude of theoretical and experimental studies in the cluster science field with the term 

superatom evolving from the synergistic efforts by the groups of Castleman and Khanna [23].
B
  

However, it should be noted that the current definition of a superatom cannot solely be limited to 

a cluster mimicking one selected property of an atom, but must demonstrate 1) energetic 

stability; 2) chemical stability; and 3) new chemical features beyond the analogue atoms [23].  

For example, Bergeon and co-workers not only showed that the Al13 behaved like a chlorine 

atom filling the electronic shells within the SJM and with the addition of one electron, the Al13
-
 

cluster was stable, but that one could produce polyhalides [24]. 

 

Figure 1.2.1 Comparison of the atomic levels in the chlorine anion to the spherical 

jellium levels in the Al13 anion. 

 

                                                           
B
 For a comprehensive review of these studies refer to Reference 23 and the references therein. 

Atoms vs. Clusters: Energy LevelsAtoms vs. Clusters: Energy Levels
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The novel discovery of superatoms utilizing the SJM has since lead to the expansion of 

the periodic table to three-dimensions [25].  There are several superatoms which include 

multivalent, magnetic, and even gold and silver thiolated complexes as superatoms [26 – 28].  

The most recent addition to the third dimension of the periodic chart are magnetic superatoms 

which adhere to the SJM and fills a localized magnetic sub-shell [27]. 

 

Figure 1.2.2 Example of the ellipsoidal jellium model.  Lower figure shows the 

splitting of p-energy levels for the oblate (left), spherical (middle) and prolate 

(right) jellium case. An example of the change in shape of the electron gas can be 

seen above each of the energy level columns.   

 

The spherical jellium model though useful in explaining the more dominant peaks in the 

original sodium gas phase experiments and the concept of superatoms, could not explain the 

smaller peaks that appeared in the sodium gas phase experiment.  However, in 1985 Clemenger 

used a theory developed by Nilsson to explain these smaller abundant peaks in the experiment 
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[29].  Clemenger utilized an ellipsoidal scaling factor within the Hamiltonian and derived what is 

termed as the ellipsoidal jellium model or Clemenger-Nilsson model for clusters.  In the 

ellipsoidal shell model, distortions are allowed for partially filled jellium orbital shells, with a 

perturbed 3-D harmonic oscillator potential.  The spherical symmetry is lowered, which results 

in the loss of the (2l+1) degeneracy of each jellium nl shell, however axial symmetry is retained 

meaning the ±m orbitals split into l(±m) pairs and the m = 0 orbital is on its own.     This model 

predicts stable clusters with distorted geometries, oblate and prolate (Figure 1.2.2), will show 

signs of stability with closed shells, but at different values than in the spherical jellium model. 

Since the derivation of the ellipsoidal jellium model a variety of systems have utilized the model 

to explain a variety of systems such as, quantum dots, fullerene studies, and other clusters [30 – 

34].   The ellipsoidal jellium model is very illustrative on how the shape of a cluster can indeed 

change the shell structure.  This point is further brought out in the two-dimensional jellium shell 

model. 

The two-dimensional shell model has been used to explain the stability seen in a variety 

of gold cluster systems [35].  E. Janssens and co-workers showed using Schrodinger’s electron in 

a box problem for an infinitely square potential well for a two-dimensional equilateral triangle, 

circle and square geometries that the number of electrons corresponding to a stable species is 

slightly different from those found in the spherical jellium model [36].  Since, this model has 

been used to explain the stability in a variety of planar clusters.  Hakkinen used the two-

dimensional model to explain the stability in a multitude of gold clusters [35].  Studies on cluster 

systems such as Cu7Sc, Au3Al and Au5Al, and Agn, have shown the strong presence and 

applicability of the jellium model in two-dimensions to explain the stable behavior for a variety 
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of electron counts.  It should be noted, that no matter the geometry in the 2-D jellium model 

(Figure 1.2.3) there are magic numbers at 2, 6, 12, 16 and 20 [37 – 39]. 

The spherical, ellipsoidal, and two-dimensional jellium model can explain a cluster’s 

stable behavior as the electronic shells become filled by electrons.  Therefore, one should be able 

to take advantage of the unique shell filling to build cluster assemblies.  There have been 

attempts using superatoms as building blocks for new materials with some success [40].  Thus, it 

should be possible to design cluster assemblies using of the stable clusters defined through the 

ellipsoidal and two-dimensional jellium models as well. 

 

Figure 1.2.3 Comparison of the spherical and two-dimensional jellium model.  Panel A 

shows the electronic shells for a 3-D jellium model and the electronic shells for the 2-D 

jellium models for the triangle and square geometries based on a square well potential 

can be seen in Panel B.  The numbers in red represent the total number of electrons in 

the system.  The values to the right represent the jellium shells.  The axis is the energy 

(E). 
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1.3  All-Metal Aromaticity 
 

The jellium model has been very effective in identifying stable clusters towards the ideal 

of cluster-assemblies, however it cannot explain all stable clusters such as that of boron and 

polyanions.  Boron is a trivalent element with 1s
2
 2s

2
 2p

1
 electronic configuration.  However it 

has a tendency to form directional bonds and a short covalent radius.  When looking at Bn
+
 

clusters, clusters containing 5, 11 and 13 atoms appear to magic in laser ablation experiments 

[41]. The number of electrons in these experiments would correspond to 14, 32, and 38 electrons 

respectively, which do not correspond to the ―magic‖ numbers seen in the spherical jellium 

model.  In order to explain the stability, several theoretical calculations have been attempted and 

the resulting explanation relied on an organic chemistry construct, aromaticity. 

The concept of ―pure‖ aromaticity originates in a delocalization of the molecular orbitals 

that ultimately is responsible for the stabilization of a cluster system.  The most well known 

aromatic system is the Benzene molecule or cluster (C6H6).  The p-orbitals overlap, which result 

in the formation of π-bonds. The stabilization is rooted in the delocalized pi-electrons being 

spread equally around the ring. The concept of ―pure‖ aromaticity is reserved for the organic 

compounds that must fulfill both the following criteria, 

1. It must have an uninterrupted cloud of delocalized π electrons circling above and 

below the plane of the molecule.  

2. The π cloud must contain an odd number of pairs of π electrons.   

Notice that criteria number one implies that the compound must be cyclic and planar.  It is also 

important that the aromatic compound follows Hückel's Rule.  The rule states that for a 

compound to be aromatic, it must have 4n +2 π electrons, where n is any whole number.  Thus, 
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Hückel’s Rule requires an aromatic system have 2, 6, 10, 14, 18, etc. π electrons, where n = 0, 1, 

2, 3, 4, etc. respectively [42].   

Even though aromaticity is an organic construct, in 2001 Li and co-workers used this 

concept to explain stability found in an inorganic metallic system [43].  The authors illustrated 

through examination of bonding and structure, that Al4
2-

 exhibited characteristics of aromaticity, 

by meeting the two minimum criteria above.   In fact, they proposed the Al4
2-

 cluster had 

achieved the status of all-metal aromaticity. Since this 2001 study, various systems have been 

identified as all-metal aromatic systems, including the aforementioned boron clusters, arsenic 

clusters (As5
-
), clusters composed of gold such as Au3, transition-metal systems, heteroatomic 

systems (Te2As2
2-

) and some studies have opened yet another door to include three-dimensional 

all-metal aromatic systems [44 – 45]. The mounds of research in the field of all-metal 

aromaticity has led to various types of aromaticity including sigma (σ), pi (π), and delta (δ) 

aromaticity (Figure 1.3.1) along with the advent of Hirsch's 2(N + 1)
2
 electron counting rule for 

spherical aromaticity [46 – 48].   

In order to identify an aromatic or all-metal aromatic system, one may evaluate not only 

the orbital shapes, but employ the Nucleus-Independent Chemical Shift calculation. The 

Nucleus-Independent Chemical Shift value, often abbreviated NICS, was introduced by Schleyer 

[49].  This value is based on the idea of a magnetic field inducing a current on a ring.  Schleyer 

and co-workers proposed the diamagnetic susceptibility is uniquely associated with aromaticity 

by evaluating a variety of known organic compounds and a few inorganic clusters [50]. Using 

this idea, one can determine both aromatic and antiaromatic character in a cluster system.  By 

definition aromaticity is a as a negative NICS value and antiaromaticity a positive value.  Since 

its initial applications, the NICS value has been used successfully in the identification of 



13 
 

aromatic and antiaromatic clusters and molecules [51].  However, it should be pointed out that 

even with the success of this method, there is controversy over the applicability of this criterion; 

this will not be addressed here, but the reader is encouraged to read reviews on the subject such 

as the review by Gomes and Mallion [52]. There is a more typical way to evaluate conventional 

aromaticity in organic and inorganic clusters.  The aromatic stabilization energy (ASE) and 

resonance energy can be used as a method to determine the aromatic character of an all-metal 

aromatic cluster.  Both of these energetic values require reference systems in order to complete 

their evaluations [53]. 

   

Figure 1.3.1 Schematic of aromatic orbitals in all-metal systems.  

 

 The concept of all-metal aromatic clusters as a stable classification is due to the unique 

character of delocalization is reminiscent of those seen in organic chemistry.  From the first 

identification of the all-metal aromatic cluster, it was believed by some researchers these all-

metal aromatic cluster would be incapable of forming viable assemblies [54].  This idea has 

σ         π              σ 
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recently been discarded in direct response to the recently reported cluster assembly using the all-

metal aromatic species Te2As2
2-

 by Reber and co-workers [15].  Therefore if one can identify 

more of these stable all-metal aromatic systems it may be possible design new cluster 

assemblies. 

1.4 Zintl Analogues 
 

There are groups of polyanions that are stable but whose stability cannot be fully 

explained through either the jellium model or the all-metal aromaticity concept.  These stable 

clusters are referred to as Zintl polyanions and are commonly seen in Zintl phases.  Zintl cluster 

compounds were first reported by Joannis in 1891 [55].  However, this diverse class of clusters 

received its name from E. Zintl, who in the early 1930s investigated the polyatomic anions of the 

post-transition metals and semimetals in liquid ammonia [56]. Following his lead, research on 

Zintl ions focused on improving the synthesis and on analyzing their geometric structures.  As a 

result there have been several Zintl ions observed and characterized in both chemistry and 

physics, such as E9
3-

, E9
4-

, and E5
2-

 (E = Ge, Sn, Pb), Sb7
3-

, Sb7
3-

, Sb4
2-

 and Bi4
2- 

[57 - 66].    

The geometry and bonding in Zintl clusters is achieved through the delocalization of 

electrons and lone pairs. The foundation of which is rooted in polyhedral skeletal electron pair 

theory born out of studies on borane (BnHn
2-

) clusters by Williams, Wade and Mingos.  Initially, 

Williams recognized from structural observation that boranes generated closo, nido and arachno 

structures by the loss of vertices in various ions, even proposing ―…there is a rational alternative 

to considering carborane-borane structures as icosahedral fragments…which predicts a new and 

different set of structures…‖ [67]. The study by Williams was followed by Wade, who 

recognized the structural relationship in boranes could be associated with the number of valence 

electrons [68 – 69].  Wade realized particular borane and carboranes adopted the same number of 
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skeletal electron pairs providing an explanation, from an electronic standpoint, for Williams 

observations. Then Mingos incorporated the ideas of Williams and Wade into a simple method in 

order to understand the structure in many clusters [70].  Mingos’ ―polyhedral skeletal electron 

pair approach‖ and the contributions from Wade in understanding the number of electrons seen 

in polyhedral clusters, have resulted in what is termed the ―Wade-Mingos Rules‖ for electron 

counting (Figure 1.4.1) [71].  

 

 

Figure 1.4.1 Example of Wade-Mingos rules for clusters. The number of 

electrons is represented by the equation in the top row (where n = number of 

vertices). 

 

Zintl clusters are structurally and electronically analogous to the aforementioned borane 

clusters.  This correlation realized by Corbett allows for the classification of various Zintl ions to 

fall into many of the same geometric designations for boranes using Wade-Mingos rules [72]. 

For example, in the closo-B5H5
2-

 has 2n+2 = 12 bonding electrons (each vertex provides two 

electrons), much like E5
2-

 species (E = Si, Ge, Sn, Pb). The E9
4-

 species are nido-clusters with 2n 

+ 4 = 22 cluster-bonding electrons, which in turn correspond to the nido-B9H9
4-

.  The geometry 
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of a cluster has proven to be extremely important, especially in the Zintl cluster realm.  This is 

not more evident than in the case of the 22-electron system Sn9
4-

. 

The deltahedral Sn9
4-

 illustrates high fluxional behavior for its C4v and D3h structures.  In 

contrast Sn9
2-

 cluster adhere strongly to maintaining a closo (D3h) lowest energy structure.  These 

observations have allowed Group 14 deltahedral Zintl clusters (i.e.- E9
4-

, E9
3-

 and E9
2-

) to be 

considered as a special class of Zintl clusters. As it turns out the specific geometry and electronic 

structure of nine-atom clusters are well suited for handling different charges, with very little 

distortion in the geometry of the cluster (Figure 1.4.2).  The geometry of the deltahedral Zintl 

clusters can be thought of a tricapped trigonal prism in which the edges can be elongated to some 

extent.  For these Zintl clusters, there is very little energy cost for the lengthening and shortening 

of these edges, however the electronic structure is affected greatly.  The result is a charge 

flexibility that is believed to be responsible for the diverse chemistry of Zintl clusters [73]. 

 

Figure 1.4.2 Electronic structure 

and geometries of the Sn9
2-

 and 

Sn9
4-

 Zintl clusters. 
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Over the years, there have been a multitude of studies on the Zintl ions in solution as well 

as their crystal structures (Zintl phases).  However, using identified gas phase Zintl analogue 

clusters (GPZC) for cluster assembled materials is not as abundant.  For example, recent studies 

on a variety of hetero-atomic cluster systems have revealed their stability mechanisms may be 

traced to the Zintl mechanism such as, SnxBiy
q-

 (x + y = 9; q = 1-3), Bi3Ga2
-
, and Al2Bi3

-
; but 

none of these have been shown to be successful in the formation of cluster assemblies [74 – 76].  

One recent study by Reber and co-workers showed the Zintl cluster As11
3-

 with potassium as a 

cation, shown to be stable in the gas phase, could be used to form a variety of Zintl cluster 

assemblies, which shows hope in using GPZC clusters for cluster assemblies [77].   

1.5 Metal-Carbides and Metallocarbohedrenes 
 

Metal-Carbide clusters have been proposed for various applications in nanotechnology 

with their unique, tailored properties as cluster assembled materials [78 – 80].  This fascinating 

cluster class has been explored both theoretically and experimentally by many researchers [81 – 

83]. By studying metal-carbide clusters, it can provide insight into the formation and electronic 

characteristics of metal-carbon junctions.  One rich category of metal-carbide clusters, 

Metallocarbohedrenes or commonly referred to as Met-Cars, has a stoichiometry M8C12 with M 

being one or more of several early transition metals and are of particular interest in cluster-

assemblies due to their enhanced stability [84 – 85].  Previously Met-Cars have been shown to 

exhibit low ionization energies, delayed ionization, unique relaxation dynamics, and have been 

proposed as effective catalysts [86 – 88].  Metallofullerenes and metal carbide nanocrystals have 

also been shown as important potential precursors to future nanomaterials [89 – 90].  Despite 

their importance, many structures of metal-carbide clusters are unknown.  It is critical to identify 

the structures of metal-carbides.  In particular, the electronic structure of metal carbide clusters 
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must be characterized in order to understand their unique properties that differ from both their 

atomic and bulk counterparts.   

The vast landscape of metal-carbides such as niobium-carbides and met-cars has grown 

considerably.  Yet in order for these clusters to be used as viable mass produced cluster 

assembled materials much work needs to be completed.  At the beginning of this endeavor is to 

gain understanding of the electronic properties at finite dimensions, utilizing both theoretical and 

experimental techniques.   

1.6 Chapter 1 Summary 

One of the greatest possibilities in cluster science is the idea of designing nanomaterials 

with tunable properties from a bottom-up approach.  In order to complete this daunting task it is 

necessary to not only identify stable cluster motifs as possible building blocks, but to understand 

the source of stability. Theoretical calculation based on the density functional formalism can aid 

in this endeavor by exploring both the electronic structure and energetics in the identification 

process.  Once a stable cluster has been identified, a cluster’s stability mechanism can be 

ascertained from theoretical results.  This allows for the stable motif to be placed into a specific 

category based on the source of stability.  A few categories used to define a cluster’s stability 

mechanism include jellium, all-metal aromatic, Zintl analogues and metal-carbide clusters.  Each 

category contains a variety of clusters that range in size and composition, many of which contain 

specialized sub-categories. The following chapters are devoted to the concept of using the step-

wise process of first identifying and then classifying stable cluster motifs for the development of 

nanomaterials with precise tunable properties.   
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Chapter 2  Experimental Method 
 

 

Whenever possible, the identification of stable cluster motifs can be verified along with the 

theoretical methods used, using experimental data.  The experimental method for many of the 

clusters identified in the following pages of this document was synthesized gas phase via laser 

ablation.  A schematic of the actual setup can be seen in Figure 2.1.  The experiments were 

carried out using a mass spectrometer based on a design first conceived by Wiley and Mclaren in 

conjunction with a magnetic bottle time-of-flight photodetachment electron spectra apparatus, 

which has been described in a previous publication [91].  The clusters were generated with a 

pulsed laser vaporization (LaVa) supersonic cluster beam source.  The clusters of interest are 

then mass selected prior to photdetachment.  Following mass selection the electrons are detached 

with a 308 nm (3.02 eV) excimer laser and a spectrum of the cluster is collected.  If the reader 

would like more details on the precise experimental set up and method, the reader is encouraged 

to view the publications in Appendix A.   

Cluster source
Magnetic bottle

Velocity Map
Imaging

Zone#1
P=~10-7 torr

Zone#2
P=~10-8 torr

Zone#3
P=~10-9 torr

 

Figure 2.1  Schematic of experimental apparatus used to generate clusters. 
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Chapter 3  Numerical Methods 
 

  

Over the past decades computational chemists and physicists have strived to describe the 

many-body effects for a many-electron system.  The foundation of these methods lies in quantum 

and statistical mechanics.  One method that explains many-particle interactions is the Hartree-

Fock method.  The second method, and the theoretical method of choice in this work, is the 

Kohn-Sham density functional theory.  This chapter is devoted to the explanation of theoretical 

methods and will proceed as follows: Section 3.1 is about quantum mechanics followed by the 

Hartree-Fock method (Section 3.2). Section 3.3 is on the intricacies of density functional theory, 

Section 3.3 is on the exchange-correlation functionals, section 3.4 will briefly introduce basis 

sets and the final section will explain the methods used in this work. 

3.1 Quantum Mechanics  
 

 Essential to the discussion of the electronic structure of matter is based upon the 

theoretical tenets of quantum mechanics.  The time dependent Schrodinger equation given to us 

by E. Schrodinger governs this conversation.  However, when one is concerned with atoms and 

molecules, the time-independent Schrodinger equation is utilized and is defined as,  

𝐻 Ψ = 𝐸Ψ 

where, E is the energy, Ψ is an arbitrary wave function, and Ĥ is the Hamiltonian operator.  The 

Hamiltonian is one of the most important pieces in quantum mechanics and it should come as no 

surprise to the reader this must be defined for a system of electrons and nuclei.  The Hamiltonian 

for the system of electrons and nuclei is represented by, 
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𝐻 = −
ℏ2

2𝑚𝑒
 ∇i

2 −  
𝑍𝐼𝑒

2

 𝑟 𝑖 − 𝑅  𝐼 
+

1

2
 

𝑒2

 𝑟𝑖   − 𝑟 𝑗  
−  

ℏ2

2𝑀𝐼
∇𝐼

2 +
1

2
 

𝑍𝐼𝑍𝐽𝑒
2

 𝑅  𝐼 − 𝑅  𝐽  𝐼≠𝐽𝐼𝑖≠𝑗𝑖 ,𝐼𝑖

 

where electrons are denoted by lowercase subscripts and nuclei, with charge ZI and mass MI, 

denoted by uppercase subscripts.  In this general Hamiltonian the inverse mass of the nuclei 

(1/MI) can be regarded as ―small‖.  Since the mass of the electrons is much smaller than nuclei, 

the electrons will rapidly relax to the ground state configurations.  This is the Born-Oppenheimer 

or Adiabatic approximation which allows one to decouple the nuclear and electronic motions.  

Thus, one can assume that the nuclei are stationary and solve for the electronic ground state. The 

calculation of the energy in different nuclear configurations can then allow studies of nuclear 

motions [92]. By ignoring the nuclear kinetic energy, the Hamiltonian for electronic structure 

becomes, 

𝐻 = 𝑇 + 𝑉 𝑒𝑥𝑡 + 𝑉 𝑖𝑛𝑡 + 𝐸𝐼𝐼  

The kinetic energy operator for electrons is described as, 

𝑇 =  −
1

2
∇i

2

𝑖

 

The potential acting on the electrons due to the nuclei is, 

𝑉 𝑒𝑥𝑡 =  𝑉𝐼  𝑟 𝑖 − 𝑅  𝐼  

𝑖 ,𝐼

 

The electron-electron interaction term, 

𝑉 𝑖𝑛𝑡 =
1

2
 

1

 𝑟𝑖   − 𝑟𝑗    𝑖≠𝑗

 

The final term is the classical interaction of nuclei with one another, EII, and any other terms that 

contribute to the total energy of the system.  This Hamiltonian for electrons is central to the 

theory of electronic structure [92].
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 Now we turn to solving for the ground state energy of the Schrodinger equation using the 

principle of variation.  Let us begin by stating we have a system in the state Ψ.  The energy 

formula is given by, 

𝐸 Ψ =
 Ψ Η  Ψ 

 Ψ Ψ 
 

where  Ψ Η  Ψ =  Ψ*𝐻Ψd𝐱. We can see that each measurement of the energy will result in the 

eigenvalues of the Hamiltonian operator, which is the energy computed from the guessed state Ψ 

to the true ground state energy or, 

𝐸[Ψ] ≥ 𝐸0 

If the functional E[Ψ] is fully minimized with respect to N-electron wave function one would 

obtain the true ground state Ψ0 and energy E0.  The formal proof of the minimum-energy 

principle requires the expansion of Ψ in the terms of the normalized eigenstates of the 

Hamiltonian and Ψk or 

Ψ =  𝐶𝑘Ψ𝑘

𝑘

 

Therefore, the energy becomes 

𝐸 Ψ =
  𝐶𝑘  

2𝐸𝑘𝑘

  𝐶𝑘  2
𝑘

 

where Ek is the energy for the k
th

 eigenstates of the hamiltonian operator.  Every eigenstates is an 

extremum of the energy functional, thus one may replace the Schrodinger equation with the 

variational principle 

𝛿𝐸 Ψ = 0. 

It is beneficial to restate the above equation such that Ψ can be normalized.  This can be 

accomplished using the method of Lagrange undetermined multipliers.  The end result yields, 
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𝛿  Ψ 𝐻  Ψ − 𝐸 Ψ Ψ  = 0 

In this equation, one must solve for Ψ as a function of E and adjust E until normalization is 

achieved and the ground state energy is found.   

3.2  Hartree-Fock Method 
 

One standard method of many-particle theory is the Hartree-Fock method and is 

mentioned here for completeness.  In this method, the electrons obey Fermi-Dirac statistics 

which allows the wave function to be antisymmetric.  The result is that one can write an 

antisymmetrized determinant for a fixed number of electrons (N), in the Hartree-Fock approach, 

from which the single determinant that minimizes the total energy for the full interacting 

hamiltonian is found.  If there is no spin-orbit interaction, the determinant wavefunction Φcan be 

written as a Slater determinant 

Φ =
1

 𝑁!
 

𝜙1(𝑟1, 𝜍1) 𝜙1(𝑟2, 𝜍2) 𝜙1 𝑟3, 𝜍3 …

𝜙2(𝑟1, 𝜍1) 𝜙2(𝑟2, 𝜍2) 𝜙2 𝑟3, 𝜍3 …

𝜙3(𝑟1, 𝜍1) 𝜙3(𝑟2, 𝜍2) 𝜙3 𝑟3, 𝜍3 …
⋮ ⋮ ⋮

  

where ϕi(rj,σj) are single particle ―spin-orbitals‖ each of which is a product of a function of the 

position and a function of the spin variable.  The spin-orbitals must be linearly independent.  If 

the Hamiltonian is independent of the spin, the expectation value of the Hamiltonian in Hartree 

atomic units with the wavefunction is, 

 Φ 𝐻  Φ =   𝑑𝑟 

𝑖 ,𝜍

𝜓𝑖
𝜍∗ 𝑟  −

1

2
∇2 + 𝑉𝑒𝑥𝑡  𝑟  𝜓𝑖

𝜍 𝑟 + 𝐸𝐼𝐼

+
1

2
 𝑑𝑟𝑑𝑟′

𝑖 ,𝑗 ,𝜍𝑖 ,𝜍𝑗

𝜓𝑖
𝜍∗ 𝑟 𝜓𝑗

𝜍∗ 𝑟′ 
1

 𝑟 − 𝑟′ 
𝜓𝑖

𝜍  𝑟 𝜓𝑗
𝜍 𝑟′ 

−
1

2
 𝑑𝑟𝑑𝑟′

𝑖 ,𝑗 ,𝜍

𝜓𝑖
𝜍∗ 𝑟 𝜓𝑗

𝜍∗ 𝑟′ 
1

 𝑟 − 𝑟′ 
𝜓𝑗

𝜍  𝑟 𝜓𝑖
𝜍 𝑟′  
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The first term involves a sum over orbitals and groups the single-body expectation values 

together.  The third and fourth terms are the direct and exchange interactions among electrons.  

Here the ―self-interaction‖ is included but cancels in the sum of direct and exchange terms [92]. 

 The Hartree-Fock approach minimizes the total energy with respect to all degrees of 

freedom in the wavefunction. When the variational principle is applied will lead to the Hartree-

Fock equations,    

 −
1

2
∇2 + Vext  𝐫 +   d𝐫′ψ

j

σ j∗ 𝐫′ 

j,σ j

ψ
j

σ j 𝐫′ 
1

 𝐫 − 𝐫′  
 𝜓𝑖

𝜍  𝒓 

−   d𝐫′ψj
σ 𝐫′ 

j

ψi
σ 𝐫′ 

1

 𝐫 − 𝐫′  
ψj

σ 𝐫 = εi
σψi

σ 𝐫 . 

Within the Hartree-Fock approximation, the exchange term is summed over all orbitals of the 

same spin, which includes the self-term i = j that cancels the unphysical self-term included in the 

direct term.  It should be noted that the Hartree-Fock approximation is a self-consistent approach 

and the Hartree-Fock equations can be solved directly only in special cases and will not be 

discussed further [93].  There are disadvantages to using the Hartree-Fock approximation (HFA). 

For example, the HFA requires four center integrals that require a great deal of computational 

time and the energy gaps are overestimated, thus this approach can only be used for simple 

system like molecules.  

 One method to reduce the limitations of the Hartree-Fock method is to go to post-

Hartree-Fock methods some of which are based on the variational principle.  The configuration 

interaction method (commonly referred to as CI) can be used for solving the many body 

Hamiltonian.  This variational method is used in conjunction with the orbitals from the Hartree-
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Fock determinants.  Even though the CI method is an improvement over the Hartree-Fock 

method, it also is has an extensive computational cost.        

3.3 Density Functional Theory 
 

 Density Functional Theory (DFT) is a theory of correlated many-body systems.  The 

history of density functional theory spans back to 1927, however its usefulness was established 

in 1964 and 1965 [94 – 95].  We begin by discussing the original formulation of density 

functional theory of quantum systems which was proposed by Thomas and Fermi in 1927.   

3.3.1 Thomas-Fermi-Dirac Approximation 
 

The original assumptions on the ideal of using density rose out of the paper by Thomas in 

1927 where he stated, ―Electrons are distributed uniformly in the six-dimensional phase space for 

the motion of an electron at the rate of two for each h
3
 of volume,‖  He went on to state that the 

effective potential field ―is itself determined by the nuclear charge and this distribution of 

electrons.‖  Thus, in the original Thomas-Fermi approximation (TF) the kinetic energy of the 

system of electrons can be approximated as an explicit functional of the density.  The electrons 

are idealized as a non-interacting system in a homogeneous gas with a density that is equal to the 

local density at any given point, such that   

𝐸𝑇𝐹[𝜌] = 𝐶1  𝑑𝒓𝜌(𝒓)(
5
3

)
 

Here, 𝐶1 =
3

10
 3𝜋2  2 3  = 2.871 in atomic units. Equation --- is known as the Thomas-Fermi 

kinetic energy.  The importance of the Thomas-Fermi kinetic energy rests in that this 

approximation defines the electronic kinetic energy in terms of the density.  It should be noted 

that in their original formulation, both Thomas and Fermi neglected exchange and correlation 
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among the electrons.  However, in 1930 Dirac extended the original formulation and added a 

local approximation for the exchange, via, 

𝐸𝐷[𝜌] = 𝐶2  𝑑𝒓𝜌(𝒓)(
4
3

)
 

where 𝐶2 = −
3

4
 

3

𝜋
 
 1 3  

.  By placing the Thomas-Fermi kinetic energy and Dirac’s exchange 

energy into the energy functional, we get the Thomas-Fermi-Dirac approximation (TFD) 

𝐸𝑇𝐹𝐷 𝜌 = 𝐸𝑇𝐹 𝜌 + 𝐸𝐷 𝜌 +   𝑑𝒓𝑉𝑒𝑥𝑡  𝒓 𝜌 𝒓 +
1

2
 𝑑𝒓𝑑𝒓′

𝜌 𝒓 𝜌(𝒓′)

 𝒓 − 𝒓′ 
 

 for electrons in an external potential Vext(r), where the last term is the classical electrostatic 

Hartree energy [96].  The ground state density and energy can be found by minimizing the 

functional in the TFD approximation given a constraint on the total number of electrons (N).  

However using the method of Lagrange mulitpliers the solution can be found by an 

unconstrained minimization of the functional, 

Ω𝑇𝐹𝐷 𝜌 = 𝐸𝑇𝐹𝐷 𝜌 − 𝜇{ 𝑑𝒓𝜌 𝒓 − 𝑁} 

where the Lagrange multiplier μ is defined as, 

𝜇 =
𝛿𝐸[𝜌 𝒓 ]

𝛿𝜌(𝒓)
 

or the Fermi energy.  This form then result in the Euler-Lagrange equation, 

5

3
𝐶𝐹𝜌2 3  𝒓 − 𝜙 𝒓 = 𝜇 

where ϕ(r) is the electrostatic potential at point r due to the nucleus and the entire electron 

distribution. 

 The approach taken by Thomas, Fermi and Dirac is quite attractive compared to the full 

many-body Schrodinger equation that involves 3N degrees of freedom for N electrons, since 
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there is only one equation that needs to be solved. However, this original approach has several 

flaws in its implementation and was not useful in the description of electrons in matter.  Thus, 

this approximation was put on the shelf by most scientists.  Then in the mid 1960’s modern day 

density functional theory gained renewed interest due to two essential theorems by Hohenberg 

and Kohn and is the foundation upon which the density functional formalism is built. 

3.3.2 Hohenberg and Kohn Theorems 
 

The central foundation of the density functional formalism is built upon the Hohenberg-

Kohn theorems presented in 1964.  The relations established by Hohenberg and Kohn are 

important for any practitioner of density functional theory to understand.  The first theorem 

states, 

For any system of interacting particles in an external potential 𝑉𝑒𝑥𝑡 (𝑟 ), the 

potential is determined uniquely, except for a constant, by the ground state 

particle density 𝜌0(𝑟 ). 

This theorem implies that all properties of the system are completely determined if one knows 

the ground state density, since the hamiltonian is fully determined, except for a constant shift of 

the energy.  This is followed by the second theorem, which states, 

A universal functional for the energy E[ρ] in terms of the density 𝜌(𝒓) can be 

defined, valid for any external potential 𝑉𝑒𝑥𝑡 (𝒓). For any particular potential, the 

exact ground state energy of the system is the global minimum value of this 

functional, and the density that minimizes the functional is the exact ground state 

density 𝜌0(𝒓). 

Essentially theorem two asserts that the functional itself is sufficient to determine the precise 

ground state density and energy.  The original proof for the second theorem is restricted to 

ground state densities of the electron Hamiltonian with some external potential Vext, or ―V-

representable‖ densities.  This defines a space of possible densities within which one can 
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construct functionals of the density.  From theorem II, the exact ground state energy can be 

obtained by, 

𝐸[𝜌] = 𝑚𝑖𝑛  𝐹 𝜌 +  𝑑𝑟 𝜌 𝑟  𝑣𝑒𝑥𝑡 (𝑟 )  

where the exact ground-state density is the density that minimizes the expression for the energy.  

The functional F[ρ] contains the kinetic energy of electrons and electron-electron interaction 

energy.   

The Hohenberg-Kohn theorems do establish that the energy functional exists, however 

there is no information on how to construct it [97].  One of the main difficulties resides in 

determining the kinetic energy directly from the density.  In order to address this challenge, we 

are now led to the Kohn-Sham DFT approach, which includes the kinetic energy of non-

interacting electrons in terms of independent-particle wavefunctions, in addition to the 

interaction terms being explicitly modeled as functionals of the density. 

3.3.3 The Kohn-Sham Approach 
  

So far the idea of obtaining the ground-state energy of a many-electron system by 

minimizing the energy functional is indeed appealing.  However, one must construct the 

functionals in order to make the approach work.  In what resulted as a successful attempt to do 

just that, Kohn and Sham invented an approach to the kinetic-energy functional now called the 

Kohn-Sham method.  Their novel 1965 paper turned density functional theory into a useful tool 

for calculations.   

The Kohn-Sham approach relies on two points: 
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1. The ground state density can be represented by the ground density of an 

auxiliary system of non-interacting particles termed “non-interacting V-

representability”. 

2. The auxiliary hamiltonian is chosen to have the usual kinetic operator and an 

effective local potential 𝑉𝑒𝑓𝑓
𝜍  acting on a electron of spin σ at point 𝑟 . 

Essentially, the Kohn-Sham approach replaced the many-body interacting system that obeys the 

Hamiltonian with a different auxiliary system.  This means that the actual calculations are 

performed on the auxiliary independent-particle system.  The density of this auxiliary or model 

system is written in terms of the molecular orbitals of the non-interacting system as, 

𝜌 𝑟  =  𝜑𝑖 𝑟  
𝑖

𝜑𝑖(𝑟 ) 

with the total energy of the system being obtained by, 

𝐸𝐾𝑆 𝜌 = 𝑇𝑆 𝜌 + 𝑈 𝜌 + 𝐸𝑥𝑐  𝜌 +  𝑑𝑟 𝜌 𝑟  𝑣𝑒𝑥𝑡 (𝑟 ) 

The kinetic energy TS is given for the non-interacting system as, 

𝑇𝑆 𝜌 = −
1

2
  𝜑𝑖 ∇

2 𝜑𝑖 

𝑖

 

The classical Coulomb energy U[ρ] is defined as, 

𝑈 𝜌 =
1

2
 𝑑𝑟 1𝑑𝑟2    

𝜌 𝑟1      𝜌(𝑟 2)

 𝑟 1−𝑟 2 
. 

By solving the Kohn-Sham equations, 

 −
1

2
∇2 + 𝑣𝑒𝑥𝑡  𝑟  + 𝐽 𝑟 ; 𝜌 + 𝑣𝑥𝑐  𝑟 ; 𝜌  𝜑𝑖 = 휀𝑖𝜑𝑖  

where, 

𝐽 𝑟; 𝜌 =
𝛿𝑈 𝜌 

𝛿𝜌 𝑟  
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and 

𝑣𝑥𝑐 =
𝛿𝐸𝑥𝑐  𝜌 

𝛿𝜌 𝑟  
 

one can obtain the molecular orbitals that are used to build the density and kinetic energy.  These 

equations are self-consistent.  First an initial trial density is chosen and the potentials J and vxc 

are constructed.  After which, the molecular orbitals are solved for and the total energy is 

obtained.  If the density from the molecular orbitals is deemed not to be self-consistent, the 

procedure is repeated.  However, once self-consistency is achieved, depending on the exchange-

correlation functional, 𝐸𝑥𝑐  𝜌 , the density and energy is understood to be the exact ground state.  

 The genius of the Kohn-Sham approach lies in the explicit separation of the independent-

particle kinetic energy and the long-range Hartree terms, which result in the exchange-

correlation functional Exc being approximated.  The down side of the exact exchange-correlation 

functional is it requires one to solve the Schrödinger equation and obtain the wavefunction.  

However, the functional can be reasonably approximated as local or nearly local functional of 

the density.
 
 The functional for exchange-correlation is so important the next section is devoted 

to the various functionals for exchange-correlation. 

3.3.4 Functionals for exchange-correlation 
 

 The local density approximation (LDA) or more generally the local spin density 

approximation (LSDA) is a functional in which the exchange-correlation energy is an integral 

over all space with the exchange-correlation energy density at each point is assumed to be the 

same as in a homogeneous electron gas with that density. This is represented by, 

𝐸𝑥𝑐
𝐿𝑆𝐷𝐴 𝜌↑, 𝜌↓ =  𝑑𝑟𝜖𝑥𝑐

𝑜𝑚  𝜌↑ 𝑟  , 𝜌↓(𝑟 )  
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where the exchange energy density, which can be calculated directly, for the homogeneous 

electron gas is, 

𝜖𝑥𝑐
𝑜𝑚 = −

3

4
 

6

𝜋
 

1/3

 𝜌↑
4/3

, 𝜌↓
4/3

 . 

The LSDA is the most general local approximation, while for the unpolarized system the LDA is 

found by setting 𝜌↑ 𝑟  = 𝜌↓ 𝑟  = 𝜌(𝑟 ) 2 .  The LSDA functional’s correlation energy has been 

calculated to great accuracy with Monte Carlo methods.
 
 It should be noted this functional works 

very well for solids close to a homogeneous gas but much worst for systems that are 

inhomogeneous, like atoms.  Other downfalls of this functional include underestimated bond 

lengths, poor total energies, and the functional is unable to describe reaction barriers.  As one can 

imagine these shortcomings show the need for improved functionals. 

 In an effort to improve the exchange-correlation functional, one may think to expand the 

interactions using a gradient of the density as well as the value at each point.  This gradient 

expansion approximation (GEA) was suggested and attempted.  However, the GEA does not lead 

to improvements over the LSDA and violates the sum rules as well as a divergent exchange-

correlation potential in finite systems.  Even though the GEA does not lead to improvements, the 

idea of using a local gradient of the density has resulted in the emergence of the generalized-

gradient approximations (commonly referred to as GGA). 

 Generalized-gradient expansion (GGA) is a term that refers to a variety of ways for 

functions that modify the behavior at large gradients in such a way to preserve the desired 

properties.  In a typical GGA, the LSDA energy density (homogeneous electron gas) is 

multiplied by a dimensionless factor (Fxc) which results in the expression, 

𝐸𝑥𝑐
𝐺𝐺𝐴 = 𝐸𝑥𝑐

𝐿𝑆𝐷𝐴𝐹𝑥𝑐   . 
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There are many popular GGA functional for exchange and correlation.  Some examples include 

B88 exchange functional, LYP correlation functional, and the PW91 functional for exchange and 

correlation. One of the most widely used functional for exchange and correlation is the 

functional described by Perdew, Burke, and Enzerhof (PBE).  The PBE functional for exchange 

and correlation is defined as, 

𝐸𝑋𝐶
𝑃𝐵𝐸  𝜌↑, 𝜌↓ =  𝑑3𝑟𝜌(𝒓)𝜖𝑋𝐶

𝑃𝐵𝐸 𝑟𝑠(𝒓), 휁(𝒓), 𝑠(𝒓)  

where, 𝜖𝑋𝐶
𝑃𝐵𝐸 is the exchange energy per particle of a uniform electron gas and depends on ρ,s, and 

ζ.  In this project, most cases involve using the original PBE functional shown here.  The benefit 

of using such GGA functionals for the exchange-correlation, like PBE, is shown by achieving 

better results such as, total energies, atomization energies, and correcting of the underestimation 

of bond lengths. However, there continues to be room for improvement. 

 For completeness, I would like to mention that there are other functionals such as meta-

GGAs which incorporate the Laplacian and/or the kinetic energy of the density,  

𝜏 𝑟  =
ℏ2

2𝑚
  ∇𝜑𝑖(𝑟 ) 2

𝑖 . 

Meta-GGAs do show improvements over GGAs, but still suffer from at times over correcting the 

bond lengths.  There are also non-local functionals, which include the average density 

approximations (ADA) and the weighted density approximation (WDA).  These functionals not 

only take into account the density at the point r and its derivatives, but also the behavior of the 

density at different points.  In practice these non-local functionals are computationally expensive 

and are rarely used.    

 So far, we have discussed non-local functionals and semilocal functionals (LSDA, GGA, 

and meta-GGAs).  Of these two categories, semilocal functionals appear to be simple and 

efficient.  However, many of these semilocal functionals fail for describing van der Waals 
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interactions.  If one would like to achieve more accuracy, one could take a mixture of semilocal 

and nonlocal methods.  This has been accomplished using hybrid functionals.  Hybrid 

functionals incorporate both the semilocal and nonlocal Hartree-Fock type exchange.  The actual 

hybrid ―global‖ formulation can be written as, 

𝐸𝑥𝑐 = 𝐸𝑥𝑐
𝐷𝐹𝐴 + 𝑐 𝐸𝑥

𝐻𝐹 − 𝐸𝑥
𝐷𝐹𝐴  

where c is some constant, 𝐸𝑥𝑐
𝐻𝐹   is the exact Hartree-Fock type exchange, and 𝐸𝑥𝑐

𝐷𝐹𝐴  is the 

exchange energy form a semilocal density functional approximation.  For example Perdew, 

Ernzerhof, and Burke proposed the a mixing in ¼ Hartree-Fock exchange energy which has the 

form, 

𝐸𝑥𝑐 = 𝐸𝑥𝑐
𝐿𝐷𝐴 +

1

4
(𝐸𝑥

𝐻𝐹 − 𝐸𝑥
𝐷𝐹𝐴). 

There are many examples of hybrid functionals.  The most popular which uses 20% exact 

exchange is the B3LYP functional.  In general, these functionals describe the thermochemistry 

and reaction barriers very well, but like the GGA and LSDA functionals nonlinear optical 

properties are still poor.  The question now becomes, what is the main cause for the problems in 

the functionals of DFT?  The answer can be traced to on major issue: Self-Interaction Error. 

 The self interaction error (SIE) arises from the fact that DFT functionals allow an 

electron to interact with itself.  This is not the case in the Hartree-Fock approximation.  In the 

Hartree-Fock approximation the unphysical self-term is exactly cancelled by the non-local 

exchange interaction.  Since this term is present using the DFT functionals, one must ascertain 

how it can affect the results.  In many-electron systems, the presence of the SIE causes artificial 

stabilization of delocalized electronic states.  Thus, the delocalization can lead to 

underestimation of reaction barriers, errors in polarizabilities and descriptions of the charge 

transfer processes.  However, semilocal functionals can mimic important nondynamical 
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correlation effects that would otherwise require expensive correlated calculations.  It should be 

noted that the remaining spurious self-interaction terms are negligible in the homogeneous gas, 

but can be large in confined systems.  There is also a self interaction correction method that can 

be employed that can correct the self interaction issue and does allow for improvements in the 

theory. 

3.3.5 Basis Sets 
 

 Essential to computations in the KS-DFT approach are the atomic orbitals.  Practically all 

applications of KS-DFT make use of the linear combination of atomic orbitals expansion 

(LCAO) of the KS molecular orbitals.  In the LCAO approach, the orbitals are linearly expanded 

as, 

𝜑𝑖 =  𝑐𝜇𝑖 휂𝜇

𝐿

𝜇=1

 

where L is a set of predefined basis functions {ημ} and cμi represents expansion coefficients.  

Basis functions are used to express the orbitals for atoms in the KS scheme, while a basis set is a 

combination of the mathematical functions (basis functions) used to represent the atomic 

orbitals.  The basis functions describe the radial and angular distributions of the electron density.  

There are two types of basis functions used in the computational approach of KS-DFT, they are 

Slater-type-orbitals and Gaussian-type-orbitals [98]. 

Slater-type-orbitals (STO) were proposed by Slater in 1930 for the description of the 

radial part of the atomic orbitals [99].  These functions were initially defined by Slater’s rules, 

thus they were not determined variationally.  However, Roothaan and Bagus wrote an SCF code 

for atoms using the LCAO approximation discussed above [100].  They introduced the form used 

in practice for the typical STO, i.e-- 
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휂𝑆𝑇𝑂 = 𝑁𝑟𝑛−1𝑒𝑥𝑝 −휁𝑟 𝑌𝑙𝑚  Θ, 𝜙 . 

here, N is the normalization factor, n corresponds to the principal quantum number, the orbital 

exponent is termed ζ, and Ylm are the usual spherical harmonics.  The parameter ζ were 

optimized variationally with respect to each total atomic energy.  The STO functions have 

benefits and their downfalls.  One huge benefit is STO basis sets reproduce the regions near the 

nucleus correctly and they decay properly a long r distances, in a similar way that atomic orbitals 

do.  However, one huge downfall is computational time.  It is well known that STO functions are 

difficult to handle because they cannot be calculated analytically. 

Gaussian-type-orbitals (GTO) are alternatives to the STOs mentioned above and are more 

commonly used.  These consist of the form, 

휂𝐺𝑇𝑂 = 𝑁𝑥𝑙𝑦𝑚𝑧𝑛𝑒𝑥𝑝 −𝛼𝑟2   . 

Here N is a normalization factor, α represents the orbital exponent which determines how 

compact (large) or diffuse (small) the resulting function will be.  While 𝐿 = 𝑙 + 𝑚 + 𝑛 is used to 

classify the GTO as either s- (L=0), p- (L=1), d- (L=2), etc.  The largest advantage of GTO is 

they are easy to handle since they can be calculated analytically.  However, unlike Slater-type-

orbitals, the Gaussian-type-orbitals give a poor description close to the nucleus of the atom and 

fall off too rapidly at r→∞. These problems can be overcome by using a linear combination of 

GTO.  Thus, GTO are typically the choice in many programs.   

 There is another basis employed in other DFT schemes, however it does not comply with 

the LCAO approach and that is plane waves.  Plane waves are solutions of the Schrodinger 

equation of a free particle and are simple exponential functions of the general form 휂𝑃𝑊 =

𝑒𝑥𝑝 𝑖𝑘  𝑟    where the vector 𝑘    is related to the momentum of the wave via, 𝑝 = ℏ𝑘  .  Plane waves 

are not centered at the nuclei, but they extend throughout the complete space. 
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 Regardless of which type of function is chosen for the representation of the atomic 

orbital, there are ways to categorize the quality of the chosen basis set.  For example, the 

simplest and least accurate uses only one basis function and termed minimal.  One example is the 

STO-3G basis set, which is three primitive GTO functions are combined into one CGF.  The next 

level of basis sets are termed split basis sets. The split basis has a set of two (or more) functions 

of different sizes or radial distributions.  The ―split‖ is due to the doubled set of functions being 

applied to on the valence electrons, while the core electrons are still treated in a minimal set.  In 

this category, one finds the double-zeta basis where one finds there are two functions for each 

orbital, which is represented as DVZ.  There are various basis sets with various numbers of 

functions, such as triple, quadruple, and even quintuple zeta basis sets and each are represented 

with the typical VXZ notation (where X represents the number of functions). In most 

applications the basis set is augmented by polarization functions.  Polarization functions are 

functions of higher angular momentum than those occupied in the atom.  Thus, polarized X-zeta 

basis sets are used very readily in calculations and are typically denoted as either XVZP or -

pVXZ.  Often higher representatives of these basis sets are noted as cc-pVXZ, where cc-pV 

stands for correlation-consistent polarized valence; these are built to recover amounts of 

correlation energy in an atomic calculation.  One also finds various augmented (aug-) correlation 

consistent polarized valence functions and those with added diffuse functions as well.   Many of 

the aug-cc-pVXZ basis sets consist of some type of orbital contraction.  In most cases, any of the 

above basis sets are good when considering many of the atoms on the periodic chart, however if 

the atom is heavier than Krypton, one must begin to think about relativistic effects.   

There are two main ways to take relativistic effects into account one such way is to use a 

relativistic effective core potential (RECP).  Effective core potentials (ECP) model the 
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energetically deep-lying inert core electrons, or treat them as if they are ―frozen‖; thereby only 

treating the valence electrons explicitly.    These ECPs are only termed relativistic or quasi-

relativistic if they have been fitted to atomic calculations that explicitly incorporate relativistic 

effects.
  

The other way is to deal with the relativistic effects using ―regular approximations‖ 

introduced by Lenthe and co-workers [101]. Both methods are used in computations for atoms 

larger than Krypton and transition metals.  It should be noted that there are also auxiliary basis 

functions that can be incorporated into the theory, but these will not be discussed here.  For more 

information on auxiliary basis functions please refer to the book by Trindle and Shillady [102]. 

 There are some problems with using basis sets, such as the basis set superposition error 

(BSSE).  This arises from the use of a finite sized basis set which is adopted to compute the 

interaction energy as the difference between the total energy of the complex and the sum of the 

total energies of the non-interacting fragments.  The interacting of the complex will expand its 

respective wave function using virtual orbitals of the other.  A result of this is the lowering of the 

total energy of the complex with respect to its fragments and as such, an artificial overestimation 

of the complex energy.  One way to estimate the BSSE is using the counterpoise correction.    

 The counterpoise correction (CP) was introduced by Boys and Bernardi in 1970 [103].  I 

will give a brief example of the original Boys and Bernardi (BB) CP correction for the potential 

energy surface.  Let’s say there are two atoms, atom A and B.  The BSSE content of the 

interaction energy is defined as 

𝛿𝐵𝑆𝑆𝐸 = 𝐸𝐴 𝐴𝐵 − 𝐸𝐴 𝐴 + 𝐸𝐵 𝐴𝐵 − 𝐸𝐵(𝐵) 

where EA(A) and EB(B) are the energies of the monomers calculated in the respective monomer 

basis sets; EA(AB) and EB(AB) are energies of the two atoms calculated in the complex of 

interest.  The BBCP-correction for the potential energy surface for a dimer is defined as, 
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𝐸𝐵𝐵 = 𝐸𝐴𝐵 𝐴𝐵 − 𝛿𝐵𝑆𝑆𝐸  

where EAB(AB) is the total energy of the complex.  If one looks at the previous equation, one has 

to calculate five different total energies at every geometrical arrangement of the system of 

interest to determine a CP-corrected potential energy surface. Simon et al. showed that various 

derivatives of the BBCP-correction can be calculated easily and set up UNIX scripts and small 

FORTRAN programs to do so [104]. Since the initial BB CP-approach was published in 1970, it 

has been used in many calculations with various sizes of basis sets.
C
  However, it should be 

noted that this correction, though useful tends to overestimate the BSSE in some cases.   

3.4 Implementation of Density Functional Theory 
 

In this project, the actual implementation of DFT will be accomplished by employing 

various software programs. The mainstay of geometry optimization and energetic will come 

from deMon2k, established by Andreas and co-workers
 
[105]. Other codes used include, Naval 

Research Laboratory Molecular Orbital Library code (NRLMOL) by Pederson and co-workers, 

as well as Amsterdam Density Functional package (ADF) and Guassian03 [106 -108].  

Throughout this text there may be comparisons made between the various programs, when 

applicable.  However, this author will not explicitly state advantages or disadvantages between 

any of the packages used for this project.  The following sections are devoted to the codes used 

for this project and the precise method for obtaining the lowest energy structures for the cluster 

and cluster assemblies in the following chapters. 

3.4.1 deMon2k 
 

 The deMon2k (density of Montreal) code was developed by Köster and co-workers.  It is 

a software package designed for the implantation of density functional theory calculations.  The 

                                                           
C
 The original paper by Boys and Benardi (Reference 103) has been cited over 7,000 times. 
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code uses a linear combination of Gaussian-type orbital (LCGTO) approach in order to solve the 

self-consistent KS-DFT equations.  In order to calculate the four-center electron repulsion 

integrals, the code uses a variational fitting of the Coulomb potential. Another feature of the 

deMon2k code is the use of an auxiliary density.  The approximated density is expanded in 

primitive Hermite Gaussians which are centered at the atoms.  The auxiliary density 𝜌 (𝒓) is 

defined as, 

𝜌  𝒓 =  𝑥𝑘𝑘 (𝒓)

𝑘

 

where 𝑘 (𝒓) is the Hermite Gaussians.  The auxiliary density is expanded in primitive Hermite 

Gaussian functions, either the GEN-A2 or GEN-A2* function sets.  The GEN-A2 function set 

contains s, p, and d functions for the atom chosen.  The GEN-A2* function set has a similar 

structure as the GEN-A2, but includes the f and g functions for the atom of choice.  When 

calculating the exchange-correlation potential, this is done along with the orbital density. The 

integration of both the exchange-correlation energy and potential is carried out on an adaptive 

grid.  In the cases where an ECP is chosen as the basis for a particular atom, a half-numeric 

integrator is employed for the ECP integrals [109].   

 One big advantage is that deMon2k can be employed for any atom on the periodic table 

of elements. The code can also take into relativistic effects by using either relativistic or quasi-

relativistic ECPs, RECP and QECP respectively.  However, one downfall with the program is its 

inability to use hybrid functionals for exchange-correlation.  In light of this, deMon2k is the 

primary code employed in this document for optimization of the atomic clusters studied here.  

For the clusters studied here, various initial geometries were attempted and allowed to optimize 

without constraints so as to not get trapped in a potential well [110].  Within the deMon2k code 
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there are various functionals that can be applied for the exchange and correlation.  However, it 

does not support hybrid functionals.  

 3.4.2  Amsterdam Density Functional Package (ADF) 
 

 The Amsterdam Density Functional Package (ADF) is a molecular DFT program 

available through Scientific Computing & Modeling [111].  One large feature of the ADF 

package is it uses Slater-type functions or STOs versus GTOs for the basis sets.  The numerical 

integration for the matrix elements of the exchange-correlation potential, as well as other 

integrals that cannot be done analytically, is carried out using a Gaussian-type quadrature method 

which is based on the partitioning of space in atomic cells.  The integration is completed on an 

adaptive grid. The analytical calculation of the Coulomb matrix is carried out using a numerical 

integration scheme.  ADF also uses a set of auxiliary ―fit functions‖ for the density which are 

also STO-type functions, but differ from the basis functions [112].  The geometry optimization is 

carried out using the Broyden Fletcher Goldfarb Shanno (BFGS) method, which contains a bias 

to keep the Hessian positive-definite [113].   

Another feature of ADF is its ability to compute all atoms on the periodic table, much 

like deMon2k.  However, instead of using either ECPs or pseudopotentials, it can treat the all-

electron basis sets by simply using a frozen core approximation.  By employing the frozen core 

approximation, one can obtain the total charge density and potential in the valence and in the 

core region, ignoring the slight change in the deep-core orbitals upon the formation of a chemical 

bond.  As mentioned above when treating atoms with atomic numbers larger than 36, it is 

important to take into account the relativistic effects for an atom.  ADF does this by 

incorporating the quasi-relativistic method based on the Pauli Hamiltonian or using the Zeroth 

Order Relativistic Approximation (ZORA).  In this study the relativistic effects are accounted for 
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in ADF using only the ZORA scheme.  The ZORA method can be obtained by rewriting the 

energy expression and expanding the parameter, 

𝐸

(2𝑚𝑐2 − 𝑉)
 

This value remains small even close to the nucleus.  If one only retains the Zeroth order term, the 

resulting ZORA Hamiltonian becomes, 

𝐻𝑍𝑂𝑅𝐴 =  𝑝𝑖

𝑐2

2𝑚𝑐2 − 𝑉
𝑝𝑖 +

𝑚𝑐2

(2𝑚𝑐2 − 𝑉)2
𝜍 ∙  ∇𝑉 × 𝒑 + 𝑉.

𝑖

 

The more intricate details on the ZORA approximation please refer to the articles by Lenthe and 

coworkers [114 – 116].  

 An added useful feature in ADF is the ability of the program to calculate the shielding 

tensor of nuclear magnetic resonance (NMR) spectroscopy [117].  The NMR shielding tensor is 

the second derivative of the energy with respect to the magnetic field Bk in each direction k = x, 

y, z and the magnetic moment of the nucleus μt  in each direction t = x, y, z, and is defined as, 

𝜍𝑘𝑡 =
𝜕2𝐸

𝜕𝐵𝑘𝜕𝜇𝑡
 

The method to calculate the tensor has been formulated in the gauge including atomic orbitals 

(GIAO) framework [118].  The importance of this feature is due to the possibility to run nucleus 

independent chemical shift (NICS) calculations and well as molecular orbital NICS (MO-NICS) 

calculations for various clusters.  One can also run a variety of other calculations for the 

identification of other important cluster properties, including Electron Spin Resonance (ESR), 

Time-dependent DFT, excitation energies, and polarizabilities.
D
 

3.4.3  Guassian03 
 

                                                           
D
 For more details refer to Reference 20. 
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The Guassian03 package is a program used by various theoretical chemists for cluster 

studies and other applications.  In this project, the program has been employed only for various 

NMR or NICS calculations.  The method to do this in the program may be computed with the 

Continuous Set of Gauge Transformations (CSGT) method and the GIAO method [119 – 121].  

For more details on the Gaussian software package please visit their website.
E
 

3.4.4  Naval Research Laboratory Molecular Orbital Library code 
 

 The Naval Research Laboratory Molecular Orbital Library (NRLMOL) code was 

developed by M. R. Pederson et al [106].  NRLMOL uses Gaussian functions as the basis sets 

and are centered at the atomic sites.  The atomic sites are incorporated and used on a mesh that 

integrates the charge density.  The electron spin densities for the atoms are integrated over to 

yield the local magnetic moment at each atomic site.  The actual code creates a mesh of points 

that are numerically integrated over to obtain the Hamiltonian matrix elements.  In all cases, the 

NRLMOL code was used by implementing the PBE functional for exchange and correlation.  In 

each calculation the structures attempted were allow to optimize fully, without constraints.  

Though this code readily available, it should be noted that NRLMOL code cannot be used for 

atoms whose atomic number is larger than 50, and does not take into account relativistic effects 

for atoms.   

3.4.5 Vienna Ab-initio Simulation Package 
 

 The Vienna Ab-initio Simulation Package or VASP is a package that utilizes 

pseudopotentials and plane wave basis sets for performing ab-initio quantum mechanical 

calculations.  The package supports three different types of potentials, norm-conserving, ultra-

soft, and projector augmented wave potentials. The approach used is based on a finite-

                                                           
E
 http://www.gaussian.com 
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temperature local-density approximation.  Some of the properties for the larger cluster 

assemblies were computed using the VASP package and more precise details on the calculations 

will be given in the following sections. 

3.4.6  Methodology  
 

In order to establish the correct functional and basis set, various values (e.g. ionization 

potentials and electron affinities) for the atom and dimer of choice are calculated. These values, 

along with the atomization energies and bond lengths are then compared to previously reported 

(when available) experimental and theoretical values.  If these values are within reasonable error 

then the cluster calculations can proceed.  The systems studied incorporate at least one or more 

of the atom found Table 3.2.     

 For the cluster calculations, the initial geometry optimizations were performed using the 

deMon2k package, with subsequent verification using other packages such as NRLMOL or 

ADF.  The lowest energy clusters were deemed to be the ground state structure for the clusters of 

interest.  Whenever possible, a frequency analysis was performed on the lowest energy structure 

to ascertain the structure was not trapped in a local minimum.  

In order to verify the stability of a cluster in a series, various calculations on the 

energetics were performed.  These included the ionization potentials, electron affinities, removal 

energy, and when applicable the second energy difference.  The ionization potential (abbreviated 

IP or I.P.) and electron affinity (sometimes referred to as electron detachment energy i.e.- EA or 

DE) may be determined for two cases, vertical and adiabatic.  The vertical ionization potential 

(VIP) is defined as the difference in energy between the lowest energy structure of the neutral 

and the cation with the geometry of the neutral, while the vertical detachment energy (VDE) is 

the difference in energy between the lowest energy of the anion and the neutral with the anions 
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geometry.  This differs in that the adiabatic case is simply the difference in energy between the 

lowest energy structures for both the neutral and cation or neutral and anion for the AIP and 

ADE, respectively.
F
  Each of these quantities can be represented mathematically, via, 

𝑉𝐼𝑃 = 𝐸𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦  𝑜𝑓  𝑛𝑒𝑢𝑡𝑟𝑎𝑙
+ − 𝐸𝑔𝑟𝑜𝑢𝑛𝑑  𝑠𝑡𝑎𝑡𝑒

0  

𝐴𝐼𝑃 = 𝐸𝑔𝑟𝑜𝑢𝑛𝑑  𝑠𝑡𝑎𝑡𝑒
+ − 𝐸𝑔𝑟𝑜𝑢𝑛𝑑  𝑠𝑡𝑎𝑡𝑒

0  

𝑉𝐷𝐸 = 𝐸𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦  𝑜𝑓  𝑎𝑛𝑖𝑜𝑛
0 − 𝐸𝑔𝑟𝑜𝑢𝑛𝑑  𝑠𝑡𝑎𝑡𝑒

−  

𝐴𝐷𝐸 = 𝐸𝑔𝑟𝑜𝑢𝑛𝑑  𝑠𝑡𝑎𝑡𝑒
0 − 𝐸𝑔𝑟𝑜𝑢𝑛𝑑  𝑠𝑡𝑎𝑡𝑒

−  

 where E is the energy and the superscripts represent charge of the cluster. There is a high 

importance in these values. For example, if a cluster has a low electron detachment energy, the 

neutral cluster prefers not to accept one unit of charge, however a large electron detachment 

energy is an indication the anion is the more stable species.  If a cluster has a large ionization 

potential, it is indicative of the stable nature of the neutral cluster versus the cation.  More 

important in verification of the stability of a cluster is found in the removal energy or energy 

gain over a series of clusters.  The removal energy (R.E.) or energy gain (E.G.) is defined as the 

amount of energy it costs to remove an atom from the cluster or the amount of energy gained as 

an atom is added to the previous cluster, via 

𝐸 𝐴 + 𝐸 𝐴𝑛−1 − 𝐸 𝐴𝑛  

where A is the atom and n is the number of atoms in the cluster. If this value is larger for a 

cluster than its nearest neighbors, this is a strong indication this cluster is stable relative to the 

other clusters.  This value can be complemented by the second energy difference (S.E.D.) 

defined as, 

𝐸 𝐴𝑛−1 + 𝐸 𝐸𝑛+1 − 2𝐸 𝐴𝑛  

                                                           
F
 The adiabatic detachment energy (or electron affinity) and ionization potential are sometimes abbreviated as EA 

and IP respectively. 
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where A and n have been described previously.  If a large value is obtained for the S.E.D. this 

implies the cluster shows some stable character. 

Once the stable clusters were theoretically determined, many of these clusters were 

creatively assembled in various configurations.  These cluster assemblies were allowed to 

optimize fully without constraints in the various software packages.  Once the cluster assemblies 

were composed of larger sizes, an infinite cluster assembly was attempted using the VASP 

program in some cases. 
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Table 3.1  The functionals and basis sets in software packages for the atoms used in the 

systems studied.  Also listed is if any relativistic effects were taken into account, as well 

as if any auxiliary functions were used in the calculations.   

 

Atom Functional
A
 Basis

B
 Relativistic 

effects
C
 

Software 

Package 

Al PBE 

PBE 

PBE 

DZVP 

DZVP 

DZVP 

N 

N 

N 

deMon2k 

NRLMOL 

Gaussian03 

As PBE DZVP N deMon2k 

Bi PBE96 

BP86 

PBE 

PBE 

aug-cc-pVDZ 

QZ4P 

aug-cc-pVDZ 

TZP 

RECP23 

ZORA 

RECP23 

ZORA 

deMon2k 

ADF 

Gaussian03 

ADF 

C PBE 

PBE 

PBE 

DZVP 

aug-cc-pVTZ 

DZVP 

N 

N 

N 

deMon2k 

deMon2k 

NRLMOL 

H PBE DZVP N deMon2k 

Ag PBE 

PBE 

PBE 

LANL2DZ 

DZVP 

TZP 

QECP 

N 

Y 

deMon2k 

NRLMOL 

ADF 

Sb PBE aug-cc-pVDZ RECP23 deMon2k 

Sn PBE 

PBE/BP86 

aug-cc-pVDZ 

QZ4P 

RECP22 

Y 

deMon2k 

ADF 

Mn PBE 

PBE 

PBE 

DZVP 

DZVP 

TZP 

N 

N 

Y 

deMon2k 

NRLMOL 

ADF 

V PBE 

PBE 

SD 

DZVP 

N 

N 

deMon2k 

NRLMOL 

Nb PBE LANL2DZ 

DZVP 

QECP 

N 

deMon2k 

NRLMOL 

S PBE TZP Y ADF 
A
The PBE and BP86 functionals can be found in References 122 and 124, respectively. 

B
The references for the DZVP, augmented DZ and TZ, and LANL2DZ basis sets can be found in References 122, 

125, 127 and 128. 
C
References for the relativistics effects can be found in references 123, 129 
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Chapter 4   Stability using the Jellium 
Model 

 

 

 

  Since the ground breaking experiment by Knight, the jellium model has been used to 

explain stability in a variety of clusters including the superatom.
G
  This discovery showed that 

the electronic contributions dominate the stability at small sizes and that clusters with filled 

shells of electrons show pronounced stability.  In this chapter the jellium model is used to 

understand the observed stability of bimetallic clusters. 

4.1  AlnX clusters (X = As, Sb, Bi; n = 1 – 6) 
 

 Pure aluminum clusters have been shown to exhibit superatom character.  The most 

important being the Al13 and Al13
-
 cluster, which have been described as halogen and noble 

metal-like superatoms, respectively [23].  This type of stability has the prospect to hold true if 

one can dope the aluminum clusters while maintaining the jellium stable electron count.  One 

possible avenue is to use a group 15 atom as a dopant in pure aluminum clusters.  The valence 

electron configuration of each of the Group 15 atoms (i.e.- N, P, As, Sb, and Bi) has two s-

electrons and three p-electrons, while the Al atom, 3s
2
 3p

1
, has been known to behave mono- or 

tri-valent varying with cluster size.  Depending on the size and the nature of valence 

contributions, the Al5X clusters could be expected to show stability within the jellium model 

with an electron count of 8 or 20 electrons. 

 In order to investigate the possibility of stability, first principle calculations were 

performed on the neutral, cationic, and anionic AlnAs, AlnSb, and AlnBi clusters (n = 1-6) within 

                                                           
G
 Refer to Chapter 1 
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the density functional formalism.  Both the arsenic and aluminum atoms were described using 

the DZVP basis. The antimony and bismuth atoms were described using the 23 electron scalar 

relativistic effective core potential proposed by Metz and coworkers in conjunction with the 

correlation consistent aug-cc-pVDZ valence basis set.  The structures were fully optimized 

without symmetry constraints. All calculations were performed using the deMon2k software 

explained previously.
H
 

 The ground state structures for AlnAs
-/0/+

, AlnSb
-/0/+

, and AlnBi
-/0/+

 are shown in Figures 

4.1.1, 4.1.2, and 4.2.3, respectively.  The neutral AlAs, AlSb, and AlBi clusters have bond 

lengths of 2.33, 2.53 and 2.56 Å, respectively.  The bond length increases as the atomic number 

increases for the dopant in all three cases. The anion dimer clusters are each doublets with C∞v 

symmetry and the bonds shorten from their neutral counterparts.  For the cation dimers, the 

ground state structures are quartets with C∞v symmetry and bond lengths of 2.6, 2.8 and 2.9 Å for 

the AlAs
+
, AlSb

+
 and AlBi

+
 clusters, respectively.   

The lowest energy structures for the Al2X clusters each have C2v symmetry and are spin 

doublets.   The Al-Al bond length ranges from 2.6 – 2.7 Å, while the M-Al bond ranges from 2.4 

– 2.7 Å.  In the anion and cation Al2X clusters, the Al-Al bond is broken, but each cluster still 

maintains a C2v geometry.  The Al2X anions are singlets and the Al2X cations are triplets.  As we 

continue to the Al3X clusters, they can be looked upon as adding one aluminum cluster to form 

the C2v geometries for both the charged and neutral species.  The Al-Al bonds in the charged and 

neutral species are on average 2.6 Å, with the M-Al bonds varying in length from 2.4 - 2.8 Å.  

The charged species are doublets, whereas the neutral species are singlets. 

 

 

                                                           
H
 Refer to Chapter 3 
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Figure 4.1.1 Optimized geometries of anionic, neutral, and cationic AlnAs clusters (n = 

1-6). The superscripts indicate the spin multiplicities. Bond lengths are given in 

Angstroms. 
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Figure 4.1.2 Optimized geometries of anionic, neutral, and cationic AlnSb clusters (n = 

1-6). The superscripts indicate the spin multiplicities. Bond lengths are given in 

Angstroms. 
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Figure 4.1.3 Optimized geometries of anionic, neutral, and cationic AlnBi clusters (n = 

1-6). The superscripts indicate the spin multiplicities. Bond lengths are given in 

Angstroms. 
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The Al4X clusters are the first instance where the clusters exhibit a three-dimensional 

geometry.  Each of the spin singlet anionic clusters have a Cs geometry with three aluminum 

atoms in the xy-plane, and one Al atom as well as the metal atom above and slightly below the 

plane, respectively.  The neutral clusters are spin doublets, with Al4Bi and Al4As having the Bi 

and As metal clusters slightly out of the plane with respect to the aluminum atoms in the cluster.  

However, the Al4Sb cluster is planar much like that of the structure reported for the Al5 cluster.  

This planar configuration is the same structure for the Al4As
+
 and Al4Sb

+
 clusters.  The Al4Bi

+
 

cluster is different from both the Al4As
+
 and Al4Sb

+
 clusters.  The Al4Bi

+
 cluster can be looked 

upon as the Al3Bi
+
 cluster with an extra Al cluster attached to the Bi atom and above the plane.  

When n = 5, the Al5X structure becomes truly compact and three-dimensional.  The 

Al5As
+
, Al5Sb

+
, Al5Bi

-
, Al5Sb

-
, and Al5As

-
 clusters have C4v symmetry.  It is interesting to note 

that the Al5Bi
+
 cluster has Cs symmetry with the Al-Al bond lengths varying in lengths from 2.8 

– 2.6 Å.  The neutral clusters have Cs symmetry and singlet spin multiplicities.  This change in 

geometry is a direct result of one Al-Al bond breaking going from the anion to the neutral 

cluster. 

The Al6X neutral clusters are very similar in geometric structure.  These clusters can be 

looked upon as the Al6 cluster with the addition of the atom to the triangular face of the cluster or 

as a Bi substituted Al7 cluster.  The Al6Sb
+
 and Al6Bi

+
 clusters both have Cs geometry with the 

Sb and Bi atoms residing to the exterior of the Al6 cluster.  The Al6Sb
-
 and Al6Bi

-
 clusters are 

slightly different in geometry.  Both of the clusters have the metal atom residing outside the 

cage, however they have two bonds to the Al6 cluster instead of three seen in the anion.  It is 

interesting to note that the Al6As
-
 and Al6As

+
 clusters differ in geometry from the other clusters. 

In these two cases, the structures can simply be view as the Al5As
-
 cluster with the addition of 
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one Al atom to the exterior of the structure. This slight change in geometry may be attributed to 

either the size of the As atom, as compared to Sb/Bi, or the possible difference in 

electronegativity.  

In order to aid in the determination of the geometries ascertained, photodetachment 

experiments were carried out on the AlnAs, AlnSb, and AlnBi clusters.  AlnAs or AlnSb clusters 

were created in the gas phase by placing a thin coating of arsenic or antimony on a pure 

aluminum rod. Two methods were successful in creating AlnBi
-
 clusters. The first made use of 

two adjacent rods of pure aluminum and bismuth that met at the laser’s focal point. A second 

method used a thin layer of bismuth coated on an aluminum rod.  For further information please 

refer to Chapter 2 on the apparatus.  

The collected photoelectron spectra for all of the clusters in this study can be seen in 

Figure 4.1.4.  Notice many of the features are similar for each of the clusters.  The electron 

binding energies correspond to the electron affinities of the neutral clusters.  The determination 

of the experimental vertical and adiabatic electron detachment energies have been explained 

previously and are shown for the AlnAs, AlnSb and AlnBi clusters in Tables 4.1.1, 4.1.2, and 

4.1.3 respectively.  The experimentally obtained vertical electron detachment energies (VDE) 

and adiabatic electron detachment energies (ADE) correspond to the theoretical values of the 

same nature.  Theoretically the VDE is determined by the difference in energy between the 

ground state of the anion and the neutral with the geometry of the ground state anion. Whereas, 

the ADE is defined as, the energy difference between the ground state of the anion and the 

ground state of the neutral.  The theoretical and experimentally obtained values for each of the 

cluster series show reasonable agreement indicating that we have the correct ground state 

clusters.  The remainder of the text, will focus primarily on the neutral cluster, therefore the 
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Figure 4.1.4 Photoelectron spectra at 308 nm for AlnAs
-
, AlnSb

-
, and AlnBi

-
 clusters (n 

= 1-5). 

 

ionization potentials for the neutral clusters are also listed in each of the respective tables. The 

ionization potential is defined as the energy difference between the neutral cluster with a ground 

state geometry and the ground state of the cation, i.e.- 

IP = E(AlnX
+
) – E(AlnX) 

Stability of a cluster can be ascertained in many ways.  One of the primary values is the 

energy gain.  The energy gain is the amount of energy gained by adding one aluminum atom to 

form a cluster, 

EG = E(Al) + E(Aln-1X) – E(AlnX) 

A larger gain in energy in forming the clusters from the preceding size while a smaller gain in 

energy in going to the higher size indicate preferential formation.  Figure 4.1.5 A shows the 
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energy gains for the neutral clusters.  Immediately the Al5X cluster jumps out with the largest 

energy gain in each series, an indication this cluster is stable.  An additional way to determine a 

cluster stability is calculating the second energy difference (ΔE2,n), i.e.— 

(ΔE2,n) = E(Aln-1X) + E(Aln+1X) - 2*E(AlnX) 

Again, we see the Al5X cluster with a large value, indicating its stable character.  Another 

measure of stability is the energy difference between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO), termed the HOMO-LUMO gap.  

If the gap size is large (> 1 eV) the cluster is considered chemically stable.  The HOMO-LUMO 

gap for each of the clusters can be seen in each of the tables.  Notice there are two neutral 

clusters with gap sizes greater than 1 eV, Al3X and Al5X, indicating that these clusters are 

particularly stable. 

 Both the Al3X and Al5X clusters show stable character based on the energetic criteria.  As 

explained previously, the jellium model shows clusters are stable with electron counts of 2, 8, 18, 

20, etc. However, the Al3X cluster would have the electron count of either 6 or 14 and does not 

fall into the jellium criteria for stability (this will be addressed in the following chapter); 

therefore the remainder of this discussion will focus on the Al5As, Al5Sb and Al5Bi clusters. 

 One key point of the stability is the electron count of a system, while the other is 

geometry.  It has been previously shown that a cluster with compact geometry and even electron 

counts will show an enhanced stability.  The neutral Al5As, Al5Sb and Al5Bi clusters all show a 

compact three-dimensional geometry as their lowest energy structures.  Now the question 

becomes what is the electron counting scheme of the Al5X neutral clusters?   
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Table 4.1 Experimental adiabatic detachment energies (ADE) and vertical detachment 

energies (VDE) of AlnAs
-
 (n = 1-5) clusters. Calculated ADEs and VDEs of AlnAs

-
 (n = 

1-6) clusters. For theoretical VDEs, transitions to both the lower and higher spin states 

are listed where appropriate. Calculated adiabatic ionization potentials (IP) and HOMO-

LUMO gap (HL gap) values for the ground state AlnAs (n = 1-6) clusters..All values are 

in units of eV. Experimental VDEs have an uncertainty of ± 0.05 eV. 

 

#Al 

atoms 

ADE  

 (exp.) 

ADE  

(theo.) 

VDE 

(exp.) 

VDE 

lower 

(theo.) 

VDE 

higher 

(theo.) 

IP 

(theo.) 

HL gap 

 (theo.) 

1 1.96 ± 0.07 1.97 2.32, 2.75 2.70 2.00 7.37 0.23 

2 2.39 ± 0.07 2.29 2.66  2.34 7.23 0.70 

3 1.85 ± 0.09 1.74 2.19, 2.99 1.98 2.86 7.34 1.86 

4 1.98 ± 0.08 1.92 2.29  2.38 6.30 0.56 

5 2.03 ± 0.11 2.07 2.74 2.43 2.64 6.65 1.12 

6 --- 2.25 ---  2.46 6.17 0.55 
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Table 4.2 Experimental adiabatic detachment energies (ADE) and vertical detachment 

energies (VDE) of AlnSb
-
 (n = 1-5) clusters. Calculated ADEs and VDEs of AlnSb

-
 (n = 

1-6) clusters. For theoretical VDEs, transitions to both the lower and higher spin states 

are listed where appropriate. Calculated adiabatic ionization potentials (IP) and HOMO-

LUMO gap (HL gap) values for the ground state AlnSb (n = 1-6) clusters. All values are 

in units of eV. Experimental VDEs have an uncertainty of ± 0.05 eV. 

 

#Al 

atoms 

ADE  

 (exp.) 

ADE  

(theo.) 

VDE 

(exp.) 

VDE 

lower 

(theo.) 

VDE 

higher 

(theo.) 

IP 

(theo.) 

HL gap 

 (theo.) 

1 1.89 ± 0.07 2.02 2.13, 2.75 2.73 2.05 6.99 0.22 

2 2.34 ± 0.10 2.16 2.57  2.34 7.09 0.84 

3 1.88 ± 0.09 1.76 2.27, 2.99 2.00 2.90 7.18 1.73 

4 1.96 ± 0.12 1.94 2.62  2.45 6.29 0.62 

5 2.21 ± 0.10 2.17 2.87 2.54 2.64 6.58 1.17 

6 --- 2.19 ---  2.74 6.15 0.52 
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Table 4.3 Experimental adiabatic detachment energies (ADE) and vertical detachment 

energies (VDE) of AlnBi
-
 (n = 1-5) clusters. Calculated ADEs and VDEs of AlnBi

-
 (n = 

1-6) clusters. For theoretical VDEs, transitions to both the lower and higher spin states 

are listed where appropriate. Calculated adiabatic ionization potentials (IP) and HOMO-

LUMO gap (HL gap) values for the ground state AlnBi (n = 1-6) clusters. All values are 

in units of eV. Experimental VDEs have an uncertainty of ± 0.05 eV. 

 

#Al 

atoms 

ADE  

 (exp.) 

ADE  

(theo.) 

VDE 

(exp.) 

VDE 

lower 

(theo.) 

VDE 

higher 

(theo.) 

IP 

(theo.) 

HL gap 

 (theo.) 

1 1.57 ± 0.07 1.94 1.90, 2.50 1.97 2.70 6.75 0.46 

2 1.97 ± 0.05 1.06 2.37  2.32 7.04 0.72 

3 1.62 ± 0.07 1.72 2.10, 2.68 1.95 2.78 7.08 1.69 

4 2.36 ± 0.10 2.19 2.60  2.42 6.19 0.57 

5 2.32 ± 0.10 2.17 2.60 2.59 2.60 6.51 1.15 

6 --- 2.21 ---   6.04 0.51 
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 As previously stated, Al has either one or three valence electrons, while the As, Sb, and Bi 

atoms have a total of three or five valence electrons.  The resulting valence electron count for the 

Al5X cluster would be either eight or twenty, depending on if Al has one or three valence 

electrons. The electron counts of 8, 18 and 20 are each magic numbers within the jellium 

scheme, while one more possibility 10 is the lone outlier.  In order to determine if this cluster is 

jellium in the type of stability or that there is another type of stability in accordance with the 

electron count of 10, the molecular orbitals and one-electron levels were investigated.   

Figure 4.1.6 shows the valence one-electron levels and molecular orbitals for the Al5As, 

Al5Sb and Al5Bi clusters.  From the figure, the orbitals are consistent with those expected in a 

jellium system.  In each of the cluster diagrams, the lowest four molecular orbitals represent the 

1s
2
 and 1p

6
 states.  The HOMO and HOMO-1 levels each represent 1d states.  For the Al5Sb and 

Al5Bi clusters the HOMO-2 and HOMO-3 states are degenerate and represent the 2s
2
 state as 

well as an additional 1d
2
 state, with the HOMO-4 residing lower representing a 1d

2
 level.  For 

the Al5As case the HOMO-2, HOMO-3 and HOMO-4 are degenerate with filling the 2s
2
 and two 

1d
2
 levels.  The HOMO-5 fills the remaining 1d level, for a total of ten electrons in the 1d level 

in each of the clusters.  These orbitals present themselves as the electronic configuration 1s
2
 1p

6
 

1d
10

 2s
2
.  Notice that in all three cases, there is mixing of the 2s

2
 and 1d

10
 levels.  This is an 

expected result, since upon doping in a metal system the levels in the jellium scheme can shift 

[130].  The total electron count here is 20, which indeed does correspond to a closed shell stable 

species within the jellium model for metal clusters. 

Using a combination of a theoretical and gas phase experimental approach, three stable 

jellium clusters have been confirmed.  The Al5As, Al5Sb and Al5Bi have large energy gains, 

second energy differences, and large HOMO-LUMO gaps indicative of stable clusters, such as 
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superatoms.  The compact geometry and total number of electrons (20) reveal the source of 

stability can be explained using the jellium model.  The doped aluminum clusters Al5As, Al5Sb 

and Al5Bi are not only superatom candidates, but are suitable for cluster assemblies. 
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Figure 4.1.5 Theoretical energy gain (Panel A) and second energy difference (Panel B) 

for AlnX (n = 1 – 5) clusters.  For definitions of the energy gain and second energy 

difference, refer to the text. 
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Figure 4.1.6 One electron energy levels, isosurfaces (isovalue = 0.01 au), and symmetries of the 

molecular orbitals for the neutral Al5As, Al5Sb and Al5Bi clusters. The superscripts indicate the 

spin multiplicities. The continuous lines are occupied states, the dashed lines represent 

unoccupied levels. The levels are singly degenerate unless otherwise noted. The arrows indicate 

majority and minority, spin up and spin down states, respectively.   

A)     B)          C) 
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4.2  AgnMn+/0/- (n = 1-6) Clusters: Designing Magnetic Superatoms   
      

The concept of the superatom relies on acquiring and maintaining stability through the 

pairing of electrons which result in closed electronic shells.  In the past, this has limited 

superatoms to only those species which are non-magnetic.  A magnetic superatom, on the other 

hand, would require the electrons to be unpaired and would result in the cluster becoming 

unstable. One possible way to circumvent this quandary is to design a cluster system where the 

stability is governed by the jellium model with some atoms that have localized orbitals.  Such a 

system would allow for the magnetic moment, which is localized on atomic sites to remain 

intact, while the other atomic sites would adhere to the nearly-free electron gas mechanism for 

stability.  Recently, our group, showed this mechanism could indeed work and discovered a class 

of magnetic superatoms beginning with doped alkalis, for example VCs8. 

The discovery that one could design a magnetic superatom using atoms that could be 

stable through the jellium model in conjunction with a magnetic sub-shell, for example the 

electron configuration of VCs8 was reported as 1S
2
 1P

6
 (3d

5
) [superatom states are designated 

with uppercase letters, and atomic states with lowercase letters].  This has opened the door for 

further investigations to design other magnetic superatoms in this manner [131].  Since the alkali 

clusters, which have been shown to adhere to the jellium model, can be used to design a 

magnetic superatom, one begins to wonder if other bare clusters that behave like alkali clusters 

could be used to form such superatoms.  Coinage metals (Cu, Ag, and Au) have a filled d shell 

and one valence s-electron in their electronic ground state.  The Cu, Ag, and Au atoms delocalize 

one valence s-electron, which in turn allows the coinage metal clusters to be good conductors. 

Silver clusters have been studied previously due to their importance in industry and 

biotechnology [132 – 134].  Fournier carried out studies on Agn (n = 2-12) using density 
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functional calculations and discovered the ellipsoidal jellium model described the geometries of 

the silver system very well [135]. Fernandez and co-workers performed theoretical calculations 

on the Agn system and showed neutral clusters where n was even showed an enhanced stability 

(n = 2 – 12) [136].  These authors also pointed out the stability of planar clusters could be 

understood within the two-dimensional jellium model.     

We explored the possibility to design magnetic superatoms using silver clusters with a 

transition metal as a dopant.  It should be noted that experimental studies on the cations of doped 

silver clusters have been carried out by Janssens and co-workers [137].  Janssens and co-workers 

also reported on the quenching of the magnetic moment in the Ag10Co
+
 clusters using 

experimental and theoretical calculations at the BP86-TZP level [138].  Hou and co-workers 

performed theoretical studies on the neutral and anionic Ag5X clusters (X = Sc, Ti, V, Cr, Mn, 

Fe, Co, and Ni) using the B3LYP functional with the Stuttgart basis and found each of these 

clusters maintained a high magnetic moment, with the exception of Ag5Sc [139].  Other 

theoretical studies on small bimetallic silver clusters with a transition metal have been carried out 

by Harb and co-workers [140]. Here, I present a study on the geometries and electron structure of 

AgnMn
0/+

 (n = 1 – 6) clusters.  To this author’s knowledge there has not been a systematic 

theoretical study on the evolution of size, stability or magnetic character of manganese doped 

silver clusters. 

The theoretical calculations were carried out using a first principles approach within the 

density functional formalism using the GGA formalism using the PBE functional for exchange 

and correlation effects.  The manganese atom was described using the optimized DZVP-GGA 

basis.  The silver atoms were described using the 19-scalar electron QECP proposed by Andrae  
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Table 4.2.1.  The comparison of the bond length (r), dissociation energy (De), frequency 

(ω), and ionization potential (IP) of the silver dimer.  The units for each measure are in 

parenthesis.   

 r(Å) De (eV) ω(cm
-1

) IP (eV) 

Expt. 2.5
a
 1.7 

b
 192.4  7.6  

Theor.
c
 2.6  1.7  188.6   

Theor.
d
  2.6   7.8 

This Work 2.6 1.8 180.9 7.8 

a
Reference 141 

b
Reference 142 

c
Reference 143 

d
Reference 144 

et al. in combination with the LANL2DZ valence basis.
I
 The accuracy of the prescribed 

theoretical scheme was verified on the silver dimer and compared to previous theoretical and 

experimental results (Table 4.2.1).  Notice the calculated values are within reasonable agreement 

with previous theoretical and experimental calculations.  In order to obtain the lowest energy 

structures for the AgnMn
0/+

 clusters, initial starting geometries were taken from previous studies 

on neutral and cationic structures and their isomers for Agn (n = 1-7) clusters. One silver atom 

was replaced by the Mn atom and multiple spin multiplicities were attempted.   A frequency 

analysis was performed on each of the lowest energy clusters to verify no negative frequencies 

were attained.  

The spin multiplicities and lowest energy structures for the anion, neutral and cation 

AgnMn clusters (n = 1-6) are shown in Figure 5.2.1.  The AgMn dimer bond lengths are 2.59, 

2.74 and 2.58 Å for the neutral, anion, and cation respectively.  The anion and cation dimers 

retain the spin moment of the Mn atom.  

 

                                                           
I
 Refer to Chapter 3. 
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Figure 4.2.1 Ground state geometries of AgnMn
-
, AgnMn, and AgnMn

+
 (n = 1 – 

6) clusters.  The superscripts indicate spin multiplicity.  Green and gray circles 

represent manganese and silver atoms, respectively. 

 

 

  The Ag2Mn neutral and cation species have a triangular shape with C2v symmetry and 

contain two Ag-Mn bonds and form one Ag-Ag bond.  The Ag2Mn
-
 cluster does not contain any 

Ag-Ag bonds with C2v symmetry.  As we continue to clusters containing three silver atoms, both 

the anion and cation clusters can be simply viewed as the addition of one silver atom to their 

previous counterparts.  The planar Ag3Mn cluster is much like the anion cluster has one less Ag-

Mn bond than its cation cluster.  
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The manganese doped silver clusters retain their planar geometry in the case of the 

neutral and cation Ag4Mn clusters.  Each of these clusters can be viewed as the neutral Ag5 

cluster with the Mn atom substituting the central Ag atom. The neutral cluster retains the spin 

moment of the Mn atom and the Mn-Ag bond length ranges from 2.62 – 2.76 Å, slightly longer 

than the Ag-Mn dimer.  The two-dimensional picture changes with the Ag4Mn
-
 cluster.  This is 

the first instance where the doped clusters exhibit a three-dimensional (C2v) geometry; however a 

relatively high magnetic moment is still retained.   

The Ag5Mn cluster presents an interesting case.  We find both the anion and cation 

structures are three-dimensional with magnetic moments the same as in a free Mn atom.  The 

lowest energy structure for the cation is the highly symmetric pentagonal pyramid (C5v) structure 

which is in agreement with the previous reported structure by Janssens and co-workers [137].  

The anion, though three-dimensional, is not symmetric as its cation counterpart with Cs 

symmetry.  The lowest energy structure for the neutral cluster is two-dimensional with C2v 

symmetry.  This structure is slightly different from the one previously reported by Hou and co-

workers, but in both cases the structure is two dimensional [139]. 

The neutral, anion, and cation clusters for manganese doped silver clusters are all three-

dimensional for clusters containing six silver atoms. The Ag6Mn
-
 anion is similar in structure to 

the Ag7 neutral cluster, with the Mn atom replacing one silver atom.  The geometry of the neutral 

has little symmetry (Cs) but is more compact than its anion counterpart.  The Ag6Mn
+
 cluster can 

be viewed as the addition of one silver atom below the plane to form the pentagonal bipyramid 

structure.  
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For verification of stability we now turn to the energetics.  First we investigated the 

energy gain (E.G.) for each of the clusters in this study.  The E.G. is defined as the amount of 

energy gain upon successively adding Ag atoms, via  

E.G. = E(Agn-1Mn) + E(Ag) – E(AgnMn). 

A similar calculation was performed for the anionic and cationic clusters.  Figure 4.2.2 shows the 

energy gain for the neutral, anionic and cationic clusters.  For the neutral clusters, Ag4Mn shows 

the largest gain in energy for the series, while Ag3Mn and Ag5Mn have large energy gains in the 

anionic series.  The Ag5Mn
+
 cluster shows the largest gain in energy for the cation series.  The 

large gain in energy for these clusters indicates that these cluster have some type of special 

stability.  The second energy difference (S.E.D.), another parameter to ascertain stability is 

defined as, 

S.E.D. = E(Agn-1Mn) + E(Agn+1Mn) – 2*E(AgnMn). 

A similar calculation was performed for the cation clusters.  Figure 4.2.3 shows the S.E.D. for 

both the neutral and cationic clusters.  Notice that for the neutral clusters, the largest peak occurs 

where n = 4.  For the cation cluster there is a maxima for n = 5.  In the anion clusters, many of 

the values reside at 0 eV. 

Two added energetic criteria are the ionization potential and electron affinities for the 

clusters.  The ionization potential (electron affinity) is the difference in energy between the 

neutral ground state cluster and the ground state of the cation (anion) cluster and can be found in 

Table 4.2.  The Ag4Mn cluster has the largest ionization potential (6.33 eV) and the lowest 

electron affinity (1.47 eV).  This indicates the cluster prefers to retain its neutrality and is more 

stable as a neutral cluster.  In contrast, Ag3Mn and Ag5Mn have the highest electron affinities, 

1.62 and 1.70 eV respectively.  Thus, both of these clusters prefer to add an electron which is  
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Figure 4.2.2 Variation of the energy gain for the neutral, cation, and anion 

AgnMn
 
clusters (n = 2 - 6). 

 

further reiterated through the relatively large energy gain found for both of these anions.  It is 

interesting that the Ag5Mn cluster has the second lowest ionization potential (6.94 eV) in the 

series which corresponds to the largest gain in energy for the cation cluster. 

We also investigated the energy difference between the highest occupied molecular 

orbital and the lowest unoccupied molecular orbital, termed the HOMO-LUMO gap (Gap).  This 

quantity is deemed an important criterion for the stability of the cluster.  The clusters, Ag4Mn, 

Ag3Mn
-
, Ag5Mn

-
, Ag3Mn

+
, and Ag5Mn

+
 have very large gap sizes (Table 4.2).  The largest gap 

(1.20 eV) can be found for the Ag5Mn
+
 cluster, with only the Ag4Mn cluster have a gap size 

greater than 1 eV. 
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Figure 4.2.3 Variation of the second energy difference (S.E.D) for the neutral, 

cation, and anion AgnMn clusters (n = 2 - 5). 

 

On the basis of energetics and gap sizes over 1eV, we can conclude there are two 

superatom candidates. The neutral cluster, Ag4Mn has a large ionization potential, low electron 

affinity, a gap over 1 eV and a large energy gain which is a strong indication of its stability.  

With the low ionization potential, large HOMO-LUMO gap and large energy gain in the cation 

series, Ag5Mn
+
 is a strong superatom candidate. 

  Now we look at the shell effects on the cluster’s stability.  The magnetic moment on 

each of the stable cluster species is 5 μB.  Since it is equally as important to verify the cluster’s 

magnetic moment is stable, we examined the energies of various spin states for each cluster size.  

Table 4.2.3 shows the lowest isomer with a magnetic state closest to the ground state cluster.  In 

each of the stable clusters, the closest magnetic state is at least 0.5 eV higher in energy.  This 

result indicates these clusters are quite stable.  Notice the moment on the clusters is the same as 

the moment found for the Mn atom.  The Mn atom has an 3d
5
 4s

2
 electronic configuration and 
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Table 4.2.2 HOMO-LUMO gap for the neutral, cation and anion AgnMn clusters 

(n = 1 – 6) and their ionization potential (I.P.) and electron affinity (E.A.). 

N 

HOMO-LUMO gap (eV)  

I.P. (eV) E.A. (eV) Neutral Cation Anion  

1 0.10 1.30 0.68  6.29 1.06 

2 0.64 0.60 0.26  6.18 1.51 

3 0.71 1.05 1.10  6.29 1.62 

4 1.06 0.46 0.59  6.33 1.49 

5 0.46 1.20 0.84  5.94 1.70 

6 0.96 0.42 0.51  5.92 1.68 

 

 

for each energetically stable cluster one would expect the total valence electron count to be 11 

for both Ag4Mn and Ag5Mn
+
, none of which correspond to a magic number within the jellium 

model.  Thus, it could be possible that the five d-electrons remain localized on the atom, with 

only the two s-electrons interacting with the cluster. If this were the case, one could expect three 

primary results for the clusters in this study, 1) the total number of delocalized electrons in the 

cluster can be determined by ne + 2 (neutral) and ne + 2 - 1 (cation) (since the Ag atom 

contributes one electron to the valence shell); 2) the total valence (delocalized) electrons should 

correspond to a magic number within the jellium model; and 3) the localized electrons would fill 

the spin-up magnetic subshell (d
5
) with a large energy separation between the spin-up and spin-

down states.  Therefore, the number of delocalized electrons would correspond to six, which is a 

stable closed shell ―magic‖ number in both the two-dimensional and ellipsoidal jellium model.  
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Table 4.2.3.  Electronic properties of the AgnMn
0/+/-

 clusters (n = 1 - 6).  Magnetic 

moments (μ), Ag gain in energies (ΔEAg), and HOMO-LUMO Gaps (Egap) as well as the 

magnetic moment of the higher in energy isomer with a different magnetic moment, and 

the energy difference with respect to the ground state ΔE. 

Cluster μ (μB) ΔEAg (eV) Egap (eV) μ (μB) ΔE (eV) 

AgMn 6  0.10 4 0.20 

Ag2Mn 5 1.50 0.64 7 0.34 

Ag3Mn 4 1.67 0.71 6 0.40 

Ag4Mn 5 2.45 1.06 3 0.70 

Ag5Mn 6 1.60 0.46 4 0.64 

Ag6Mn 5 2.18 0.96 3 0.44 

      

AgMn
+
 5  1.30 7 1.61 

Ag2Mn
+
 4 1.61 0.60 6 0.25 

Ag3Mn
+
 5 1.90 0.71 3 0.53 

Ag4Mn
+
 4 2.06 0.46 6 0.23 

Ag5Mn
+
 5 2.23 1.20 3 0.75 

Ag6Mn
+
 4 1.96 0.42 6 0.11 

      

AgMn
-
 5  0.68 3 0.97 

Ag2Mn
-
 6 1.94 0.26 4 0.41 

Ag3Mn
-
 5 2.12 1.10 3 0.99 

Ag4Mn
-
 6 1.98 0.59 4 0.03 

Ag5Mn
-
 3 2.05 0.84 3 0.29 

Ag6Mn
-
 2 1.93 0.51 6 0.32 

 

The resulting electronic configuration would become 1S
2
 1P

4
 (3d

5
) for the magnetic superatom, 

which should be seen in the electronic levels and molecular orbital diagram.  In order to see if 

this picture is correct, we investigated the composition and molecular orbital shapes for each of 

the stable clusters. 

Figure 4.2.4 shows the one-electron levels and molecular orbitals for the Ag4Mn cluster. 

Immediately, one can see the 1S and 1P states for both the spin up and spin down states in the 

Ag4Mn cluster.  The HOMO in both the alpha (spin-up) and beta (spin-down) states have one 

node located in the center, as does the HOMO-1, which is indicative of the 1P orbitals.  The 1S 

state is the HOMO-2 in the beta case while the 1S state is the HOMO-4 for the alpha levels.  
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This resulting superatomic electron configuration becomes 1S
2
 1P

4
 that corresponds to shell 

closure within the two-dimensional jellium model.   

The magnetic states are clearly localized on the Mn atom (Figure 4.2.4) for the Ag4Mn 

cluster.  Notice in the Ag4Mn cluster there is approximately 3 eV of separation between the 

magnetic alpha (spin up) and beta (spin down) states.  However there is very little d character 

residing on the silver atoms.  The small amount of d-character is clearly from the silver d-band 

and resides at approximately the same energy as the localized d-electrons on the Mn atom.  The 

d-band in the pure silver cluster (Ag4) is located at -7.0 eV, while the d-electrons in the Mn atom 

are located 1.6 eV lower in energy.  Thus, the interaction of the Mn atom with the Ag4 cluster 

would result in some d-character on the Ag atoms in the Ag4Mn cluster. 

The Ag5Mn
+
 cluster though not planar exhibits strong stable magnetic character through 

its shell effects within the ellipsoidal jellium model.  According to this model, one would find the 

magic number to reside at six for oblate clusters.  From the molecular orbitals and one-electron 

levels, this is indeed the case (Figure 4.2.5).  Also, the magnetic states are still localized on the 

Mn atom with minimal d-character residing on the Ag clusters, which was explained previously. 

Even though the Ag5Mn
-
 cluster does not have a HOMO-LUMO gap larger than 1 eV, from the 

energy gain calculations it shows an enhanced stability over its nearest neighbors.  The 

uniqueness of this cluster is its geometry is a compact three-dimensional structure, which is 

different from the Ag4Mn and Ag5Mn
+
 cases and should be addressed.  The number of electrons 

due to the combination of Ag5
-
 cluster and the two s-electrons from the Mn atom, would allow 

the cluster to have a shell closing at eight and a localized atomic magnetic sub-shell.  
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Figure 4.2.4 One electron energy levels for MnAg4 and molecular orbital charge 

density (isosurfaces 0.03 a.u.).  The continuous lines are occupied levels, the dotted 

lines correspond to unfilled states.  The degeneracy of each level is assumed to be one 

unless otherwise noted.  The symbols α and β indicate the majority (up) and minority 

(down) spin states, respectively.  Upper-case letters stand for delocalized 1S and 1P 

shells, and lower-case letters for localized 3d atomic shells.  
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Figure 4.2.5 One electron energy levels for MnAg5
+

 and molecular orbital charge 

density (isosurfaces 0.03 a.u.).  The continuous lines are occupied levels, the dotted 

lines correspond to unfilled states.  The degeneracy of each level is assumed to be one 

unless otherwise noted.  The symbols α and β indicate the majority (up) and minority 

(down) spin states, respectively.  Upper-case letters stand for delocalized 1S and 1P 

shells, and lower-case letters for localized 3d atomic shells. 
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This along with its compact three-dimensional geometry is encouraging that it adheres to the 

three-dimensional jellium shell model.  In fact, upon investigation of the electronic structure, this 

is the case (Figure 4.2.6).  The unpaired electron states are clearly localized on the Mn atom, 

while the orbitals clearly show the electronic configuration needed for a closed shell in the 3D 

jellium shell model, i.e. – 1S
2
 1P

6
. Therefore, the Ag5Mn

-
 cluster can be viewed as a magnetic 

superatom within the constructs of the jellium shell model.    

In light of these observations, the magnetic superatom within the jellium model should be 

extendable to larger silver complexes.  Recently, in a theoretical study by Aikens, it was pointed 

out that the Ag25(SH)18
-
 cluster exhibited the same geometric configuration found in the 

Au25(SH)18
-
 cluster [145].  This was later confirmed through experimental observation by Bakr 

and co-workers [146].  Their results indicate that the Ag25(SH)18
-
 cluster can be thought of in the 

identical superatomic manner as the Au25(SCH)18
-
.  We believe the superatom complex, 

Ag24Mn(SH)18 should exhibit behavior identical to that of the previously reported Au24Mn(SH)18 

magnetic superatom complex.  The starting geometry for the Ag24Mn(SH)18 complex was taken 

by replacing the central Ag atom in the Ag25(SH)18
-
 structure reported by Aikens and co-workers, 

with the Mn atom.  The atoms were represented by the triple-ζ polarization basis.  Relativistic 

effects were accounted for using the Zeroth order relativistic approximation (ZORA) in the ADF 

software package.  The structure was allowed to optimize without constraints at various spin 

multiplicities to ensure the correct spin state was achieved.  Figure 4.2.7 shows the optimized 

Ag24Mn(SH)18 cluster. The theoretical studies found a ground state with a spin magnetic moment 

of 5μB and its nearest magnetic state, 3μB, residing 0.52 eV higher in energy.  We observed a 

HOMO-LUMO gap of 0.33 eV similar to the value obtained in the Au24Mn(SH)18 case [27].    
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Figure 4.2.6 One electron energy levels for MnAg5
-
 and molecular orbital charge 

density (isosurfaces 0.03 a.u.).  The continuous lines are occupied levels, the dotted 

lines correspond to unfilled states.  The degeneracy of each level is assumed to be one 

unless otherwise noted.  The symbols α and β indicate the majority (up) and minority 

(down) spin states, respectively.  Upper-case letters stand for delocalized 1S and 1P 

shells, and lower-case letters for localized 3d atomic shells. 
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Figure 4.2.7 Lowest energy structure of the MnAg24(SH)18 cluster. The gray, yellow, 

white and green balls represent the silver, sulfur, hydrogen, and manganese atoms 

respectively. 

 

Here, I have shown that magnetic superatoms are just confined to the jellium shell model 

in three dimensions, but can be viewed within a unified jellium construct.  The unified view not 

only uses the jellium model in three-dimensions, but includes the two-dimensional and 

ellipsoidal jellium models as mechanisms to design stable magnetic superatoms.  Also, a 

magnetic superatom complex, Ag24Mn(SH)18 shows the possibility of extending the magnetic 

superatoms from smaller clusters to larger complexes that may be useful in nanomaterials. 
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4.3 Chapter 4 Summary 
 

 Using a combination of theoretical and experimental techniques the bimetallic Al5As, 

Al5Sb and Al5Bi clusters were identified as stable clusters.  The stable nature of these clusters 

was attributed to the spherical jellium model.  The total number of electrons in the aluminum 

based clusters (20) corresponds to a magic number within the spherical jellium model.  From 

further theoretical investigations, we discovered superatoms within the jellium model were not 

limited to three-dimensions or non-magnetic species.  Using a magnetic dopant atom, such as 

Mn, with localized d electrons and iterant s electrons to fill the jellium shells within the two-, 

three- and ellipsoidal jellium models, we were able to design multiple magnetic superatom 

candidates using doped silver clusters (i.e-- Ag4Mn, Ag5Mn
-
, Ag5Mn

+
, and Ag6Mn).  This 

concept was further used to design a superatom complex Ag24Mn(SH)18 much like that of the 

superatom complex Au24Mn(SH)18.     
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Chapter 5 Stability using All-metal 
Aromaticity 

 

 

The concept of ―pure‖ aromaticity originates in a delocalization of the molecular orbitals 

that ultimately is responsible for the stabilization of an organic cluster system.  As explained in 

the introduction this idea has been extended to the inorganic realm.  Now we undertake the 

exploration of all-metal aromaticity through the investigation of various aluminum based 

heteroatomic systems. 

5.1 All-metal Aromaticity in Al3X (X = As, Sb, Bi)   
 

 In an effort to add to the field of all-metal aromaticity theoretical and experimental 

studies were undertaken on the study of various bimetallic III-V cluster systems.  The method for 

the study of these systems has been described previously (See Chapter 4).  Here we primarily 

focus on the planar Al3X (X = As, Sb, Bi) clusters and their anions. 

 The collected photodetachment electron spectra, along with the matching vertical and 

adiabatic detachment energies were given in the previous chapter, however for each of the Al3X 

(X = As, Sb, Bi) species, we give the cluster geometries of the neutral and anion here for 

completeness (Figure 5.1.1).  It is interesting to note that for all the clusters studied the 

agreement between the theoretical and experimental electron detachment energies is within the 

margin of error which assures the correctness of the neutral and anionic ground states.    Each of 

the neutral clusters contains C2v symmetry, which is planar for their respective ground states.   
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Figure 5.1.1  Optimized geometries of the neutral and anionic Al3As, Al3Sb, and Al3Bi 

clusters  (Bond lengths are given in Angstroms) and collected photodetachment spectra 

for the anion species.  The red lines represent the calculated vertical electron 

detachment energies from the anion.  

 

It should be noted that there have been previous studies on other Al3N, Al3P, and Al3As clusters.  

The cluster Al3As was previously shown to have the same symmetry as we find with this study.  

The result of the clusters having a planar geometry has given us a hint towards the possibility of 

the clusters having aromatic character; however the stability of the clusters in question must first 

be verified. 

In order to do so, the various energetics were investigated for the Al3As, Al3Sb and Al3Bi 

clusters.  Table 5.1.1 shows the HOMO-LUMO gap, removal energy, adiabatic detachment 

energies and ionization potentials for the AlnAs, AlnSb and AlnBi (n = 2 – 4) clusters.     
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Table 5.1.1  Calculated and experimental Adiabatic Detachment Energies (ADE), 

calculated Adiabatic Ionization Potentials (IP), HOMO-LUMO gap values and removal 

energies for the ground state AlnAs, AlnSb, AlnBi (n = 2 - 4) clusters (in eV). 

 

 n ADE 

(exp.) 

ADE 

(theo.) 

IP 

(theo.) 

HL gap 

(theo.) 

R.E. 

AlnAs       

 2 2.39 ± 0.07 2.29 7.23 0.70 3.06 

 3 1.85 ± 0.09 1.74 7.34 1.86 3.12 

 4 1.98 ± 0.08 1.92 6.30 0.56 2.10 

AlnSb       

 2 2.34 ± 0.10 2.16 7.09 0.84 2.76 

 3 1.88 ± 0.09 1.76 7.18 1.73 3.14 

 4 1.96 ± 0.12 1.94 6.29 0.62 1.95 

AlnBi       

 2 1.97 ± 0.05 2.06 7.04 0.72 2.61 

 3 1.62 ± 0.07 1.72 7.08 1.69 3.13 

 4 2.36 ± 0.10 2.19 6.19 0.57 1.86 

 

 

Immediately one can see the HOMO-LUMO gap is the largest for the Al3X species in all of the 

clusters studied, which is indicative of cluster stability.  Not only is the HOMO-LUMO gap quite 

large for the Al3X clusters, but they have a high ionization potential and low electron detachment 

energies.  These two values illustrate that the cluster prefers not to give up or accept an electron 

very readily, meaning the cluster is stable in a state of neutrality.  Another more insightful 

energetic value is that of removal energy, which was explained previously.   The amount of 

energy it takes to remove an aluminum atom from each of the Al3X clusters to form the Al2X 

cluster is approximately 3.0 eV, but to go from Al4X to Al3X only requires 2.0 eV of energy.  

This shows that the Al3X neutral cluster is more stable than its nearest neighbor counterparts. 
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Figure 5.1.2 The isosurfaces (isovalue = 0.01 au) and symmetries of Al3As (Panel a), 

Al3Sb (Panel b) and Al3Bi (Panel c) of the molecular orbitals for the neutral ground 

state geometries. 

 

Now, we turn our attention back to the question of do these Al3X clusters exhibit the 

characteristics of all-metal aromaticity.  It has previously been established that each of the Al3X 

clusters have a planar geometry, however the character has not been established due to the 

criteria put forth above.  The main tenet of aromaticity lies in the molecular orbitals as set forth 
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in the rules of aromatic compounds.  Therefore, Figure 5.1.2 gives a plot of the molecular 

orbitals for Al3As, Al3Sb and Al3Bi.  The molecular orbitals for each of the three clusters are 

seemingly very similar.  Each of the clusters the HOMO has A1 symmetry, however the HOMO-

1 and HOMO-2 are slightly different.  For both the Al3As and Al3Sb the HOMO-2 is delocalized 

over the entire ring of the cluster, however in the Al3Bi case the HOMO-1 is the delocalized 

molecular orbital.  Whether or not the delocalized orbital is the HOMO-1 or HOMO-2, it still 

satisfies both criteria for aromatic character in an all-metal system.  Notice also that all three of 

the clusters do adhere to Hückel’s rule too, which is another confirmation on the aromatic 

behavior of the Al3X clusters.  Even though these clusters meet the minimum requirements for 

aromatic character, additional confirmation can be arrived at by computing the nucleus 

independent chemical shift (NICS). 

   The NICS value can be useful in determining if a cluster is aromatic or antiaromatic.  As 

stated in Chapter 1, a large diatropic (negative) NICS value is an indication that the cluster is 

aromatic; however, if the NICS value is paratropic (positive) the cluster is considered to be 

antiaromatic. NICS values were determined using the Guassian03 program, with the same basis 

and functional used to determine the ground state geometries of the clusters. For each of the 

Al3As, Al3Sb and Al3Bi neutral clusters, we find large negative NICS values at the center of their 

rings (-29.07, -33.08, and -32.98 ppm, respectively). These values increased as we calculated the 

NICS value above the plane, still remaining highly negative, affirming the aromatic character. 

We also calculated the NICS values for the charged clusters, Al3As
+
, Al3As

-
, Al3Sb

+
, Al3Sb

-
, 

Al3Bi
+
, and Al3Bi

-
 for comparison.  The neutral species Al3As, Al3Sb and Al3Bi had the most 

negative NICS values compared to their charged counterparts (Figure 5.1.3).   
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Figure 5.1.3 Nucleus-Independent Chemical Shift (NICS) values of cationic, neutral 

and anionic Al3As and Al3Sb in ppm. Previous results for Al3Bi are shown for 

comparison. The NICS values are calculated at the position of a ghost atom placed at 

the ring center in the molecular plane, and 0.5, 1.0, and 1.5 Å above the plane, 

respectively. 

 

These results are in agreement with what one would expect for an aromatic species (significantly 

negative).  Although NICS values do not rigorously assign the degree of aromaticity, notice that 

the Al3Sb cluster has the most negative value followed closely by the Al3Bi cluster, with Al3As 

being the least aromatic of the species.  

It is interesting to note that the rank of aromaticity from most to least, (Al3Sb > Al3Bi > 

Al3As) seems to follow the trend of differing bond lengths from smallest to largest, with the 

Al3Sb cluster having nearly identical values for the entire cluster (Al-Sb = 2.60 Å; Al-Al = 2.59 

Å); however, the Al-As bond (2.39 Å) in the Al3As cluster is significantly shorter than that of the 

Al-Al bond (2.60 Å) in the cluster (Figure 5.1.1).  This correlation between bond lengths and 

NICS values may be due to the difference in electronegativity.  For example, electronegativity 

difference between aluminum (electronegativity 1.5) and arsenic is the largest at 0.5 [147].  The 
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difference in electronegativity for Al-Sb and Al-Bi are nearly identical 0.4, which explains the 

relative closeness of their NICS values.  These results imply that as the difference in 

electronegativity increases, the aromatic character would be lost.  In fact, if one looks at the case 

of Al3N, which has the largest electronegativity difference (1.5) the lowest energy structure 

becomes D3h instead of the C2v found here and loses its aromatic character [148].      

Thus, by carrying out both theoretical and experimental studies the ground state structure 

for the Al3As, Al3Sb, and Al3Bi cluster was determined.  It follows by investigating the removal 

energy, adiabatic detachment energies, ionization potentials and HOMO-LUMO gap the Al3X 

clusters illustrate enhanced stability over their nearest neighbors.  The cause of the inherent 

stability was determined to be due to the all-metal aromatic construct using a combination of 

NICS calculations and the delocalization seen in the molecular orbitals [149 -150].   
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5.2  All-metal Aromaticity and the Ellipsoidal Jellium Model 
 

 In Section 5.1, all-metal aromaticity was used to explain the stability in Al3X (X = As, 

Sb, Bi) clusters.  However, aromaticity may not be the only way to explain the cluster stability in 

these systems.  In order to investigate this possibility, we now extend this study to include 

nitrogen and phosphorus.   

Let us first begin this discussion by looking at the various geometry possibilities for the 

Al3M (M = N, P, As, Sb, Bi) clusters.  There are three primary geometries that have been found 

for many of the Al3M clusters in previous studies, C2v, D3h, and C3v (Figure 5.2.1).  Studies 

conducted by Archibong and St-Amant on the neutral and anionic Al3As cluster, at the B3LYP 

and CCSD(T) levels using the 6-311+G(2df) basis set found the neutral Al3As has a cyclic planar 

C2v geometry with the C3v cluster residing 0.2 eV higher in energy [151]. Additionally, with the 

same basis set, Guo and Wu calculated the ground state structures of the neutral and anionic 

Al3As cluster with pure and hybrid exchange correlation functionals and found a similar result 

[152].  Studies on Al3N show the ground state to maintain a D3h geometry with its stability being 

attributed to its planar geometry [153 -154].   Using a variety of DFT methods, the ground state 

of the Al3P cluster was shown to have C3v symmetry [155 -156].  Archibong and St-Amant find 

that for the Al3P cluster the C2v, D3h, and C3v structure are nearly degenerate, with C2v and C3v 

states being the genuine minima at the CCSD(T) level [157].  With the varying geometries for 

the clusters with the Al3M (M = N, P, As, Sb, Bi), with only slight differences being the dopant 

atom, why do we not see the aromatic construct as the guiding stability principle for all of these 

clusters?  
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Figure 5.2.1  Schematic of the C2v, D3h, and C3v geometries. 

 

To gain a better insight on this perplexing question calculations on the C2v, D3h and C3v 

geometries for the Al3M (M= N, P, As, Sb, Bi) clusters were performed within the density 

functional formalism.  Table 5.2.1 shows the relative energies of the clusters with the varying 

geometries for each of these clusters.  We find the ground state for these doped clusters to retain 

a C2v geometry, with the lone exception being Al3N which has a D3h ground state.  However, we 

do note that both the D3h and C3v geometries reside very close in energy to the ground state for 

the Al3P cluster much like that found in the studies by Archibong and St-Amant [157].   

Figure 5.2.2 shows the molecular orbitals of the C2v and D3h geometries of the Al3P 

cluster with the subsequent one electron levels.  In the D3h cluster, if one were to assign orbitals 

based on symmetry point groups and character tables, the HOMO, HOMO-1, HOMO-2, and 

HOMO-3 would be assigned as 1dxz, 1dyz, 1pz and 1𝑑𝑧2  respectively.  This appears to be slightly 

different from the C2v case, whre the HOMO, HOMO-1, HOMO-2 and HOMO-3 can be 

assigned as 1𝑑𝑧2  or 2s, 1dxz, 1py, and 1𝑑𝑧2 .  However the similarity is in the assignment of d-

orbitals in both the D3h and C2v geometries which led to the question: Could the stability and 

emergence of aromatic character be understood within a deformation of the three-dimensional 

jellium to a two-dimensional one?  
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Table 5.2.1  Relative Energies for the Al3M (M = N, P, As, Sb, and Bi) clusters in 

the C2v, D3h and C3v geometries. 

Relative Energy (eV) 

 C2v D3h C3v 

Al3N -- 0 1.07 

Al3P 0 0.17 0.27 

Al3As 0 0.42 0.44 

Al3Sb 0 0.84 0.82 

Al3Bi 0 1.02 0.98 

 

To answer this question, we begin by revisiting the jellium model in three-dimensions.  In 

Chapter 1 we were introduced to the idea of using a jellium like potential to solve the 

Schrodinger equation, which resulted in electronic levels much like those found in atoms.   The 

spherical jellium model (SJM) ultimately brought forth ―magic‖ numbers. This was followed 

with the two-dimensional jellium model, which has proven to be successful for many cluster 

systems (See Chapter 1).  The attraction to this model is not only rooted in the concreteness of 

the quantum physics used in its derivation, but in the fact aromaticity has at times been 

intertwined as a characteristic as well.  If we now attempt to apply the 2-D jellium model to the 

mixed systems here, it appears to fall short.  This lies in the cluster having a total number of 

valence electrons (14) that does not correspond to a ―magic‖ number within the 2-D model.  

However, I would like to point out the two-dimensional jellium model may not completely fail, 

if the Al atom is assumed to behave monovalently.
J
  The resulting interaction would allow for 

the electron count to correspond to a magic number in the 2D model, if one were to also assume 

                                                           
J
 It has previously been reported that for aluminum clusters smaller than seven, they behave monovalently instead of 

trivalently. 
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the Group 15 atoms only had three valence electrons, as pointed out in 2001 by Leskiw and co-

workers.  This idea is not the case in these clusters as evidenced through symmetries and 

molecular orbital shapes.  So the question remains, can the jellium model truly be used to explain 

the stability of the planar 14-electron system and the manifestation of the aromatic character?  

The lack of success in using both the spherical and 2-D jellium models to understand the 

stability found in these planar systems was initially somewhat surprising.  However, it may be 

more valid approach to view this problem from a physical description.  Let us begin from the 

structure and ultimately the free electron gas in three-dimensions and continue to a 

representation in two-dimensions.  The levels of a free electron gas in three dimensions 

(spherical) allows for the molecular orbitals to form along the z-axis or contain a z-component.  

For example, the p-orbitals in three dimensions contain a px, py, and pz component giving rise to 

three degenerate p-orbitals in a spherical free electron gas.  If one were to now confine or disturb 

the spherical free electron gas to two dimensions, the molecular orbital volume in the z-direction 

(pz orbital) would be displaced or confined to two-dimensions appearing oblate or prolate in 

shape.  This type of distortion within the jellium picture, would have three primary effects, 1) the 

orbitals with z-component would appear smashed or delocalized, with the other orbitals 

appearing slightly confined; 2) any orbital along the z-axis would rise in energy from its three-

dimensional energy; and 3) the number of electrons needed to be a stable cluster would be 

altered due to the splitting of the levels induced by this distortion. In fact, this is the picture 

formed from the ellipsoidal jellium shell model.   
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Figure 5.2.2 One-electron levels and molecular orbitals isosurfaces with symmetry 

assignments for the Al3P cluster.  The molecular orbital isosurfaces (isovalue = 0.01 

a.u) and levels for the D3h geometry (Panel A) and the C2v geometry (Panel B) 

structures are given. The solid and dashed lines represent the occupied and unoccupied 

levels, respectively.  The superscripts indicate spin multiplicity. The degeneracy is 

assumed to be 2, unless otherwise noted.   

   

 

A)       B) 
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In order to investigate if the ellipsoidal picture can be used to explain the stability and 

ultimately the aromatic character, we turn to the C3v and D3h geometries for the Al3N cluster.  

Figure 5.2.3a shows the molecular orbitals and one electron levels in the C3v geometry of the 

Al3N cluster.  The C3v geometry is a three-dimensional compact structure, which allows for the 

one-electron levels to be ordered within the spherical jellium model.  The levels proceed to fill as 

follows, 1s
2
 1p

6
 2s

2
 and 1d

4
, for a total of 14 electrons in the three-dimensional system. (The 

switching of the 2s and 1d levels can occur and is seen when studying doped clusters.) Now, by 

simply going from the C3v spherical cluster to the two-dimensional D3h cluster (Figure 5.2.3b), 

the pz level rises in energy 2.66 eV and the orbital shape becomes ―oblate‖ in nature. Indeed, this 

seems to agree with the ellipsoidal jellium model and seems to explain the manifestation of the 

delocalized p-orbital.  We find this to be true for each of the D3h structures.  However, we 

wondered would also be the case for the transition to the C2v ground state structures as well.  

Figure 5.3.4 shows the one-electron levels with the molecular orbital isosurfaces for the 

both the C3v and C2v geometries in the Al3Sb cluster.  We find a similar electronic orbital order 

seen in the previous C3v structure.  However, the C2v geometry shows a slight difference. The 

Al3Sb cluster with C2v geometry has orbital symmetries with assignments that contain a z-

component.  Not only do we see these unexpected z-components, but the split between the pz and 

px, py orbitals is missing.  Instead, we see the py-orbital separate from the 1pz and 1px orbitals, but 

the delocalization is still prevalent with the py-orbital.  These results appear to point towards an 

eminent failure for the ellipsoidal jellium model; however, these results bring up two questions: 

1) Why do we see the expected split in the p-orbitals, but in the y-direction? 2) Why do we see a 

z-component in the C2v case, but not in the D3h case?   In order to gain insight into both of these 

questions, we must first think about symmetry in a cluster and/or molecule. 
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Figure 5.2.3 One-electron levels, molecular orbital isosurfaces (isovalue = 0.01 au) and 

geometries for the Al3N cluster with C3v (Panels A and C) and D3h (Panels B and D). Each 

orbital is labeled with its representation.  The Cartesian axis is given as a reference for the 

molecular orbitals.  The pink and blue balls represent the Al and N atoms, respectively.  For 

further information refer to Figure 5.2.2. 

 

 

A)       B) 

C)       D) 

View down the y-axis View down the z-axis 
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Figure 5.2.4  One-electron levels, molecular orbital isosurfaces (isovalue = 0.01 au) and 

geometries for the Al3Sb cluster.  The geometries and isosurfaces for the C3v and C2v 

geometries are given in Panel A and Panel B respectively. The red and pink balls 

represent the Sb and Al atoms respectively.  For further information, please refer to 

Figure 5.2.3.   

  

A)       B) 
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Symmetry in a cluster or molecule is based upon the principle axis.  In order to determine 

the principle axis one must first look at the orientation of the cluster and determine the axis of 

rotation. The principle axis is then designated as the z-axis in the cluster geometry of interest.  

This implies that the z-axis would change depending upon the cluster geometry.  However, this 

is contrary to the ellipsoidal jellium model.  The ellipsoidal jellium model is dependent upon the 

z-axis remaining the same.  If this were the case, clusters with a z-axis aligned in a similar 

manner would result in similar orbital orientations as one proceeds from an initial geometry to 

another.  For example, in both the D3h and C3v geometries for the Al3N cluster, the z-axis is 

through the ―center‖ of both geometries.  In fact, the transition from the C3v to the D3h could be 

viewed as simply pushing the N atom down the z-axis, into the xy-plane with the three Al atoms.  

Thus, the change in orbital energy and splitting predicted by the ellipsoidal jellium model can be 

easily observed.   

This is very different when comparing a cluster with the C2v geometry to its C3v 

counterpart.  In the C2v geometry, the z-axis is no longer north-south as it was in the C3v 

geometry but east-west.
K
 As a result, the C2v cluster resides in the xz-plane, implying three 

things; 1) any molecular orbital with a y-component in the C2v geometry, would rise in energy 

(or split) from orbitals with x and z components; 2) the y-orbital would become smeared in 

appearance (i.e.- delocalized) and 3) orbitals with z-components would remain in the C2v 

geometry.  In fact, this is the case found in not only the C2v geometry of the Al3Sb cluster, but we 

find this to be the case for each of the C2v Al3M clusters in this study.  This result poses two 

manners in which this result can be viewed.  In the first manner, one could say the cluster 

proceeds from its C3v geometry to the C2v geometry in a prolate (compression along the y-axis) 

                                                           
K
 The choice of principal axis is governed by the chosen software to run the cluster or molecule.  As such, the reader 

should be made aware of this option in any software program when assigning orbitals based on symmetry in a code. 
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manner.  The implication of which is that the ellipsoidal jellium model would be an unacceptable 

description, since the result would not correspond to 14 valence electrons. If instead one were to 

require the principle axis to be established in the center of the C2v geometry, this would allow for 

the cluster to reside in the xy-plane; thus the jellium would behave oblate in nature.  The result 

would change the orbital assignments between the y and z components.  Thereby, giving the 

exact picture predicted by the ellipsoidal jellium model if compressed along the z-axis.  

If the ellipsoidal jellium picture is a true description of these systems, one would expect 

to see some type of splitting in the d-states (and f-states) similar to what is expected in the p-

states, modifying the degenerate character seen in the spherical model. In the Al3As case (Figure 

5.2.6), the occupied states resemble what one would expect, with the pz-orbital being delocalized 

to the compression and residing 3.45 eV higher than the nearest 1p-state. The first two d-states 

observed, 1𝑑𝑥2−𝑦2  and 1dxy, are located at the HOMO-1 and HOMO-3 positions. The next d-

state is the LUMO+1 (1dxz), with the LUMO+2 being assigned as the 1dyz state, both of which 

are clearly separated from the HOMO states with the expected splitting (the LUMO resembles 

one of the 1f-states). However, there is one d-state remaining which we find residing 3.33 eV 

higher than the nearest d-state (LUMO+2). It is interesting to note, the separation between the 

px,py and pz states (3.45 eV) is similar to the separation energy between the d-states (3.33 eV) in 

the Al3As cluster. The similar values of the energy separation found in the electron levels is not 

just isolated to the Al3As case, we find this to hold true for each of the Al3M (M = N, P, As, Sb, 

and Bi) ground state clusters (Table 5.2.2). The equivalent energetic separation between states is 

in agreement with the ellipsoidal jellium model and the idea of a distortion parameter on the 

potential.  
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Figure 5.2.5  One-electron levels, molecular orbital isosurfaces (isovalue = 0.01 au) for 

the lowest energy Al3As cluster.  The green and pink balls represent the Sb and Al 

atoms respectively.  For further information, please refer to Figure 5.2.4. 
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Table 5.2.2 The symmetry, separation energies of the p-states (ΔEp), d-states (ΔEd), and 

average (Avg.), with the HOMO-LUMO gaps (Egap) for the ground state Al3M (M = N, 

P, As, Sb, and Bi) clusters (in eV).  

M Symmetry ΔEp ΔEd Avg. Egap 

N D3h 2.66 2.44 2.25 2.50 

P C2v 3.43 3.35 3.39 1.92 

As C2v 3.45 3.33 3.39 1.87 

Sb C2v 3.48 3.33 3.41 1.73 

Bi C2v 3.49 3.29 3.39 1.69 

 

Indeed, the idea of all-metal aromatic as a way to describe stability based on the two 

criteria established by organic chemist appears at first to be a viable explanation for the stable 

behavior observed in many planar inorganic systems.  However, another classification is found 

in the ellipsoidal jellium model.  The ellipsoidal jellium model (EJM) predicts a stable closed 

shell when the number of electrons in a cluster system that is oblate in nature is 14, which 

corresponds to the number of valence electrons found in the clusters studied here (Al3N, Al3P, 

Al3As, Al3Sb, Al3Bi) and even the Al4
2-

 cluster initially reported by Li and co-workers [43].  

Further evidence from the molecular orbital diagrams, character tables and one-electron levels, 

support the EJM as the preferred model. The similar separation values obtained through the 

splitting of the p- and d- states for the D3h and C2v geometries further confirm this picture.  We 

believe these results show that the aromatic character (i.e.- delocalization of orbitals) found in 

planar metallic systems is a manifestation of the compressed three-dimensional nearly free 
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electron gas.  These results show the importance of the ellipsoidal jellium model in 

understanding of stability for planar inorganic clusters.  
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5.3 Chapter 5 Summary 
 

 In utilizing density functional techniques, we have identified a group of stable planar 

bimetallic neutral clusters.  The Al3 cluster when doped with a Group 15 atom, tends to show 

stability due to its large HOMO-LUMO gap, energy gain and ionization potential calculations.  

First, we investigated the idea of all-metal aromaticity as the source of the stable behavior.  The 

requirements of all-metal aromaticity were explored and appeared to agree with this stability 

description for the Al3As, Al3Sb and Al3Bi clusters.  As an alternate approach, evidence was 

given to question the idea of all-metal aromaticity by labeling molecular orbitals through the use 

of character tables for the commonly found symmetries when extending the study to include the 

remaining Group 15 elements (N and P).  In the exploration of all of the Al3M clusters (M = N, 

P, As, Sb, and Bi), little evidence was given to support the use of the spherical and two-

dimensional jellium models as the source of stability in these systems.  However, by 

investigating the physical transformation from a three-dimensional structure in the nearly free 

electron gas to a planar two-dimensional structure, the framework was given for an explanation 

of the all-metal aromatic construct.  The physical transformation could be interpreted as 

compressing the jellium from spherical to oblate down the z-axis.  This results in the loss of 

degeneracy within the electronic levels and, as predicted by the ellipsoidal jellium model, 

clusters with 14 valence electrons would show stable behavior.  Furthermore, the appearance of 

delocalized molecular orbitals can be understood through the distortion of the spherical nearly 

free electron gas.  The Al3As, Al3Sb and Al3Bi clusters are strong candidates for cluster 

assembly due to their stable nature.  
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Chapter 6   Stability Analogous to Zintl 
Polyanions: Zintl Analogue Clusters 

 
 

 

From the introduction, it is known that there are groups of polyatomic anions of post-

transition metals and semimetals that are readily defined as Zintl Ions.  These clusters each have 

been structurally identified though experiment for hundreds of years.  Many of the more well 

known Zintl Ions include, 𝑃𝑛7
3−, 𝐸5

2−, and 𝐸9
𝑞−

 where Pn = P, As, Sb, E = Si, Ge, Sn, Pb, and q = 

1 – 4 [158 - 160].  Zintl polyatomic ions are heavily reliant upon their electron count, which in 

turn assist in determining the geometry due to polyskeletal theory.  Now, it is proposed the class 

of Zintl clusters can be extended to the heteroatomic bismuth-tin system using first principle 

calculations and gas phase experiments.      

6.1 SnnBi- System (n = 1 – 9) 

One of the most studied Zintl ions are tin clusters or stannides.  The vast class of clusters 

has grown and provided insight, along with its alloys, on various aspects in nanoscience and 

technology [161 - 162].  Since the electron count in the Zintl stannide system plays a significant 

role in the stability of these clusters, a question emerges: Can one maintain similar geometry 

configurations by simply changing one atom (i.e.-using a dopant) that retains number of 

electrons needed to fulfill Wade-Mingos rules? In order to assess this intriguing question, 

theoretical calculations were performed to determine the geometries, electronic structure and 

energetics of SnnBi
0/-

 (n = 1 – 9) clusters using the density functional formalism.  The method 

incorporated the exchange and correlation effects within the GGA functional proposed by Becke 

and Perdew (BP86).  The atoms were represented by a quadruple-ζ basis with polarization 

functions (QZ4P) with an all electron calculation.  Relativistic effects were accounted for using 
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the ZORA method described previously.  All calculations, including excited states, were 

performed using ADF.
L
  

The theoretical method was verified using previous studies and the collected PES values 

for the SnBi
-
 dimer.  The optimized distance in this study for the SnBi

-
 dimer was 2.65 Å.  it is 

identical to the theoretical value obtained by Sun et. al [163].  Using the optimized dimer values 

for the ADE and VDE were compared to the values from experiment.  The optimized dimer 

theoretical value is much larger than the experimentally obtained dimer.  However, the hot 

environment of the experiment will allow for some isomers.  Therefore we attempted excited 

states to verify each of the experimental peaks in the collected spectra for the dimer.  The excited 

states for the VDE values (i.e- VDE2 and VDE3) can be seen in Table 6.1 and show relative 

good agreement with the dimer experimental values, therefore the method is deemed acceptable.  

Figure 6.1 shows the global minimum structures for the SnnBi
-
 clusters (n = 2 - 9).  The 

structures obtained for BiSn
-
, BiSn2

-
, BiSn3

-
, BiSn4

-
 and BiSn5

-
 are in agreement with the ones 

previously reported by Sun and co-workers.  Notice that in most cases the structures are highly 

symmetrical, the exception being BiSn7
-
.  The BiSn4

-
 cluster has C3v symmetry, while the BiSn5

-
 

has C4v symmetry, which resemble the Zintl clusters Sn5
2-

 and Sn6
2-

.    In fact upon closer 

investigation all of the bismuth doped tin clusters show the same geometrical shapes as their 

Snn
2-

 counterparts.    It is interesting to note that for the Sn4Bi
-
 and Sn5Bi

-
, the bismuth atom has 

a coordination number of four, however for the larger cluster sizes the coordination number 

increases to five.  In an effort to verify the theoretical structures were the ground state structures, 

we employed negative photodetachment experiments. 

 

                                                           
L
 Refer to Chapter 3. 
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Figure 6.1.1 Lowest energy structures for SnnBi- clusters (n = 2 – 9).  The gray and 

purple balls represent the Sn and Bi atoms respectively. 

 

 In brief, the SnxBiy
-
 clusters were formed by using a ¼‖ 50:50 molar ratio Sn-Bi molded 

rod in a laser vaporization source, experimentally. For more information please refer to reference 

74.
M

 The resulting mass spectra can be seen in Figure 6.1.2.  The photodetachment electron 

spectra collected yields information on the electron detachment energies of each species and the 

values can be seen in Table 6.1 along with the theoretical values for the adiabatic and vertical 

detachment energies.  The difference between the theoretical and experimental values for many 

of the clusters falls within the margin of error. 

                                                           
M

 For further information please refer to Chapter 2. 
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Figure 6.1.2. Collected mass spectra of SnnBi
-
 clusters.  The insert is a magnified 

portion of the tin-bismuth anionic clusters. 

 

The photodetachment electron spectra collected yields information on the electron detachment 

energies of each species and the values can be seen in Table 6.1 along with the theoretical values 

for the adiabatic and vertical detachment energies.  The difference between the theoretical and 

experimental values for many of the clusters falls within the margin of error. 

We now turn our attention to the energetics of the clusters in this study.  First let us look at 

determining the stability of a cluster.  One indicator of stability in clusters is through the energy 

gain, via,   

E(Sn) + E(Snn-1Bi
-
) - E(SnnBi

-
). 
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Table 6.1.  Theoretical and experimental adiabatic and vertical electron detachment 

energies, as well as the calculated HOMO-LUMO gaps for the SnnBi
-
 clusters. The 

theoretical VDE2 and VDE3 are excited state transitions (for more information please 

refer to the text). Experimental error is ± 0.1 eV for ADE and VDE; experimental error 

is ± 0.2 for VDE2 and VDE3.  All energies are in eV. 

 

 Experimental     Theoretical 

 ADE VDE VDE2 VDE3   ADE VDE VDE2 VDE3 Gap 

1 2.10 2.36 2.64 3.56   2.44 2.51 2.59 2.93 1.87 

2 2.20 2.39 2.87 3.26   2.19 2.22 2.95 3.30 1.01 

3 2.55 2.81 3.01 3.31, 

3.63 

  2.44 2.67 3.27 3.65 1.32 

4 2.82 3.18 3.70    2.72 2.92 3.47 3.62 1.92 

5 2.52 2.83 3.15 3.4   2.54 2.80 3.36 3.55 1.76 

6 2.32 2.72 3.45    2.38 2.59 3.46 3.63 1.26 

7 2.65 2.93 3.35 3.35   2.72 2.91 3.51 3.57 0.97 

8 2.95 3.26 3.47 3.73   2.97 3.11 3.59 3.70 1.17 

9 2.98 3.31 3.55 3.56   2.96 3.06 3.38 3.72 1.40 

 

 

The calculated values for the energy gain of the SnnBi
-
 (n = 1 – 9) can be seen in Figure 6.1.3.  

From the figure, Sn4Bi
-
, Sn6Bi

-
 and Sn8Bi

-
 each show the largest gain in energy from the 

previous cluster sizes.  The largest value for the energy gain is found when n = 4 for all of the 

clusters.  This shows agreement with what was found in the mass spectra.  Another measure of 

stability is verified through the HOMO-LUMO gap.  Figure 6.1.3 shows the calculated values for 
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the HOMO-LUMO gaps in the SnnBi
-
 series.  The Sn4Bi

-
 cluster clearly has the largest HOMO-

LUMO gap (1.9 eV); again illustrating the enhanced stability of the Sn4Bi
-
 cluster.  We now turn 

to understanding the stability through electron count and bonding. 

First let us look at the effect of electron count by replacing a tin atom with a bismuth 

atom in the cluster.  The tin atom has two s-electrons and two p-electrons in its valence shell 

(5s
2
5p

2
) which is one less valence electron than the bismuth atom (6s

2
6p

3
).   One can simply 

view the bismuth atom as a negatively charged tin atom (Sn
-
).   This would mean by substituting 

one tin atom with a bismuth atom on pure tin clusters and adding an electron, the resulting tin-

bismuth cluster would have the identical electron count Snn
2-

 clusters.  Previous studies on Snn
2-

 

clusters have shown these cluster have very interesting characteristics.  Interestingly, Snn
2-

 

clusters adhere to Wade’s 2n + 2 skeletal rule for bonding and show both anti- and pure 

aromaticity.  We have seen through the geometry that these SnnBi
-
 clusters do show the same 

type of structures and adhere to Wade’s rules;  however, one wonders if the electronic structure 

and aromatic characteristics of the SnnBi
-
 clusters mimic those of the Snn

2-
. 

To investigate the similarities between Snn
2-

 and SnnBi
-
 clusters, we give the isosurfaces 

of the molecular orbitals in Figure 6.1.4 for the Sn4Bi
-
 and 𝑆𝑛5

2− clusters.  For the Sn4Bi
-
 cluster, 

the HOMO, HOMO-1, HOMO-2, HOMO-3, HOMO-4 and HOMO-5 are virtually identical to 

those found in 𝑆𝑛5
2−.  Notice that the HOMO-5 in both cases is a sigma orbital, whereas the 

others can be considered pi-orbitals in the two clusters.  One can also see, the number of bonding 

orbitals for both the 𝑆𝑛5
2− and Sn4Bi

-
 clusters.  The Sn4Bi

-
 cluster has five vertices and a closo 

geometry as predicted by the Wade-Mingos rules.    
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Figure 6.1.3  Plot of the energy gain (E.G.) and HOMO-LUMO gap (Gap) for the 

SnnBi- clusters (n = 2 - 9). 
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Figure 6.1.4  Isosurfaces of the molecular orbitals for Sn4Bi
-
 and Sn5

2-
. The white balls 

represent Sn atoms and the blue ball represents the Bi atom. 
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Table 6.1.2.  NICS (0) values for SnnBi
-
, 𝑆𝑛𝑛+1

2−  and 𝐺𝑒𝑛+1
2−  where n = 4 – 9.  All NICS 

values are in ppm. 

 
SnnBi

-
 Snn+1

2-
 Gen+1

2-
 

4 -26.9 -26.4 -33.4 

5 16.7 14.5 14.3 

6 -11.7 -2.5 0.4 

7 -6.6 -4.2 -5.3 

8 -33.4 -33.4 -39.2 

9 -29.3 -39.3 -51.9 

 

 Multiple studies have been carried out on the aromatic and antiaromatic character seen in 

Zintl dianions of Group 14 clusters.  Schleyer et al. showed 𝑆𝑖𝑛
2− clusters have both aromatic and 

antiaromatic character.  Chen and co-workers furthered this endeavor by showing both the 𝑆𝑛𝑛
2− 

and 𝐺𝑒𝑛
2− clusters illustrate the same behavior.  Since the SnnBi

-
 are isoelectronic to the 

aforementioned dianions, we investigated the possibility of aromatic and anti-aromatic character 

of the identified SnnBi
-
 clusters.  We carried out a nucleus independent chemical shift (NICS) 

analysis within the ADF software package.  As explained in the previous section, if the cluster is 

aromatic it will have a diatropic (negative) value and if a cluster is antiaromatic it will have a 

paratropic (positive) value. Table 6.1.2 contains the determined NICS values for all the SnnBi
-
 

clusters as well as those previously reported by Chen and co-workers.  The Sn4Bi
-
, BiSn6

-
, BiSn8

-
 

and BiSn9
-
 all have negative NICS values, indicating each of those clusters are aromatic.  

Remarkably, BiSn5
-
 has an overall paratropic NICS(0) value and thus is considered antiaromatic.  

Immediately one can see the bismuth doped negatively charge tin clusters follow the same trend 
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as doubly charged Zintl clusters. The aromatic and anti-aromatic character in the SnnBi
-
 cluster 

shows these clusters can indeed be considered Gas Phase Zintl analogues, however the question 

remaining is where exactly does the aromatic character originate in the three-dimensional cluster 

system? 

To answer this question, we performed a NICS analysis of the individual molecular 

orbitals (MO-NICS) using the ADF software package on Sn4Bi
-
 and Sn5Bi

-
 clusters.  The one-

electron levels and their NICS values are shown in Figure 6.1.5.  The highly aromatic cluster  

BiSn4
- 

has a positive value of 16.88 for its highest occupied molecular orbital (HOMO), 

indicating that the HOMO is antiaromatic in character (Figure 6.1.5A).  However, the HOMO-1, 

HOMO-2, HOMO-3, etc. all have negative NICS values.  The sum of the upper combination of 

p-electrons (-0.65 ppm), thus slightly aromatic.    If one now adds in the high negative value of 

the lower electronic levels (-25.46 ppm), one sees the aromaticity originates from the s-electrons.  

This trend is similar in the antiaromatic cluster, Sn5Bi
-
. (Figure 6.1.5B)  The lower levels still 

show aromatic character with a NICS value of -29.65 ppm, but the upper electronic levels are 

different than those from the Sn4Bi
-
 cluster. The HOMO, HOMO-1, and HOMO-2 all are 

antiaromatic with values of 24.42, 24.42, and 24.32 ppm respectively.  The total of these three 

levels alone amount to a dramatically larger paratropic value than the diatropic value obtained 

from the lower electronic levels.  Thus, the antiaromatic value (16.71 ppm) evolves almost 

exclusively from the HOMO, HOMO-1 and HOMO-2 for this cluster.  One can clearly see that 

the aromatic character seen in bismuth doped tin clusters primarily comes from the combination 

of the lower level electrons, whereas the antiaromatic character originates from the combination 

of upper (p) electrons. 
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Figure 6.1.5  One-electron levels of Sn4Bi
-
 (Column A) and Sn5Bi

-
 (Column B).  

Molecular orbital NICS values are given for the group of molecular orbitals (in ppm). 

 

 From both experimental and theoretical calculations, doping pure tin clusters with one 

bismuth atom and adding one electron is a very effective way of maintaining similar electron 

counts in the system in designing stable clusters.  The SnnBi
-
 clusters presented here are 

isoelectronic and have similar aromatic (antiaromatic) character as previously studied 𝑆𝑛𝑛
2− 

clusters.  The Sn4Bi
-
 has the largest HOMO-LUMO gap and large energy gain indicating the 

cluster is particularly stable compared to the other clusters in the series.  The stable behavior of 

the Sn4Bi
-
 cluster and geometry can be rationalized through Wade-Mingos rules for electron 

Energy (eV) 

A      B 
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counting and aromatic character, much like its Sn5
2-

 Zintl Ion counterpart.  Therefore, the Sn4Bi
-
 

cluster is a stable gas phase Zintl analogue that shows promise for cluster assemblies.  
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6.2 SnxBiy- System (x + y = 9): Deltahedral Gas Phase Zintl Analogues  
 

As stated previously, using a bismuth atom as a dopant in pure tin clusters, can result in 

the ability to design stable gas phase Zintl cluster analogs.  This discovery has sparked an 

interest in investigating a unique class of known Zintl clusters commonly seen in Zintl phases, 

deltahedral Zintl clusters.  Deltahedral Zintl clusters are a special sub class of polyatomic 

clusters with geometries that are made up of triangular faces with nine-atoms.  It is well known 

that Zintl clusters with deltahedral geometry can be found for many of the Group 14 elements.    

The first structurally characterized compound with a nine-atom deltahedral was Cs4Ge9 [112]  

This discovery of Ge9
4-

 in a solid opened the door to search for other deltahedral clusters and 

have resulted in many Group 14 deltahedral clusters.   

The beauty and attraction of the deltahedral clusters is their ability to handle different 

charges with very small structural distortions.  It has been shown that for germanium the 

lengthening and shortening of the edges involves very little energy, but can greatly affect the 

electronic structure.  This affect can be seen in deltahedral tin clusters as well.  Previous 

theoretical studies have indicated that the Sn9
-4

cluster has a square-antiprismatic ground state and 

represents a nido-type cluster. According to the Wade-Mingos rules, a closo (D3h) cluster with n 

vertices exhibits enhanced stability for 2n + 2 electrons while a nido (C4V) cluster with n vertices 

exhibits enhanced stability for 2n+4 electrons. From a valence point of view, each Sn atom 

contributes two p-electrons to the valence pool, thus the stability of Sn9
-2

 and Sn9
-4

 can be 

reconciled within such a simple model. It is also interesting to note that the nido-C4V structure 

found for the Sn9
-4

 cluster has a closely lying isomer with a closo-D3h structure. This gives the 

cluster some structural fluxionality.  The fluxional character is also shown by the Zintl anions 

Ge9
-4

 and Pb9
-4

.   
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With the observation of the fluxional behavior of the deltahedral Zintl anions, one begins 

to question if this same behavior will be seen if one substitutes a Bi atom for a Sn atom in the 

nine-atom cluster.  It has already been explained how the electron count can result in an 

isoelectronic species by using the Bi atom as a dopant in Sn clusters.  However, now studies will 

be undertaken to see the effect of size difference, since the Bi atom is larger than the Sn atom, 

has on the fluxional behavior and the change on the electronic structure with the studies of the 

deltahedral BixSny
-
 ( x + y = 9) clusters.   

It is important to understand the effect of charge on the fluxional behavior of the Sn9
-q

 (q 

=1-4) clusters with the D3h and C4v isomers.  The lowest energy structures were obtained within 

symmetry constraint with their relative stability are shown in Figure 6.2.1.  The D3h structure is 

more stable in Sn9
-
, Sn9

-2
, and Sn9

-3
. However, for Sn9

-4
 the D3h structure differs from the C4V 

structure by only 0.003 eV. Previous studies have shown that the polyatomic anion Sn9
-4

 in the 

condensed phase exhibits D3h and C4V structures that can interconvert.  The charge has a major 

effect on the fluxional behavior of the cluster. As shown in Figure 6.2.1, when the charge is 

reduced from -4 to -3, the C4v structure is destabilized by about 0.33 eV relative to the D3h 

structure. Further, as the charge is reduced from -2 to -1, the C4v structure is destabilized by 0.18 

eV compared to the D3h structure. As expected, the D3h structure for Sn9
-2

 is much more stable, 

1.02 eV lower in energy.  The stability is a direct result of Wade-Mingos rules. 

Multiply charged clusters are observed in the condensed phase, however the coulomb 

repulsion destabilizes the binding of multiple electrons in free clusters. This issue can be solved 

if one dopes the cluster with an atom resulting in an isoelectronic species.  The doped tin 

clusters, Sn6Bi3
-
, Sn7Bi2

-
, and Sn8Bi

-
 have the same number of electrons as Sn9

-4
, Sn9

-3
, and Sn9

-2
, 

respectively.  It should be noted that the size of a Bi atom is larger than that of a Sn atom. 
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Figure 6.2.1 Comparison of the C4v and D3h structures for 𝑆𝑛9
−𝑞

 (q = 1 – 4) and 𝑆𝑛𝑥𝐵𝑖𝑦
− 

(x + y = 9) clusters.  The relative energies are given below each structure in electron 

volts.  The gray and purple balls represent the tin and bismuth atoms respectively.  

Bond lengths are given in Angstroms. 
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Table 6.2.1.  Experimental and theoretical values for the vertical electron detachment 

energies (VDE and VDE2), adabatic electron detachment energies (ADE) and 

calculated HOMO-LUMO gap (Gap) and removal energies (R.E.) for the deltahedral 

tin-bismuth clusters (in eV).  The values in parenthesis represent the experimental error. 

 

 

 Experimental Theoretical 

 VDE VDE2 ADE VDE VDE2 ADE Gap R.E. 

Sn8Bi
-
 3.26 (0.02) 3.47 (0.05) 2.95 (0.07) 3.11 3.19 2.97 1.18 3.64 

Sn7Bi2
-
 2.93 (0.07) 3.40 (0.07) 2.47 (0.11) 2.72 3.27 2.26 0.21 3.43 

Sn6Bi3
-
 3.25 (0.04) 3.63 (0.05) 2.96 (0.06) 3.04 3.61 2.92 2.25 3.60 

 

 

the Sn6Bi3
-
, Sn7Bi2

-
, and Sn8Bi

-
 clusters. The calculated AEDE and VDE values are in good 

agreement with the values obtained through experiment.  As mentioned before, the vertical 

transitions provide a fingerprint of the geometrical structure, and the close agreement shows that 

the calculated structures match with experiment.  Notice that the AEDE is higher for the Sn8Bi
-
 

and Sn6Bi3
-
 clusters, which should be expected, since they are analogues to the Sn9

-2
 and Sn9

-4
 

clusters which are particularly stable.    

To examine cluster stability further we also calculated the energy required to remove a Sn 

or a Bi atom from the cluster, listed as ΔESn and ΔEBi. Also shown in Table 6.2.1 are the 

Removal Energies (R.E.) calculated using the equation 

R.E.(Sn) = E(Snx-1Biy
-
) + E(Sn) - E(SnxBiy

-
) 

Here E(Sn) is the total energy of a Sn atom, E(SnxBiy
-
) is the total energy of the SnxBiy

-
 cluster, 

and E(Snx-1Biy
-
) is the total energy of the cluster with one fewer Sn atom. 
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Figure 6.2.2 One-electron levels for the 𝑆𝑛9
−2, 𝑆𝑛9

−4, and 𝑆𝑛6𝐵𝑖3
−. 

 

Since stability of the deltahedral clusters have been successfully verified, we now turn 

our attention to the features of the some of the electronic structure of these systems.  Figure 6.2.2 

shows the one electron levels in Sn9
-2

, Sn9
-4

 (C4V), and Sn6Bi3
-
.  The continuous lines represent 

the occupied states while the dashed lines represent the unfilled p-states. The p-orbitals normal to 

the cage can form π-orbitals which is different from the expected Wade-Mingos structures.  This 

interaction may lead to spherical aromaticity (which was explained previously) while the other 

orbitals form skeleton molecular orbitals. To show this more explicitly, the charge density 

distribution in the most stable electronic orbital, which corresponds to an overall π-bonding 
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orbital is shown in Figure 6.2.2. The next orbitals are either σ or composed of a mixture of σ-like 

and π-like. In the case of Sn9
-2

, the manifold of the skeleton orbitals is separated by the LUMO 

that has π-bonding in the top and bottom triangles leaving a node in the middle. Since the LUMO 

in Sn9
-2

 is separated substantially from the LUMO+1, another stable species could be formed if 

the LUMO state could possibly be filled by the addition of two electrons.  This in facts is exactly 

what happens in the pure Sn case with the Sn9
-4

 cluster. Now, by adding three Bi atoms to form 

Sn6Bi3
-
 one can accomplish a similar effect. As shown in Figure 6.2.2, the cluster exhibits a large 

HOMO-LUMO gap.   

Here, the deltahedral Sn6Bi3
-
, Sn7Bi2

-
, and Sn8Bi

-
 clusters behave much like their 

deltahedral Zintl counterparts.  These clusters are isoelectronic and illustrate the fluxional 

behavior found in the E9
q-

 (E = Ge, Pb, and Sn; q = 1 – 4) clusters previously studied.   The 

Sn6Bi3
-
 has the largest HOMO-LUMO gap (2.2 eV).  Each of the deltahedral clusters were 

shown to be stable gas phase Zintl analogue clusters through experimental and theoretical 

verification and are candidates for cluster assemblies. 
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6.3 Stable Zintl Analogues using Countercations 
 

Typically, Zintl clusters in known Zintl phases incorporate the use of countercations such 

as a crypt, crown, or various Group 1 atoms. Therefore, it is logical to use these well-known 

countercations in order to stabilize the neutral counterparts to the aforementioned Zintl analogue 

clusters for assemblies.  However, current advances have been made in functionalizing 

deltahedral clusters with organic functional groups in the solid state, which may be advantageous 

to pursue.  Hull and Sevov have functionalized the Ge9
4-

 cluster in experiment using alkynes and 

alkyl halides [165 – 166].  These studies have extended to the deltahedral Sn9
4-

 cluster as well.  

Using alkyl chlorides and alkynes, Chapman and Sevov were able to synthesize the first tin-

based deltahedral organo-Zintl ions, such as [Sn9-CH=CH2]
3-

 in the solid state [167].  Kocak and 

coworkers reported that both the C4v and D3h structures for the deltahedral cage were found for 

RSn9
3-

 anions using NMR.  These authors proposed two mechanisms for exchange for the 

fluxional anions, which they found to be dependent upon the substituent [168].     

The excitement produced in the new class of organo-Zintl clusters has prompted this 

study using the deltahedral gas phase Zintl SnxBiy clusters (x + y = 9).  Recall, that the 

heteroatomic Zintl clusters, Sn6Bi3
-
, Sn7Bi2

-
, and Sn8Bi

-
 are analogous to the Sn9

4-
, Sn9

3-
 and 

Sn9
2-

 Zintl clusters and were successfully synthesized through gas phase synthesis.  With the 

similarities between the heteroatomic SnxBiy
-
 clusters and pure tin Zintl clusters, we now embark 

upon designing stable organo-Zintl clusters using these gas phase Zintl analogue clusters (GPZC) 

through a purely theoretical approach using the addition of a R-group, such as ethene or propene, 

to the heteroatomic deltahedral SnxBiy (x + y = 9) clusters and compare those structures to those 

stabilized through the more conventional Group 1 countercation.  
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Figure 6.3.1  Optimized geometries of KSn6Bi3 (Panels A and D), Sn6Bi3-CH3 (Panels 

B and E) and Sn6Bi3-C2H3 (Panels C and F) clusters. 

 

First we look at the effects of using the Group 1 countercation to stabilize the Sn6Bi3
-
 

cluster.  The simplest case is the neutral cluster Sn6Bi3 is one electron short of becoming stable 

with 22 electrons like the Sn9
4-

 Zintl cluster.  The Sn6Bi3 anionic cluster was previously reported 

to have a gap size of 2.2 eV and a ground state geometry of D3h with the three bismuth atoms 

residing at the each of the three vertices. Figure 6.3.1 shows the ground state geometries for the 

KSn6Bi3 cluster as an example.  

 

A)    B)        C) 

 

 

 

 

 

 

D)    E)         F) 
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Table 6.3.1  The calculated HOMO-LUMO Gap, Binding Energies (B.E.), electron 

affinities (E.A.) and parent cluster symmetries for Sn6Bi3
-
, ASn6Bi3

-
 (A = Na, K, and 

Cs), and Sn6Bi3-R (R = CH3 and C2H3). 

 Gap B.E. E.A. Symmetry 

Sn6Bi3
-
 2.16 n/a 2.98 D3h 

NaSn6Bi3 1.99 2.08 1.37 D3h 

KSn6Bi3 2.03 2.16 1.25 D3h 

CsSn6Bi3 2.06 2.11 1.26 D3h 

(Sn6Bi3)CH3 1.88 1.90 1.79 pseudo-D3h 

(Sn6Bi3)C2H3 1.88 2.08 1.87 pseudo-D3h 

 

 

 The Group 1 atom resides on the exterior of the cluster for the ASn6Bi3 clusters (A = Na, K, and 

Cs). The parent cluster (Sn6Bi3), in the ASn6Bi3 cluster has a D3h geometry, which is the same as 

the Sn6Bi3
-
 cluster.  However, the HOMO-LUMO gap for the ASn6Bi3 cluster shows a slight 

drop from the anionic Sn6Bi3 cluster to 2.0, 2.0, and 2.1 eV for Na, K, and Cs respectively.  

Equally as important for the determination of stability, is the binding energy of the countercation 

to the cluster.  Table 6.3.1 shows the binding energies for the Na, K, and Cs atoms.  Notice that 

the KSn6Bi3 cluster has the highest binding energy, but each of the ASn6Bi3 cluster have a 

binding energy of over 2 eV.     

Next we turn our attention to the organo-Zintl cluster R-Sn6Bi3, where the R groups are 

either a methyl (-CH3) or ethyl (-C2H3) group.  The binding energy of the R group to the cluster 

is approximately 2 eV, which is almost identical to the binding energies for the alkali atom case 

(Table 6.3.1).  The HOMO-LUMO gaps of these R-group ligated clusters are lower than the bare 
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Sn6Bi3 anion and the ASn6Bi3 clusters.  We hypothesize that the nature of this change is most 

likely due to the covalent nature of the R-group.  The alkali atom easily donates its electron to 

achieve a closed atomic shell to the deltahedral cluster.  However, the R group would not behave 

in an ionic nature but its covalent behavior with the cluster would result in the possible lowering 

of the HOMO-LUMO gap.  

  The geometry of the cluster seems to change slightly depending on the choice of 

countercation.  The pure Sn6Bi3
-
 cluster has D3h symmetry with the C4v structure residing +0.22 

eV higher in energy.  Once the alkali counter cation is added to the Sn6Bi3 cluster, the cluster 

retains the D3h symmetry as the lowest energy structure.  With the addition of an R group, such 

as CH3 or C2H3, the cluster becomes slightly distorted and has a pseudo-D3h symmetry.  It is 

interesting to note the Sn-C bond length for the clusters here are 2.2 Å, which is similar to what 

is found for the pure tin organo-Zintl clusters found previously [167-168].  This fluxional 

behavior appears to be dependent upon the countercation of choice.   

Since the alkali counter cations align themselves upon a face of the Sn6Bi3 cluster, it is 

advantageous to look at the sites where the organic countercations bind.  There are two primary 

sites, a Bi atom on the apex or Sn atom on the cluster, upon which the R groups can attack; we 

look at the case of -C2H3 for comparison.  If the ethyl-group is attached on the Bi apex of the 

cluster, the HOMO-LUMO gap is 1.40 eV and the binding energy is 1.54 eV.  However, when 

the R group is attached on a Sn site, the structure resides 0.55 eV lower in energy.  This is 

accompanied by an increase in both the gap (1.88 eV) and binding energy of the –C2H3 group 

(2.08 eV).  The cluster geometry also changes as well.  The lowest energy structure, has a 

pseudo-D3h geometry, however if the R-group binds to the Bi site, the parent cluster retains a D3h 

geometry.  This is accompanied by a slight inversion, with the Sn atom extending to the apex. 
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Figure 6.3.2  Lowest energy structures for the Sn7Bi2-C2H3 and Sn8Bi-C2H3 clusters.  

The bond length between the –C2H3 and the parent clusters are given in Angstroms. 

 

These results show that the R group prefers the Sn site on the cage for the Sn6Bi3 cluster but the 

question remains what if the Bi atom were replaced with a Sn atom, would the R group prefer a 

Sn site on the apex?   

To answer this question, we investigated the addition of –C2H3 to the deltahedral cluster 

Sn7Bi2.  This allows for three possible sites for attachment of the ethene group, a Bi atom, a Sn 

atom on the apex of the cluster, and the final site for possible attachment resides in the cage. 

Figure 6.3.2 shows the optimized structure for the Sn7Bi2-C2H3 cluster. Once the ethylene group 

is attached to the Sn7Bi2 cluster, we find the R-group behaves much like the previous case in the 

Sn6Bi3 cluster and prefers to bind to a tin site versus a bismuth site. The Sn7Bi2 cluster with the 

C2H3 group bound to the Bi site exhibits the C2v geometry, with a slight inversion as seen in the 

previous case but resides 0.67 eV above the ground state structure. The Sn7Bi2 cluster with the 

C2H3 group bound to the Sn site at the apex of the cluster has C2v geometry.  However, the 
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lowest energy structure has Cs geometry with an additional Sn-Sn bond forming, but resides only 

0.07 eV lower in energy than the Sn-C2H3 cluster with C2v geometry.  Here, the fluxional 

behavior is seen more prevalent than in the Sn6Bi3-R case.     

The energy difference between the D3h and C4v geometries found in the Sn7Bi2 and 

Sn6Bi3 clusters with the addition of the C2H3 countercation bring out several points on the 

possible fluxional behavior of deltahedral clusters.  First, it is well known that the 𝐸9
𝑞−

clusters (E 

= Si, Ge, Sn; q = 2, 3, 4) display fluxional behavior.  For 𝑆𝑛9
𝑞−

 (q = 2 and 3), each of the clusters 

have a ground state geometry of D3h; yet, the D3h and C4v geometries for the Sn9
4-

 geometry are 

degenerate and have been shown to interconvert in solid state materials [169].    One way to 

increase the overall stability of the D3h cluster is by using an atom that is larger in size such as 

Bi.   For instance, the energy difference between the D3h and C4v geometries increases by 0.22 

eV if one replaces three tin atoms in the Sn9
4-

 cluster with Bi and adding an electron to form the 

analogous Sn6Bi3
-
.  If now one uses the neutral Sn6Bi3 with a countercation, such as an alkali 

atom or an organic substituent, the fluxional behavior is still reduced.  However, by decreasing 

the amount of the dopant, the fluxional behavior becomes prevalent once again.  It is also 

interesting to note that the organic ligands prefer to bond to the Sn sites on the cluster.  This 

implies one can protect certain sites on a cluster simply by using a suitable dopant. 

The deltahedral Zintl analogue clusters provide a unique opportunity for cluster 

assemblies.  It has been shown that by using different countercations such a alkali metals or 

organics the gap size for the stable cluster can vary to the desired size.  Also, the fluxional 

behavior can be seen in the doped clusters when using an organic ligand.  This advantage can be 

used to now build a new class of cluster assemblies based on deltahedral Zintl analogue clusters 

with different types of countercations.  
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6.4 Chapter 6 Summary 

 Tin clusters have long been identified as Zintl polyatomic anions in various Zintl phases.  

We have shown through a combination of a first principle theoretical approach and gas phase 

experiments that by doping tin clusters with one bismuth atom one can design stable Zintl 

analogues.  The tin-bismuth cluster Sn4Bi
-
 showed stability through its HOMO-LUMO gap size, 

electron affinity, large removal energy and larger intensity in the mass spectrum.   This cluster 

with high symmetry and unique bonding governed by Wade-Mingos rules was determined to 

relate to the polyanionic Zintl clusters like Sn5
2-

.  The idea of Zintl analogues was then extended 

to the hetero-deltahedral clusters Sn8Bi
-
, Sn7Bi2

-
, and Sn6Bi3

-
.  The clusters were reminiscent of 

the well known Zintl clusters Sn9
2-

, Sn9
3-

, and Sn9
4-

 respectively.   In order to use these clusters 

as building blocks, the neutral counterparts of the deltahedral Zintl analogues were combined 

with both alkali and organic countercations to achieve stability.  The geometries of the parent 

cluster retained its D3h when using the alkali countercation, however when using the organic 

substituents the geometry of the parent cluster changed significantly. We also discovered an 

organic countercation, such as an ethyl group (-C2H3) preferred to form a bond on a Sn site on 

the deltahedral cluster.  Further investigation reveal the organic countercation formed a bond 

with a Sn atom not residing on the apex of the cluster, while the alkali atom aligned on a face of 

the deltahedral cluster.  Also, the HOMO-LUMO gap was lower when adding a countercation 

versus the anionic cluster.  We propose the KSn6Bi3 cluster, which has a large HOMO-LUMO 

gap (1.88 eV), making it an ideal candidate for assembly.   
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Chapter 7   Forming 
Metallocarbohedrenes: Triniobium-

carbide Clusters 
 

 

 
  

One interesting metal-carbide complex is that of niobium-carbide. It has been shown 

experimentally that variations in cluster source conditions lead to two dominate cluster structure 

types: the aforementioned Met-Cars and nanocrystallite species.   Experimental studies carried 

out by Jarrold and coworkers revealed that fullerenes easily incorporate niobium atoms into their 

structure by replacing carbon atoms [170].  Harris and Dance used density functional 

calculations and predicted various structural motifs to be present in the NbxCy species [171].  

Wang and co-workers have made an extensive study of the electronic and vibrational properties 

of mono-niobium carbide clusters, NbCn
-
 (n = 2-7) [172].  Using anion photoelectron 

spectroscopy, they observed two structure types: NbC2
-
 and NbC3

-
 were shown to have cyclic 

structures, NbC6
-
 and NbC7

-
 to have linear structures, and NbC4

-
 and NbC5

-
 to display evidence 

of both cyclic and linear isomers.  In a more recent report, we showed that diniobium-carbon 

clusters also have evidence of linear isomers for odd numbered cluster species, along with planar 

rings and three-dimensional structures [173].  Metha and co-workers have carried out 

photoionization experiments and density functional studies on niobium-carbide clusters with the 

stoichiometries Nb3Cn (n = 1-4), Nb4Cn (n = 1-6), and Nb5Cn (n = 0-6) [174 – 175].  In their 

studies, they report various structures consistent with the development of a face-centered cubic 

structure and structures with molecular C2 units. 
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In an effort to understand the electronic structure and stability of NbxCy
-
 clusters and their 

role in formation of met-cars, we carried out density functional theory and photoelectron spectra 

to determine the structures and their stable isomers of Nb3Cn
-
 (n = 5-10) clusters.  All 

calculations were performed using the density functional theory (DFT) code deMon2k explained 

in Chapter 3. The exchange and correlation effects were incorporated within the generalized 

gradient approximation (GGA) using the functional proposed by Perdew, Burke, and Ernzerhof 

(PBE). The niobium atoms were described by the 13-electron scalar quasi-relativistic effective 

core potential (QECP) proposed by Andrae et al. in combination with the LANL2DZ basis set, 

while the DZVP all electron basis set for the carbon atoms was used. For the C and Nb atoms the 

A2 and GEN-A2* auxiliary function were respectively used.  All the isomers were fully 

optimized without any constraints, and a frequency analysis was performed to verify that the 

structure was a true minimum. The initial geometries for optimization were based on the 

structural triangular Nb3 motif with the addition of carbon atoms in a variety of configurations.  

The carbon atoms were added to the Nb3 triangular ring on either the ―face‖ and/or edges.   In 

order to describe the resulting structures, in the cases where only one carbon atom is added to the 

face, it is termed ―capping‖, while if either a chain of carbons, consisting of at least two carbon 

atoms, is added on the ―face‖ they are termed ―bridging‖.  In all of the initial geometries, either 

one carbon atom, C2, C3, and/or C4 units were added to the Nb3 motif.  Our group and others 

have shown the C2 and C3 motifs are energetically favorable in various niobium-carbon 

structures.  All the obtained low lying isomers were re-optimized using a larger aug-cc-pVTZ 

basis set for the carbon atoms that include diffuse functions along with the GEN-A2* auxiliary 

function set.
N
 

  

                                                           
N
 Refer to Chapter 3. 
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Figure 7.2  Mass spectrum of NbmCn
-
 clusters formed.  The Nb3Cn

-
clusters (n=5-10) 

examined in the present study are labeled. 

 

In each of the geometries presented, the niobium-niobium bonds are drawn where only 

those with distances less than or equal to twice the covalent radius (2.74 Å) are shown.  

However, Niobium-Carbon bonds are drawn at bond lengths of 2.25 Å, which is longer than the 

covalent radius of the niobium and carbon atoms combined.  This is done to emphasize the 

importance of the Nb-C bonds for the structures.  The carbon-carbon bonds are drawn such that, 

single bond > 1.40 Å > double bond > 1.25 > triple bond. 

The experiments on triniobium carbides Nb3Cn
-
 (n = 5-10) were carried out using the 

apparatus explained in chapter 2.  In short, Nb3Cn
-
 anions are generated with a pulsed laser 

vaporization supersonic cluster beam source.  The Nd:YAG laser (second harmonic) is focused 

down to a 2 mm spot on a rotating and translating pure niobium rod (0.25-in diameter). A 

mixture of methane seeded in helium gas is delivered in a short and intense pulse by a pulsed 

molecular beam valve mounted perpendicularly to the niobium rod.  The CH4 in the helium 

carrier gas reacts with niobium and cools in the laser-induced plasma to form NbmCn
-
 clusters.   
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Table 7.1  Experimental (Exp.) adiabatic electron detachment energies (AEDE) and 

vertical electron detachment energies (VEDE) for Nb3Cn
-
 (n = 5 – 10) observed features 

shown in Figure 2.  The experimental uncertainty  is about 0.2 eV. 

 

 
Exp. AEDE 

(eV) 

Exp. VEDE 

(eV) 

Nb3C5
-
 1.88 2.30 

   

Nb3C6
-
 1.14 1.55 

 1.74 2.20 

 1.81 2.47 

 2.48 3.03 

   

Nb3C7
- 1.74 2.33 

 2.80 3.31 

   

Nb3C8
-
 1.70 2.19 

 2.45 2.99 

 2.88 3.36 

   

Nb3C9
-
 1.43 2.01 

 2.30 2.97 

   

Nb3C10
- 2.36 2.79 

 3.25 3.24 

 3.25 3.42 

 

 

The collected mass spectra for the NbmCn
-
 clusters can be seen in Figure 7.1. The 

photoelectron spectra of Nb3Cn
-
 (n = 5-10) at 308 nm (4.03 eV) are presented in Figure 7.2(A-F) 

with binding energy (in eV) plotted on the abscissa.  These spectra portray electronic transitions 

from the anions to the ground state, and in some cases low-lying excited states, of the neutral 

product species.  Table 7.1 gives the measured adiabatic electron detachment energy (ADE) and 

vertical electron detachment energy (VDE) for each experimentally observed anionic cluster 

isomer.  Figure 7.2 shows multiple prominent features in the photodetachment spectra like those 

found in previous niobium-carbide clusters [173].  

The multiple peaks within the spectra for clusters with six or more carbons could indicate the 

presence of multiple structural isomers present in the molecular beam.  Their formation can be 
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attributed to the laser vaporization cluster source, which is capable of generating isomers that are 

higher in energy than the ground state structures, and in many cases their individual detachment 

energies are detectable in the spectra. 

 Figures 7.3 and 7.4 depict the ground state isomer structures determined using first 

principles theoretical techniques described in detail in the computational methods section.  The 

vertical electron detachment energies (VDE) are also reported in the figures. The VDEs were 

determined theoretically by taking the difference between the energy of the ground state 

geometry of the anion and the energy of the neutral at the geometry of the anionic ground state.  

In each of the clusters, the determined spin multiplicity was a singlet; therefore the VDEs are the 

transitions between the singlet ground state of the anion and the doublet neutral cluster at the 

geometry of the ground state anion cluster. 

The first cluster Nb3C5
-
 has C2v symmetry and contains a three-membered niobium triangle, 

with bond distances of 2.63 Å, and a ―capping‖ carbon.  This tetrahedral base has two C2 units in 

the ―flanking‖ position, with C-C bond distances of 1.33 Å making double bond between them.  

This latter type of metal carbon bonding seems important in Met-Car precursors, where the MC2 

unit is thought to be a major building block. 
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Figure 7.2  Anion photoelectron spectra of Nb3Cn
-
 (n = 5-10) clusters. 
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Figure 7.3 The ground state and relevant isomer structures for Nb3C5
-
 (A),  Nb3C6

-
 (B-

E),  and Nb3C7
-
 (F-H) with the theoretical vertical detachment energies (VDE) and 

relative energies (ΔErel).  Vertical Detachment and Relative energies are in eV and do 

not include zero-point energies.  The blue and yellow balls represent the Nb and C 

atoms, respectively. 
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Figure 7.4 The ground state and relevant isomer structures for Nb3C8
-
 (A-D),  Nb3C9

-
 

(E-G),  and Nb3C10
-
 (H-J) with the theoretical vertical detachment energies (VDE) and 

relative energies (ΔErel).  The reported VDEs and relative energies do not include the 

zero-point energies and are in eV. The blue and yellow balls represent the Nb and C 

atoms, respectively. 
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 The ground state for the Nb3C6
-
 cluster can be seen in Figure 7.3(B).  The ground state 

geometry for this cluster appears to retain the ―capping‖ carbon motif seen in the Nb3C5
-
 cluster, 

with one lone carbon at the ―front-edge‖ of the Nb3 triangle.  The largest change is in the Nb-Nb 

bond lengths, which are slightly longer than those seen in Nb3C5
-
.  The two Nb-Nb bonds that 

remain intact have distances of 2.73 and 2.70 Å. Even though the niobium bond distances 

increase, the C-C bonds slightly decrease by 0.03 Å, still maintaining double bonds.    

However the Nb3 triangular motif is still present.  The theoretically determined isomers for the 

Nb3C6
-
 cluster has the ―bridging‖ carbon chains across the Nb3 triangular motif. The first isomer 

(Figure 7.3C) contains two chains consisting of C2 and C3 across the Nb3C planar motif.  This 

isomer is only 0.4 eV above the ground state of the anion.  The C-C bond distances are 1.36 and 

1.35 Å for the C2 and C3 carbon chains, respectively.  This structure has two Nb-Nb bonds that 

are 2.65 Å, with there being no other Nb-Nb bond.  There are two remaining isomers (Figure 

7.3(D-E)) for the Nb3C6
-
 cluster which both have a triangular Nb3 unit with Nb-Nb bond lengths 

ranging from 2.5 – 2.74 Å.  Both of these structures incorporate at least one C2 bridging carbon 

chains.  However, the isomer seen in Figure 3D has two double bonded C2 units flanking the 

sides of the Nb3 triangle.  The final isomer has two bridging carbon chains, the aforementioned 

C2-chain and a C4-chain atop the cluster.  The C4-chain has two double bonds, with only one 

carbon atom with no carbon-metal bond interaction. 

Continuing to Nb3C7
-
, the ground state structure (Figure 7.3F) has a ―capping‖ carbon 

with three flanking C2-units.  The C2 units have bond lengths of 1.32 Å and the Nb-Nb bonds 

range from 2.65 – 2.70 Å.  The ground state structure is much like the ―wheel‖ structure motif 

first reported by Harris and Dance, the exception being that one carbon atom resides at a raised 

center of the structure [171].  The first isomer can be seen in Figure 8.3G and is only higher in 
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energy by 0.32 eV.  This isomer consists of two C3-bridging units across a planar Nb3C motif.  

This structure is reminiscent of the lowest isomer seen in Nb3C6
-
with the addition of a carbon 

atom forming an additional C3 unit.  The C-C double bonds and Nb-Nb bonds in the isomer are 

nearly identical to those seen in Nb3C6
- 
with values of 1.35 and 2.66 Å respectively.  The final 

isomer (Figure 7.3H) resides 0.42 eV above the ground state energy, and differs from the ground 

state structure by forming a C2 bridging unit atop the Nb3 triangle. This structure seems to be 

analogous to the isomeric structure seen for the Nb3C6
-
 cluster, having two C2 units flanking the 

sides of the Nb3 motif.  The only difference is the additional carbon that resides on the edge of 

the Nb3 motif.  

The ground state and theoretically obtained isomers for the Nb3C8
-
 cluster can be seen in 

Figure 7.4A.  The ground state cluster is composed of one bridging C2 unit and three other C2 

units flanking the edges of the Nb3 motif.   (The Nb3 motif is used loosely here due to the loss of 

one of the Nb-Nb bonds; the two remaining Nb-Nb bonds range from 2.64 to 2.71 Å.)  It is 

interesting to note that there are three C2 units containing double bonds, with one having a triple 

bond with a shorter distance (<1.30 Å). The ground state cluster for Nb3C8
-
 and isomers for 

Nb3C6 and Nb3C7 that contain bridging C2 units are indicative of the ―cradle‖ motif reported 

previously by Harris and Dance [171].  There are two isomers for the Nb3C8
-
 cluster, each 

containing a combination of C2 and C3 chains, albeit in two different ways.  The lowest isomer 

(Figure 7.4B) forms a C3 bridging chain with bond distances of 1.4 and 1.3 Å.  There are two C2 

chains residing on the edges of the Nb3 motif, which have C-C distances of 1.3 Å and Nb-C 

distances ranging from 2.1 to 2.2 Å. In contrast to having a bridging C3 chain, the isomer in 

figure 7.4C for Nb3C8
-
 has one C3 chain flanking one of the edges of the Nb3 base and as was 

seen in previous cluster sizes, contains a capping carbon.  The C3 chain on the edge has distances 
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of 1.4 and 1.3 Å much like the bridging chain seen in the other isomer.  There is also a decrease 

in the number of Nb-Nb bonds from the previous capping structures.  The lone Nb-Nb bond is 

2.65 Å.  The last isomer, shown in Figure 7.4C, resides 1.05 eV above the most stable cluster, 

and resembles that of Nb3C6
-
 with a C2 and C4 bridging unit, but an additional C2 unit is on the 

edge of the Nb3 base.  This structure has two Nb-Nb bonds at 2.63 and 2.55 Å, which is the 

shortest distance of all the clusters studied so far.  The C4 chain has two double bonds, at 1.35 Å. 

The two C2 chains along with the two Nb atoms in the cluster closely resemble that of the Nb2C4 

ground state cluster reported previously.  The C-C and Nb-C bond distances range from 1.33 -

1.35 and 2.04 - 2.22 Å, respectively.   

Figure 7.4(E-G) shows the ground state and isomeric cluster for Nb3C9
-
.  The ground 

state structure (Figure 7.4E) has two C3 bridges, much like that seen in Nb3C7
-
.  The bond lengths 

on both of the C3 chains are 1.35 Å.  Notice the ground state cluster as well as the lowest isomer 

contain an additional C3 chain units perched on the edge of the Nb3 base motif, however their 

structures are quite different.  The isomer cluster, which resides about 0.5 eV above the ground 

state, has a straight C3 chain with two double bonds, much like propadiene, with only a total two 

Nb-C bonds to the terminal ends of the chain (Figure 7.4F).  However, the ground state cluster 

has two additional Nb-C bonds on the C3 chain, one to the central carbon of the chain and one to 

the front carbon.  Figure 7.4G shows the final isomer for the Nb3C9
-
 cluster.  The cluster has a 

capping carbon and two C3 chains along the edges of the Nb3 motif along with one C2 motif. 

 The largest cluster studied, Nb3C10
-
 has three very distinct isomeric clusters.  The ground 

state (Figure 7.4H) contains two C4-bridges with a C2 unit on the edge of the Nb3 base.  The C-C 

bond lengths on this structure vary from 1.40 to 1.31 Å.  There is only one short Nb-Nb bond at 

2.65 Å that incorporates the C2 edging unit.  The shortest Nb-C bond is 2.16 Å, however, notice 



137 
 

from Figure 7.4H, not all carbon atoms are involved in metal-carbide bonding.  The lower C4 

chain has two carbon atoms that are not bonded to a Nb atom.  Thus, this lower chain appears to 

be more symmetric than the C4 chain above the Nb3 motif.  The first isomer is higher in energy 

by only 0.02 eV and employs the capping motif, surrounded by three C3 chains.  Figure 7.4I 

shows this isomer has no Nb-Nb bonds, instead preferring the Nb-C bonding in the cluster much 

like the previous capping motifs seen in other clusters.  The final isomer for the Nb3C10
-
 cluster 

can be seen in Figure 7.4J and has two C3 bridging units and two C2 units on the edges of the Nb3 

base.  Here, there is one Nb-Nb bond (2.65 Å).  The C-C bonds vary from 1.4 to 1.33 Å, with no 

evidence of a triple bond in the cluster.   

 The collected PES shows multiple peaks in many of the tri-niobium-carbide clusters with 

the lone exception being that of Nb3C5
-
.  The Nb3C5

-
 spectra show one distinct peak at 2.30 eV, 

which corresponds to the ground state cluster in Figure 7.3.  The calculated vertical detachment 

energy is 2.10 eV for this cluster, which is within the amount of error.  The first triniobium 

cluster with multiple peaks is Nb3C6
- 
(Figure 7.2B). This is indicative of the existence of isomers 

in the experiment.   The largest detachment energy seen in experiment (3.03 eV) corresponds to 

the ground state structure of the Nb3C6
-
 cluster with a vertical detachment energy (VDE) of 2.79 

eV. Figures 7.3C and 7.3D are the isomeric structures that correspond to the middle experimental 

peak values of 2.20 and 2.47 eV respectively. These two experimental peaks have a great deal of 

overlap and the lowest isomer could correspond to either of the two middle peak values collected 

from experiment, since its value (2.37 eV) is within experimental error. The peak with the lowest 

detachment energy corresponds to the highest isomer seen in figure 7.3E.     

 Figure 7.2C shows the spectrum of the Nb3C7
-
 at 308 nm, and has two distinct peaks.  

Additionally, the cluster has the highest abundance in the mass spectra (Figure 7.1).  The highest 
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observed VDE of 3.31 eV is close to the calculated value of 3.32 eV for the most stable cluster 

based on relative energy for the Nb3C7
-
 cluster.  The observed lower binding energy peak of 2.20 

eV is in good agreement with the theoretical transition for the two isomers (Figure 7.3(G-H)).  

Both isomers have values of 2.19 and 2.45 eV respectively.   Figure 7.2D gives the photoelectron 

spectrum of the Nb3C8
-
 cluster and has three peaks at 2.19, 2.99 and 3.36 eV. The electron 

binding feature seen at 2.99 eV is in good agreement with the cluster with the lowest relative 

energy in Figure 7.4A and the capped structure (Figure 7.4C).  While the isomer seen in Figure 

7.4B is in agreement with the highest electron binding energy feature observed in the collected 

spectra.  The final relevant isomer resides ~1 eV above the ground state cluster, but has the 

lowest calculated vertical detachment energy (2.38 eV), which corresponds to the lowest electron 

detachment energy observed in the spectra.    

 Unlike the previous cluster, the photoelectron spectrum for Nb3C9
-
 has only two binding 

energy features (Figure 7.2E), with the most prominent feature at 2.97 eV.  There are two 

theoretical structures that correspond to the higher binding feature.  The ground state cluster 

(Figure 7.4E) has a VDE of 2.74 eV, while the isomer seen in Figure 7.4G has a VDE much 

closer of 2.93 eV.  Figure 8.4F shows the calculated isomer that corresponds to the low binding 

energy feature observed at 2.01 eV. Comparison of the collected spectra for the Nb3C10
-
 cluster 

has three electron binding energy peaks at 2.79, 3.24, and 3.42 eV and is the only cluster that 

shows no vertical electron binding energy below 2.5 eV (Figure 7.2F).  The lowest feature agrees 

with the ground state structure that has a calculated vertical detachment energy of 2.92 eV 

(Figure 7.4H).  The higher binding energies correspond to the two isomers (Figure 7.4 (I-J)).     

 Of the tri-niobium clusters studied, clusters that range in size where n = 6 – 10 have at 

least one observed experimental detachment energy around or above 3 eV and multiple peaks in 
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the collected spectra.  The existence of the multiple peaks is indicative of isomers formed in the 

experiment. It can be seen that many of the clusters have multiple (at least 3) clusters with 

varying geometries and electron binding energies.  The higher binding energies, those greater 

than 2.7 eV, tend to agree well with at least one geometric motif.   Structures that incorporate a 

―capping‖ carbon, or a ―wheel‖ –like motif all have theoretical vertical detachment energy values 

ranging from 2.9 – 3.4 eV.  Figure 7.5 shows a comparison of the experimental and theoretical 

values for the ―capping‖ motif.  This motif agrees very well with the higher features, with the 

largest error being that of Nb3C6
-
 at 7% from the observed experimental peak.   

 The lower values collected (< 2.4 eV) are only seen where n = 6 – 9.  The lower values 

correlate to at least two types of cluster motifs.  The first motif contains two ―bridging‖ units.  In 

the case of Nb3C6
-
, there are at least two of these type structures, one containing a C3 and C2 

bridge, the other containing the largest bridging unit C4 and one C2 bridge.  The vertical 

detachment energies are 1.79 and 2.37 eV respectively and correspond to the experimental 

values of 1.55 and 2.20 eV.   

 

 



140 
 

 

Figure 7.5  Comparison of experimental electron detachment energy with calculated 

vertical detachment energies for Nb3Cn
-
 (n = 5 – 10). Red squares represent the 

―capping‖ motifs for each of the clusters.  Experimental values are open squares with 

error of +/- 0.02 eV. 

 

The latter two clusters with an odd number of carbon atoms, Nb3C7
-
 and Nb3C9

-
, have structures 

containing dual bridging motifs with the C3 chain, much like the first motif in Nb3C6
-
. However, 

the Nb3C8
-
 cluster has a dual bridging motif that contains a C4 and C2 chain like the second motif 

found in the Nb3C6
-
 cluster. It is interesting to note even though the Nb3C10

-
 cluster does not have 

an experimentally observed binding energy below 2.5 eV, the lowest binding energy (2.79 eV) 

corresponds to a structure with a dual bridging motif.  The second motif takes advantage of the 

C2 chain in a bridging manner.  Theses clusters can be seen where n = 6, 7 with calculated 

detachment energies of 2.48 and 2.45 eV respectively.  Even though for Nb3C6
-
 and Nb3C7

-
 this 

type of ―cradle‖ structure accounts for a few of the lower detachment energies, it can also 

account for the relatively high experimental VDE value of 2.99 eV for Nb3C8
-
.  However, the C2 
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motif does not seem to correlate to any calculated detachment energies where n = 9-10. A 

comparison of both motifs with experimental values can be seen in Figure 7.6. 

The isomeric findings from this study are in agreement with previous experimental 

studies of both mononiobium and diniobium carbide clusters.  Zhai et al. found evidence of two 

isomers in both NbC4
-
 and NbC5

-
 [172]. We have previously examined diniobium carbides and 

the findings suggested a similar trend where both linear and three-dimensional isomers were for 

Nb2Cn
-
 for n = 4-9, with the exception of Nb2C8

-
[173]. Each of the aforementioned examinations 

suggested that a niobium atom can substitute for a carbon atom in linear structures, mostly due to 

similarities between the electronic structures of pure carbon clusters of small sizes with 

mononiobium and diniobium clusters.  More recent studies by Dryza and co-workers found the 

neutral clusters for Nb3Cn (n = 1-4) have structures with the Nb3 triangle intact [175].  More 

intriguing they showed for Nb3C4 there are two isomers, one with a C2 unit, seen in carbon rich 

clusters, and the other much like a Nb-deficient nanocrystal fragment.  Here, we find three 

isomeric structural motifs.  One structural motif involves a central Nb3 unit, in which the three 

niobium atoms are in a triangular configuration with a lone carbon atop the face of the Nb3 

triangular base, these structures are referred to as ―capping‖ motifs. This first motif is much like 

those found for the neutral smaller clusters reported by Dryza and co-workers for niobium 

clusters [174 – 175].  In the second major isomer-type, either a C2 or C3 unit resides in a bridging 

configuration across the Nb3 triangular base, referred to as S-bridging.  The final more dominant 

motif involves a dual bridging configuration, with a combination of C2, C3 and/or C4 bridging 

units across both the top and bottom faces of the base Nb3 unit, referred to as D-bridging. 
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Figure 7.6  Comparison of experimental electron detachment energy with calculated 

vertical detachment energies for Nb3Cn
-
 (n = 6 – 9). Red circles represent the D-

bridging motifs. Blue triangles represent the single C2 bridging chain structures.  

Experimental values are open squares with error of +/- 0.02 eV. 

 

 

In each of the three structural motifs accentuate the importance of the C2 unit.  Harris and 

Dance reported that the C2 unit was essential in the formation of Met-Cars [171].  From this 

study all of the cluster sizes studied have some type of C2 unit in either the lowest energy state or 

isomers. For cluster sizes containing 5, 6, 7, and 8 carbon atoms, there are structures with either 

more than one C2 unit on the Nb3 edge or some type of C2 bridging or ―cradle‖ motif.  The 

Nb3C8
-
 cluster tends to have the largest number of C2 units with four, with the Nb3 base having a 

C2 bridge and three C2 units on the edges.  These smaller sizes have a ratio closer to that of 1:2 

for Nb and C, and seem they may be the building blocks of Met-Cars.  It is surprising that the 

Nb3C9
-
 cluster does not seem to take advantage of the C2-unit, however this structure did not 
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correspond to any experimental detachment energies for the cluster.  It is interesting to note, in 

the previous study by Harris and Dance, they show that NbxCy clusters with C3 chains were not 

stable when compared to the energetically lower clusters with C2-units [171].  This study shows 

evidence for the existence of not only C3 chains, but C4 carbon chains as well.  

 Using first principles density functional calculations and photodetachment spectra, we 

have systematically studied the structures for anionic tri-niobium carbide clusters.  We find three 

structural motifs present, including ―capping‖, S-bridging, and D-bridging structures. There are 

not only C2 units present in the clusters, but a clear indication of longer Cn chains for the anionic 

clusters studied here.  As the ratio of C to Nb atoms increase, the trend is to form larger Cn 

chains from C2 to C4, thereby also encouraging metal-carbon bonding.  This is indicative of 

competition between C2, C3 and C4 chains in the Nb3Cn
-
 (n = 5 – 10). The evolution of the 

Nb3Cn
-
 clusters may be instrumental in gaining insight on the formation of Met-Cars as building 

blocks for cluster assemblies.  
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Chapter 8  Cluster Assemblies I: All-metal 
Aromatic Assemblies 

 

 

  

The discovery of stable all-metal aromatic species has prompted many to review organic 

assemblies in the hopes of finding correlations between the organic and inorganic worlds.  For 

example, the aromatic species benzene (C6H6) has been known to form various sandwich 

complexes with transition metals.  Species like naphthalene (C10H8), anthracene (C14H10), and 

even tetracene involve the fusing of benzene rings to form complexes.  These complexes exhibit 

a wide range of properties, which result in a wide range of uses in industry, medicine and 

scientific disciplines [176 – 180]. With a great deal of success with organic aromatic species, it 

comes as no surprise that researchers hope to make correlations to all-metal aromatic species and 

organic ones.  We now attempt to assemble the all-metal aromatic species Al3Sb using 

complexes formed by benzene as a guide in the hopes of finding similar architectures with 

varying properties. It should be noted the reason for using Al3Sb versus the other two species, 

Al3As and Al3Bi, stems from the fact that Al3Sb has the largest NICS value from all three 

species, making it the most aromatic.   

 The first attempt at cluster assemblies involves combing two planar Al3Sb rings.  The 

starting configurations were with the structures in the same xy-plane, which were allowed to 

optimize without constraints. Figure 8.1 shows the lowest energy structure, which is fused.  Of 

the configurations attempted only one did not conglomerate (Figure 8.1B); however, this 

configuration was higher in energy by 3.14 eV.  
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Figure 8.1 Lowest Energy structures for the Al3Sb dimer.  The fused Al6Sb2 structure 

(Panel A) and the unfused structure (Panel B) are given with relative energies in 

electron volts.  The pink and orange balls represent the Al and Sb atoms, respectively.  

 

It appears the idea of assembling all-metal aromatic rings is one that is unrealistic.  It should be 

noted that many III-V compositions attain semiconductor status such as InAs, GaAs, AlN, AlAs 

and AlSb with either diamond, zincblende and wurtzite structures [181]. 

 We now turn to a common architecture found in metallo-organic chemistry, sandwiches.  

Since the discovery of ferrocene, there have been a wide variety of metallocenes or sandwich 

complexes investigated both experimentally and theoretically [182 – 185].  There is a great deal 

of interest in these compounds because of their magnetic and electronic properties with the 

possibility of device applications [186].  This area of interest has expanded into the inorganic 

Erel = 0.0 Erel = 3.14 

A)      B) 
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realm with the idea of designing all-metal aromatic sandwiches.  Multiple theoretical studies 

have attempted to solidify assemblies using all-metal aromatic species. Mercero and Ugalde 

investigated sandwich-like complexes for the Al4
2-

 ring at the B3LYP level [187].  Yang and co-

workers have studied SiAl3
-
 and Ga3

-
 aromatic sandwiches [188 – 189].  Chattaraj and Giri 

designed multi-decker sandwich complexes with Be3
2-

 and Mg3
2-

 aromatic compounds [190]. 

These studies employ all-metal aromatic species that require a charge with varying degrees of 

success.  However, no studies have investigated a neutral aromatic in a sandwich-like complex.  

Thus, we now attempt for the first time sandwich-like assemblies with the neutral all-metal 

aromatic Al3Sb. 

 The initial attempt at sandwich assemblies we wanted to mimic a common aromatic 

assembly.  First we chose to investigate a sandwich system based on the organometallic benzene-

vanadium system.  The organometallic benzene-vanadium system is a very well known and 

studied system [191 – 193].  It has been shown to form wires as a multidecker cluster assembly 

with magnetic properties [194 – 196]. Therefore, our initial attempt at an inorganic assembly 

utilized this motif with the all-metal aromatic Al3Sb cluster and the vanadium atom.   

 An example of the starting homodecked all-metal assembly can be seen in Figure 8.2A.  

The theoretical approach was performed using the density functional formalism within the 

generalized gradient approximation (GGA).  The PBE functional was chosen for the correlation 

and exchange within the deMon2k software package.
O
  The Al and Sb atoms were represented 

using the parameters set forth in Chapter 4. The initial geometric configuration at various spin 

multiplicities was allowed to optimize without constraints.   

 

 

                                                           
O
 Refer to Chapter 3. 
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Figure 8.2 Initial and optimized configurations of the homodecked all-metal 

assemblies.  The starting (Al3Sb)2M geometry is located in Panel A. The final 

configurations of the Al6Sb2V (Panel B) is given as a representation of the lowest 

energy structure for the optimized homodecked assemblies.  The red, light pink, and 

dark pink balls represent the Sb, Al and V atoms respectively.   

 

 

The lowest energy structure can be found in Figure 8.2B.  Notice, the structure has 

completely lost its sandwich motif.  The final structure has formed more Al-Al bonds with the V 

atom lying in the center of the coalesced structure.  The magnetic moment of the cluster is higher 

than that of the vanadium atom at 5 μB.  The higher magnetic moment is not completely a 

surprise since the moment of other vanadium systems have been shown to be higher than that of 

the atom, as well [197].   One possible reason for the fusion of the initial sandwich motif, may be 

due to the binding energy of the individual atoms. For example, the binding energy of the Al-Al, 

Al-V, V-Sb, and Al-Sb dimers are 1.6, 2.0, 2.7 and 2.0 eV, respectively.  The strength of the Al-

A)      B) 
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V bond is much strong than the Al-Al bond and equivalent to that of the Al-Sb bond, this would 

imply a competition between the Al-Sb and Al-V bonds; however the overwhelming binding 

energy for the VSb dimer would yield the formation of V-Sb bonds and ultimately destroy the 

all-metal aromatic cluster.  

It may be advantageous to use a metal with a relatively low M-Al and M-Sb binding 

energy, which may help sterically with the sandwich motif.  The Mn atom meets this criterion 

since the Mn-Al and Mn-Sb binding energy is 1.31 eV and 1.75 eV respectively.  Also, by using 

the Mn atom, is requires no charge due to its stable magnetic configuration.    If indeed the all-

metal aromatic species were to truly behave much like a benzene ring, which requires no charge 

as well, the structure is expected to retain a sandwich-like motif and maintain the magnetic 

moment of the atom.  Upon full optimization, we find the sandwich-like geometry is destroyed.  

In fact, the structure tends to conglomerate by again increasing the number of Al bonds in the 

cluster.  The magnetic moment of the cluster also exhibits some change and is reduced in the 

lowest energy structure to 3μB.   

The conglomeration of the homo-decked sandwich motifs leaves to a question on the true 

stability of the all-metal aromatic cluster.  It has been proposed by Yang and co-workers that the 

binding energy within all-metal aromatic clusters is not strong enough to prevent fusion [188].  

In order to see if this picture is correct, we compared the binding energy of the Al3Sb cluster 

with that of the fused clusters.  We find the binding energy is 1.97 eV/atom for the Al3Sb cluster.  

This is indeed much lower than the 2.29 eV/atom value for the Al6Sb2Mn fused cluster.  

However, there is one other possible explanation; that is the definition of all-metal aromaticity is 

not a true definition of the source of stability seen in these clusters.  If the source of stability 

were explained through the ellipsoidal jellium model or Clemenger-Nilsson model, the reason 
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for this fusion may be understood more readily.  Through the Clemenger-Nilsson model, stable 

clusters that did not correspond to the typical magic numbers within the jellium model were 

explained as relatively stable.  Thus, these clusters would not remain if etched or if they were to 

interact with other clusters.  

 One final option in designing sandwich motifs is to employ the use of a sterically stable 

organic planar motif with the Al3Sb planar ―all-metal aromatic‖ cluster.  This hetero-decked 

motif may retain its sandwich-like geometry like those seen with other all-metal aromatic 

compounds.  In order to build the hetero-decked sandwich, we chose to examine the compound 

[C6H6]V[Al3Sb].  The initial and optimized configuration for the compound can be seen in 

Figure 8.3.  The lowest energy configuration has a magnetic moment of 3μB, with an isomer with 

a higher magnetic moment (5 μB) residing 0.1 eV higher in energy.  This is different from what is 

found for vanadium-benzene sandwiches.  The lowest energy structure has a magnetic moment 

of 1 μB [149 – 151].  The lowest energy structure does not fuse to form a larger cluster, instead 

the organic benzene ―tilts‖ to the side of the z-axis.  This type of tilt is seen in other charged 

heterodecked systems with all-metal aromatics and organic counterparts [188-189].  It is 

interesting to note that the isomer assembly retains complete planarity.  The benzene remains 

intact and planar, which is to be expected due to its proven stable behavior.  However, the Al3Sb 

cluster is slightly bent out of the plane.  The Al-Al bond lengths remain 2.60 Å as was seen in the 

neutral cluster, however the Al-Sb bond length has elongated from 2.59 to 2.73 Å.    



150 
 

 

     

 

 

 

Figure 8.3 Initial and optimized configurations of the heterodecked assemblies.  The 

starting (Al3Sb)VBz structure is located in Panel A. The lowest energy structure (Panel 

B) and lowest lying isomer (Panel C) are given with spin multiplicities (M) and relative 

energies (Erel) in electron volts.  The red, light pink, green, white and blue balls 

represent the Sb, Al, C, H, and V atoms respectively. 

 

The Sb-V bond length is slightly shorter (2.76 Å) than the Al-V bond lengths (2.80- 2.86 Å), 

which is to be expected since the Sb-V bond is stronger than the Al-V bond.  In order to 

determine the stability of the overall motif, we calculated the binding energy (B.E.) of the 

assembly via, 

B.E. = [E(V) + E(Bz) + E(Al3Sb) – E(Al3SbVBz)]/3. 

B)      C) 

A) 

M = 4                 M = 6 

Erel = 0.0              Erel = 0.1 
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The assembly’s binding energy is 3.09 eV, which is a strong indication the motif is stable.  We 

also investigated the HOMO-LUMO gap.  The calculated HOMO-LUMO gap was determined to 

be 0.6 eV for the magnetic hetero-decked lowest energy assembly.  This is a much smaller value 

than the more prototypical vanadium benzene sandwich clusters, however the triumph here is the 

ability of the all-metal aromatic and benzene ring to retain their individuality.  One should be 

able to further this research endeavor using other neutral all-metal aromatic cluster in 

conjunction with other organic molecule to form larger magnetic hetero-decked sandwich motifs.     
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Chapter 9  Cluster Assemblies II: 
Assemblies with Magnetic Superatom 

Candidates 
 
 

One of the exciting aspects of the research on superatoms is to make macroscopic 

assemblies using clusters as the building blocks.  Using DFT Liu et al explored cluster assembled 

materials composed of the superhalogen Al13 and K [199].  Ashman examined the cluster 

assembled solid BAl12Cs using first principle calculations [40].  More recent advances have 

included ligated gold clusters and Al5O4 as possible cluster assemblies.
P
  In our group, we have 

attempted to assemble the newly discovered magnetic superatom, VCs8, with much success [27].  

This endeavor is undertaken with the assembly of the bare three-dimensional magnetic 

superatom candidate, Ag6Mn. 

 One key to cluster assemblies is the short range interaction.  For example, the assembly 

of the VCs8 dimer resulted in the bare cluster maintaining its geometry and the Mn atoms 

remained separated.  The magnetic moment of the superatomic assembly was retained and 

behaved identical to that found for the Mn atoms.  In an effort to gain understanding and see the 

behavior of the magnetic superatom Ag6Mn, we attempted to theoretically design the dimer 

(Ag6Mn)2.  Figure 9.1 shows the lowest energy structure and isomers obtained from the 

theoretical method previously explained in Chapter 4.  The lowest energy structure allows the 

two Mn atoms to form a bond and become surrounded by the Ag atoms.  The new fused 

Ag12Mn2 cluster has a very high magnetic moment of 11 μB,  this also occurs with the isomers.       

 

                                                           
P
 Refer to Chapter 1. 
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Figure 9.1 Lowest energy structures with relative energies (Erel) in electron volts for the 

Ag12Mn2 cluster.  The gray and green balls represent the Ag and Mn atoms respectively. 

 

This leads to the discussion on the importance of cluster geometry for future assemblies 

with superatomic clusters.  For comparison, let us first look at the magnetic superatom, Cs8V.    

In the magnetic superatom, Cs8V, the eight Cs atoms surround a central V atom [27].  One way 

to view this cluster is as the Cs atoms are ―protecting‖ the V atom and its magnetic moment. If 

the cluster is allowed to interact with other Cs8V clusters, these clusters will not fuse to form a 

Cs16V2 like structure, maintaining distance between V atoms.  This directly results in the 

superatom analogy for Cs8V to the Mn atom.  Even though we find the similar electronic 

structure for the magnetic superatom Ag6Mn as for Cs8V, their geometries are very different.  

The Ag6Mn cluster has an ―open‖ geometry leaving the Mn atom and its localized magnetic 

moment exposed.  Therefore if the cluster is allowed to interact, the Mn atoms form a Mn-Mn 

Erel = 0.7      Erel = 0.5 
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dimer and the original Ag6Mn cluster becomes distorted leading to the fused Ag12Mn2 structure.  

The interaction of the Ag6Mn cluster reiterates the large role that geometry can play in a cluster’s 

ability to be useful in cluster assemblies. 

 

 

  



155 
 

Chapter 10  Cluster Assemblies III: Using 
Zintl Analogues 

 
 

 

Zintl phases have been studied by a multitude of theorists and experimentalist.  Typical 

Zintl phases are defined as compounds that are electronically balanced and/or closed-shell 

compounds where there is complete charge transfer from a highly electropositive element, either 

an alkali or alkaline-earth, to a more electronegative main group element, generally from groups 

13-15.  These traditional Zintl phases have shown various optical, magnetic and even 

superconductive properties exciting scientists to search for other new and unique Zintl phases.
Q
 

In this effort, our group recently reported on helical and linear chains composed of the 

Zintl As11
3- 

[77].  From their study, they found the linear chain without solvent is very stable.  In 

another study, Castleman and co-workers showed that a cluster assembled material may contain 

a larger gap than the cluster building block for Zintl clusters [13].  Denning and Goicoechea have 

studied mercury-linked cluster chains with the Ge9 Zintl cluster [200]. With such promise in an 

ever growing field, it is advantageous to assemble the newly added gas phase Zintl clusters, 

SnxBiy
-
 (x + y = 9), in the hopes of designing novel assemblies. 

10.1 (KSn6Bi3)n (n = 2 – 6) 
 

 The deltahedral Sn6Bi3 cluster has been stabilized using a countercation in Chapter 8.  

The stable building block unit, KSn6Bi3, retained a D3h symmetry and large HOMO-LUMO gap 

(2.03 eV) making it ideal for assemblies.  However, two large questions loom over the initial 

                                                           
Q
 Refer to Chapter 1. 
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steps in this investigation; 1) will the (KSn6Bi3)2 cluster coalesce and 2) If the assembly does not 

coalesce, how will this affect the geometry and electronic properties? 

 In an effort to answer both of these questions, calculations were carried out on the 

KSn6Bi3 dimer.  The initial geometries were chosen by bringing the KSn6Bi3 building block 

together in a variety of ways.  The structure was fully optimized without constraints.  The 

calculations were performed using the ADF package explained previously. 

 Figure 10.1 shows the final geometries for the (KSn6Bi3)2 assembly.  The optimization of 

each cluster assembly resulted in two KSn6Bi3 units instead of a fused K2Sn12Bi6 cluster.  This is 

a strong indication that these units are highly favorable for assemblies.  The lowest energy 

structure has two potassium atoms between two Sn6Bi3 units (Figure 10.1A).  The shortest 

distance between the two Sn6Bi3 clusters is 3.7 Å.  The potassium atoms are 3.7 Å away from the 

Sn6Bi3 clusters. The isomer (Figure 10.1B) resides 0.05 eV higher in energy and favors two 

KSn6Bi3 units in a step-like formation.  The distance between the two KSn6Bi3 units is shorter 

than the ground state by 0.3 Å.  The next isomer is 0.4 eV above the lowest energy state and one 

K atom separates two Sn6Bi3 units with the second K atom opposite the second Sn6Bi3 unit 

(Figure 10.1.2C).  A sound determination of stability for these initial assemblies can be gauged 

by looking at the HOMO-LUMO gap based in the electronic structure.  The HOMO-LUMO gap 

in each assembly is larger than 1 eV, with the exception of the highest isomer.  In fact, the lowest 

energy dimer has the largest gap size of 1.78 eV.  Even though the gap size is impressive, it is 

smaller than the isolated KSn6Bi3 cluster (2.03 eV). Interestingly, the smaller gap size relative to 

the cluster building block was also seen by Reber and co-workers in their ionic (K3OAl13)2 

superatom assemblies [201].   
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Figure 10.1.1 Lowest energy structures for the [KSn6Bi3]2 assembly.  Lowest energy 

configuration (Panel A), lowest isomer (Panel B) and second lowest isomer (Panel C) 

are given for the dimer.  The pink, gray and blue balls represent the Bi, Sn and K atoms 

respectively.  The distance between parent clusters are given in Angstroms and are 

represented with the blue line.  

 

The initial calculations on the (KSn6Bi3)2 species indicates that further assembly of these 

building blocks may lead to a stable assembly with a smaller gap size than its cluster building 

block.  Therefore, we successively added KSn6Bi3 building blocks to form either ring or chain 

cluster assemblies to see if this indeed would be the case.   

Figure 10.1.2 gives the lowest energy configurations for (KSn6Bi3)n (n = 3 – 5).  The 

lowest energy structure for the trimer (KSn6Bi3)3 is a ring formation with one K atom residing 

A) 

B)      C) 
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between each Sn6Bi3 unit.  The distance between the Sn6Bi3 units on average is 4.9 Å and is 

slightly different from the dimer.  Upon the addition of more KSn6Bi3 units, the structure prefers 

to form larger rings with an average distance increasing from 5.1 to 6.2 Å between the Sn6Bi3 

parent clusters.  The formation of rings brings several interesting points to the surface.  First, it is 

well known that Zintl polyanions can form a variety of low-lying structures depending upon the 

type of countercation used in the system (which may lead to different electronic structures).  

Such is the case in the dimer.  However, as one begins to add more KSn6Bi3 units, the favorable 

geometry is ring like, with chain-like structures residing at least 0.7 eV higher in energy than 

their ring counterparts.  Second, the well known Zintl phases (including deltahedral clusters) 

typically require more than one countercation in the system and to this author’s knowledge there 

is no mention of the successful formation of a Zintl phase with a Zintl ion requiring only one 

charge, making the (KSn6Bi3)n assemblies the first of its kind.  Third, the ring structures formed 

by the KSn6Bi3 unit could be viewed more simply as ionic rings which behave like the rings 

formed in alkali-halide molecules [202].  The success of the formation of the (KSn6Bi3)n ring 

architectures now lead us to investigate their stability and electronic properties. 

In order to ascertain the stability of the ring structures we calculated the removal energy 

that represents the amount of energy required to remove a KSn6Bi3 unit from the cluster, 

𝑅. 𝐸. = 𝐸(𝐾𝑆𝑛6𝐵𝑖3)𝑛 − 𝐸 𝐾𝑆𝑛6𝐵𝑖3 + 𝐸(𝐾𝑆𝑛6𝐵𝑖3)𝑛−1 

Figure 10.1.3 shows the calculated removal energies for the clusters.  There is a peak for the 

(KSn6Bi3)3 assembly, which has the largest removal energy for each of the cluster assemblies.  

Afterwards there is a continual drop off, with an increase occurring where n = 6. The large 

removal energy for n = 3 is most like due in part to the closed ring formation of the structure, 

much like what was seen in the case of the ionic superatom assemblies[200]. 
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Figure 10.1.2. Lowest energy geometries for [KSn6Bi3]3 (Panel A), [KSn6Bi3]4 (Panel 

B), [KSn6Bi3]5 (Panel C) and [KSn6Bi3]6 (Panel D) are given with the pink, gray, and 

blue balls represent the Bi, Sn, and K atoms, respectively.  The distance between the 

parent clusters are given in Angstroms and are marked with the solid blue line. 
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Figure 10.1.3 Removal Energy and HOMO-LUMO gap for (KSn6Bi3)n assemblies. 

 

Reber and co-workers proposed the sudden drop off in removal energy could be a result of larger 

assemblies preferring to form cage like structures; but cage structures were not attempted in this 

study.  The fragmentation energy (F.E.) per fragment, the amount of energy to separate the 

assembly into the monomer units, was also calculated via, 

𝐹. 𝐸. =
𝑛𝐸 𝐾𝑆𝑛6𝐵𝑖3 − 𝐸(𝐾𝑆𝑛6𝐵𝑖3)𝑛

𝑛
 

From the data, the trimer and tetramer have the highest fragmentation energies of 0.57 and 0.54 

eV/unit for the assemblies studied here.  We also investigated the electronic structure and 

HOMO-LUMO gap of the assemblies.  As mentioned previously, the assemblies HOMO-LUMO 

gap is very important to determine if the cluster building block is able to maintain its electronic 

features as well as an indication on the stability of the cluster or cluster assembly.  For example, 
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the HOMO-LUMO gap of the KSn6Bi3 unit is 2.03 eV, while the dimer is significantly lower 

(1.78 eV).  Further investigation of the electronic structure larger assemblies reveals that the 

trimer has the lowest gap size at 1.59 eV, however the tetramer assembly takes a sudden increase 

to 1.88 eV.  This seemingly abrupt change in the gap size led us to wonder if somehow there was 

a change in the ordering of the electronic structure as the assemblies changed from (KSn6Bi3)3 to 

(KSn6Bi3)4.  To answer this question, we investigated the one-electron levels for the lowest 

energy assemblies.   

Figure 10.1.4 shows the one-electron levels for (KSn6Bi3)n (n = 1 – 5) with the dark lines 

corresponding to the occupied levels, while the gray lines correspond to the unoccupied levels. 

The cluster assembly (KSn6Bi3)2 shows the addition of levels one would expect, but does not 

resemble the electronic structure seen for the original KSn6Bi3 unit. However, for the trimer the 

levels tend to ―bunch‖ resembling the electronic structure of the KSn6Bi3 monomer unit.  Once 

an additional monomer unit is added, the (KSn6Bi3)4 electronic structure again shows a dramatic 

change with the LUMO rising in energy and the HOMO lowering in energy from the previous 

assemblies.  This new order found in the electronic structure for the (KSn6Bi3)4 assembly tends 

to continue as one adds the monomer to form the (KSn6Bi3)5 assembly.  These results show there 

is a sudden change in the order of the electronic levels as the growth of the assembly continues, 

which does attribute to the change in HOMO-LUMO gap, but one question remains: What 

causes the change in the order of the electronic structure?  To answer this question, we must turn 

back to the geometry of the assemblies to see the interaction of our initial building blocks.  First, 

the distance between the Sn6Bi3 units in the lowest energy dimer is extremely small (3.7 Å), 

whereas for larger assemblies the distance between the monomer units is much larger.   
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Figure 10.1.4 One-electron levels for (KSn6Bi3)n assemblies. 

 

Therefore, the change in electronic structure, we suspect, is due to the differing interaction 

mechanisms in the assemblies.  For the (KSn6Bi3)n where n ≥ 3, the interaction is facilitated 

through the alternating K atoms. However, for the dimer, the cluster-cluster interaction is 

facilitated in a more direct route with the neighboring Sn6Bi3 unit.  The change in distance does 

explain the difference between the dimer and trimer assemblies, however it is not acceptable for 

the change as one moves from the trimer to the tetramer.   

1            2     3         4   5 

Number of KSn6Bi3 units 

E (eV) 
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In both the trimer and tetramer assemblies, the distance between the monomer units 

remains large, but there is a dramatic change in the electronic structure.  The explanation begins 

with the LUMO in the cluster assemblies, with similar geometries.  The LUMO in the 

(KSn6Bi3)3 assembly is separated from the LUMO+1 state, if the LUMO were to become filled 

with two electrons, this would allow for another stable species to form and a large HOMO-

LUMO gap would evolve.  Indeed this is the case, with the (KSn6Bi3)4 tetramer having a larger 

HOMO-LUMO gap (1.78 eV) than its predecessor. 

The composition of the (KSn6Bi3)n cluster assemblies, were designed from the previously 

identified gas phase Zintl analogue cluster Sn6Bi3
-
 using a potassium atom as the countercation to 

the analogues neutral counterpart.  We observed assemblies with smaller HOMO-LUMO gaps 

than its initial building block.  The cluster-cluster interaction for the dimer is a direct interaction, 

whereas for assemblies composed of three or more monomers showed an indirect mechanism 

due to the intra-cluster distance.  We have shown it is possible to build a stable Zintl analogue 

cluster assembly requiring only one countercation.     
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10.2  Organo-Zintl Analogue Cluster Assemblies    

 As seen in Chapter 8, Zintl clusters can be stabilized using either traditional alkali atoms 

or organic ligands as countercations with varying results on geometry and electronic properties 

of the cluster.  However, no one has attempted to assemble clusters utilizing the organo-Zintl 

clusters, so one must ask the question, how would an organic substituent effect the electronic 

structure of a cluster assembled material?  In an effort to try and answer this question, we carried 

out theoretical studies on organo-Zintl analogue cluster assemblies.  

 The Sn7Bi2
-
 cluster was previously shown to be a stable deltahedral cluster using 

experimental and theoretical techniques.  The cluster’s stable behavior was attributed to having a 

deltahedral geometry and an electron count similar to the Sn9
3-

 Zintl cluster.  This analogous 

behavior would imply that even though the cluster is stable, if one were to add one electron the 

structure may become more stable due the clusters having 22 electrons and a closed shell 

configuration, like the Sn9
4-

 cluster.  This stability would also be seen in an increase in its 

HOMO-LUMO gap.  In fact, upon investigation, the Sn7Bi2
2-

 cluster (Figure 10.2.1) has a 

HOMO-LUMO gap of 1.99 eV, which is much larger than the gap seen in the Sn7Bi2
-
 cluster 

(0.21 eV). The increase in HOMO-LUMO gap by simply adding an electron leads us to believe 

that the neutral Sn7Bi2 cluster can accept up to two more units of charge to form a stable cluster 

building block.  This is a clear advantage over the Sn6Bi3 cluster, in that one may be able to 

utilize multiple organic substituents as linkers to form an array of organo-Zintl analogue 

assemblies, instead of being limited to an ionic like motif.   
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Figure 10.2.1 Lowest Energy structures for the Sn7Bi2
x-

, (C2H3)Sn7Bi2
y-

, and 

(C2H3)2Sn7Bi2 clusters (x = 1-2; y = 0-1). The HOMO-LUMO gap (Egap) values are 

given below the structures in electron volts.  The gray, pink, green, and white balls 

represent the Sn, Bi, C, and H atoms respectively.   

 

Previously, I have showed how organic groups, such as methyl- and/or ethyl-, can be 

utilized as a countercation to stabilize the electron deficient Sn6Bi3 cluster.  It was shown that the 

organic ligand preferred to bond to a Sn site on the cluster and would not only alter the geometry 

of the cluster, but alter the HOMO-LUMO gap as well for the Sn6Bi3 cluster.  In the Sn7Bi2 case, 

once an organic ligand is attached, such as -C2H3, we find a similar effect.  The Sn7Bi2-C2H3 
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cluster (Figure 10.2.1) is distorted but has a gap of 0.22 eV, which is identical to the gap found in 

the Sn7Bi2
-
 anion.  Thus one would expect by adding one electron the HOMO-LUMO gap would 

show a significant increase, like in the case of Sn7Bi2
2-

.  Indeed, we find the gap size has 

increased from 0.22 eV to 1.71 eV for the Sn7Bi2-C2H3
-
 cluster.  The increase in HOMO-LUMO 

gap and high electron affinity (2.88 eV) indicate the Sn7Bi2-C2H3 anion cluster is more stable 

than its neutral counterpart.  This revelation encouraged us to attach a second -C2H3 substituent 

to the Sn7Bi2-C2H3 cluster in the hopes of further stabilizing the cluster.  The resulting Sn7Bi2R2 

(R = C2H3) organo-Zintl cluster has a low electron affinity (1.18 eV) and large HOMO-LUMO 

gap of 1.85 eV.  This along with a calculated fragmentation energy (the amount of energy needed 

to break the cluster into Sn7Bi2 and two C2H3 units, i.e.- 2E(C2H3)+E(Sn7Bi2) – E(Sn7Bi2R2)) of 

3.9 eV are indicative of a highly stable cluster that can be used as a building block for cluster 

assemblies.   

 The initial cluster assembly, involves two Sn7Bi2-R units connected by one double 

bonded -C2H2 ligand.  The reason for this motif is two-fold.  First, both the organo-Zintl 

analogues and the organic ligand require at least one addition unit of charge for stability.  The 

second is the CH=CH cluster can act as a rigid linker with its double bond to maintain spacing 

between the organo-Zintl analogue clusters.  The lowest energy structure for the (Sn7Bi2R)2C2H2 

cluster can be seen in Figure 10.2.2.  Immediately, on can see the Sn7Bi2 parent clusters remain 

intact, separated by the C2H2 in a trans-manner.  The bond distance between the tin and carbon 

atoms range from 2.22 – 2.25 Å, similar to that found in other organo-Zintl clusters [165 - 168].  

The HOMO-LUMO gap for the (Sn7Bi2C2H3)2C2H2 assembly is 1.68 eV.  This is 0.17 eV lower 

than the gap found for the Sn7Bi2(C2H3)2 cluster, but the assembly is only lower by 0.03 eV than 

the gap found for the Sn7Bi2C2H3
-
 cluster.  This result breeds confidence in the ability to build  
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Table 10.2.1  The HOMO-LUMO gap (Egap), fragmentation energy (F.E.) and 

removal energy (R.E.) for the organo-(Sn7Bi2)n assemblies (in eV).  

n Egap F.E. R.E. 

1 1.87   

2 1.68 6.94 1.03 

3 1.60 9.90 1.00 

4 1.59 12.91 1.05 

5 1.55 15.80 0.93 

 

larger assemblies, based on the organo-Zintl analogue cluster that will not coalesce.  Therefore 

we attempted to expand the organo-linked motif by adding Sn7Bi2-C2H2 monomer units. 

 The optimized trans-chain assemblies can be seen in Figure 10.2.2.  All of the assemblies 

retain the Sn7Bi2 parent clusters and spacing due to the rigid ligand.  The Sn-C bond distances 

also remain similar to the original Sn-C bond lengths with very minimal change.  The fact that 

the motifs do not conglomerate now leads us to investigate the stability and electronic structure 

of these assemblies. 

 Table 10.2 gives the HOMO-LUMO gap as well as the fragmentation and removal 

energies for the cluster assemblies.  The fragmentation energy (F.E.) and removal energy (R.E.) 

were determined via, 

𝐹. 𝐸. = 𝑗𝐸 𝑆𝑛7𝐵𝑖2 + 𝑘𝐸 𝐶2𝐻2 + 2𝐸 𝐶2𝐻3 − 𝐸  𝑆𝑛7𝐵𝑖2 𝑗  𝐶2𝐻3 2(𝐶2𝐻2)𝑘  

and 

𝑅. 𝐸. = 𝐸 𝑆𝑛7𝐵𝑖2𝐶2𝐻2 + 𝐸[(𝑆𝑛7𝐵𝑖2)𝑘 𝐶2𝐻2 𝑚 𝐶2𝐻3 2 − 𝐸  𝑆𝑛7𝐵𝑖3 𝑗  𝐶2𝐻3 2(𝐶2𝐻2)𝑘  
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where j is the total number of Sn7Bi2 units, k = j – 1, and m  = k -1.  The fragmentation energy 

increases as the motif increases in size and ranges from 1.39 to 1.44 eV per fragment.  The 

removal energy reveals and even-odd oscillation, with motifs that contain an even number of 

Sn7Bi2 clusters having higher values.  The largest removal energy is found for the organo-Zintl 

analogue with four Sn7Bi2 cluster units. 

 The HOMO-LUMO gap provides greater insight as a measure of stability.  The intial 

(Sn7Bi2R)2C2H2 assembly has a gap of 1.85 eV.  Then by adding a Sn7Bi2C2H2 unit, the gap is 

smaller by 0.08 eV.  Once the chain assembly has four Sn7Bi2 units, the gap appears to begin to 

level off at 1.6 eV.  The observation of the minimal change in HOMO-LUMO gap size, led us to 

investigate the electronic structure more closely.  As the organo-motif increases in size, more 

levels are added (Figure 10.2.3), as expected.  However, the levels ―bunch‖ with minimal change 

in the overall electronic structure, which is contrary to the electronic structure in the ionic 

assemblies in the previous section. 

  The organo-Zintl assemblies shown here have similarities and differences from the ionic 

(KSn6Bi3)n assemblies in the previous section.  Both assemblies are designed from taking 

advantage of the electron count in the identified stable clusters. For example, the initial building 

blocks were born out of the analogous Zintl behavior of the Sn7Bi2
-
 and Sn6Bi3

-
 clusters.  The 

assemblies, both organo-Zintl and ionic, have relatively large gap sizes, but the similarities end 

there.  The organo-Zintl assembly is built from neutral organo-Zintl building blocks, Sn7Bi2-

C2H3 and Sn7Bi2-C2H2, which have smaller gap sizes than the resulting assemblies, while the 

ionic assembly has a smaller gap size than its building block, KSn6Bi3. The changes in the 

electronic structure in the organo-Zintl and ionic assemblies show two different results as well.  
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Figure 10.2.2 Lowest Energy structures for the (C2H2)k(C2H3)2(Sn7Bi2)j cluster 

assemblies (j = 2 – 4; k = j – 1). The HOMO-LUMO gap (Egap) values are given in 

electron volts.    The gray, pink, green, and white balls represent the Sn, Bi, C, and H 

atoms respectively. 
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     Number of Sn7Bi2 units 

Figure 10.2.3 Electron levels for the organo-Zintl cluster assemblies.  

 

 

In the ionic assemblies, (KSn6Bi3)n, the change in the electronic levels seemed dramatic when 

increasing the number of monomers.  These changes were attributed to 1) distance between 

building blocks and 2) the behavior of the monomer electronic level filling, which in both cases 

coerced a change in the nature of the electronic levels.  However, the organo-Zintl cluster 

assemblies illustrated equivalent spacing, facilitated through the use of the organic substituent, 

2                   3           4              5 
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which allowed the electronic structure to ―stack‖ or ―bunch‖ maintaining similar HOMO and 

LUMO energy levels as the assemblies continue to grow.   

The main reason for the major difference seen between the organo- and alkali-based Zintl 

cluster assemblies is due to the nature of countercation itself.  In the case where a more typical 

countercation is used, such as an alkali like potassium, the atom readily donates its electron to 

the cluster with the donated electron residing in the upper occupied states.  This is different for 

an organic ligand in that the organic substituent behaves in a covalent manner resulting in its 

electron residing in deeper occupied states than its ionic counterpart.  The similarities and 

differences between the (KSn6Bi3)n and organo-Zintl assemblies show that by utilizing clusters 

with the same stability mechanism as building blocks one can design intriguing materials with 

varying properties. 
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10.3 Chapter 10 Summary 

From the identification of gas phase Zintl analogues two we have discovered two 

possible avenues for designing cluster assemblies.  The first involves using a typical Group 1 

countercation to stabilize the Zintl analogue.  Using the KSn6Bi3 motif as a building block, 

[KSn6Bi3]n ring assemblies were designed with variation in the HOMO-LUMO gap values.  The 

variation was found to evolve from the difference in electronic structure from the building block 

KSn6Bi3 to the dimer, trimer and tetramer.  Once the assembly incorporates more than four 

KSn6Bi3 clusters, the electronic structure appears to be similar to that found in the tetramer.  The 

largest HOMO-LUMO gap, 1.8 eV is found for the [KSn6Bi3]4 ring assembly.   The second 

assembly involves the use of an organic molecule as a ligand and countercation.  The Sn7Bi2
-
 

cluster was found to be analogous to the Sn9
3-

 and by using two organic molecules, -C2H3, the 

Sn7Bi2 cluster became analogous to the Sn9
4-

.  The cluster assembly was composed of 

Sn7Bi2(C2H2)2 building blocks surrounded by two Sn7Bi2C2H3 clusters. As more organo-Zintl 

clusters were combined, the resulting (C2H2)k(C2H3)2(Sn7Bi2)j  (j = 1 – 4; k = j -1) cluster 

assembled chains were composed of equidistant neutral Sn7Bi2 clusters with -C2H2 organic 

substituents behaving as spacers and countercations.  From the electronic structure, the trans-

assembled dimer HOMO-LUMO gap was approximately 1.7 eV, with the trimer and tetramer 

slightly smaller at 1.6 eV.  The electronic structure for each of the organo-Zintl assemblies 

remained similar in appearance which is attributed to the equidistant nature of the organo-Zintl 

assembly.  The differences in the evolution in the electronic structure using Zintl analogues as 

building blocks show that the properties can be tuned in cluster assemblies.   

  



173 
 

Chapter 11  Conclusions 
 

 
 

We have discussed a process in which by first identifying and secondly classifying stable 

clusters, one can design nanomaterials with control over the architecture and electronic 

properties.  Using theoretical computations based on the Kohn-Sham density functional 

formalism, we have identified and classified a variety of stable clusters through their respective 

electronic structures.  The categorized clusters in this study include those based on the confined 

nearly free electron gas or jellium, ―all-metal‖ aromatic, Zintl analogues and metal-carbides.  By 

understanding the stability mechanism in a given cluster, we were able to design cluster 

assemblies with tailored properties.  The organo-metallic sandwich motif, [C6H6]V[Al3Sb], 

showed the possibility of designing a series of magnetic materials based on stable ―all-metal‖ 

aromatic clusters.  The most promising cluster building blocks were the deltahedral Zintl 

analogues.  The insight gained with the use of an alkali and/or organic substituents as 

countercations illustrated how one could tune the electronic and structural properties of a cluster 

assembled material.  This step-wise methodology beginning from identification to classification 

and ultimately the assembly construction is proposed as a viable procedure in designing property 

precise nanomaterials using stable clusters as building blocks. 

  



174 
 

Chapter 12  Future Prospects 
 

 
 

Though some of the questions on cluster assemblies have been answered, there is further 

room for scientific investigation.  For example, even though many of the clusters studied have 

been synthesized in the gas phase, some have not been attempted as of this date.  The organo-

Zintl clusters previously identified theoretically have not been synthesized though these clusters 

have large gap sizes and electron affinities.  Included in this experimental endeavor is the 

possibility of synthesizing magnetic superatoms such as Ag24Mn(SH)18.  These cluster show 

extreme promise in the ability to be synthesized through either the gas phase or liquid synthesis.   

Once synthesized, these clusters can be assembled and deposited on a surface.  The future 

of this possibility leads to the question, how will the cluster-surface and assembly-surface 

interactions affect the properties of the cluster assembly?  Or, if synthesized as a crystal, what 

effect will the solvent have on the clusters and cluster assembly?  If one were to use a larger 

countercation such as a superatomic alkali or a crypt-countercation, how would this change the 

assembly?  Even in the case of the organo-Zintl assembly, how would the electronic structure 

change if one were to use a larger organic substituent? Can one design a porous three-

dimensional organo-Zintl cluster assembly with the ability to be used for hydrogen storage?  This 

opens the door to investigations on the nanocatalytic effects of these new assemblies.   

Of course and even larger implication resides in the magnetic effects of cluster 

assemblies.  For example, by extending the sandwich motif to triple-decker or even longer wires 

the investigation on the magnetic anisotropy of the assembly.  Can these be used in the future of 

spintronics or have superconductive properties?  Furthermore what happens to the optical 
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properties as the magnetic assemblies, including those composed of the magnetic superatoms, 

continue to assemble? 

Thus there is a larger range of possibilities that can grow from the research found in this 

document.  The clusters and assemblies can be utilized in the ever growing fields of technology 

and cluster science.  The unique construction of the assemblies based on the cluster’s electronic 

structure will lead to new possibilities and applications in nanoscience.  One can see the future of 

cluster assembled materials is a strong and viable endeavor from the research presented here.       
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Appendix B 
 

Point Group Character Tables 

 

B.1 Selected Cnv Groups 
 

C2v E C2 συ(xz) σ’υ(yz)   

A1 1 1 1 1 z x
2
, y

2
, z

2
 

A2 1 1 -1 -1 Rz xy 

B1 1 -1 1 -1 x, Ry xz 

B2 1 -1 -1 1 y, Rx yz 

 
 
 

C3v E 2C3 3συ(xz)   

A1 1 1 1 z x
2
+ y

2
, z

2
 

A2 1 1 -1 Rz  

E 2 -1 0 (x, y), (Rx, Ry) (x
2
-y

2
, xy), (xz, yz) 

 

 

 

B.2 D3h Group 
 

D3h E 2C3 3C2 σh 2S3 3συ   

𝐴1
′  1 1 1 1 1 1  x

2
+ y

2
, z

2
 

𝐴2
′  1 1 -1 1 1 -1 Rz  

𝐸′  2 -1 0 2 -1 0 (x, y) (x
2
-y

2
, xy) 

𝐴1
′′  1 1 1 -1 -1 -1   

𝐴2
′′  1 1 -1 -1 -1 1 z  

𝐸′′  2 -1 0 -2 1 0 (Rx, Ry) (xz, yz) 

 
 

Tables taken from the book Molecular Symmetry and Group Theory (John Wiley & Sons Inc., 

New York 1998) Robert L. Carter, author. 
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