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Involvement of MAPK pathway in the EGF mediated induction of 

MMP-1  

 

To determine downstream EGFR signaling pathways involved in the 

increase in MMP-1 expression, T98G cells were first treated with selective 

MEK1/2 inhibitors U0126 and PD184352.  Pre-treatment with 500nM PD184352 

for 2 hours before addition of EGF completely inhibited the phosphorylation of 

ERK (Figure 3.2A, lanes 5 and 6).  EGF treatment had no effect on 

phosphorylated or total ERK1/2 levels in this cell line (Figure 3.2A, lanes 2 and 

4).  MMP-1 levels were also examined in T98G cells treated with PD184352 for 

24 hours.  There was a suppression of MMP-1 induction in the presence of EGF 

in the cells treated with PD184352 (Figure 3.2A lanes 5 and 6) suggesting 

MMP-1 regulation is effected by the MAPK pathway. 
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Figure 3.2 Inhibition of MAPK signaling by PD184352 and MMP-1 levels.   

A) Representative immunoblot of T98G CL, from cells treated with PD184352 

(500nM) for 24h indicating complete inhibition of ERK activation and decreased 

induction of MMP-1 protein levels in the presence of EGF (CL, cell lysate; ERK, 

p44/42 Erk1/2 Mitogen activated kinases).  B) densitometric analysis of MMP-1 band 

intensity across three separate experiments, p
*, **

<0.05 [*, DMSO (-EGF) Vs 

PD184352 (-EGF)], [**, DMSO (+EGF) Vs PD184352 (+EGF)] (n=3). 
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Role of PI3-kinase pathway in EGF mediated MMP-1 regulation  

 

We also wanted to examine the PI3 Kinase pathway and its potential influence on 

EGF-induced MMP-1 expression.  T98G cells were pre treated with two 

concentrations of AG1478 (10nM and 30nM) for 2 hours and stimulated with 

EGF (20ng/ml).  The activation status of EGFR, AKT and ERK was tested in 

these treated samples.  In the presence of EGF, p-EGFR was inhibited by AG1478 

(Figure 3.4A lanes 1, 3 and 5).  In agreement with Figure 2, EGF had no effect 

on the p-ERK levels.  There was a dose-dependent inhibition of EGF stimulated 

p-Akt levels with increasing amounts of AG1478 (Figure 3.4A, lanes 1, 3, and 

5).  In addition, basal and EGF-stimulated p-ERK levels were unchanged and the 

AG1478 treatment did not affect the phosphorylation status of ERK (Figure 

3.4B).  These observations suggest that in addition to the MAPK pathway, EGF-

induction of MMP-1 may involve the PI3K pathway.   
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Figure 3.4 AG1478 mediates its downstream effects via PI3-K 

signaling   A) Representative immunoblot of T98G cells treated with two 

different concentrations of AG1478 (10 and 30 nM) show decreased levels of p-

EGFR and p-AKT but no effect on p-ERK.  B) Densitometric analysis of EGFR, 

AKT and ERK (phospho- and total)  immunoreactivity in the above immunoblots 

across three separate experiments, p*<0.05 
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Role of PI3-kinase pathway in EGF mediated MMP-1 regulation 

To further examine the role of PI3K in EGF induced MMP-1 expression, 

adenoviral constructs (CA-AKT and DN-AKT) were used to transfect T98G cells.  

Successful adenoviral transfection was confirmed by immunoblotting to detect 

phospho-Serine 473-AKT and total-AKT (Figure 3.5A).  Only the CA-AKT 

treated T98G cells were shown to have high Serine-473 phosphorylation levels 

(Figure 3.5A, lane 2).  Surprisingly, the MMP-1 levels remain same in T98G 

cells transfected with adenoviral- CA-AKT and DN-AKT plasmids and are 

similar to the pCMV controls (Figure 3.5A, lanes 1 to 3). Consistent with earlier 

data (Figure 3.3A lanes 1 and 4, 3.3B) T98 cells treated with adenoviral DN-

EGFR plasmids demonstrate a decrease in MMP-1 levels to 0.3 fold as compared 

to the pCMVcontrol (Figure 3.5A, lanes 1 and 4, Figure 3.5B). 
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Figure 3.5 PI3-K signaling does not influence MMP-1 levels  A) 

Representative immunolot of T98G cells treated with adenoviral vectors CA-AKT 

and DN-AKT (MOI of 25) show that CA-AKT led to phosphorylation of AKT at 

473 position with no active AKT in the control samples. This increased 

phosphorylation did not lead to alterations in MMP-1 levels.  B) Densitometric 

analysis of the MMP-1 immunoblots across three separate experiments showing 

fold change values relative to the pCMV control.  The DN-EGFR sample group 

shows a decrease in MMP-1 levels to approx 0.3 fold as compared to the pCMV 

control group.  Data is representative of three independent experiments, p*<0.05, 

n=3. 

 

 

 

 

 

 

 

 



124 

 

 

 

 

 

 

 

 

 

 

 

 



125 

 

EGF stimulates glioma cels invasion in vitro  

 

We next wanted to examine whether MMP-1 upregulation by EGF is an important 

event in the in vitro invasion process in glioma cells.  T98G cells were treated 

with DMSO and AG1478 in the presence and absence of EGF.  Inhibition of 

MMP-1 was performed using transient transfection of MMP-1 siRNA.  Treatment 

with AG1478 alone in T98G cells significantly decreased invasion as compared to 

the DMSO control.  Similarly, MMP-1 siRNA treatment to T98G cells 

significantly suppressed invasion as compared to the scrambled control (p < 0.05) 

(Figure 3.6).  The addition of EGF to T98G cells (No treatment, NT and DMSO-

treated) led to an increase in invasion (p<0.05).  The addition of EGF to AG1478 

treated T98G cells did not increase invasion suggesting suppression of EGFR-

mediated pro-invasive signaling.  Interestingly, addition of EGF to MMP-1 

siRNA treated T98G cells resulted in an increase in invasion but this increase was 

not as pronounced as controls.  This data suggests that MMP-1 inhibition results 

in blunting the EGF-mediated increase in invasion and therefore contributes, in 

part, to EGF-mediated invasion process. 
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Figure 3.6 EGFR mediated increased invasion involves MMP-1 in 

T98G cells. Representative immunoblot of T98G cells treated with controls (NT, 

DMSO), AG1478, scrambled control, MMP-1 siRNA (with and without EGF) 

show that MMP-1 levels are decreased in AG1478 and MMP-1 siRNA treated 

cell lysates even in the presence of EGF. EGF stimulation induced MMP-1 

protein levels in controls (NT, DMSO and scrambled).  B) Addition of EGF to 

T98G cells in controls (NT, DMSO and scrambled) led to a significant increase in 

matrigel-invasion.  In the presence of AG1478, the EGF mediated increased 

invasion is inhibited. MMP-1 siRNA treated T98G cells show decreased invasion 

as compared to the controls.  In MMP-1 siRNA treated T98G cells, an increase in 

invasion was observed with addition of EGF.  However, the induction of invasion 

by EGF was suppressed in these MMP-1 siRNA treated cells as compared to the 

induction of invasion in NT, DMSO and scrambled sample groups.  Data is 

representative of three independent experiments, p*<0.05, p
#
(Scrambled Vs 

MMP-1 siRNA) <0.05, p
**

(AG1478 Vs DMSO, No EGF) <0.05, p
##

(AG1478 Vs 

DMSO, with EGF) <0.05 (n=3). 
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3.5 Discussion 

 

EGFR expression and mutation is an important hallmark event in many cancers, 

including glioblastoma (GBM).  Particularly, primary GBMs, also known as de-

novo GBM have been found to have a higher EGFR mutation rate than 

progressive or secondary GBM (Ohgaki and Kleihues, 2007), and is recognized to 

be a significant oncogene driving the growth and malignancy these cancers.  

There is evidence for the involvement of MMP-1 in local diffuse invasion in 

GBM (Stojic et al., 2008; McCready et al., 2005; Anand M et al, submitted).   

 

In this study, we sought to examine the role of EGFR signaling in the EGF 

induction of MMP-1.  We observed that by perturbing EGFR using EGF 

stimulation in 2 glioma cell lines, MMP-1 expression was increased.  In the same 

model system, inhibition by AG1478 and EGFR- dominant negative forms, levels 

of MMP-1 are altered.  Subsequently, we explored EGFR downstream MAPK 

and PI3-K signaling mechanisms.  Using a pharmaceutical inhibitor for the 

MAPK pathway, PD184352, we observed an abrogation in the induction of 

MMP-1 protein levels in samples treated with the inhibitor and EGF.  Neither the 

addition of EGF nor adenoviral mediated-infection of MEK-CA in T98G cells 

increased the phosphorylation of ERK above the basal levels of p-ERK.  

However, the transfection of Ad-EGFR-DN in T98G cells led to the suppression 

of phosphorylated ERK and abrogated MMP-1 levels suggesting EGFR-mediated 
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MAPK regulation of MMP-1.  In T98G cells infected with an adenoviral-

construct MEK-DN, MMP-1 levels were abolished.  In addition, infection of 

T98G cells with adenoviral-MEK-CA led to a robust increase in the MMP-1 

protein levels strongly suggesting involvement of MAPK pathway in MMP-1 

gene regulation.  

 

AG1478 treatment led to the suppression of p-EGFR and p-AKT levels 

but did not alter p-ERK levels.  It also resulted in decreased MMP-1 levels 

suggesting that PI3K signaling might also be involved in the EGF-MMP-1 

regulation.  There was an apparent dose-dependent decrease in phosphorlyated 

EGFR with AG1478 treatment.   In figure 3.4 we show that with two doses of 

AG1478 (10 and 30nM) there is a modest dose dependent decrease in 

phosphorylated EGFR.  The addition of higher doses of AG1478 (100 and 300 

nM) completely inhibited phosphorylation of EGFR (data not shown).    

 

We further explored the PI3-K signaling pathway by infecting T98G cells 

with Ad-AKT-CA and Ad-AKT-DN.  Interestingly, neither Ad-AKT-CA nor Ad-

AKT-DN transfection in T98G cells altered MMP-1 levels suggesting that PI3K 

may not involved in the EGF-induction of MMP-1 protein.    

 

MMP-1 has pro-invasive functions in wide range of malignancies.  In 

order to examine, if EGFR mediated increase in MMP-1 plays a functional role in 
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T98 cells, we performed invasion assays.  There was a significant increase in 

invasion with EGF treatment and with AG1478 treatment this EGF-driven 

invasion nis abolished.  The MMP-1 siRNA demonstrated a similar effect.  When 

EGF was added to the MMP-1 siRNA treated cells, although not to the same 

extent as with AG1478, there was a suppression of the EGF-driven invasion.  

Thus, MMP-1 inhibition is able to blunt the EGF-mediated increase in invasion in 

T98G cells emphasizing an important contribution to glioma cell in vitro invasion 

by MMP-1. 
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In this study, we have shown that MMP-1 is a significant contributor of glioma 

invasion in vitro.  Preliminary studies from our laboratory by Dr Jessica 

McCready showed that MMP-1 mRNA is not detectable in normal brain but its 

expression is increased in GBM tissue specimens.  The MMP-1 protein levels in 

GBM tissue specimens were examined using immunohistochemistry and 

confirmed these earlier results.  T98G cell lines were used for transient inhibition 

of MMP-1 as they have high basal expression of MMP-1.  Conversely, the 

U251MG and U87MG cell lines have low basal expression of MMP-1 making 

them a suitable model for over-expression studies.  Inhibition of MMP-1 using 

siRNA in T98G cell lines showed a decreased invasion while stable over-

expression of MMP-1 in U251MG and U87MG GBM cell lines exhibited 

significantly increased invasion.  These MMP-1 over-expressers have the ability 

to invade growth factor- reduced matrigel barrier (at 100 μg/ filter concentration) 

within 12 hours as observed under the microscope.   

 

Several MMPs have been implicated in brain tumors; among them, the 

most extensively studied are MMP-2 and MMP-9 (Kargiotis et al., 2008; Gondi et 

al., 2009; Ezhilarasan et al., 2009; Lakka et al., 2002, 2005).  The studies 

presented in this dissertation focused on the functional role of MMP-1 in GBM, 

particularly invasion.  MMP-1 contributes to invasion and metastasis in various 

malignancies including breast, colon, ovary, skin and pancreas (Murray et al., 

1996; Kanamori et al., 1999; Ito et al., 1999; Brinckerhoff et al., 2000; Behrens et 
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al., 2001; Ghilardi et al., 2001; Wyatt et al., 2005; Nikkola et al., 2005; Ala-aho et 

al., 2005).  In most of these cancers, MMP-1 favors tumor progression, growth 

and invasion by its traditional function of degradation of rigid constituents of 

ECM.  However, brain ECM is devoid of such rigid barriers and it composed of 

loosely bound hyaluronan, proteoglycans, tenascin-C and thrombospondin.  

Nonetheless, collagen types IV, V, fibronectin and laminin are present in low 

amounts along the vessel walls alongside basement membrane and peri-vascular 

matrix (Bellon et al., 1985).  Brain tumors rarely metastasize outside the brain and 

there is no intravasation in GBM (Bellail et al., 2004).  The GBM cells show a 

pattern of infiltration along the periphery of vessel walls and white matter along 

with widespread movement within the brain.  It is important to note here that 

despite the presence of very low quantities of known MMP-1 substrates around 

peri-vascular region, over-expression of MMP-1 increases invasion significantly.  

It is therefore possible that the increased invasion mediated by over-expression of 

MMP-1 is not solely due to degradation of ECM.  The above findings compelled 

us to consider additional functions of MMP-1 in ECM dynamics.   

 

MMP-1 alters invasion in GBM by cleaving biologically active molecules 

We considered two substrates of MMP-1 that have been shown to be activated: 

IGFBP2/3 and PAR-1.  MMPs function in conjunction with each other and non-

traditional substrates for MMPs are continuously being identified.  MMP-1 

cleaves various bio-active molecules present in the ECM to up-regulate oncogenic 
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signaling (Sternlicht and Werb, 2001; Brinckerhoff et al., 2002).  Literature 

review lends evidence that insulin-growth factor binding proteins (IGFBPs) 

present in ECM are cleaved by MMP-1 and MMP-3 (Fowlkes et al., 1994; Rajah 

et al., 1999).  IGFBPs are highly over-expressed and correlate with increased 

invasion in GBM (Zhang et al., 2002).  Silencing of IGFBP-2 in human GBM 

cells reduced invasion (Fukushima et al., 2007) and its over-expression promotes 

glioma development and progression (Dunlap et al., 2007).  Because of this 

correlation between MMPs and IGFBPs, we examined the affect of active and 

functional MMP-1 on IGFBPs (Appendix E).  In summary, our preliminary in 

vitro data suggests that MMP-1 does not cleave IGFBPs in T98G cells.   

 

Recent studies have shown that MMP-1 directly cleaves a G-protein 

coupled receptor (GPCR), Protease-activated Receptor (PAR-1), which is also a 

pro-angiogenic molecule (Boire et al., 2006; Blackburn et al., 2009).  Cleavage of 

PAR-1 leads to activation of downstream G-protein couple signaling that aids in 

the invasion, metastasis, growth, proliferation and aggressiveness of several 

malignancies (Granovsky-Grisaru et al., 2006; Salah et al, 2007; Agarwal et al 

2008).  PAR-1 is expressed extensively in human brain on neurons and astrocytes.  

Activation of PAR-1 in both astrocytes and human GBM cell lines (U178) 

increases the intracellular calcium ion concentration suggesting it is equally 

functionally active in normal and pathological states of brain (Junge et al., 2004).   
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We tested the presence of PAR-1 in T98G, U251MG and U87MG GBM 

cell lines via western blot analaysis but were unable to detect PAR-1.  This could 

be due to the low or nil expression of PAR-1 in in vitro conditions in these cell 

lines and a more sensitive method such as ELISA is needed to detect the receptor.  

It would be interesting to examine the PAR-1 cleavage and activation of 

downstream GPCR signaling in the U251MG cells stably over-expressing MMP-

1.  The high levels of MMP-1 protein expressed by U251-MMP-1OE clones 

should be activated to achieve a functional and active form of MMP-1.  This can 

be obtained by treating the conditioned media from these cells with APMA 

followed by dialysis for removal of the organo-mercurial compound.  The 

resulting conditioned media can be used to treat the cells for examining the PAR-

1 cleavage.  The PAR- cleavage can be determined by measuring the PAR-1 

cleaved fragment using ELISA and intracellular concentration of calcium ions.   

 

The in-vitro invasion assays performed with MMP-1 over-expressing 

U251MG and U87MG cell lines showed an increase in invasion without altering 

the cell-proliferation rate.  In the same lines, siRNA inhibition of MMP-1 in 

T98G cell lines showed a decreased invasion without affecting the cell viability 

and proliferation rate as measured by cell proliferation assays.  Thus, MMP-1 may 

affect on the cell morphology which changes during the physical movement of the 

cell.  In experiments where recombinant active MMP-1 was added to the cells 

during the invasion assay, we observe no difference in invasion as compared to 
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the controls.  Based on these findings, one would also believe that MMP-1 is not 

affecting the growth or proliferation of the cells in-vitro.  However, in a parallel 

in-vivo study performed by my colleague, Dr Nicholas A Pullen, we observed that 

these MMP-1 over-expressing U251MG cell lines show significant increase in 

tumor growth and volume.  Moreover, the T98G GBM cell lines stably 

transfected with lentiviral MMP-1 shRNA show a stark decrease in tumor volume 

(Pullen et al., 2010–submitted).  These results emphasize the importance of the 

tumor microenvironment and its role in mediating the effects of MMP-1.   

 

A majority of GBM patients have amplification, over-expression and/ or 

mutation in the EGFR making this particular receptor an attractive target for 

therapeutics.  EGFR is known to up-regulate various oncogenes that are 

implicated in cell proliferation, invasion, metastasis and tumor growth.   

 

In this study we demonstrated the induction of MMP-1 by EGF.  EGF, at 

concentration of 20ng/ml for 24h show an induction of MMP-1 in T98G and 

U87MG cell lines.  Using a pharmaceutic inhibitor of EGFR, AG1478 at a dose of 

300 nM, we observed a complete inhibition of EGFR activation.  After the 

treatment with AG1478 (300 nM) in T98G cell lines for 24 hour time period, we 

observed that MMP-1 levels are completely abolished in the AG1478 treated 

samples as compared to the controls.  This data confirms that EGFR is playing an 

important role in the regulation of MMP-1 expression.   
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To understand the downstream signaling mechanisms that are mediating 

the EGF-MMP-1 regulation, we used pharmaceutic inhibitors to two of the most 

important and extensively studied pathways- MAPK and PI3-K/AKT.  For 

MAPK inhibition, we used the U0126 inhibitor at a dose of 30 μM.  Inhibition of 

PI3K-AKT pathway was performed using LY294002 (5 μM).  We observed that 

with U0126, phosphorylation of ERK (p-ERK) is inhibited and over a 24 hour 

time period, the MMP-1 levels are also abrogated.  These experiments were 

performed in the presence and absence of EGF (20 ng/ml).  We also notice that 

addition of EGF did not increase p-ERK levels above the existing high basal 

levels.  Treatment of T98G cells with LY294002 did not prove to be conclusive 

because the cells did not survive at the period of 24 h.  A dose dependent 

inhibition experiment was performed using the drug that shows complete 

inhibition of p-AKT starting at 5 μM and almost complete inhibition at 10 μM.  

Nonetheless, the cells did not tolerate lower doses of the drug over a 24 h time 

period.  To perform MAPK inhibition at a more physiologically relevant dose, we 

also used another inhibitor, PD184352 at 500 nM.  This inhibitor treatment 

resulted in same results as U0126 lending credence to the involvement of MAPK 

in MMP-1 regulation.   

 

An important observation was made in T98G cells treated with both 

agonist (EGF) and antagonist (AG1478) of EGFR.  In these cells, EGF led to an 

activation of EGFR and AKT.  Inhibition of EGFR receptor activation also 
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resulted in decreased p-AKT levels.  However, the levels of p-ERK were entirely 

unaffected with EGF and AG1478.  At a 10 nM dose of AG1478, the extent of 

inhibition on AKT is more pronounced than on its primary target, EGFR.  This 

may suggest that AKT pathway could be very sensitive to inhibition of EGFR; a 

small inhibition in the receptor results in a marked decrease in the activation of 

AKT.   

 

A more specific approach to inhibit the signaling pathways was adopted 

using adenoviral vectors that target the effector proteins of the pathways.  These 

adenoviral vectors were a kind gift from Dr Paul Dent laboratory, Department of 

Biochemistry, Virginia Commonwealth University.  The recombinant adenoviral 

vectors were EGFR-dominant negative (DN), AKT-constitutive active (CA), 

AKT-DN, MEK-CA and MEK-DN.  We observed that infection with Ad-EGFR-

DN decreased the MMP-1 protein levels substantiating our earlier results with the 

pharmaceutic inhibitor, AG1478.  Ad-MEK-DN remarkably decreased the MMP-

1 levels and also inhibited the activation of ERK.  Surprisingly, Ad-EGFR-DN 

also resulted in the inhibition of ERK activation suggesting MAPK is indeed 

downstream to EGFR signaling.  Ad-AKT-CA infection show increased 

phosphorylation and activation of AKT at position serine -473.  However, there 

was no change in the levels of MMP-1 with Ad-AKT-CA and Ad-AKT-DN.  This 

data strongly highlights the involvement of MAPK pathway in EGFR mediated 

regulation of MMP-1.   
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The fact that we could not detect a change in p-ERK levels following 

addition of EGF could be due to high basal p-ERK expression in T98 cells. .  The 

increase in p-ERK levels with EGF may not be detectable over this high-basal 

level.  With addition of adenoviral dominant negative-EGFR, we observe 

complete inhibition of the ERK phosphorylation, however this inhibition was not 

observed with AG1478, a pharmaceutic inhibitor.  AG1478 is a reversible 

inhibitor that binds to the ATP-binding pocket of the activated receptor.  Our 

earlier results with AG1478 pointed to inhibition of AKT at much lower doses 

than it inhibits its specific receptor, EGFR.  This suggests that AKT pathway is 

more sensitive to AG1478 treatment whereas inhibition of MAPK pathway 

requires more permanent and robust approach, more so, as the basal levels of 

pERK are high.   

 

We found that in Ad-MEK-CA transfections, there is a slight increase in 

the phosphorylation of ERK.  We had expected a more robust increase of pERK 

due to the large increase in MMP-1 exprssion.   There is a possibility of cross-talk 

mechanisms between MEK1/2 and JNK.  Published findings hint that ERK may 

not the only target for MEK1/2 (Adler et al., 2005).  In U251 GBM cell lines, 

hyperphosphorylated MEK1/2 can phosphorylate JNK which further activates p38 

MAPKs (Adler et al., 2005).  These proteins increase the pool of AP-1 

transcription factors in the cell and can lead to increases in MMP-1 transcription.   
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We also explored the role of another important signaling pathway 

downstream to EGFR in the regulation of MMP-1- the JAK/STAT pathway.  In 

T24 bladder cancer cells, STAT3 activation was found to be important and 

necessary for MMP-1 induction by EGFR (Itoh et al., 2006).  We wanted to 

determine if such a mechanism may also be part of GBM cells.  To investigate the 

role of JAK/STAT pathway, we used siRNA against STAT3 in T98G cell lines 

and examined MMP-1 levels (Appendix F).   

 

We had expected that STAT3 siRNA would decrease the levels of MMP-

1.  But, we observed completely contrary to what we had anticipated.  The 

STAT3 siRNA treated T98G cells show an induction of MMP-1 as compared to 

the scrambled and transfection regeant control.  To determine if other signaling 

pathways become activated in the event of STAT3 depletion as a compensatory 

mechanism, we examined the MAPK pathway activation by analyzing p-ERK 

levels.  We observed that pERK levels did not change in the STAT3 siRNA T98G 

cell lines.  In the absence of any stimulatory signal (such as EGF), we could not 

detect and discern any differences in pAKT levels, although the total AKT levels 

remain constant.   Recent studies show that STAT3 has a tumor suppressive 

function in the GBM cells.  Interleukin-8 (IL-8) is a direct repressed target gene 

for STAT3 (de la Iglesia et al., 2008).  This repression is released during siRNA 

inhibition of STAT3 thereby allowing IL-8 to mediate its downstream signaling 

that may up-regulate MMP-1 expression.   
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We have seen that in GBM cell lines, EGFR is regulating MMP-1 

expression preferentially by the MAPK pathway.  We next sought to determine if 

EGFR mediated increased MMP-1 has a functional role of invasion.  The T98G 

cells were treated with controls, AG1478 and MMP-1 siRNA and allowed to 

invade in a matrigel-based invasion assay in the presence and absence of EGF.  

We show here that MMP-1 siRNA significantly decreased invasion as compared 

to the controls corroborating our earlier data.  In controls, the EGF treatment led 

to a significantly increased invasion but in the presence of AG1478, the cells 

drastically reduced this EGF-mediated increased invasion.  Addition of EGF to 

MMP-1 siRNA treated T98G cells resulted in a blunting of the EGF-driven 

increase in glioma invasion.   MMPs are regarded as main players in the invasion 

process and as such other MMPs may be regulated by EGF and EGFR.  Previous 

published reports by our laboratory (Van Meter et al., 2004) report the induction 

of MT1-MMP by EGF stimulation.   

 

In summary, we have shown that MMP-1 plays a role in GBM invasion in 

vitro.  The increased expression of MMP-1 could be attributed to the complex 

milieu of tumor microenvironment that is teeming with growth factors and 

oncogenic stimuli.  In our studies, we found that EGFR is regulating MMP-1 

expression by MAPK pathway in T98G GBM cell lines.  The finding by others 

that MMP-1 can cleave PAR-1 is an important development in MMP-1 biology.  

One proposed hypothesis is that once activated MMP-1 cleaves PAR-1, not only 



143 

 

the GPCR, but other RTKs get activated by transactivation mechanisms.  There 

are unpublished reports that hint that EGFR can be shed by MMPs (personal 

communication).  The activation of EGFR and GPCR signaling pathways up-

regulate various oncogenic and invasive genes including MMP-1 thereby creating 

a feedback loop (Figure 4.1). With the aid of tumor micro-environment, cancer 

cells must maintain such feedlack loop constitutively for survival and growth. 
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Figure 4.1 
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Appendix A: 

Cloning strategy for MMP-1   

MMP-1 was purchased in the pOTB7 vector that had been modified with attB sites.  This 

would allow cloning into an entry vector (pDONR221) using the Gateway system by 

Invitrogen.  Once the entry clone is obtained, MMP-1 can be moved into a variety of 

destination vectors using the Invitrogen Gateway cloning system.  The pIRES2Ac-GFP, a 

vector from Clontech, has been converted to a destination vector and was used for this 

project.   

 

MMP-1/pOTB7 and pDONR221 DNA (1:1 molar ratio) was set up in a BP reaction and 

1ul was transformed into electrocompetent α–select cells from Bioline.  The BP reaction 

is mediated by BP clonase enzymes composed of Integrase and Integrase host factor 

(IHF) proteins that facilitate the recombination between DNA clones containing attB sites 

and a donor vector with attP sites.  The cells were plated on kanamycin plates (50ug/ml 

LB agar).  Colonies were analyzed by the Epicenter Colony Fast-Screen Kit 

(Cat#FS0472H).  The correct colony was struck on another kanamycin LB (Luria Broth) 

agar plate and a single colony was used for inoculation of a miniprep culture.  DNA was 

isolated using the Fermentas GeneJet Miniprep Kit (Cat#K0503).  The DNA was 

digested with NsiI enzyme that would disrupt the kanamycin gene of the pDONR221 

backbone.  The DNA was purified using the PCR cleanup procedure of the Promega 

Wizard SV Gel and PCR Cleanup System (Cat#A9282)  
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MMP-1/pDONR221 DNA and pIRES2Ac-GFP/rfa DNA (1:1 molar ratio) 

was set up in an LR reaction and 1µl was transformed into electrocompetent α–

select cells from Bioline.  In an LR reaction, the integrase, IHF and excisionase 

(Xis) enzymes catalyze the recombination between entry clone (carrying gene of 

interest flanked with attL sites) and a destination vector with attR sites.  The cells 

were plated on kanamycin plates (50ug/ml LB agar).  Colonies were analyzed by 

the Epicenter Colony Fast-Screen Kit (Cat#FS0472H).  The correct colony was 

struck on another kanamycin LB agar plate and a single colony was used for 

inoculation of a day culture.  An overnight maxiprep culture was inoculated from 

the day culture.  DNA was isolated using the Invitrogen PureLink HiPure 

Maxiprep Kit (Cat# K210007).  

BP Reaction Creating a Gateway® entry clone from an attB-flanked PCR 

product Add the following components to a 1.5 ml tube at room temperature and 

mix: attB-PCR product (=10 ng/µl; final amount ~15-150 ng) 1-7 µl Donor vector 

(150 ng/µl) 1 µl TE buffer, pH 8.0 to 8 µl 

1. Thaw on ice the BP Clonase™ II enzyme mix for about 2 minutes. Vortex 

the BP Clonase™ II enzyme mix briefly twice (2 seconds each time). 

2. To each sample (Step 1, above), add 2 µl of BP Clonase™ II enzyme mix 

to the reaction and mix well by vortexing briefly twice. Microcentrifuge 

briefly. 

3. Return BP Clonase™ II enzyme mix to -20°C or -80°C storage. 

4. Incubate reactions at 25°C for 1 hour. 
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5. Add 1 µl of the Proteinase K solution to each sample to terminate the 

reaction. Vortex briefly. Incubate samples at 37°C for 10 minutes.  

LR Reaction Transferring the gene from a Gateway® entry clone to 

destination vector   

1. Add the following components to a 1.5 ml tube at room temperature and mix: 

Entry clone (50-150 ng) 1-7 µl 

2. Destination vector (150 ng/µl) 1 µl, TE buffer, pH 8.0 to 8 µl 

3. Thaw on ice the LR Clonase ™ II enzyme mix for about 2 minutes. Vortex the 

LR Clonase ™ II enzyme mix briefly twice (2 seconds each time). 

4. To each sample (Step 1, above), add 2 µl of LR Clonase ™II enzyme mix to the 

reaction and mix well by vortexing briefly twice. Microcentrifuge briefly. 

5. Return LR Clonase ™ II enzyme mix to -20°C or -80°C storage. 

6. Incubate reactions at 25°C for 1 hour. 

7. Add 1 µl of the Proteinase K solution to each sample to terminate the reaction. 

Vortex briefly. Incubate samples at 37°C for 10 minutes. 

 

Cloning and molecular biology procedures were performed at the VCU – Massey 

Cancer Center Molecular Biology Core Facility, supported, in part, with funding 

from NIH-NCI CCSG Center core grant (2-P30-CA-16059) 

 

http://crisp.cit.nih.gov/crisp/CRISP_LIB.getdoc?textkey=6805189&p_grant_num=5P30NS047463-02&p_query=&ticket=11903511&p_audit_session_id=56440766&p_keywords=
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Appendix B: Vector Map of Donor Vector 
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Appendix C: Vector Map of Destination Vector 
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Appendix D 

Protocol for activation of MMP-1 by APMA  

All solutions were freshly made on the day of performing the assay.  MMP-1 present in 

the conditioned media samples of U251MG and U87MG GBM cells that were stably 

over-expressed with pIRES-MMP-1-AcGFP were treated with amino-phenyl mercuric 

acid (APMA).  

 A stock solution of 10 mM APMA was prepared by dissolving 35.2 mg of 

APMA in 0.1M sodium hydroxide (NaOH).  Tris-Triton-calcium (TTC) buffer was 

prepared with final concentration of 50mM of Tris-HCL, 1mM of calcium chloride and 

0.05% of Triton-X-100.  20 μl of conditioned media containing pro-MMP-1 from each 

cell line was added to 200 μl of APMA (final concentration 4mM) and 280 μl of TTC 

buffer.  The reaction mix was incubated at 37°C water-bath for 24 hours.   

For immunoblots, the conditioned media was used as it is at the end of incubation 

for MMP-1 analysis.  For treatment in cell cultures, the APMA was removed by dialysis 

using Amicon Ultracentrigufal filter devices.  Before addition of the reaction mix, the 

filters were blocked with 100 μl of 1mg/ml of bovine serum albumin (BSA) for 30 min at 

37°C.  Thereafter, 500 μl of sterile PBS was added and the filters were centrifuged at 

11,000 x g for 20 minutes at 4°C.  The filters were inverted and spun briefly to remove 

residual PBS and then dried.  The reaction mixture was added to these filters and 

centrifuged at 11,000 x g for 20 minutes at 4°C to remove APMA.  This was repeated so 

as to remove the maximal amount of APMA.  The concentration of proteins in 
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conditioned media was then analyzed using Biorad-DC protein assay.  Equal amount of 

protein was used for treatment of cells in culture. 
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Appendix E  

IGFBP2/3 does not get cleaved in the presence of activated MMP-1 from U251MG 

MMP-1 overexpressing cells.  

 

In the above figure, conditioned media from U251MG cells (Parentals P, Vector control 

VC, MMP-1 over-expressers MMP-1 OE) was extracted and concentrated.  MMP-1 was 

activated using APMA and levels of IGFBP2/3 were examined.  The data shows that 

MMP-1 gets activated with APMA treatment.  There is no affect on IGFBP-2/3 by 

activated MMP-1.  APMA treatment, by itself, resulted in molecular weight shift as seen 

in P and VC samples. 
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Appendix F 

STAT-3 siRNA treatment in T98G cells leads to MMP-1 induciton 

 

T98G cells treated with STAT3 siRNA show a significant knockdown of STAT3 (total) 

protein levels.  In these samples, MMP-1 expression was observed to be remarkably high 

as compared to scrambled (scr) and oligofectamine (oligo) (transfection reagent) controls.  

Lower panel figure shows that the levels of phospho- and total ERK do not change 

among the three sample groups- Scrambled, Ogofectamine and STAT3 siRNA-treated 

T98G cells. 
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