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ALLOCATING HOMELAND SECURITY SCREENING RESOURCES USING
KNAPSACK PROBLEM MODELS

By
Rebecca Ann Dreiding

Master of Science in Mathematical Sciences with a concentration in Operations Research

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at
Virginia Commonwealth University.

Virginia Commonwealth University, 2010

Director: Dr. Laura A. McLay
Assistant Professor

Department of Statistical Sciences and Operations Research

Since the events of September 11, 2001, the federal government is focused on homeland security

and the fight against terrorism. This thesis addresses the idea of terrorist groups smuggling nu-

clear weapons through the borders of the United States. Security screening decisions are analyzed

within maritime and aviation domains using discrete optimization models, specifically knapsack

problems. The focus of the maritime chapters involves a risk-based approach for prescreening in-

telligence classifications for primary and secondary screening decisions given limited budget and

resources. Results reveal that screening decisions are dependent on prescreening classification and

the efficacy of the screening technologies. The screening decisions in the aviation security chapter

highlight different performance measures to quantify the effectiveness of covering flights with the

intent of covering targets. Results reveal that given scarce resources, such as screening devices

capacities and budget, flights and targets can be covered with minimal expense to the system.



Chapter 1

Introduction

The horrific events of September 11, 2001, have led national security and other governmental

agencies to assess threats, especially terrorist threats, towards the United States. As many lives

were lost that day, and families broken, the goals have thus been to prevent another attack from

occurring. Since it is known that terrorist groups are looking into creating an even bigger at-

tack and statement against western countries, the United States has been preparing and attempting

to prevent that occurrence. The bigger attack that terrorists are considering involve the use of

weapons of mass destruction (WMD). A WMD is also considered a nuclear-type attack and as the

United States Homeland Security Council (2009) has reported that a detonated nuclear weapon

would not only be catastrophic, but would lead to numerous lives lost and negative impacts to the

economy. The current nuclear weapons around the world are accounted for, yet prior to doing

proper inventory years ago, has led countries, such as Russia, to have inaccurately acknowledged

the number of nuclear weapons that the country has had. Therefore, it is very possible that these

unaccounted for nuclear weapons are potentially located in the black market. The International

Atomic Energy Agency (IAEA) has reported that not only that there have been confirmed cases

of weapons-grade nuclear material being trafficked, but that terrorist groups have attempted to

buy nuclear and radioactive materials (IAEA 2007). Since prevention, the first step in a defensive

scenario, is potentially unattainable since nuclear weapons are missing, the next step is creating

a preparation and contingency plan, ‘how does the United States defend our country if a nuclear

weapon is in the hands of our enemies and how, why and where would an attack with a nuclear

weapon occur’? This question has opened the minds of the country’s defensive agencies to view
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scenarios and seek out vulnerabilities within the nation’s security. If a nuclear weapon is in the

hands of a terrorist group and their desire is to detonate it within the U.S. borders, transportation

of the weapon is required, and sea and air are the main options for transportation.

Since sea and air are the main transportation methods of a nuclear weapon that must cross the

oceans, it is important for strong security within these sectors, as well as good foreign relationships.

Depending on the target of a terrorist’s mission, a container ship, truck, or aircraft could be used

as a means of transportation of the nuclear weapon or help aid the physical detonation of the

weapon. There are many vulnerabilities within the maritime and aviation industries. There are

approximately 11.4M containers incoming to the United States ports every year for trade purposes,

and currently all containers are prescreened by the Automated Targeting System (ATS) which

classifies the containers as either high- or low-risk (Strohm 2006). Given that illegal substances,

including drugs and conventional weapons, have been smuggled in containers through the ports has

created the idea that a terrorist group may decide to smuggle a nuclear weapon in through the ports

as well. In this case, the nuclear weapon may be placed in a container in a foreign port in hopes that

certain screening procedures will not detect the weapon. This is just one vulnerability of maritime

security, and a lot of emphasis is placed on the foreign port. If the foreign port has effective

technology, a terrorist group may be deterred from trying this method. Another vulnerability within

maritime security is when the successful smuggled nuclear weapon arrives at the United States port.

The screening technology at ports is not as effective as hoped for, and a nuclear weapon could pass

through the screening procedures undetected, and continue on its planned path. Another option

that terrorists could consider is detonating a nuclear weapon prior to a container being screened

at a port. Therefore, that leads to the importance of foreign relationships in hopes that foreign

countries would detect and interdict the nuclear weapon. These vulnerabilities can also be applied

to other sectors of transportation, such as the aviation industry. Currently, airports do not screen

for nuclear weapons (and there is no prescreening classification for bagggage or passengers), the

focus is on conventional weapons, for the commercial aviation industry. One such scenario could

include foreign airports destined for a United States city, and an aircraft hijacking in which a

terrorist group contains a nuclear weapon. If the events of September 11, 2001, occurred with the

addition of a nuclear weapon that was detonated prior to the aircraft crashing, the events would

be even more catastrophic than what happened in reality. Contrary to this idea, an aircraft could
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easily just be used as a means of transporting a nuclear weapon for a different destination. Since

there are vulnerabilities within these sectors, this contributes to the critical need of ensuring that

technology is available and would be able to detect potential threats, especially WMD.

The maritime industry currently employs devices that can potentially detect nuclear weapons.

The devices used consist of Radiation Isotope Identification Devices (RIIDs), Radiation Portal

Monitors (RPMs) and X-Ray imaging devices. However this technology cannot detect 100 per-

cent of the threats, due to their current capabilities. RPMs can detect radiation from a container,

in which nuclear material emits some radiation, yet many other items also emit radiation, such as

bananas, kitty litter, and medical equipment. This often leads to false alarms, which can end up

being costly to the system, as well as time-consuming if further screening, such as physical inspec-

tion is required (Huizenga 2005, The Royal Society 2008). X-Ray imaging leads to pictures of

the contents of the container, without having to open the container. However, similar to drugs and

conventional weapon trafficking, a nuclear weapon may be hidden among normal items, and since

an X-Ray is subject to human interpretation, therefore it may not detect a nuclear weapon. In the

aviation industry, currently X-Rays, Explosives Detection Systems (EDSs) and Explosives Trace

Detection (ETDs) are employed to detect threats, only pertaining to conventional weapons. There

are current aviation test markets employing nuclear material detection devices, such as RIIDs for

checked-in baggage within the United States, however this appears to be very costly and therefore

it will be a matter of time before these procedures and devices are installed at all airports (Sammon

2009). Furthermore, screening of containers and baggage within maritime and aviation industries

is a critical component in the ability of interdicting a nuclear weapon.

Within the maritime industry, the prescreening classification of the containers appear to ad-

vantageous to the system, if the classification is accurate. The types and detection capabilities

of the different technologies also benefit the system if used properly. Multi-layered and bi-level

screening also improve the probability of interdicting a nuclear weapon. The contingency plan of

detecting a nuclear weapon before an attack occurs is very possible, as long as procedures continue

to be followed and improved. The commercial aviation industry, slightly behind in the progress of

detecting nuclear weapons, has to ability to be strengthened to the level of maritime security, and

can therefore play an equal role in securing the safety of the nation.

The chapters are organized as follows. Chapter 2 discusses risk-based policies for screen-
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ing procedures given two prescreening classifications of cargo containers in a maritime security

screening system. A computational example is analyzed and primary screening alarms are defined.

Results illustrate the tradeoffs between the prescreening classification accuracy and the efficacy

of the radiation detectors. Chapter 3 extends Chapter 2 by limiting the prescreening classification

to one level, while including a second layer of screening. Primary and secondary screening de-

cisions are given for a computational example given particular nuclear screening technology, as

well as includes sensitivity analysis for next-generation technology and changes in the secondary

screening costs. Results also conclude that prescreening intelligence is critical in finding a nuclear

threat within the system. Chapter 4 explores checked-in baggage screening decisions within avia-

tion security by using performance measures to quantify the effectiveness of the screening system.

Screening resources are allocated in order to optimize specific performance measures. Tradeoffs

between the performance measures are analyzed and reveal that targets and flights can be covered

at minimal expense. Also, greedy heuristics are applied to a computational example in order to

improve processing time and find near-optimal solutions. Some of the greedy heuristic result in

optimal solutions, while the others do not fall far from being optimal solutions. Chapter 5 includes

conclusions and future work ideas for making screening decisions for Homeland Security.

4



Chapter 2

Maritime Security and Multi-layered

Prescreening Classifications

2.1 Introduction
There are many challenges associated with screening cargo containers. One challenge is that RPMs

set off a large number of alarms. However, the vast majority of these alarms are due to naturally

occurring radioactive material (NORM) alarms, not nuclear material (Huizenga 2005, The Royal

Society 2008). Many experts have identified that port security operations largely depend on the

characteristics of the cargo contents (such as NORM alarms), yet no systematic, prescriptive guide-

lines exist for handling NORM alarms from a security point of view (Rooney 2005, Lava 2008).

As a result, a small proportion of cargo containers entering United States ports are inspected for

nuclear and radiological material using highly effective techniques and technologies, since it is

expensive to inspect cargo by physically unpacking the containers or to use non-intrusive inspec-

tion technologies. This paper provides a prescriptive framework for investigating security system

design given the influence of NORM alarms and classification errors associated with identifying

NORM and threat containers.

The Automated Targeting System (ATS) is used to prescreen each cargo container and classify

it as high-risk or low-risk (Strohm 2006). Prescreening can also be used to identify which con-

tainers have high levels of naturally occurring radiation, resulting in a prescreening paradigm in

which each cargo container can be classified according to its likelihood of containing NORM as
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classified according to its level of risk. These two levels of classification could be used to create

a risk-based screening framework that depends on prescreening intelligence and the physical con-

tents and characteristics of the containers. Although a risk-based approach to cargo screening is

part of the U.S. Customs and Border Patrol (CBP) plan for security, few guidelines are given to

implement and assess such a strategy.

Note that a prescreening system, such as ATS, could also be used to identify or verify the

contents of cargo containers by examining shipping manifests. This is useful, since their physi-

cal contents often influence the alarm probabilities for several security devices (e.g. radiography

that utilizes X-Rays depends on z-values). In this paper, screening refers to the entire inspection

process in a layered port security system, which may involve scanning with a RPM, non-intrusive

inspection using imaging technologies, document checking, and physically unpacking containers.

Screening may take place at several locations, such as foreign ports, U.S. seaports, land border

crossings, as well as other locations. Note that more advanced and expensive screening proce-

dures, such as non-intrusive inspection and unpacking containers, are used more sparingly and are

targeted at high-risk containers (US CBP 2007). Such inspections are assumed to be performed at

a predetermined security station. Identifying optimal ways to use these limited screening resources

is an important part of the homeland security system.

This chapter introduces a linear programming model for using existing screening technolo-

gies (e.g., RPMs) to screen cargo containers at a security station using knapsack problem models.

The approach determines how to define a primary screening alarm and hence, designs and ana-

lyzes security system architectures. Containers are sent to secondary screening (or cleared) at a

specific location (e.g., the exit lanes at a single port). Containers that yield a primary screening

alarm undergo secondary screening, where inspection methods are more effective for nuclear and

radiological material examinations. It is assumed that there is a budget that limits the number

of containers that can be sent to secondary screening. Note that this approach of exploring how

to define a primary screening alarm complements the approach of determining individual sensor

operating characteristics (by changing the threshold for defining a primary screening alarm based

on receiver-operating characteristic curves) while assuming that an escalating security policy is

in place. This latter approach is explored in several papers (e.g. Wein et al. 2007, Boros et al.

2009). Defining a primary screening alarm and defining individual sensor operating characteristics

6



are interrelated problems that should receive care when modeling. However, the objective of this

chapter focuses on the definition of a primary screening alarm to isolate the effect of this type of de-

cision and to highlight its importance in a risk-based security context given the presence of NORM

alarms, particularly since any layer in the security system could cumulatively use information from

previous security checks to more effectively detect nuclear material.

This chapter extends the analysis by McLay et al. (2010), who explore the relationships and

tradeoffs between prescreening intelligence, secondary screening costs, and the efficacy of radi-

ation detectors when there is a single layer of prescreening. This chapter expands this analy-

sis to consider two layers of prescreening to examine the impact of cargo content characteristics

(e.g.NORM) on system performance. In particular, each cargo container is classified in two ways:

(1) high-risk or low-risk to assess whether the container is a threat (2) high-background or low-

background to assess whether the container is a NORM container. The key contribution of this

analysis is that it provides a two-level, risk-based framework for determining how to define a

system alarm when screening cargo containers given limited secondary screening resources. It

illustrates that resources are fundamentally used differently when cargo container contents are part

of the decision context. Note that this approach can be trivially generalized to consider three or

more layers of prescreening, where the type of prescreening performed in each layer can be defined

arbitrarily. The analysis indicates that a threshold-based definition for the system alarm may not

be optimal under reasonable assumptions. An illustrative example suggests that the risk prescreen-

ing layer is an important factor for effective screening, particularly when sensors are not effective

at differentiating threat containers from containers with naturally occurring radioactive material.

It also suggests that the NORM prescreening layer is not important for effectively using scarce

screening resources.

This chapter is organized as follows. Section 2.2 provides a literature review for security

screening problems and research models for detecting nuclear material. Section 2.3 introduces

parameters and notation used in the models, and then it introduces the proposed model. Its struc-

tural properties are analyzed in Section 2.4. A computational example is analyzed in Section 2.5.

Concluding remarks and directions for future research are given in Section 2.6.
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2.2 Literature Review
There are few papers that address the detection of nuclear material using operations research

methodologies, particularly when considering the effect of screening and NORM alarms. Wein

et al. (2006) analyze an 11-layer screening system for containers entering the United States by

considering a fixed budget and port congestion. They consider the effects of prescreening from

ATS and whether a terrorist enrolls in the Customs-Trade Partnership Against Terrorism (C-TPAT)

program.

Bakir (2008) presents a decision tree model to analyze the screening of cargo containers at com-

mercial truck crossings on the United States border with Mexico. They do not recommend routine

screening with next-generation technologies at such commercial truck crossings. Bakir’s results

largely depend on the probability of an attack, and the analysis motivates the need for improved

next-generation RPMs. Merrick and McLay (2009) extend Bakir’s model to include the effect of

NORM alarms, deterrence, and performance measures other than cost. They draw different conclu-

sions than Bakir (2008), namely, that each container should receive at least some minimum level of

screening under reasonable assumptions. This suggests that taking NORM alarms into account is

important for port security models. Gaukler et al. (2009) also considers the impact of prescreening

and cargo contents on cargo containers screening systems. Their analysis suggest that taking cargo

container contents into account can be used to effectively augment prescreening.

Several research papers examine inspection strategies for cargo containers that use several

types of screening tests. Wein et al. (2007) apply queuing theory and optimization to analyze

cargo containers on truck trailers passing by a series of RPMs. They determine the optimal spa-

tial positioning and scanning time for RPMs such that a desired detection probability is achieved.

Ramirez-Marquez (2008) use decision trees to find cargo container inspection strategies that min-

imize inspection costs. Each strategy selects sensors that have varying reliability and costs. The

strategy presented maintains a required detection rate in which follows a minimum cost, order-

dependent inspection. Boros et al. (2009) determine how to optimally inspect cargo containers

by using a large scale linear programming model. Goldberg et al. (2008) extend this approach

using decision trees and knapsack problem models by using dynamic programming to identify

optimal inspection policies. Kantor and Boros (2010) use principles of game theory to determine
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when to unpack and inspect cargo containers when considering mixed inspection strategies. Bakir

(2010) uses game theory to explore the strategies of resource allocation within port security. This

defender-attacker-defender model incorporates the idea of an adaptive adversary. Note that none of

these efforts explicitly consider the effects of prescreening to identify high-risk cargo containers.

Morton et al. (2007) propose two different stochastic network interdiction models to minimize the

success of a potential terrorist. The first model is deterministic, which assumes that the path and

location of the radiation detectors are known by all. In the second model, only a subset of radiation

detectors is known by the adversary and the views of the interceptor and smuggler differ. These

models help to select sensor locations to minimize a terrorist’s probability of being successful at

smuggling nuclear material across the borders.

In contrast to previous work in this area that seeks to determine sensor operating characteristics

while assuming that an escalating primary security alarm is in place (i.e, at least one alarm yields

a primary screening alarm), this chapter explores the complementary issue of how to define a

primary screening alarm in a risk-based security system while assuming that the sensor operating

characteristics remain constant to shed light on optimal, risk-based security system design and

operation. While examining the multi-layered port security system, it is clear that the impact of

the cargo containers contents could be very important in the development and design of next-

generation port security systems.

2.3 Screening Framework and Model
In this section, terminology and parameters are introduced for the proposed model, and the model

is formally stated. The model examines the particular case when containers receive two layers of

prescreening, based on ATS and other forms of prescreening, and it investigates how to define a

primary screening alarm given these prescreening classifications and the number of sensor alarms.

First, a prescreening system is used to classify each container as (1) high-risk or low risk based on

whether the container is perceived as a threat and (2) high-background or low-background based

on whether the container has high levels of background radiation due to NORM. This results in

four prescreening classifications based on combinations of these two prescreening layers.

Cargo containers enter a security station (e.g., exit lanes at a port) to undergo primary screen-

ing, where n sensors screen each container. These sensors could be radiation detectors such as

9



RPMs, which screen each cargo container for radiation that is emitted by nuclear material such

as plutonium and highly enriched uranium (HEU). Each sensor yields an alarm or clear response,

based on how the sensor operates and the characteristics of the cargo container, and hence, the total

number of sensor alarms is between zero and n. The sensor alarms depend on the true underlying

container contents (whether a threat or NORM is in the container). NORM containers that signal

alarms often result in false positives Reducing these alarms is critical, since it takes resources to

ensure that a threat is not present. Ideally, the system yields a clear response for all of the non-

threat containers irrespective of whether NORM is present and yields an alarm response for all of

the threat containers.

Based on the total number of sensor alarms, a primary screening system response is given. This

allows the system response (either alarm or clear) to be defined in one of several ways (Kobza and

Jacobson 1996, 1997). The primary screening system response has one of two outcomes, either

an alarm is given or the container is cleared. If the cargo container is cleared, it exits the security

station and continues along its path to its destination. The cargo containers that yield a primary

screening alarm undergo secondary screening. The objective is to determine which containers yield

a primary screening alarm in order to maximize the expected number of threat containers that are

selected for secondary screening. Note that this framework is defined generally for any type of

radiological and nuclear sensor, and it makes no assumptions about how the sensors work together.

Moreover, prescreening classifies containers as either high-risk/low-risk and high background/low

background resulting in four classes of containers. However, this approach can be used for any

type of prescreening that classifies containers into one of a set of possible risk classes. Therefore,

this framework captures a broad range of security screening operations.

The parameters are:

• N = number of cargo containers screened at the security station,

• B = total secondary screening budget (in terms of the total number of the N containers that
can be selected for secondary screening)

• PHR = the probability that a cargo container is classified as high-risk,

• PLR = 1− PHR = the probability that a cargo container is classified as low-risk,

• PT (PNT ) = the probability a cargo container is a threat and contains nuclear material (not a
threat),
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• PHB = the probability that a cargo container is classified as high-background,

• PLB = 1− PHB = the probability that a cargo container is classified as low-background,

• PM (PNM ) = the probability that a cargo container contains (does not contain) NORM,

• PM |T = the probability that a container contains NORM given that it is a threat,

• PkA = the probability that a cargo container yields k alarms (of the n sensors), k = 0, 1, ..., n,

• P i
A|T∩M = the probability that a threat and NORM container yields a true alarm (false clear)

at sensor i, i = 1, 2, ..., n,

• P i
A|T∩NM = the probability that a threat and non-NORM container yields a true alarm (false

clear) at sensor i, i = 1, 2, ..., n,

• P i
A|NT∩M = the probability that a non-threat and NORM container yields a false alarm (true

clear) at sensor i, i = 1, 2, ..., n,

• P i
A|NT∩NM = the probability that a non-threat and non-NORM container yields a false alarm

(true clear) at sensor i, i = 1, 2, ..., n,

• β = PT |HR/PT |LR = ratio of high-risk containers that are threats to low-risk containers that
are threats,

• γ = PM |HB/PM |LB = ratio of high-background containers that are NORMS to low-background
containers that are NORMS.

The total number of containers N is a deterministic value that represents the number of cargo

containers that pass through a given station in a year, or another period of time. The budget

for secondary screening B is a deterministic value based on available resources, and the cost to

perform secondary screening is a deterministic value based on information collected and analyzed

by the Department of Homeland Security (DHS) and CBP. It is in part based on salaries paid to

the employees hired to perform secondary screening. Note that the budget can be selected to take

delay costs into account, and hence delays are implicitly handled by this model, which assumes

that the cost to resolve an alarm with secondary screening is the same for all types of containers.

The probability that a cargo container is a threat PT is a deterministic value that is assessed

by personnel within DHS based on the perceived threat level. This value is considered highly

sensitive and may change based on changes in national or international situations, intelligence

information, or the risk level of the Homeland Security Advisory System. The probability that a

cargo container is a NORM container PM is a deterministic value that represents the proportion of

NORM containers. The conditional probability that a threat container is a NORM container PM |T
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is assumed to be a deterministic parameter based on intelligence. Note that this value reflects the

decision of an intelligent adversary, which is not likely to be random.

The values of β and γ are deterministic values that quantify the quality of prescreening provided

by ATS. The probability that a container is classified as high-risk PHR (or high-background PHB)

is based on the proportion of containers passing through a security station that are classified as

high-risk (or high-background), once a large number of cargo containers has been evaluated. The

probability that a cargo container yields k (of n) alarms depends on how the sensors operate, and

it is assumed to only depend on whether a container is a threat and whether NORM is present.

The proposed model determines which containers yield a primary screening alarm and undergo

secondary screening. Although PM |T is deterministic from the point of view of terrorists, it is

treated as a probability to reflect uncertainty from the point of view of the defender. It is assumed

that each container is screened independently of the other containers. After each container is

screened by the sensors, the number of alarms is known, and the decision is made about whether

to inspect the container using secondary screening.

The variables implicitly assume that a container is selected for secondary screening (SS) based

on the number of primary screening alarms and its classification (LR/HR and LB/HB) rather than

its true state (T/NT and M/NM).

• xk
HR∩HB = PSS|kA∩HB∩HR = proportion of high-risk, high-background containers with k-

of-n alarms that yield a primary screening alarm.

Note that xk
HR∩LB, xk

LR∩HB, and xk
LR∩LB are defined analogously.

First, the proposed model is stated as an linear programming model in terms of the number of

sensors n. Then, its objective function and constraint coefficients are derived using the parameters

introduced earlier in this section.

Zn = max N
n∑

k=0

(
PkA∩HB∩HR∩T xk

HR∩HB + PkA∩LB∩HR∩T xk
HR∩LB

+PkA∩HB∩LR∩T xk
LR∩HB + PkA∩LB∩LR∩T xk

LR∩LB

)
(2.1)

s.t. N
n∑

k=0

(
(PkA∩HB∩HR∩T + PkA∩HB∩HR∩NT )x

k
HR∩HB + (PkA∩LB∩HR∩T+

PkA∩LB∩HR∩NT )x
k
HR∩LB + (PkA∩HB∩LR∩T + PkA∩HB∩LR∩NT )x

k
LR∩HB +
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(PkA∩LB∩LR∩T + PkA∩LB∩LR∩NT )x
k
LR∩LB

)
≤ B (2.2)

0 ≤ xk
HR∩HB ≤ 1, k = 0, 1, ..., n (2.3)

0 ≤ xk
HR∩LB ≤ 1, k = 0, 1, ..., n (2.4)

0 ≤ xk
LR∩HB ≤ 1, k = 0, 1, ..., n (2.5)

0 ≤ xk
LR∩LB ≤ 1, k = 0, 1, ..., n (2.6)

The objective function value (2.1) captures the the expected number of threats that yield a pri-

mary screening alarm. It can be computed by conditioning on whether the container is a NORM

container, for example,

PkA∩HB∩HR∩T = PkA|HB∩M∩HR∩TPHB|M∩HR∩TPM |HR∩TPHR|TPT (2.7)

+PkA|HB∩NM∩HR∩TPHB|NM∩HR∩TPNM |HR∩TPHR|TPT .

There is a single knapsack (i.e., budget) constraint (2.2) that ensures that the expected number

of containers that undergo secondary screening is less than B. This constraint can be computed by

conditioning on the two prescreening in an anologous way as in (2.7). Constraints (2.3) – (2.6) set

the variable lower and upper bounds.

In order to obtain insight into screening operations, consider two simplifying assumptions.

ASSUMPTION 1: The event that a container is a NORM container is independent of whether it is

classified as high-risk or low-risk. (i.e., PM |T = PM |HR∩T = PM |LR∩T and PM |NT = PM |HR∩NT =

PM |LR∩NT ).

ASSUMPTION 2: The event that a container is classified as high-background or low-background is

independent of whether the container is a threat and of whether the container is classified as high-

risk or low-risk. (i.e., PHB|M = PHB|M∩HR∩T = PHB|M∩HR∩NT = PHB|M∩LR∩T = PHB|M∩LR∩NT

and PHB|NM = PHB|NM∩HR∩T = PHB|NM∩HR∩NT = PHB|NM∩LR∩T = PHB|NM∩LR∩NT ).

Given these two assumptions, then the objective function and budget constraint coefficients in

(2.1) and (2.2) can be obtained as follows. First, consider the objective function coefficients for

high-risk, high-background containers, which simplifies (2.7).

PkA∩HB∩HR∩T = PkA|M∩TPHB|MPM |TPHR|TPT (2.8)

+PkA|NM∩TPHB|NMPNM |TPHR|TPT , k = 0, 1, ..., n.

13



Ideally, all threat containers are classified as high-risk. The probability that a threat container is

classified as high-risk is given by PHR|T . Given that β = PT |HR/PT |LR and PHR|T + PLR|T = 1

and using Bayes Rule,

PHR|T =
βPHR

1− PHR + βPHR

, (2.9)

and

PHR|NT =
PHR − PHR|TPT

1− PT

. (2.10)

Likewise,

PHB|M =
βPHB

1− PHB + βPHB

, (2.11)

and

PHB|NM =
PHB − PHB|MPM

1− PM

. (2.12)

The method used by McLay et al. (2010) can be used to compute the conditional probabilities

that k-of-n alarms are signaled given that a container is a threat/non-threat and whether it is a

NORM/non-NORM container. These k-of-n alarm probabilities (PkA|M∩T , PkA|NM∩T , PkA|M∩NT ,

and PkA|NM∩NT ) can be computed using a reliability model (Koucky 2003). In the case when each

sensor operates independently and identically with the probability of a single sensor alarm PA,

then the number of alarms can be modeled as Binomial random variables with parameters n and

PA.

2.4 Structural Properties
This section summarizes the structural properties of the proposed model. The proposed model is

a particular case of the linear programming relaxation to the 0-1 Knapsack Problem (KP). In KP,

there are rewards ri and weights wi, i = 1, 2, ..,m, for the m items with a knapsack capacity c. The

linear programming relaxation to KP can be solved in O(m) time. To find the optimal solution, the

items are sorted in non-increasing order of the ratio of the item reward to weight (i.e., r1/w1 ≥

r2/w2 ≥ ... ≥ rm/wm). This is defined as the optimal knapsack sequence. The knapsack is

greedily packed in order, starting with item 1, until the knapsack’s capacity is filled. The variables

are one or zero for all items except the critical item s (where s = argminj{
∑j

i=1 wi > c}). The

equivalent model in terms of the KP has m = (n + 1) items and capacity c = B. The rewards
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are equal to the expected number of threats (for a particular classification) that yield k alarms,

whereas the weights are equal to the expected number of containers (for a particular classification)

that yield k alarms, k = 0, 1, ..., n.

Define the reward for high-risk and high-background containers as

rkHR,HB = NPkA∩HB∩HR∩T , k = 0, 1, ..., n.

Likewise, define the weight for high-risk, high-background containers as

wk
HR,HB = N(PkA∩HB∩HR∩T + PkA∩HB∩HR∩NT ), k = 0, 1, ..., n,

The remaining rewards and weights are defined analogously. Therefore, the proposed model((2.1)

– (2.6)) in can be rewritten as a knapsack problem:

Zn = max
n∑

k=0

(rkHR,HBx
k
HR,HB + rkHR,LBx

k
HR,LB + rkLR,HBx

k
LR,HB + rkLR,LBx

k
LR,LB)

subject to
n∑

k=0

(wk
HR,HBx

k
HR,HB + wk

HR,LBx
k
HR,LB + wk

LR,HBx
k
LR,HB + wk

LR,LBx
k
LR,LB) ≤ B

0 ≤ xk
HR,HB ≤ 1, k = 0, 1, ..., n

0 ≤ xk
HR,LB ≤ 1, k = 0, 1, ..., n

0 ≤ xk
LR,HB ≤ 1, k = 0, 1, ..., n

0 ≤ xk
LR,LB ≤ 1, k = 0, 1, ..., n

where Zn above is equivalent to Zn in (2.1).

This screening scenario uses a probability model based on Bayes Rule, where the two pre-

screening layers defining the prior probabilities and the likelihood of number of alarms define the

posterior probabilities. The prior probabilities that a high-risk, high-background cargo container is

a threat is

PT |HR∩HB =
PHB∩HR∩T

PHB∩HR

=

∑n
k=0 PkA∩HB∩HR∩T∑n

k=0(PkA∩HB∩HR∩T + PkA∩HB∩HR∩NT )

=

∑n
k=0 r

k
HR,HB∑n

k=0 w
k
HR,HB

.

The posterior probabilities are the conditional probabilities that a cargo container is a threat

given that it yields k alarms and is classified as high-risk, high-background PT |kA∩HB∩HR (or
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high-risk, low-background PT |kA∩LB∩HR, low-risk, high-background PT |kA∩HB∩LR, low-risk, low-

background PT |kA∩LB∩LR). Theorem 1 defines the posterior probabilities. Note that Theorem 1

does not rely on Assumptions 1 and 2.

Theorem 1 The posterior probabilities PT |kA∩HB∩HR, PT |kA∩LB∩HR, PT |kA∩HB∩LR, PT |kA∩LB∩LR

are defined as the ratio of the reward to the weight, rkHR,HB/w
k
HR,HB , rkHR,LB/w

k
HR,LB , rkLR,HB/w

k
LR,HB ,

rkLR,LB/w
k
LR,LB, respectively, k = 0, 1, ..., n.

Proof. First consider high-risk, high-background cargo containers. The posterior probability that a

high-risk, high-background cargo container yielding k alarms is a threat is

PT |kA∩HB∩HR =
PkA∩HB∩HR∩T

PkA∩HB∩HR

=
PkA∩HB∩HR∩T

PkA∩HB∩HR∩T + PkA∩HB∩HR∩NT

=
rkHR,HB/N

wk
HR,HB/N

The posterior probabilities for high-risk, low-background; low-risk, high-background; and low-

risk, low-background cargo containers are computed in a similar manner. 2

It seems intuitive to select containers for secondary screening that yield more alarms rather

than fewer alarms. However, the proposed model does not enforce such a policy. Theorem 2

indicates the conditions under which a container with a given prescreening classification yielding

more alarms makes it more likely to be selected for secondary screening than a container with

the same prescreening classification yielding fewer alarms. For each prescreening classification,

the order that items are put into the knapsack (i.e., the order in which containers are selected for

secondary screening) depends only on how the sensors work together. It does not take into account

the prescreening, the underlying probability of a threat, or the proportion of containers classified

as high-risk. Also, note that Theorem 2 does not depend on Assumptions 1 and 2.

Theorem 2 High-risk, high-background containers that yield k alarms occur before high-risk,

high-background containers that yield k − 1 alarms in the optimal knapsack sequence,

rkHR,HB

wk
HR,HB

≥
rk−1
HR,HB

wk−1
HR,HB

only if
PkA∩HR∩HB|T

P(k−1)A∩HR∩HB|T
≥

PkA∩HR∩HB|NT

P(k−1)A∩HR∩HB|NT

.
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Moreover, high-risk, low-background; low-risk, high-background; and low-risk, low-background

containers that yield k alarms occur before containers that yield k − 1 alarms in the optimal

knapsack sequence, only if

PkA∩HR∩LB|T

P(k−1)A∩HR∩LB|T
≥

PkA∩HR∩LB|NT

P(k−1)A∩HR∩LB|NT

;
PkA∩LR∩HB|T

P(k−1)A∩LR∩HB|T
≥

PkA∩LR∩HB|NT

P(k−1)A∩LR∩HB|NT

;

PkA∩LR∩LB|T

P(k−1)A∩LR∩LB|T
≥

PkA∩LR∩LB|NT

P(k−1)A∩LR∩LB|NT

,

respectively.

Proof. First, consider the high-risk, high-background containers. By definition,

rkHR,HB

wk
HR,HB

=
N PkA∩HB∩HR∩T

(N PkA∩HB∩HR∩T +N PkA∩HB∩HR∩NT )
≥

N P(k−1)A∩HB∩HR∩T

(N P(k−1)A∩HB∩HR∩T +N P(k−1)A∩HB∩HR∩NT )
=

rk−1
HR,HB

wk−1
HR,HB

.

Rearranging yields the desired result. The same approach can be taken for high-risk, low-background;

low-risk, high-background; low-risk, low-background containers. 2

Corollary 1 illustrates when the conditions in Theorem 2 hold for the particular case when

each sensor operates independently and identically and when the background prescreening layer

is completely accurate (i.e., PHB|M = PLM |NM = 1). Although this assumption is optimistic, the

information provided by shipping manifests can be used to identify NORM containers with a high

degree of accuracy. It indicates that the single sensor true alarm probability must be higher than

the single sensor false alarm probability in order for a cargo container yielding k alarms to occur

earlier in the optimal knapsack sequence before a cargo container yielding k − 1 alarms, given the

prescreening classification k = 1, 2, ..., n.

Corollary 1 When PHB|M = PLM |NM = 1 and sensors alarms are independently and identically

distributed with alarm probabilities PA|T∩M and PA|NT∩M , respectively, then

rkHR,HB

wk
HR,HB

≥
rk−1
HR,HB

wk−1
HR,HB

only if PA|T∩M ≥ PA|NT∩M . This applies to high-risk, low-background; low-risk, high-background;

low-risk, low-background containers, given their associated alarm probabilities.
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Proof. First, consider the high-risk, high-background containers. Using Assumptions 1 and 2 and

the reasoning provided in (2.8), then PkA∩HR∩HB|T = PkA|M∩TPM |TPHR|T . Then the condition in

Theorem 2 simplifies to

PkA∩HR∩HB|T

P(k−1)A∩HR∩HB|T
=

PkA|M∩T

P(k−1)A|M∩T
=

Cn
kP

k
A|T∩M(1− PA|T∩M)n−k

Cn
k−1P

k−1
A|T∩M(1− PA|T∩M)n−k+1

≥

Cn
kP

k
A|NT∩M(1− PA|NT∩M)n−k

Cn
k−1P

k−1
A|NT∩M(1− PA|NT∩M)n−k+1

=
PkA|M∩NT

P(k−1)A|M∩NT

=
PkA∩HR∩HB|NT

P(k−1)A∩HR∩HB|NT

.

Rearranging yields
PA|T∩M

1− PA|T∩M
≥

PA|NT∩M

1− PA|NT∩M
,

and simplifying yields PA|T∩M ≥ PA|NT∩M . The same approach can be taken for high-risk and

low-background, low-risk and high-background, low-risk and low-background containers. 2

Note that several types of screening technologies (e.g., RPMs) may be more effective at iden-

tifying NORM containers than threat containers, and hence, the conditions in Corollary 1 may not

hold. Therefore, a threshold policy may not be optimal even under simplifying assumptions, which

sheds light on the challenges associated with port security system design. Section 6 illustrates this

issue for a computational example.

2.5 Computational Example and Results
This section reports results for a computational example to explore the tradeoffs between the two

layers of prescreening (i.e., β and γ), and the alarm rates associated with each sensor. The results

not only indicate the likelihood of detecting nuclear material, they also indicate how to define a

primary screening alarm, based on a container’s prescreening classification and how many sensors

yield an alarm. The analysis considers considers cargo containers screened by a series of n sensors

that are independent and operate identically. For example, the number of alarms for threat and

NORM containers are modeled as a Binomial random variable with parameters n and PA|T∩M .

Although this independence assumption is not realistic, it sheds light on how a primary screening

alarm can be defined in a multi-layered security system. McLay et al. (2010) illustrate that the

highly dependent devices can be modeled using a single screening device.

The proposed model is analyzed for a hypothetical single security station over a time horizon

of one year. Table 3.1 contains the base case input parameters, which remain constant unless
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otherwise specified. It is assumed that N = 1M containers enter the security station during the

time horizon. The probability that a container is a threat is PT=1/N , which is selected such that

one threat is expected to pass through the security station. In the analysis, the objective function

represents the expected number of threat containers that are selected for secondary screening (the

number of true alarms). The expected number of threats in the system is PTN = 1, and hence, 1.0

is an upper bound on the objective function value for the base case. Given that the probability of a

threat is 1/N , the objective function value captures the detection probability, i.e., the conditional

probability that a threat is selected for secondary screening.

The fraction of containers yielding a particular number of primary alarms that are randomly

selected for secondary screening defines the screening policy. For instance, x3
HR,LB = 0.70 is

interpreted to mean that a high-risk, low-background container yielding three alarms has a proba-

bility of 0.70 of being selected for secondary screening and a probability of 0.30 of being cleared.

The other variables are either zero or one, meaning no containers or all containers are selected for

secondary screening, respectively.

The prescreening multiplier β determines the likelihood that a container with a threat is classi-

fied as high-risk for a given proportion of all containers classified as high-risk PHR. McLay et al.

(2010) report that β = 10 is realistic and that β = 100 is an upper bound for an excellent prescreen-

ing system. Since β is a function of PHR, scenarios with a fixed value of PHR are compared across

different values of β. Of all containers, four-percent are assumed to be high-risk, which is consis-

tent with what port authorities have reported (Lava 2008). The values of the prescreening multiplier

considered are β = 1, 10, 100. When β = 1 the level of prescreening is random, which implies that

a random proportion of containers are classified as high-risk, resulting in PT |HR = PT |LR.

The value of the prescreening multiplier γ determines the probability that a NORM container

is classified as high-background for a given proportion of containers classified as high-background

PHB. Since γ depends on the container contents, which are readily available based on documen-

tation available to ATS, it is assumed that γ = 1000. Moreover, it is assumed that fixed values of

PHB = PM = 0.025 are considered based on publicly available data (Rooney 2005). The results

are insensitive to γ, so the results for other values of γ are not reported.

The conditional probability that a threat is placed in a NORM container PM |T captures the

likelihood that a threat would be hidden among NORM. Since there is considerable speculation
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Table 2.1: Base case parameter values
Parameter Value(s)

N 1,000,000
PT 1/N = 0.000001
PM 0.025
n 1,3,5

PHR 0.04
PHB 0.025
β 1, 10, 100
γ 1000

PA|T∩M 0.95
PA|NT∩M 0.95
PA|T∩NM 0.5
PA|NT∩NM 0.001

B 0.02N

regarding how terrorists would mask nuclear material, it is assumed that a threat is equally likely

to be put in a NORM container or a non-NORM container, and hence, PM |T = 0.5 in the base

case. This allows for the greatest risk and highest variance in terms of what the defender expects.

It is assumed that two-percent of containers can be selected for secondary screening (B = 0.02N ).

The single sensor alarm probabilities for NORM containers (both threat and non-threat) are set

to PA|T∩M = PA|NT∩M = 0.95, which are consistent with the publicly reported estimates that

NORM containers consistently result in RPM alarms (Rooney 2005). Likewise, the single sensor

alarm probability for non-threat, non-NORM containers is set to PA|NT∩NM = 0.001, since there

is no source of radiation in these containers. The single sensor alarm probability for threat, non-

NORM containers depends on the source, the size of the source, and the amount of shielding.

Publicly reported estimates for this alarm probability have widely varied, and hence, it is set to

PA|T∩NM = 0.5 (Levi 2007, Cochran and McKinzie 2008). Note that Theorem 2 provides the

conditions to guarantee a threshold policy for all prescreening classifications. However, none of

the base case scenarios with n > 1 and β = 10, 100 guarantee a threshold policy for any of the

four prescreening classifications when applying Theorem 2, although they may result in a threshold

policy for the value of B selected. This illustrates the challenges associated with NORM alarms

from an operational point of view.

Each cargo container is assumed to be scanned by a series of n = 1, 2, 3, 4, 5 sensors. Each

sensor operates independently and identically. Figure 2.1 shows the objective function value Zn
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(i.e., the detection probability) as β varies from 1 to 100. It illustrates the importance of having

many sensors. For example, when n = 1 and β = 1, the detection probability is 0.6304, and it

increases to 0.7441 when β = 100. When n = 5 and β = 1, the detection probability is 0.8060

and it increases to 0.9480 when β = 100.

To consider the marginal improvement in the detection probability when adding one additional

sensor, let ∆Zn = Zn − Zn−1, the change in the detection probability when one additional sensor

is added to a system with n − 1 sensors (resulting in n sensors). Figure 2.2 illustrates ∆Zn,

n = 2, 3, 4, 5, as a function of β. The range of values for the marginal increase in the detection

probability from one to two sensors (∆Z2) is narrow, ranging from 0.1050 to 0.1208. This indicates

that adding a second sensor results in a relative constant improvement in the detection probability,

regardless of prescreening intelligence. Note that this range is not as narrow for other values of

PA|NM∩T compared to the base case of PA|NM∩T = 0.50 (illustrated in Figure 2.2). Note that ∆Z2

achieves its largest value of 0.1208 when β = 77, which suggests that adding a second sensor

is relatively less beneficial when prescreening risk intelligence is extremely low (near β = 1) or

extremely high (near β = 100) as compared to β = 77. This indicates that additional screening

technologies are most beneficial when prescreening provides some guidance as to how they can

best be used. In a similar fashion, the ranges of values for ∆Z3, ∆Z4, ∆Z5 are also very narrow.

Note that ∆Z3 and ∆Z4 increase with β. This suggests that adding a third or fourth sensor is

most beneficial for systems with excellent prescreening risk intelligence. However, ∆Z5 decreases

with β. When β ≤ 5.2, ∆Z4 ≤ ∆Z5, which indicates that for low levels of prescreening risk

intelligence, adding a fifth sensor is more beneficial than adding a fourth sensor. This surprising

result suggests that many sensors can be used to mitigate the uncertainties that accompany low

prescreening risk intelligence. This is examined in greater detail in Figure 2.3.

Figure 2.3 illustrates ∆Zn, as a function of n, for β = 1, 10, 100 with n ranging from two to

ten sensors. When n > 5, β = 1 results in the greatest marginal improvement in the detection

probability as compared to β = 10, 100. For β = 100, ∆Zn monotonically decreases with n.

Note that ∆Zn is not monotonically decreasing with n for β = 1 or β = 10, which indicates that

adding a sixth sensor results in a greater marginal improvement in the detection probability than the

fourth or fifth sensor. This highlights the benefits of a layered screening system, particularly when

prescreening risk intelligence is low. All levels of β result in nearly identical values for ∆Z5,with
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a marginal improvement in the detection probability of 0.015. However, this occurs only during

the base case scenario of PA|NM∩T = 0.50.

To better understand the impacts of screening and costs, sensitivity analysis was performed

for PA|NM∩T , since this is the most uncertain sensor operation characteristic. Figure 4 shows

the detection probability as a function of the probability of a single sensor true alarm for NORM

containers. Figure 2.4(a) illustrates the case with n = 1, Figure 2.4(b) illustrates the case with

n = 3, and Figure 2.4(c) illustrates the case with n = 5. For n = 1, the detection probability

increases linearly with the same slope for PA|NM∩T ≥ 0.50 and for the β = 1, 10, 100 scenarios.

For n = 3, Figure 4 shows that the improvement in the detection probability from β = 1 to

β = 10 is less than from β = 10 to β = 100. This suggests that efforts made to moderately improve

prescreening intelligence over random may have a small improvement in security, whereas efforts

to moderately improve good prescreening intelligence may have larger improvements in security.

This large improvement in security when β increases from 10 to 100 is largely due to redefining

the primary screening alarm, which illustrates the importance of how a primary screening alarm

is defined. In Figure 2.4(a), the base case detection probability (PA|NM∩T = 0.50)for β = 100

is 0.7016 which is nearly identical to the PA|NM∩T = 1.0 and β = 1 scenario (with a detection

probability of 0.7048). This suggests that excellent risk prescreening intelligence can in essence

mitigate the risk associated with imperfect screening technologies. When n = 3, the β = 100

and PA|NM∩T = 0.10 scenario has a detection probability of 0.65, which is almost identical to the

detection probability for the β = 1 and PA|NM∩T = 0.50 scenario. When n = 5 and PA|NM∩T =

0.50, both the β = 1 and β = 10 scenarios have higher detection probabilities as compared to the

PA|NM∩T = 0.10 and β = 100 scenario, which suggests that the many sensors may mitigate the

risks associated with low prescreening intelligence.

The optimal screening policies for screening cargo containers is not a threshold policy in all

cases. Recall that the results of Theorem 2 (that guarantees a threshold policy) does not apply

to any of the four prescreening classifications for the base case. However, a threshold policy

may be observed for a given level of the budget. The values of β, γ, PHR, and PM result in

PHR∩HB = 0.001, PHR∩LB = 0.024, PLR∩HM = 0.039, and PLR∩LM = 0.936. Figures 5 and

6 show the optimal screening policies as a function of PA|T∩NM for each of the four risk clas-

sifications for the n = 5 scenarios for β = 10 and β = 100, respectively. In these figures,
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an ‘X’ indicates that containers yielding exactly k alarms are selected for secondary screening,

k = 0, 1, ..., n (i.e. if its associated variable is greater than zero). Note that Figure 2.5(a) indi-

cates that all high-risk, high-background containers yielding at least one alarm are selected for

secondary screening when PA|T∩NM ≤ 0.48. Containers yielding two or more alarms are selected

for secondary screening when PA|T∩NM > 0.48. Similar screening patterns exist for high-risk,

low-background and low-risk, low-background containers. Figure 2.5(c) indicates that the optimal

way to define a primary screening alarm is not a threshold policy for low-risk, high-background

cargo containers for PA|T∩NM ≤ 0.82, where containers yielding two, three or four alarms are

selected for secondary screening, but containers yielding zero, one, or five alarms are not selected

for secondary screening.

Next, consider the β = 100 scenarios in Figure 6. Figure 2.6(a) indicates that all high-risk,

high-background containers are selected for secondary screening when PA|T∩NM ≤ 0.18, which

indicates that primary screening is essentially not necessary for these containers. Figure 2.6(c)

shows a similar non-threshold policy to that illustrated in Figure 2.5(c). However, these figures

differ in that no low-risk, high-background containers are selected for secondary screening when

PA|NM∩T ≤ 0.18 when β = 100. This is because improving prescreening risk intelligence com-

bined with low screening technology accuracy limits containers from being selected to secondary

screening. An additional non-threshold policy occurs for low-risk, low-background containers in

Figure 2.5(d) when PA|NM∩T ≤ 0.16 for four alarms, and PA|NM∩T ≤ 0.18 for five alarms.

2.6 Conclusions
This chapter introduces a linear programming model for screening cargo containers for nuclear

material at security stations throughout the United States using knapsack problem, reliability, and

Bayesian probability models. The analysis provides a risk-based framework for determining how

to define a primary screening alarm when screening cargo containers given limited screening re-

sources. This highlights the operational challenges associated with designing effective security

systems, given the presence of NORM alarms and motivates the need for additional analysis.

Analysis of this proposed model indicates that the optimal policy is not a threshold policy

under reasonable assumptions. A computational example suggests that accurate risk prescreening

intelligence is one of the most important factors for effective screening, particularly when sensors
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Figure 2.1: Detection probability Zn as a function of β

are not effective at identifying non-NORM threats, which is the case with highly enriched uranium.

Next-generation technology with high true alarm rates can mitigate some of the risk associated with

low prescreening intelligence. It also suggests that a multiple layered prescreening system is most

beneficial when β is low.

The proposed model investigates the issue of how to define a primary screening alarm given

a set of screening devices, rather than depend on prespecified notions of how a primary screening

alarm should be defined. The proposed model can be used as a general framework to determine

how to design next-generation security screening system as well as define a primary screening

alarm for any type of problem that relies on a series of screening devices or methods, risk assess-

ments, and a limited secondary screening budget. It builds upon the approach taken by McLay et

al. (2010) to investigate how to manage threats when sensor alarms depend on the cargo container

contents.

There are several possible extensions. One extension is to consider this proposed model as

one component in a larger access security system, with dependencies between the components. A
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second extension to this proposed model is to consider the impact of enforcing threshold policies.

A third extension is to explore the impact of a portfolio of threats as well as complementary tech-

nologies to detect such threats (that detect alpha, beta, and gamma particles). Work is in progress

to address these extensions.
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Figure 2.4: Detection probability as a function of PA|NM∩T for n = 1, 3, 5
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Figure 2.5: System alarm as a function of PA|NM∩T for β=10 and n = 5
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Chapter 3

Maritime Security and Bi-Level Screening

Procedures

3.1 Introduction
The United States’ ports consist of a multi-layer security screening system. Before containers de-

parts from a foreign port, the Automated Targeting System (ATS) is used to prescreen and classify

the risk level associated with the individual container, whether high- or low-risk (Strohm 2006).

When a container arrives at a port, it goes through the primary screening procedures. Port security

screening devices for nuclear or radioactive material are often radioactive isotope identification de-

vices (RIIDs), radiation portal monitors (RPMs), and X-Ray imaging devices (McNicholas 2008).

The first two devices focus on radiation emissions given off by radioactive and nuclear material.

X-Ray devices can detect nuclear material that may be hidden within other contents of the con-

tainer by imaging the inner contents of the containers. Primary screening can consist of any device

or devices, and is the first of potential many layers of screening. A container either yields an alarm,

saying a potential threat exists within, or the container will not yield an alarm, and may continue

on its departure route. If the container yields a primary screening alarm, typically it is then sent to

secondary screening. The devices are the same for secondary screening, yet they may have better

detection capabilities if certain detection thresholds of the device are decreased. The outcome of

yielding a secondary screening alarm will dictate if further screening is required, which may con-

sist of physical inspection or K-9 units for the container. However, this tends to be not only time
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consuming but costly, since it is labor-intensive.

Since this paper focuses on interdicting smuggled nuclear materials or weapons through ports

security screening systems, it is important to note that multiple sources, including uranium or

plutonium, can be used to create a WMD. Each source provides their own ‘radiation signature’,

in which some of the current screening technologies are advantageous for detecting a smuggled

WMD. Either type of source would produce a massive amount of destruction and death. Therefore,

improving screening policies to detect, interdict or deter a terrorist group from a successful attack

from a WMD is critical.

There are many approaches to help identify and analyze proposed procedures of preventing a

nuclear attack from occurring. In this paper, primary and secondary screening procedures are an-

alyzed through the use of linear programming models and decision analysis in hopes of detecting

a nuclear threat. The linear programming model computes and analyzes primary and secondary

screening decisions given a budget and different prescreening risk classifications of the contain-

ers. The model proposed can be applied to other transportation sectors, such as land and air, since

the model is simplistic and arriving items, bags, or passengers follow a similar screening proce-

dure to find a threat. Conclusions reveal the need to have accurate prescreening classifications.

Sensitivity analysis is also performed for different costs associated with secondary screening and

compares current technology to next-generation technology (which hypothetically should not only

detect a threat, but be able to identify what it is) (GAO 2009). Results reveal as the secondary

screening costs increase, decisions made for primary and secondary screening are altered, and the

budget is allocated more towards the containers that are deemed a higher risk (and more likely

to contain a threat). The next-generation technology analysis provides evidence that suggests the

next-generation technology is not cost-effective and may not improve detection capabilities making

it not worthwhile to employ.

McLay et al. (2010) provide a risk-based framework for incoming containers given a pre-

screening classification of either high- or low-risk. By using the framework, a system alarm is

defined for the limited resources available for different levels of screening intelligence. The anal-

ysis reveals that intelligent screening is a necessity for effective screening. Chapter 2 extends

McLay et al. (2010) by including a second prescreening classification of the container, high- or

low-background. This classification takes into account the potential amount of naturally occurring
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radioactive material (NORM) within a container. Since radiation of NORMs can often lead to false

alarms, this classification adds a complexity to screening.

This chapter carefully analyzes primary and secondary screening decisions given prescreen-

ing by using a linear programming model. The scenarios explored include different sources used

for nuclear weapons, hiding options, such as masking and/or shielding, multiple targets and inter-

diction probabilities. One strength of the model is the flexibility it offers as it is adaptability to

other sectors of transportation. The model is easily updateable and provides a more concise pro-

cedure for screening. Also, sensitivity analysis provides more realistic outcomes, with respect to

secondary screening costs and comparison of current technology and next-generation technology.

This chapter is organized as follows. Section 3.2 proposes a linear programming model that

determines the primary and secondary screening decisions given a prescreening classification and

budget. Section 3.3 states the structural framework for the model as a special case of the multiple

choice knapsack problem. In Section 3.4, a computational example is provided along with results

and sensitivity analysis. Section 3.5 provides conclusions, recommendations and future research.

3.2 NSP Model
In this section, terminology and parameters are introduced for the Nuclear Screening Problem

(NSP), the proposed model, and the model is formally stated. NSP determines how to optimally

screen items (e.g., cargo containers) at a single security station.

It is assumed that each item is classified into a risk group (due to prescreening), which deter-

mines its likelihood of containing a threat. The Automated Targeting System (ATS) is currently

used to prescreen all cargo containers that enter the United States, and result in classifying the

container into risk groups (Strohm 2006). All items undergo primary screening (determined by the

model), which yields one of a given set of outcomes (which generalizes a binary response of alarm

or clear). A subset of items is selected for secondary screening (inspection), subject to a screen-

ing budget. Thus, the model determines how to define primary and secondary screening alarms

based on a risk-based approach. It implicitly determines where to deploy and how to use screening

devices. The model is stated as an linear programming model.

The parameters for NSP are

• R = the set of risk groups, i ∈ R,
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• T = the set of threat scenarios (with a subset of T representing non-threat (NT ) scenarios),

• N = number of items (e.g., cargo containers, international aviation baggage, small vessels),

• J = the set of primary screening levels, each of which corresponds to a procedure for screen-
ing items using a set of screening devices, j ∈ J ,

• Oj = the set of outcomes associated with primary screening, level j, j ∈ J , corresponding
to the subset of primary screening devices that yield an alarm (based on j),

• aij = primary screening cost associated with risk group i and screening level j, i ∈ R, j ∈ J ,

• b = inspection cost (secondary screening cost),

• B = the total screening budget,

• pt = the probability of threat scenario t, with
∑

t∈T pt = 1 and Pt =
∑

t∈T\NT pt,

• pi|t = the conditional probability of risk group i given threat scenario t (resulting in pi prob-
ability that an item is classified in to risk group i after a large number of items have been
screened with

∑
i pi = 1),

• pk|i∩j∩t = the conditional probability of outcome k given risk group i, screening level j, and
threat scenario t, i ∈ R, j ∈ J , k ∈ Oj , t ∈ T ,

• pA|i∩j∩k∩t = the conditional probability of a secondary screening alarm given risk group i,
screening level j, outcome k, and threat scenario t, i ∈ R, j ∈ J , k ∈ Oj , t ∈ T

• PI|t = the conditional probability of interdiction I , given the threat scenario t, t ∈ T ,

• β = PT |HR/PT |LR = ratio of high-risk threats to low-risk threats.

The set of variables are:

• xij = proportion of containers with risk group i undergoing primary screening level j, i ∈ R,
j ∈ J , where 0 ≤ xij ≤ 1,

• yijk = proportion of containers with risk group i undergoing primary screening level j with
outcome k to be selected for secondary screening, i ∈ R, j ∈ J , k ∈ Oj , where 0 ≤ yijk ≤ 1.

The model is

max
∑
t∈T

1

pt
(
∑
i∈R

∑
j∈J

∑
k∈Oj

∑
t∈T\NT

(pA|i∩j∩k∩t)(pk|i∩j∩t)(pi|t)(pt)(1− PI|t)yijk

+
∑

t∈T\NT

PI|tPt) (3.1)

s.t.N
∑
i∈R

∑
j∈J

aij
∑

t∈T\NT

pi|tptxij +N
∑
i∈R

∑
j∈J

∑
k∈Oj

b(
∑

t∈T\NT

pk|i∩j∩tpi|tpt)yijk ≤ B,
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∑
j∈J

xij = 1, ∀i ∈ R,

yijk ≤ xij, ∀i ∈ R, j ∈ J, k ∈ Oj,

0 ≤ xij ≤ 1,∀i ∈ R, j ∈ J,

0 ≤ yijk ≤ 1, ∀i ∈ R, j ∈ J, k ∈ Oj,

The objective function of the model maximizes the interdiction probability. It takes into ac-

count the different threat scenarios, the probability of a primary screening alarm, and the level

of primary screening being used. The term
∑

t PI|tPt adds the exogenous interdiction probabil-

ity, which will be described thoroughly in Section 3.4. The first set of constraints ensures cost

of the primary and secondary screening decisions do not exceed the budget. The second set of

constraints ensure that xij is one for any risk group classification. This allows for all containers to

be accounted for. The last set of constraints ensures the proportion of containers sent to secondary

screening yijk cannot exceed the proportion of containers sent to primary screening xij . The last

two sets of constraints ensure that both xij and yijk are proportions, by making sure that they are

between zero and one.

Since ATS is used to prescreen containers that enter the U.S., R is used to classify the risk group

that is determined by ATS. The risk groups could consist of high- and low-risk classifications. The

threat scenarios T could be based on the nuclear material, and the masking and/or shielding of

the nuclear material. There is a subset of non-threats (NT), in which some containers could hold

naturally occurring radioactive material (NORMs). The number of items N represent the number

of containers that are screened at a specific port. This number can be changed based on what

port is being used. The primary screening levels are represented by j, which include the use of

different screening devices. Oj is the set of outcomes for j primary screening levels. For example,

a container passes through 2 RPMs for primary screening. The set of outcomes Oj could be no

device alarms, only the first device alarms, only the second device alarms, or both devices alarm,

or the alarms could be defined differently, such as a threshold policy. The primary screening cost

aij is based on the primary screening level that is used and the risk level of the container. The cost

of secondary screening b is a constant for all containers that go through secondary screening, since

the procedures for secondary screening are the same.

The utility of a successful attack ut is determined through multiobjective decision analysis as

a function related to the interdiction probability based on t, in which ut = 1 − PI|t. The total
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screening budget is given as B. The probability of an individual threat scenario pt. Pt, which is

different from pt, is defined as the sum of all threat scenarios including the NT threat scenarios.

3.3 Structural Framework
In this section, the nuclear screening model in Section 3.2 is reformulated as a particular case of the

linear Multiple Choice Knapsack Problem (MCKP). The comparison sheds light on the structure

to the optimal solution. First, we introduce the linear MCKP. It has m classes, and each class i is

associated with a set of items Ni, i = 1, 2, ...,m. Note that N1, N2, ..., Nm are mutually exclusive,

and hence, there are
∑m

i=1 |Ni| total items. Associated with each item is a reward rij and a weight

wij , i = 1, 2, ...,m, j ∈ Ni. The total knapsack capacity is c. The objective of MCKP is to select

one item in each class to add to the knapsack such that the total reward is maximized and the total

weight is capacity feasible. The linear MCKP is formulated as a linear program.

max
m∑
i=1

∑
j∈Ni

rijhij (3.2)

m∑
i=1

∑
j∈Ni

wijhij ≤ c (3.3)

∑
j∈Ni

hij = 1, i = 1, 2, ...,m (3.4)

0 ≤ hij ≤ 1, i = 1, 2, ...,m, j ∈ Ni (3.5)

NSP can be formulated as a particular case of the linear MCKP. To see this, the objective of

NSP seeks to identify a screening rule for each risk group, where a screening rule is defined by

selecting a primary screening level as well as its outcomes that would lead to secondary screening.

Therefore, the set of knapsack classes corresponds to the set of risk groups (i.e., m = |R|), and the

items in each class correspond to a screening level and a combination of its outcomes (therefore,

each j ∈ Ni corresponds to a primary screening level j′ ∈ J and a set of primary screening

outcomes oj′′ ∈ Oj′). Note that there are 2Oj′ subsets of primary screening outcomes for each

j′ ∈ J , resulting in |Ni| =
∑

j′∈J 2
|O′

j |, i = 1, 2, ...,m. It is assumed that Oj is bounded above

by a constant in order to lead to prevent the introduction of an exponential number of variables,

however we note this limitation. The knapsack capacity is b = B. The item rewards and weights

are

rij =
1

Pt

∑
k∈Oj′′

∑
t∈T\NT

(1− PI|t)pA|i∩j′∩k∩tpk|i∩j′∩tpi|tpt
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and

wij = N b
∑

k∈oj′′

∑
t∈T\NT

pA|i∩j′∩k∩tpk|i∩j′∩tpi|tpt,

respectively. Note that the reward rij captures the utility of selecting containers for secondary

screening based on their risk group i, primary screening level, and primary screening outcomes.

The reward implicitly captures the interdiction term in the nuclear screening since adding a con-

stant to the objective function value (the second term in the objective function in (3.1)) would not

change the solution. The weight wij captures the cost associated with screening containers with

risk group i with a given primary screening level and selecting a given subset of its outcomes for

secondary screening.

Note that the MCKP formulation of NSP combines the primary screening levels and the pri-

mary screening outcomes, which link the NSP variables xij to the corresponding variables yijk,

k ∈ Oj . Therefore, the resulting MCKP formulation implicitly assumes that xij = yijk when yijk

is non-zero, which implies that when containers yielding primary screening outcome k ∈ Oj are

selected for secondary screening, this decision is always deterministic rather than random. This

assumption is not a limitation when assuming that all primary screening costs are non-negative

(i.e., aij ≥ 0, i ∈ R, j ∈ J), that secondary screening costs are positive b > 0, and that there

is a primary screening level with zero cost (corresponding to no primary screening). This can be

seen by noting that the xij variables have objective function coefficients of zero while the yijk vari-

ables have positive objective function coefficients. If yijk > 0 and yijk < xij , if then the objective

function can be improved by reducing xij and increasing yijk until yijk = xij (and screening any

otherwise unscreened containers by the primary screening level with zero cost).

There are many well-known algorithms that can find solutions to the linear MCKP in linear

time (see Kellerer et al. 2004) that shed light on the optimal policies for NSP. The solution to the

linear MCKP has several properties, which are stated here as three results. They are applied to

NSP.

The first result compares the rewards and weights of items within a single class (i.e., risk group)

to determine which combinations of primary screening levels and their outcomes that will not be

selected for secondary screening. Such items are said to be dominated. Recall that each item

j ∈ Ni corresponds to a primary screening level j′ ∈ J and a set of primary screening outcomes
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oj′′ ∈ Oj′ . An item k is dominated by an item j, with both items j and k are in the same class i, if

wij ≤ wik and pij ≥ pik.

Similarly, consider items j, k, and l in class i with

wij < wik < wil and pij < pik < pil.

Item k is dominated by items j and l if

pil − pik
wil − wik

≥ pik − pij
wik − wij

.

Proposition 1 If item j in class i dominated by another item, where item j corresponds to a pri-

mary screening level j′ ∈ J and a set of primary screening outcomes oj′′ ∈ Oj′ , then hi,j = 0 and

yij′k = 0 in NSP for all k ∈ oj′′).

Proposition 1 indicates that dominated items always have values of zero in the optimal solution.

This means that containers that yield the set of outcomes associated with the primary screening

level (those associated with MCKP item j) will not be selected for secondary screening.

Proof. This is given by Corollary 11.2.2 in Kellerer et al. 2

Once the dominated items have been removed, without loss of generality, assume that the re-

maining items in each class are sorted such that their weights are non-decreasing. The next result

describes the number of fractional solutions in NSP, where a fractional solution indicates which

proportion of containers with a given risk group and yielding a given set of primary screening

outcomes to randomly select for secondary screening. Proposition 2 indicates that in an optimal

solution to NSP, containers in at most one risk group are randomly selected for secondary screen-

ing; the other risk groups select containers for secondary screening in a deterministic manner .

Proposition 2 In an optimal solution to NSP, there are at most 2(max2|Oj | fractional variables. If

there are fractional variables, then they are in the same risk group.

Proof. This is given by Corollary 11.2.3 in Kellerer et al. (2004) There are as many as 2(max2|Oj |

fractional variables in NSP that correspond to two fractional variables in the linear MCKP solution,

since each variable in MCKP corresponds to one primary screening level and at most 2|Oj | primary

screening outcomes. 2
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3.4 Computational Example and Results
This section introduces an illustrative computational example using the integer programming model

from Section 3.2. The results compute and analyze the primary and secondary screening decisions

for different levels of prescreening intelligence. Sensitivity analysis is performed for changes in

secondary screening costs and the hypothetical detection capabilities of next-generation technol-

ogy.

Table 3.1 summarizes the input parameters for the illustrative example. In this example, sup-

pose there are 9,999 cargo containers entering a specific port daily, such as Norfolk, Virginia. There

are two risk groups, high-risk and low-risk. Approximately 4% of all containers are assumed to be

high-risk, which is agreeable with port authorities (Lava 2008). Therefore, low-risk containers are

about 96% of all containers.

The levels of prescreening intelligence β are computed through the prescreening risk group

classifications. This notion is taken from McLay et al. (2008). The ratio of high-risk threat

containers to low-risk threat containers is therefore represented at β, in which β = PT |HR/PT |LR.

Since threats must all be classified as either high- or low-risk, then PHR|T + PLR|T = 1. By use

of Bayes Rules, then Pi|T = βPi

1−Pi+βPi
for i representing the risk group classification. The levels

of β range from 1 to 100, which correspond to random prescreening intelligence and excellent

prescreening intelligence, respectively. There are 6 primary screening levels, (i.e., |J | = 6, which

are comprised of all combinations of two RPMs and one X-Ray, where the RPMs are assumed to

be indistinguishable. For instance, if only one device is being used to screen cargo, it could be one

RPM or one X-Ray. It is assumed that the primary screening outcomes contain combinations of

binary device outcomes. Therefore, the number of primary screening outcomes is at most Oj =

2dj , where dj is the number of devices used by primary screening level j. Note that the devices are

assumed to operate independently, but the alarm probabilities are not assumed to be independent.

The outcome of one device does not depend on an outcome of another device, but rather, the alarm

probabilities depend on the contents of the container. The cost for primary screening depends on

the device(s) used for that primary screening level. If the container passes through 2 devices, either

two RPMs or one X-Ray and one RPM, the costs associated will vary because of the differing costs

between the two types of devices. The costs of primary screening level aij and secondary screening
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b are subject to the budget B, which ranges from $15K to $50K USD.

Table 3.2 summarizes the 18 container scenarios, 16 of which are threat scenarios. The threat

scenarios are comprised of the nuclear material, whether is it masked and/or shielded, and the

target, 1 or 2. The probability of all threat scenarios is PT , in which one threat is expected to exist.

An example of a threat scenario is a container with a uranium-made weapon that is both masked

and shielded and headed for target 2 (U-S-M-2). The other two container scenarios are non-threats,

where one scenario corresponds to naturally occurring radioactive material (NORM) in a container

and the other does not (non-NORM). Note that a target does not exist for either NT scenario, since

there is no threat. Table 3.2 also contains the probability that any one container contains either

a threat or non-threat scenario. Furthermore, the probability of detection by a specific device is

given for all container scenarios. Since it is assumed that the primary screening devices operate

independently, the probabilities can be multiplied for all combinations of the primary screening

level. For example, if the primary screening level is two RPMs for U-S-M, and needed is the

probability of both RPMs yielding an alarm, then one RPM alarm probability is multiplied by

itself for a total of two RPMs alarming. To calculate a portion of the devices alarming, say one of

two RPMs alarming, a probability tree was used to compute alarm probabilities based for each risk

group.

Table 3.3 summarizes the primary screening decisions and outcomes and their abbreviations,

and includes the costs aij for both risk groups. The primary screening cost aij changes depending

on the primary screening level used. For example, aij for two RPMs is double the cost of one

RPM.

To compute the input parameters, Pk|i∩j∩t and PA|i∩j∩t∩k for the NSP, a decision tree approach

was used. The decision tree frames the modeling framework and was created and used to aid

and visualize the model, not to solve NSP, since the model contains additional constraints. Figure

3.1 illustrates the decision and chance nodes of the model. The first chance node represents the

prescreening classification of the container, whether it is high- or low-risk. The first decision node

illustrates the primary screening level decision. The second chance node illustrates the different

outcomes associated with the primary screening level that the container has passed through. Based

on the outcomes, the decision to move the container through to secondary screening is made.

From here, the next chance node illustrates whether or not a threat exists in the container. The
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Table 3.1: Base case parameter values
Parameter Value(s)

R High, Low
N 9,999

Primary Screening Level j Any combination of 2 RPMs and 1 XRay
PT 1/N ≈ 0.0001

Pi=HR 0.04
Pi=LR 0.96

β 1, 10, 100
B $15K- $50K
b 100

last chance node reveals the results from the secondary screening, which indeed could contain a

nuclear weapon, or confirm that the container does not contain a weapon.

A utility function is used to determine the likelihood of a successful attack, and is denoted

as ut, which is equivalent to 1 − PI|t. As the probability of interdiction decreases, the utility of

success increases. It is important to note that there are two interdiction probabilities associated

with the model, both of which affect the utility function. One interdiction probability, which

will be referred to as the overall interdiction probability calculates the probability of detecting a

threat in the system, which determines the utility value. The second interdiction probability, which

will be referred to as the exogenous interdiction probability, is the probability that personnel not

associated with screening (e.g. local law enforcement) interdicts the nuclear material as it travels

to either target. For the computational example, target 1 refers to the port, and target 2 is another

target away from the port. The exogenous interdiction probability will be denoted as PI|2, since

the model will only be considering the utility of success as a function specific to target 2. It is

approached this way because if the goal is to attack the port, target 1, the detonation would more

likely occur prior to any screening.

Figure 3.2 illustrates the overall interdiction probability as a function of the exogenous inter-

diction probability for B = $20K. As the exogenous interdiction probability increases, the overall

interdiction probability increases, with the greatest overall interdiction probabilities always occur-

ring when β = 100. When PI|2 = 0, the difference in the overall interdiction probability between

β = 10 and β = 100 is 0.0679 , whereas the difference in the overall interdiction probability be-

tween β = 1 and β = 10 is 0.0191. When the exogenous interdiction probability is 0.9, the overall

interdiction probability between β = 10 and β = 100 increases by 0.0374, and between β = 1
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Table 3.2: Types of threats
Scenario Name Container Scenario Masked Shielded Target pt 1RPM Alarm Probabilities 1XRAY Alarm Probabilities
U-US-UM-1 Uranium No No 1 3.57 × 10−6 0.95 0.75
U-US-UM-2 Uranium No No 2 3.57 × 10−6 0.95 0.75
U-S-UM-1 Uranium No Yes 1 1.072 × 10−5 0.50 0.99
U-S-UM-2 Uranium No Yes 2 1.072 × 10−5 0.50 0.99
U-US-M-1 Uranium Yes No 1 7.15 × 10−6 0.99 0.75
U-US-M-2 Uranium Yes No 2 7.15 × 10−6 0.99 0.75
U-S-M-1 Uranium Yes Yes 1 7.15 × 10−6 0.80 0.99
U-S-M-2 Uranium Yes Yes 2 7.15 × 10−6 0.80 0.99
P-US-UM-1 Plutonium No No 1 3.57 × 10−6 0.99 0.60
P-US-UM-2 Plutonium No No 2 3.57 × 10−6 0.99 0.60
P-S-UM-1 Plutonium No Yes 1 7.15 × 10−6 0.50 0.99
P-S-UM-2 Plutonium No Yes 2 7.15 × 10−6 0.50 0.99
P-US-M-1 Plutonium Yes No 1 3.57 × 10−6 0.99 0.60
P-US-M-2 Plutonium Yes No 2 3.57 × 10−6 0.99 0.60
P-S-M-1 Plutonium Yes Yes 1 7.15 × 10−6 0.95 0.99
P-S-M-2 Plutonium Yes Yes 2 7.15 × 10−6 0.95 0.99
NT(Non-NORM) Non-Threat (Non-NORM) N/A N/A N/A 0.012699 0.005 0.02
NT(NORM) Non-Threat (NORM) N/A N/A N/A 0.987201 0.05 0.02

Table 3.3: Legend for primary screening levels and outcomes
Primary Screening Level j PS Level Abbreviation PS Outcomes k PS Outcome Abbreviation aij
No Device Zero No Alarms None 0
1 RPM 1RPM No Alarm None 1

RPM Alarm 1R
1 X-Ray 1XRAY No Alarm None 20

XRAY Alarm 1X
2 RPMs 2RPM No Alarm None 2

Either RPM Alarm 1R
Both RPMs Alarm 2R

1 RPM and 1XRAY 1XRAY1RPM No Alarm None 21
RPM Alarm 1R
XRAY Alarm 1X
Both XRAY and RPM Alarm 1X1R

2 RPMs and 1 XRAY 1XRAY2RPMS No Alarm None 22
Either RPM Alarm 1R
Both RPMs Alarm 2R
XRAY Alarm 1X
Both XRAY and 1 RPM Alarm 1X1R
Both XRAY and 2 RPMs Alarm 1X2R
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Figure 3.1: Decision Tree

and β = 10 the overall interdiction probability increases by 0.0105. It is important to note that for

all exogenous interdiction probabilities, β = 100 always results in the greatest overall interdiction

probabilities.

Figure 3.3 illustrates the overall interdiction probabilities as a function of budget when the

exogenous interdiction probability is zero. At any level of the budget, it is clear that β = 100

screening capabilities surpass the other levels of β. At B = $30K, β = 1 has nearly the same

overall interdiction probability as β = 10, with values of 0.6217 and 0.6237, respectively. How-

ever, there is a greater relative difference in the overall interdiction probabilities at the ends of the

budgets’ range, say at B = $15K or $50K. For B = $15K, the difference in the overall inter-

diction probability between β = 10 and β = 100 is 0.0831, and between β = 1 and β = 10 the

difference is 0.0197.

Figure 3.4 is similar to Figure 3.3, with different exogenous interdiction probabilities for the

three levels of prescreening intelligence. The greatest relative difference between the exogenous

interdiction probabilities for any prescreening intelligence level occurs when B = $15K, and the

smallest relative difference is when B = $50K. The relative differences in the overall interdiction

probability are always greater when β = 1 as compared to when β = 100. This indicates that

β = 1 increases the overall interdiction probability more as the budget increases, even though

β = 100 always results in a greater overall interdiction probability.
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Tables 3.4, 3.5, and 3.6 illustrate the primary and secondary screening decisions for cargo

containers as a function of the budget for the two prescreening classifications and PI|2 = 0. Note

that when β = 1, the risk groups are classified as All, since the results are the same for the

high- and low-risk classified containers. The column labeled PS Level j represents the physical

screening decisions for the xij variables, and column xij is the proportion of containers that use PS

Level j for a particular budget and prescreening classification. The Secondary Screening column

summarizes the decisions for yijk, where PS Cleared represents the outcomes from going through

PS Level j that will not continue to secondary screening. The PS Alarms column summarizes the

screening decisions where the container has outcome k after using PS Level j and will continue to

secondary screening. It is important to note that the values for yijk are not explicitly mentioned,

but the outcomes that occur for a container that continues to secondary screening, yijk is the same

value as xij . For example (from Table 3.4), when PS is ‘All, 1XRAY1RPM’, B = $35K, and

xij = 0.019508, then yijk = 0.019508 for the listed PS Alarms. Therefore, this proportion of

containers hold tight to the constraints yijk ≤ xij . It is interesting to note that for all results,

these constraints all hold tight, meaning yijk = xij . As β increases for high-risk containers when

B = $25K, the primary screening decisions change from one RPM or two RPMs to strictly two

RPMs to one X-Ray, one RPM or one X-Ray, 2 RPMs, whereas for low-risk containers, the primary

screening decisions are one RPM or two RPMs when β = 1 or β = 10 and strictly one RPM when

β = 100. This suggests that prescreening classification intelligence is crucial in determining the

primary screening decisions, and it leads to allocating the budget in a manner that more effectively

screens for high-risk containers.

Figures 3.5 and 3.6 illustrate the primary screening decisions for the high- and low-risk con-

tainers over the different values of β as a function of the budget. It is important to note that these

figures only depict the primary screening decisions, and not the outcomes that are sent to sec-

ondary screening. These figures coincide with the data from Tables 3.4, 3.5, and 3.6. Since there

are fractional values for some of the primary screening decisions, the only decisions illustrated

are those in which the fractional values are greater than 0.50, which is defined as the dominant

primary screening decision. For example, when β = 10 and B = $25K, and the container is

classified as low-risk, the dominant primary screening decision is two RPMs (which is illustrated).

For β < 5 for high-risk containers, when B < $24K, the primary screening decision is one RPM.
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For the B ≥ $24K, the primary screening decision is two RPMs. As β increases, the dominant

primary screening decision changes from one RPM to one X-Ray, two RPMs. Figure 3.6 illus-

trates the primary screening decisions for the low-risk containers. As β and the budget increase,

the dominant primary screening decision changes from one RPM to two RPMs. When β ≥ 90 and

B ≤ $16K, the dominant primary screening decision is to use no devices. This suggests that when

prescreening intelligence is high enough, its optimal to clear all low-risk containers from primary

screening.

Figure 3.7 illustrates the similarities and differences in the primary screening decisions between

the high- and low-risk containers over different β values as a function of the budget, synthesizing

Figures 3.5 and 3.6. The light grey region illustrates where the dominant primary screening de-

cisions are the same between high- and low-risk containers, whereas the dark grey region reveals

where there are differences between the dominant primary screening decisions. For β < 5 and all

budget amounts, the screening decisions are identical across both risk groups, and for β ≥ $20K,

the primary screening decisions are always different. This reveals that β impacts the primary

screening decisions by allocating the budget in order to more effectively screen the high-risk con-

tainers.

Sensitivity analysis was performed on the NSP parameters to understand how the primary and

secondary screening decisions would change as a function of the secondary screening cost. Since

the cost data was based on estimates available publicly, it is important to do sensitivity analysis

for a better depiction of what real data might do. Also, next-generation technology is considered,

in which the detection capabilities of the devices are better to distinguish between threats and

non-threats. Specifically, the next-generation RPM device considered would have the same alarm

probabilities for NORM threats and for NORM non-threats.

Figure 3.8 illustrates the overall interdiction probability as a function of the secondary screen-

ing cost for B = $20K and PI|2 = 0. These results are compared to Figure 3.2, in which the cost of

secondary screening is b = 100. As the cost of secondary screening increases, the overall interdic-

tion probability decreases. The relative difference in the overall interdiction probability increases

between all β as the secondary screening costs increase. As in Figure 3.2, the greatest relative

difference in the overall interdiction probability as the cost of secondary screening increases is

between β = 10 and β = 100 with a change in probability of 0.0651 and 0.1466, respectively.
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Table 3.4: Primary and secondary screening for β = 1 and PI|2 = 0

Primary Screening Secondary Screening

Budget Risk Group (i) PS Level (j) xij PS Cleared PS Alarms

15000 All Zero 0.001425 None

1RPM 0.998574 None 1R

20000 All 1RPM 0.749627 None 1R

2RPM 0.250373 None 1R, 2R

25000 All 1RPM 0.414157 None 1R

2RPM 0.585843 None 1R, 2R

30000 All 1RPM 0.078686 None 1R

2RPM 0.921313 None 1R, 2R

35000 All 2RPM 0.980492 None 1R, 2R

1XRAY1RPM 0.019508 None 1R, 1X, 1X1R

40000 All 2RPM 0.955006 None 1R, 2R

1XRAY1RPM 0.044994 None 1R, 1X, 1X1R

45000 All 2RPM 0.929520 None 1R, 2R

1XRAY1RPM 0.070480 None 1R, 1X, 1X1R

50000 All 2RPM 0.904034 None 1R, 2R

1XRAY1RPM 0.095966 None 1R, 1X, 1X1R
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Table 3.5: Primary and secondary screening for β = 10 and PI|2 = 0

Primary Screening Secondary Screening

Budget Risk Group (i) PS Level (j) xij PS Cleared PS Alarms

15000 High 2RPM 1 None 1R, 2R

Low Zero 0.084748 None

Low 1RPM 0.915251 None 1R

20000 High 2RPM 1 None 1R, 2R

Low 1RPM 0.749781 None 1R

Low 2RPM 0.250219 None 1R, 2R

25000 High 2RPM 1 None 1R, 2R

Low 1RPM 0.414243 None 1R

Low 2RPM 0.585757 None 1R, 2R

30000 High 2RPM 1 None 1R, 2R

Low 1RPM 0.078704 None 1R

Low 2RPM 0.921296 None 1R, 2R

35000 High 2RPM 0.531921 None 1R, 2R

High 1XRAY1RPM 0.468079 None 1R, 1X, 1X1R

Low 2RPM 1 None 1R, 2R

40000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.999823 None 1R, 2R

Low 1XRAY1RPM 0.000177 None 1R, 1X, 1X1R

45000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.974337 None 1R, 2R

Low 1XRAY1RPM 0.025663 None 1R, 1X, 1X1R

50000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.948850 None 1R, 2R

Low 1XRAY1RPM 0.051149 None 1R, 1X, 1X1R
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Table 3.6: Primary and secondary screening for β = 100 and PI|2 = 0

Primary Screening Secondary Screening

Budget Risk Group (i) PS Level (j) xij PS Cleared PS Alarms

15000 High 1XRAY1RPM 1 None 1R, 1X, 1X1R

Low Zero 0.632120 None

Low 1RPM 0.367880 None 1R

20000 High 1XRAY1RPM 1 None 1R, 1X, 1X1R

Low Zero 0.297943 None

Low 1RPM 0.702057 None 1R

25000 High 1XRAY1RPM 0.119794 None 1R, 1X, 1X1R

High 1XRAY2RPM 0.880206 None 1R, 1X, 2R, 1X1R, 1X2R

Low 1RPM 1 None

30000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 1RPM 0.669277 None 1R

Low 2RPM 0.330723 None 1R, 2R

35000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 1RPM 0.333600 None 1R

Low 2RPM 0.666400 None 1R, 2R

40000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.999842 None 1R, 2R

Low 1XRAY1RPM 0.000157 None 1R, 1X, 1X1R

45000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.974356 None 1R, 2R

Low 1XRAY1RPM 0.025644 None 1R, 1X, 1X1R

50000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.948869 None 1R, 2R

Low 1XRAY1RPM 0.051131 None 1R, 1X, 1X1R
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Figure 3.2: Overall interdiction probability as a function of the exogenous interdiction probability

The relative difference in the overall interdiction probability at b = 25 and b = 300 for β = 1 and

β = 10 decrease by 0.0065 and 0.0401.

Figure 3.9 illustrates the overall interdiction probability between the current technology and

the next-generation technology as a function of the budget for β = 1, 10, 100 and PI|2 = 0. The

next-generation technology assumes that the RPM alarm probability (from Table 3.2 for NORM

non-threats is equivalent to non-NORM non-threats, which is 0.005. As the budget increases, the

relative differences between the two technologies decrease. The next-generation technology is

denoted as NextGen. For β = 1, when B = $15K, the difference between the next-generation

technology and the current technology is 0.0192, whereas when the B = $50K, the difference

in the overall interdiction probability is 0.0004. Similarly to Figure 3.3, the highest overall in-

terdiction probabilities exist when β = 100. However, the differences between the current and

next-generation technologies for β = 100 range from 9.10 × 10−5 to 0.0029 for B = $50K and

B = $20K, respectively. The is evidence that with β = 100, the next-generation technology does

not suggest a significant increase in the overall interdiction probability, and therefore, the need for
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Figure 3.3: Overall interdiction probability as a function of the budget

the next-generation technology may not be worthwhile.

Figures 3.10 and 3.11 illustrate the dominant primary screening decisions for the three scenar-

ios, b = 25,b = 300, and NextGeneration, b = 100, in which sensitivity analysis was performed

as compared to the basecase (b = 100) from the primary results for different levels of β for high-

risk and low-risk containers, respectively, as a function of the budget. Similar to Figures 3.5 and

3.6, as β increases the number of primary screening devices increases. However as the cost of

secondary screening increases, the number of primary screening devices decrease. It is interesting

to note that the dominant primary screening decision for high-risk containers is to screen with no

primary screening devices when β = 100 and b = 25 for B ≥ $35K. For this particular scenario,

these high-risk containers will all be sent to secondary screening without any primary screening.

This is intuitive, since the cost of secondary screening is low, as compared to when b = 300, with

a primary screening decision of one X-Ray, two RPMs. However, the optimal decision is to send

the containers to secondary screening without using primary screening, which ultimately lowers

the cost of the system. Note that in Figure 3.11, the dominant primary screening decisions for
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Figure 3.4: Overall interdiction probability as a function of the budget for different exogenous

interdiction probabilities

β = 1 are equivalent to that of β = 10. Therefore, the prescreening intelligence is not critical for

determining primary screening decisions. It is interesting to note that when b = 300, the dominant

primary screening decisions for β = 100 change from using no primary screening devices to two

RPMs to one RPM. This is due to allocating the scarce resources given the changes in the budget.

For $25K ≤ B ≤ $34K, the only containers that continue to secondary screening for j = 2 RPMs,

are the containers in which both RPMs alarm. Furthermore, when the budget is increased and the

dominant primary screening decision is one RPM, the system allocates the budget more effectively,

since the containers are low-risk, the secondary screening costs are large, and it costs less to screen

with one RPM as compared to two RPMs. Ultimately, the low-risk containers receive less primary

and secondary screening to allow for the budget to be allocated to the high-risk containers. In ad-

dition to changes in the secondary screening costs, an analysis was performed for next-generation

technology. The results reveal that the next-generation technology (denoted as ’NG’ in the fig-

ures) minimally changes the primary screening decisions as compared to b = 100 for high-risk
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Figure 3.5: Primary screening decisions for high-risk containers

containers. This is evidence that the next-generation technology may not be cost effective when

compared to the current technology capabilities. However, when β = 100 for low-risk containers,

the next-generation technology would in fact be more cost effective than when b = 25 or b = 100,

since no primary screening devices are used for a larger portion of the budget.

Similar to Tables 3.4, 3.5, and 3.6, the primary and secondary screening decisions for the

next-generation are summarized in Tables 3.7, 3.8, and 3.9. The next-generation technology is

applied to the all levels of prescreening intelligence for PI|2 = 0. The results reveal all primary

screening decisions, not just the dominant primary screening decisions, as in Figures 3.10 and 3.11.

Ultimately, the decisions for the xij only vary by the fractional value, not by the primary screening

decisions themselves, which do not affect the dominant primary screening decision, except when

the containers are low-risk and when β = 100.
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Figure 3.6: Primary screening decisions for low-risk containers

3.5 Conclusions
By using a linear programming model and decision analysis, primary and secondary screening

decisions can be improved to be more likely to interdict a WMD, such as a nuclear weapon. The

results provide strong evidence that prescreening intelligence is critical. This model also accounts

for containers that have passed through the screening station, by using a utility function and in-

corporating exogenous interdiction. This captures containers that are cleared by screening and

are interdicted after released from the screening station. As the exogenous interdiction probabil-

ity increases, the overall probability of interdiction also increases. Sensitivity analysis was also

performed on the costs of secondary screening and the hypothesized detection capabilities of next-

generation technology. The results reveal that as the cost of secondary screening increases, the
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Figure 3.7: Similarities and differences between the primary screening decisions for high-risk and

low-risk containers

budget is allocated mostly to the high-risk containers as the prescreening intelligence increases.

Through the analysis of the current and next-generation technology, there is evidence that the

next-generation technologies would not significantly improve the overall interdiction probability.

Future work will include weighting the targets, as to include the consequences of destruction or

risk to particular locations, to determine more realistic outcomes. This would make stronger port

security systems. In addition, the model could be extended to include a multiple station security

scenario. Also, this model will be applied to different transportation sectors, such as aviation, in

order to reveal the versatility of this model, as well as improve screening procedures. Another

extension could include testing other technologies out there to see how well they perform. Work is

in progress to address these extensions.
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Figure 3.10: Sensitivity analysis for primary screening decisions for high-risk containers
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Figure 3.11: Sensitivity analysis for primary screening decisions for low-risk containers
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Table 3.7: Primary and secondary screening for β = 1 and PI|2 = 0 for next-generation technology
Primary Screening Secondary Screening

Budget Risk Group (i) PS Level (j) xij PS Cleared PS Alarms

15000 All Zero 0.005246 None

1RPM 0.994754 None 1R

20000 All 1RPM 0.697919 None 1R

2RPM 0.302081 None 1R, 2R

25000 All 1RPM 0.348900 None 1R

2RPM 0.651100 None 1R, 2R

30000 All 2RPM 1 None 1R, 2R

35000 All 2RPM 1 None 1R, 2R

40000 All 2RPM 0.990833 None 1R, 2R

1XRAY1RPM 0.009167 None 1R, 1X, 1X1R

45000 All 2RPM 0.965424 None 1R, 2R

1XRAY1RPM 0.034576 None 1R, 1X, 1X1R

50000 All 2RPM 0.940014 None 1R, 2R

1XRAY1RPM 0.059986 None 1R, 1X, 1X1R
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Table 3.8: Primary and secondary screening for β = 10 and PI|2 = 0 for next-generation technol-

ogy
Primary Screening Secondary Screening

Budget Risk Group (i) PS Level (j) xij PS Cleared PS Alarms

15000 High 2RPM 1 None 1R, 2R

Low Zero 0.046745 None

Low 1RPM 0.953255 None 1R

20000 High 2RPM 1 None 1R, 2R

Low 1RPM 0.698075 None 1R

Low 2RPM 0.301925 None 1R, 2R

25000 High 2RPM 1 None 1R, 2R

Low 1RPM 0.348977 None 1R

Low 2RPM 0.651023 None 1R, 2R

30000 High 2RPM 0.999790 None 1R, 2R

High 1XRAY1RPM 0.000210 None 1R, 1X, 1X1R

Low 2RPM 1 None 1R, 2R

35000 High 2RPM 0.390048 None 1R, 2R

High 1XRAY1RPM 0.609952 None 1R, 1X, 1X1R

Low 2RPM 1 None 1R, 2R

40000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.993854 None 1R, 2R

Low 1XRAY1RPM 0.006146 None 1R, 1X, 1X1R

45000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.968444 None 1R, 2R

Low 1XRAY1RPM 0.031556 None 1R, 1X, 1X1R

50000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.943034 None 1R, 2R

Low 1XRAY1RPM 0.056966 None 1R, 1X, 1X1R
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Table 3.9: Primary and secondary screening for β = 100 and PI|2 = 0 for next-generation tech-

nology
Primary Screening Secondary Screening

Budget Risk Group (i) PS Level (j) xij PS Cleared PS Alarms

15000 High 1XRAY1RPM 1 None 1R, 1X, 1X1R

Low Zero 0.616568 None

Low 1RPM 0.383432 None 1R

20000 High 1XRAY1RPM 1 None 1R, 1X, 1X1R

Low Zero 0.269672 None

Low 1RPM 0.730328 None 1R

25000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 1RPM 0.963623 None 1R

Low 2RPM 0.036377 None 1R, 2R

30000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 1RPM 0.614369 None 1R

Low 2RPM 0.385631 None 1R, 2R

35000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 1RPM 0.265116 None 1R

Low 2RPM 0.734884 None 1R, 2R

40000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.993878 None 1R, 2R

Low 1XRAY1RPM 0.006122 None 1R, 1X, 1X1R

45000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.968468 None 1R, 2R

Low 1XRAY1RPM 0.031532 None 1R, 1X, 1X1R

50000 High 1XRAY2RPM 1 None 1R, 1X, 2R, 1X1R, 1X2R

Low 2RPM 0.943058 None 1R, 2R

Low 1XRAY1RPM 0.056942 None 1R, 1X, 1X1R
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Chapter 4

Aviation Security and Direct-to-Target

Nuclear Attacks

4.1 Introduction
If a terrorist group acquires weapons-grade nuclear material abroad, it can be used to make a

nuclear weapon and then be transported to the United States, where it will be presumably used

to launch an attack. There are many ways to transport nuclear material or a nuclear weapon into

the United States, including air, sea, and land border crossings. A weapon can be transported in

a cargo container, in a small vessel, on a general aviation aircraft, on a train, or on a large cargo

ship, to name a few modes of transportation. Much research has focused on screening for nuclear

material in cargo containers at domestic and foreign ports and at land border crossings (Wein et al.

2007, Dimitrov et al. 2010, McLay et al. 2010).

Little attention has been paid to the critical role of commercial aviation security in nuclear

attacks. Sweet (2009) claims that, “[f]rom a terrorist’s viewpoint, aircraft are a preferable target

because of their international flavor and the likelihood the press will focus on the incident.” Due

to the terrorist attacks and plots involving conventional weapons and commercial aviation, avia-

tion security has evolved to include new procedures and technologies. These changes in aviation

security have been designed to prevent or detect hijackings and explosions occurring, rather than

to prevent a nuclear attack. However, commercial aircraft remain attractive targets for terrorists,

as evidenced by the plan to detonate a bomb on an international commercial flight on December
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24, 2009. While flights are routinely screened for conventional explosives, they are not routinely

screened for nuclear material.

To address the threat of a nuclear attack, some baggage on incoming international flights are

screened after they arrive at a U.S. hub airport, although most screening efforts are focused on

international general aviation flights (rather than international commercial aviation flights) (Vo-

jtech 2009; Sammon 2009). Thus, there are some current security procedures are in place to detect

nuclear weapons through intended security checkpoints once they have entered the United States.

However, the system is vulnerable to modes of attack that breach the normal security procedures.

This paper focuses exclusively on incoming international commercial aviation flights, since it has

been hypothesized that a nuclear attack would involve smuggling in a nuclear weapon from abroad

(Allison 2004). Thus, domestic flights and outgoing international flights are not considered.

Screening aviation baggage after it has arrived in the United States makes the system vulnerable

to a direct-to-target attack. A direct-to-target attack uses an aircraft to transport a nuclear bomb

directly to a particular target prior to border screening. In such an attack, terrorists would hijack

the aircraft with the nuclear weapon and fly it to its intended target. The concept of a direct-to-

target attack has not been explicitly considered in aviation security models. However, it has been

indirectly considered in port security models, where some models assume that a nuclear weapon

would be detonated at a U.S. port prior to security screening (which is normally performed at the

exit lanes of a port), which is analogous to a direct-to-target attack (Fritelli 2005, Bakir 2008).

Currently baggage is screened for explosives that are used in conventional weapons at U.S. and

foreign airports. Screening is a layered process consisting of different procedures and technologies,

such as X-rays, Explosives Trace Detection (ETDs) and Explosives Detection Systems (EDSs).

Radiation Isotope Identification Devices (RIIDs) are being used to screen for nuclear material in

some bags within the United States (Sammon 2009). In the future, RIIDs could be used as part of

the checked baggage screening system in foreign airports to screen baggage entering the U.S. in

order to prevent a direct-to-target attack.

The objective of this chapter is to explore and analyze performance measures for using lim-

iting screening devices to screen checked baggage at foreign airports prior in order to prevent a

direct-to-target attack. To reach this objective, this chapter proposes and analyzes four perfor-

mance measures that cover flights, passengers, baggage, and targets. This chapter proposes seven
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discrete optimization models for comparing the performance measures and for evaluating baggage

screening decisions. By comparing the proposed performance measures to the current proposed

screening policy, that which maximizes the encounter probability—the proportion of bags that

have been screened—the tradeoffs across the performance measures are analyzed. While the per-

formance measures in this chapter by no means form a comprehensive set of all possible perfor-

mance measures, they illustrate the unique challenge in evaluating performance when comparing

conventional weapons to weapons of mass destruction (WMDs) such as nuclear weapons. The

results suggest that focusing on the target in the WMD attack is important for utilizing baggage

screening devices, since the scope of the attack is greatly increased in a WMD attack compared

to a conventional weapon attack, and that the encounter probability is insufficient for protecting

targets, flights, or passengers.

This chapter is organized as follows. A literature review is presented in Section 4.2. Perfor-

mance measures are provided in Section 4.3. Section 4.4 introduces the parameters and the single

objective models that each consider a single performance measure. Goal programming models

are presented in Section 4.5 in order to evaluate the tradeoffs between the different performance

measures. Section 4.6 describes three greedy heuristics that were used to identify near-optimal

solutions to the models. Section 4.7 provides a computational example, analysis, and results from

the greedy heuristics. Conclusions and future research are presented in Section 4.8.

4.2 Literature Review
At present, there are no papers that use operations research methodologies for preventing nuclear

attacks that target commercial aviation flights. Several papers examine performance measures for

screening passenger checked baggage for conventional weapons (explosives) as well as determine

the need for baggage screening using cost-benefit analysis. The process of screening for nuclear

material is similar to screening for any other threat. However, different devices are needed to

detect the radiation emitted from nuclear material as well as to discover nuclear material that may

be hidden within a radioactive source. The consequences of a nuclear attack, if successful, is much

greater than any other type of attack (United States Homeland Security Council 2009).

Jacobson et al. (2001) use discrete optimization models to determine how to optimally de-

ploy baggage screening security devices at a single checkpoint security screening station given
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the risk of a conventional weapons attack using explosives placed in checked baggage. CAPPS

(Computer-Aided Passenger Prescreening System) classifies passengers as either selectees or non-

selectees. Prior to September 11, 2001, selectee baggage was routinely screened for explosives,

whereas nonselectee baggage was not screened. However, there were often not enough baggage

screening devices to screen all selectee baggage. To evaluate the baggage screening decisions,

Jacobson et al. (2001) introduce three performance measures. The performance measures con-

sist of Uncovered Flight Segments (UFS), Uncovered Passenger Segments (UPS), and Uncovered

Baggage Segments (UBS). Note that a flight segment consists of a single, direct flight between

two airports. If any selectees bags are not screened on a flight segment, then that flight segment is

considered uncovered. The UFS measure captures the total number of uncovered flight segments.

Likewise, the UPS measure captures the number of passengers on uncovered flight segments, and

the UBS captures the number of bags on uncovered flight segments. These three performance mea-

sures are a proxy for determining how many flight segments are at risk. Jacobson et al. (2005a)

use UFS, UPS, and UBS performance measures to analyze a multiple-station security system us-

ing knapsack problem models. Jacobson et al. (2005b) use the selectee or nonselectee paradigm to

deploy and allocate baggage screening security devices as well as to determine which baggage to

screen. They create integer programming models to determine how to optimally deploy a given set

of devices to baggage screening devices when optimizing the UFS, UPS, and UBS performance

measures.

Other papers analyze combinations and arrangements of different screening devices within avi-

ation security. Sahin and Feng (2008) analyze a two-layer security system with different screening

devices in order to evaluate risk and optimize the arrangement of screening devices. McLay et

al. (2008) perform a cost-benefit analysis on two different screening devices for different passen-

ger risk groups in order to minimize successful attacks. Candalino, Jr. et al. (2004) present a

simulated annealing heuristic to evaluate and minimize the costs associated with an arrangement

of baggage screening security devices. Kobza and Jacobson (1996, 1997) consider the design of

security system architectures using reliability models in the context of aviation security baggage

screening systems.

Bakir (2008) considers a direct-to-target attack in port security. In this paper, it assumed that a

terrorist would smuggle a nuclear weapon into the United States in a cargo container entering the
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United States on a truck at a land border crossing at the United States border with Mexico. The

model assumes that the terrorist would detonate the nuclear weapon prior to screening operations

at the port. However, the analysis does not consider the special requirements of a port attack nor

does it compare a port attack to other types of attacks.

This chapter builds upon the existing research by extending the analysis of aviation security

performance measures from considering attacks with conventional weapons to considering WMD

attacks. This chapter proposes a new performance measure that considers covering targets and

evaluates the tradeoffs between the performance measures, with a particular focus on existing

performance measures that focus on device utilization. Covering targets becomes an important

operational goal in additional to device utilization, since it is a proxy for minimizing the conse-

quences associated with a direct-to-target attack using WMDs, such as nuclear weapons. This

chapter analyzes the tradeoffs between covering targets and other performance measures.

4.3 Performance Measures
This section overviews five performance measures for evaluating checked baggage screening sys-

tems for detecting nuclear weapons. As noted earlier, these performance measures are not intended

to be an exhaustive list. Rather, they are used to illustrate how screening devices are used in differ-

ent ways according to each performance measure in order to identify robust performance measures.

The Department of Homeland Security (DHS) has proposed the Encounter Probability measure

for evaluating baggage screening systems (Vojtech 2009). The Encounter Probability reflects the

proportion of bags that have been screened. In order to be consistent with the remaining four

performance measures, we rescale the Encounter Probability to capture the Encounter Number

(EN) measure, which evaluates the total number of bags screened for nuclear material by baggage

screening devices, such as RIIDs. The rationale is that to detect a threat, it must first be encountered

via security screening (Vojtech 2009; Mullen 2009). Therefore, encountering a bag is a binary

measure that is one if a bag is screened in any way and zero otherwise. The EN cannot ensure

the safety of any particular flight or target, since it does not evaluate the quality of screening

procedures.

The remaining four performance measures involve covering flight segments. For simplicity, we

refer to each flight segment as a flight for the remainder of this paper. A flight is said to be covered
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if all baggage on that flight is screened. While covering performance measures do not take the

quality of screening into account, they are advantageous in that they can be directly compared to

the EN measure. Covering a flight is used as a proxy for ensuring that the flight is protected against

an attack. Three performance measures are used to analyze how bags are screened in terms of their

corresponding flights, which were first proposed by Jacobson et al. (2001). The first performance

measure, Flights Covered (FC), captures the number of covered flights. The rationale behind the

FC measure is to screen bags in a way that covers the most flights. The second performance

measure, Passengers Covered (PC), captures the number of passengers on covered flights. The

rationale behind the PC measure is to screen bags in a way that maximizes the total number of

passengers on covered flights. The third performance measure, Baggage Covered (BC), captures

the number of bags on covered flights. The rationale behind the BC measure is to screen bags in a

way that fully utilizes the baggage screening capacity while covering flights. The BC and the EN

measures both reflect device utilization. They differ in that the BC measure captures the screened

bags only on covered flights, whereas the EN measure captures all screened bags.

In a direct-to-target attack, the target is not only the aircraft, but rather it is a means to transport

a nuclear weapon to a specific location where it would then be detonated. The consequences of the

attack extends to the detonation site and surrounding area. The FC, PC, BC, and EN measures do

not explicitly consider targets. To extend the performance measures proposed by Jacobson et al.

(2001), the number of targets covered is proposed as a performance measure. The Targets Covered

(TC) performance measure reflects the number of covered targets, where a target is covered if all

flights to the target are covered. All of these performance measures except the EN measure are

used in the discrete optimization models in Sections 4 and 5 to determine how to optimally use

baggage screening devices. Goal programming is used to identify robust ways to use baggage

screening devices across two performance measures, the TC measure and a second measure (either

the FC, PC, or BC measures).

To illustrate the trade-offs between the performance measures, an example with four flights is

discussed. Its parameters are located in Table 4.1. In this example, there is a single origin airport

from which all flights depart. Each flight has an associated number of passengers and bags, and it

is traveling to one of two targets, A or B. The origin airport can screen 30 bags. The FC measure

can be at most two, any combination of two of the four flights. The PC measure can be at most 25
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Table 4.1: Illustrative example parameters

Number of Passengers Number of Bags Target

Flight 1 5 10 B

Flight 2 10 12 A

Flight 3 15 14 A

Flight 4 8 16 A

by covering flights 2 and 3. The BC measure can be at most 30 by covering flights 3 and 4, which

uses the entire screening capacity. The TC measure can be at most one by screening flight 1, which

covers target B. This suggests that using the different performance measures results in screening

different sets of bags while covering different flights.

Note that the EN reflects the total number of bags that are screened. An EN of 30 corresponds

to any combination of 30 of the 52 bags being screened across the four flights, of which there are(
52
30

)
ways to do so. However, there are only

(
4
2

)
= 6 ways to cover two of four flights, and 4 ways

to cover one flight. This results in a probability of 3.7 × 10−14 of randomly covering any one or

two flights when randomly screening 30 bags to fully utilize the total baggage screening capacity,

according to the EN measure.

4.4 The Single Objective Discrete Optimization Models
This section introduces four discrete optimization models, each of which corresponds to the per-

formance measures in Section 3 (except the EN measure). The EN measure is compared to each

of the discrete optimization models when assuming that bags are randomly screened, to show the

discrepancies between the EN measure and the other four performance measures. First, consider

a set of international flights that originate at a set of origin airports. There is a station at each

of the origin airports for screening airline baggage for nuclear material. It is important to note

that using nuclear screening devices are distinct from explosives screening and that all checked

baggage undergo screening for explosives but not necessarily for nuclear material. Note that bags

that are screened are considered encountered and those that are not screened are considered not

encountered. The single objective models include only direct flight segments between a foreign
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airport and a domestic airport. When the flight arrives in the United States, it is assumed that no

further screening takes place on checked bags. The input parameters for all of the models are as

follows:

• n = total number of flights,

• m = number of origin airports (where screening occurs),

• d = number of targets (e.g., destination airports),

• Fi = set of outgoing flights that are screened at origin airport i, = 1, 2, ...,m, with F1, F2, ..., Fm

being mutually exclusive and exhaustive subsets of the set of flights {1, 2, ..., n},

• Dk = set of incoming flights to target k, k = 1, 2, ..., d, with D1, D2, ..., Dd being mutually
exclusive and exhaustive subsets of the set of flights {1, 2, ..., n},

• wj = the total number of bags on flight j, j = 1, 2, ..., n,

• pj = the total number of passengers on flight j, j = 1, 2, ..., n,

• aj = the expected cost to screen flight j, j = 1, 2, ..., n,

• ci = the screening capacity of station i (number of bags), i = 1, 2, ...,m,

• B = screening budget.

All of the parameters are assumed to be deterministic. Without loss of generality, the number

of bags reflects only those that are large enough to contain a nuclear weapon. In all of the models,

flights are assumed to be screened only at their designated origin airport. Moreover, the security

devices are allocated at stations at the origin airports, resulting in associated screening capacities

at each origin airport. Also, the models explicitly address primary screening while implicitly

addressing secondary screening. It is assumed that there are enough secondary screening resources

at each of the origin airports for resolving primary screening alarms via secondary screening at each

of the origins. All flights are assumed to have an associated target (given by D1, D2, ..., Dd) based

on its route or destination.

Four discrete optimization models are proposed for maximizing the four performance measures

introduced in Section 3, the FC, PC, BC, and TC measures. The discrete optimization models

are stated as integer programming models for simplicity. The first model is the Flight Coverage

Problem (FCP), which maximizes the FC measure. The variables for FCP as well as the subsequent
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models are given by x1, x2, ..., xn, where xj = 1 if flight j is covered and 0 otherwise, j =

1, 2, ..., n. FCP is stated as follows.

max zFCP =
m∑
i=1

∑
j∈Fi

xj (4.1)

subject to
∑
j∈Fi

wjxj ≤ ci, i = 1, 2, ...,m

n∑
j=1

ajxj ≤ B

xj ∈ {0, 1}, j = 1, 2, ..., n.

The objective function in (4.1) maximizes the number of covered flights. The first set of con-

straints ensures that the total number of bags on the covered flights from each origin airport does

not exceed the origin airport’s screening capacity. The second constraint ensures that the cost of

screening the bags on the covered flights does not exceed the budget. The third set of constraints

ensures that the variables take on binary values.

The second discrete optimization model is the Passenger Coverage Problem (PCP), which max-

imizes the PC measure. PCP uses the same set of constraints and variables as (4.1) with an objec-

tive function given by

max zPCP =
m∑
i=1

∑
j∈Fi

pjxj. (4.2)

The third discrete optimization model is the Baggage Coverage Problem (BCP), which maxi-

mizes the BC measure. BCP uses the same set of constraints and variables as (4.1) with an objective

function given by

max zBCP =
m∑
i=1

∑
j∈Fi

wjxj. (4.3)

The fourth discrete optimization model is the Target Coverage Problem (TCP), which maxi-

mizes the TC measure. The variables for the TCP are y1, y2, ..., ym, where yk = 1 if target k is

covered and 0 otherwise, k = 1, 2, ..., d. When target k (given by D1, D2, ..., Dd) is covered, all of

the flights going to target k are covered. TCP is stated as follows:
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max zTCP =
d∑

k=1

yk (4.4)

subject to
d∑

k=1

∑
j∈Fi∩Dk

wjyk ≤ ci, i = 1, 2, ...,m

d∑
k=1

m∑
i=1

∑
j∈Fi∩Dk

ajyk ≤ B

yk ∈ {0, 1}, k = 1, 2, ..., d.

The TCP constraints and objective function are analogous to the constraints in FCP, PCP, and

BCP. The first set of constraints ensures that the bags on the covered flights do not exceed the

screening capacity at the origin airports. The second constraint ensures the cost of screening the

bags on the covered flights does not exceed a given budget. The third set of constraints ensures

that the yk variables take on binary values.

All of these four discrete optimization problems are NP-hard. They are shown to be NP-hard

through a polynomial transformation from the Two-Dimensional Knapsack Problem (2-KP) and

the Multi-Dimensional Knapsack Problem (MDKP).

Theorem 3 FCP is NP-hard.

Proof. Cardinality 2-KP is a particular case of FCP when m = 1 and F1 = {1, 2, ..., n} (Kellerer

et al. 2004, pg. 53). In this case, there are n items corresponding to the n flights, each of which

has weights wj and aj , j = 1, 2, ..., n. The two knapsack capacities are c1 and B. FCP is solvable

in polynomial time when B ≥ ∑n
j=1 aj or when each aj is a multiple of wj , j = 1, 2, ..., n, with

a common multiple across all flights. In the former case, the screening operations at the m origin

airports are independent. In both cases, the optimal solution is to greedily cover flights from the

smallest to largest wj values at each of the origin airports. 2

Theorem 4 PCP is NP-hard.

Proof. Follows from FCP being NP-hard. PCP degenerates into m independent 0-1 knapsack

problems when B ≥ ∑n
j=1 aj , each of which corresponds to the screening operations at one of the

m origin airports. However, this particular case of PCP is not NP-hard in the strong sense. 2

Theorem 5 BCP is NP-Hard.
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Proof. Follows from FCP being NP-hard. BCP degenerates into m independent subset-sum prob-

lems when B ≥ ∑n
j=1 aj , each of which corresponds to the screening operations at one of the m

origin airports. However, this particular case of BCP is not NP-hard in the strong sense. 2

Theorem 6 TCP is NP-Hard.

Proof. Multi-Dimensional Knapsack Problem (MDKP) is a particular case of TCP (Kellerer et al.

2004, pg. 53) . In this case, there are d items corresponding to the targets and m+1 knapsacks, with

the first m knapsacks corresponding to the capacities at the origin airports and the last knapsack

corresponding to the budget constraint. Each item has weights Wik =
∑

j∈Fi∩Dk
wj for knapsacks

i = 1, 2, ...,m (the sum of the baggage going from origin airport i to target k) and W(m+1)k =∑m
i=1

∑
j∈Fi∩Dk

aj for knapsack m + 1 (the total cost to screen the baggage going to target k),

k = 1, 2, ..., d. The m + 1 knapsack capacities are c1, c2, ..., cm and B. Note that this problem

remains NP-hard even when B ≥ ∑n
j=1 aj (MDKP is a particular case of the resulting problem

with m knapsacks) and when there is one origin airport (Cardinality 2-KP is a particular case of

the resulting problem). 2

One of the goals of this chapter is to compare the screening policy when maximizing the en-

counter number (EN) to the screening policies when maximizing the other four performance mea-

sures. To make this comparison, note that the EN reflects the total number of bags that are screened,

regardless of whether they cover targets or flights. Consider bags to be randomly screened when

bags at the same origin airport are equally likely to be screened, depending on the origin airport’s

capacity and assigned budget. Under such a scenario, it is possible to cover several flights and

targets. However, due to the large number of ways to screen bags and the relatively few ways to

cover flights and targets, it is unlikely that maximizing the EN measure by screening as many bags

as possible simultaneously covers flights and targets.

To see that maximizing the EN measure covers few flights, assume that each bag at an origin

airport is equally likely to be screened given the capacity level and budget level allocated to the

origin (i.e., the fraction of b used to screen bags at origin airports). Then the probability of covering

flights resulting in non-zero FC, PC, BC and TC measures can be determined. The probability of

covering a flight is determined by computing the number of solutions resulting in a specific FC,

PC, BC, and TC measures over the total number of ways to screen bags. There are several methods
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for determining the number of solutions resulting in specific FC, PC, BC, and TC measures that

utilize the knapsack problem substructures. Lambe (1974), Padberg (1971), and Beged-Dov (1972)

provide lower and upper bounds for the number of feasible solutions for the Integer Knapsack

Problem. Since these methods assume that items can be added to the knapsack multiple times they

must be adapted to consider the 0-1 Knapsack Problem structure used by the models in this paper

(where flights and targets can be covered only once), resulting in a smaller number of feasible

solutions. Dyer (2003) provides an algorithm for approximately counting the number of feasible

solutions in the 0-1 Knapsack Problem and MDKP. As the example in Section 3 illustrates, this

number is likely to be extremely small compared to the total number of ways to screen bags.

The total number of ways to screen bags is computed as follows for two particular cases. First

consider the budget B being sufficiently large such that the entire screening capacity can be used

at each origin airport and assume that ci ≤
∑

j∈Fi
Wi, i = 1, 2, ...,m. Then the total number of

ways to screen exactly EN =
∑m

i=1 ci bags is

m∏
i=1

(
Wi

ci

)
,

where Wi =
∑

j∈Fi
wi, i = 1, 2, ...,m.

For general levels of the budget B, consider the particular case when the cost to screen each

bag is a constant value q, such that EN = ⌊B/q⌋ total bags can be screened across the m origins,

resulting in aj = qwj , j = 1, 2, ..., n. Let I denote the set of unique budget allocations to the

origins, with (b1, b2, ..., bm) denoting a single group of budget allocations to the m origins that

fully utilizes the budget EN (i.e.,
∑m

i=1 bi = EN ). Then, the total number of ways to screen EN =∑m
i=1 bi bags is

∑
(b1,b2,...,bm)∈I

m∏
i=1

(
Wi

bi

)
. (4.5)

Note that I is potentially a large set, and its size can be determined by inclusion-exclusion as

follows (Brualdi 1999). Let S denote the set of ways in which EN bags to be screened are allocated

to the origins, and let Ai denote the set of ways in which the budget allocation to origin i exceeds

its capacity (i.e., bi > ci), then

|I| = |Ā1 ∩ Ā2 ∩ ... ∩ Ām| = |S| −
m∑
i

|Ai|+
∑
i ̸=j

|Ai ∩ Aj|+ ...+ (−1)m|A1 + A2 + ...+ Am|.
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Then,

|S| =
(
EN +m− 1

EN

)
.

The values of Ai, i = 1, 2, ...,m, depend on EN and ci, with

|Ai| =

(
m− 1 + EN − (ci + 1)− 1

m− 1

)
, if EN > ci, and

|Ai| = 0 otherwise,

and for i ̸= j,

|Ai ∩ Aj| =

(
m− 1 + EN − (ci + 1)− (cj + 1)− 1

m− 1

)
, if EN > ci + cj, and

|Ai ∩ Aj| = 0 otherwise,

and so on. This analytical method for determining the total number of ways to screen bags is

intractable, and hence, it is impractical to use. However, it suggests that the EN may be ill-suited for

covering flights and targets, since there is an extremely large number of solutions that correspond

to a constant EN value, few of which cover flights and targets.

4.5 Goal Programming Models
Goal programming models are used to explore the trade-offs between multiple objectives. Non-

preemptive goal programming models are introduced in this section, where the two objectives are

considered to be of equal importance (Hillier and Lieberman 1990, p. 1009). The three goal pro-

gramming models simultaneously consider two objectives, which consist of maximizing the FC,

PC, pr BS measures with the goal of maintaining a minimum number of covered targets, given

budget and screening capacity constraints.

The first goal programming model is the Target Coverage Flight Coverage Problem (TCFCP).

The goal is to maximize the number of flights covered while maintaining a minimum number of

covered targets. The parameter T denotes the minimum number of targets to be covered. The

variables are x1, x2, ..., xn, and y1, y2, ..., yd, and they are defined in the same way as in the sin-

gle objective discrete optimization models in Section 4. TCFCP is formally stated as an integer

programming model.

max zTCFCP =
m∑
i=1

∑
j∈Fi

xj (4.6)
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subject to
d∑

k=1

yk ≥ T∑
j∈Fi

wjxj ≤ ci, i = 1, 2, ...,m

n∑
j=1

ajxj ≤ B

yk ≤ xj, j ∈ Dk, k = 1, 2, ..., d

xj ∈ {0, 1}, j = 1, 2, ..., n

yk ∈ {0, 1}, k = 1, 2, ..., d.

The objective function in (4.6) maximizes the number of covered flights, which captures the

FC measure. The first constraint ensures that the minimum number of covered targets are covered.

The second set of constraints ensures that the total number of bags on the covered flights from each

origin airport does not exceed the origin airport’s screening capacity. The third constraint ensures

that the cost of screening the bags on the covered flights does not exceed the budget. The fourth set

of constraints ensures that in order for a target to be covered, all flights to that target are covered.

The final two sets of constraints ensure that the xj and yk variables are binary.

The second goal programming model is the Target Coverage Passenger Coverage Problem

(TCPCP), which maximizes the number of passengers on the covered flights while maintaining a

minimum number of covered targets. TCPCP uses the same variables and constraints as in (4.6),

but its objective function maximizes the PC measure:

max zTCPCP =
m∑
i=1

∑
j∈Fi

pjxj. (4.7)

The third goal programming model is the Target Coverage Baggage Coverage Problem (TCBCP),

which maximizes the number of bags on the covered flights while maintaining a minimum number

of covered targets. TCBCP uses the same variables and constraints as in (4.6), but its objective

function maximizes the BC measure:

max zTCBCP =
m∑
i=1

∑
j∈Fi

wjxj. (4.8)

It should be noted that the discrete optimization model in (4.6) can be used to optimally allocate

resources according to the TC measure when lifting the assumption that the set of incoming flights

are mapped to a single target. The formulation for TCP considered in (4.4) cannot be used when the
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sets of flights associated with the targets D1, D2, ..., Dd are overlapping. Lifting this assumption

is useful when defining targets based on geographical areas that do not necessarily correspond to

destination airports in the United States. For example, a flight with a destination airport of Detroit

could be used for the targets of Cleveland, Buffalo, and Boston in addition to Detroit. Thus, by

changing the objective function in (4.6) to
∑d

k=1 yk as in (4.4) and by omitting the first constraint,

the model in (4.6) can be used as an alternative, generalized TCP formulation.

4.6 Greedy Heuristics
Exact algorithms, such as branch and bound, can result in long computation times when solv-

ing the integer programming models, since all of the discrete optimization models are NP-hard.

Several greedy heuristics are applied to the models introduced in Sections 4.4 and 4.5 in order to

identify near-optimal solutions in a reduced amount of CPU time. Greedy heuristics for multi-

dimensional knapsack problem are used, since all of the discrete optimization models considered

have a multidimensional knapsack sub-structure. Note that all of the greedy heuristics considered

define an efficiency for each flight, ej, j = 1, 2, ..., n, or each target ek, k = 1, 2, ..., d. As with

knapsack greedy heuristics, the flights or targets for all greedy heuristics introduced in this section

are covered in non-increasing order of their efficiency values.

First, the two greedy heuristics used for the single objective models are introduced, which adapt

the Dobson heuristic and the Toyoda and Senju heuristic (Kellerer et al. 2004 pg. 257) to the single

objective discrete optimization models. The reader is referred to Dobson (1982) and Toyoda and

Senju (1968) for more details.

The efficiency values of the Dobson heuristic consist of a ratio, whose numerator is the objec-

tive function coefficient and whose denominator consists of the sum of the coefficients across all

of the constraints. The Dobson heuristic efficiency values for FCP, PCP, and BCP are

ej =
1

wj + aj
,

ej =
pj

wj + aj
,

ej =
wj

wj + aj
,
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respectively, j = 1, 2, ..., n. The Dobson heuristic efficiency values for TCP are

ek =
1∑m+1

i=1 Wik

, k = 1, 2, ..., d.

Recall that Wik =
∑

j∈Fi∩Dk
wj for knapsacks i = 1, 2, ...,m (the sum of the baggage going from

origin airport i to target k) and W(m+1)k =
∑m

i=1

∑
j∈Fi∩Dk

aj for knapsack m+ 1 (the total cost to

screen the baggage going to target k), k = 1, 2, ..., d.

The efficiency values of the Toyoda and Senju heuristic capture the relative contribution of

the constraints. Let hij denote the excess capacity in knapsack i (either a capacity or the budget

constraint) if all flights are covered. For FCP, PCP, and BCP,

hij = max{0,
∑
j∈Fi

wj − ci}, i = 1, 2, ...,m

and

h(m+1)j = max{0,
n∑

j=1

aj −B}.

If there is not some i (i = 1, 2, ...,m) for each j = 1, 2, ..., n such that hij > 0, then Toyoda and

Senju heuristic efficiency value ej = 0, j = 1, 2, ..., n. Otherwise, the Toyoda and Senju heuristic

efficiency values for FCP, PCP, and BCP are

ej =
1∑m

i=1(wjhij) + ajh(m+1)j

,

ej =
pj∑m

i=1(wjhij) + ajh(m+1)j

,

ej =
wj∑m

i=1(wjhij) + ajh(m+1)j

,

respectively, j = 1, 2, ..., n. Note that the Toyoda and Senju heuristic efficiency values are up-

dated after each new flight is covered, which change the remaining capacities c1, c2, ..., cm and the

remaining budget B.

For TCP, let hik denote the excess capacity in knapsack i (either a capacity or the budget

constraint) if all targets are covered,

hik = max{0,
d∑

k=1

Wik − ci}, i = 1, 2, ...,m,

and

h(m+1)k = max{0,
d∑

k=1

W(m+1)k −B}.
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If there is not some i (i = 1, 2, ...,m+1) for each k = 1, 2, ..., d such that hij > 0, then the Toyoda

and Senju heuristic efficiency value ek = 0. Otherwise, the Toyoda and Senju heuristic efficiency

values for TCP are

ek =
1∑m+1

i=1 Wikhik

,

k = 1, 2, ..., d. Note that the Toyoda and Senju heuristic efficiency values are updated after each

new target is covered, which change the remaining capacities c1, c2, ..., cm and the remaining bud-

get B.

Next, consider the goal programming models (TCFCP, TCPCP, TCBCP). The greedy heuristics

are applied in two stages. In the first phase, a greedy heuristic for TCP is used to cover targets until

T targets are covered (the minimum number of targets to be covered). The three greedy heuristics

for TCP include the Dobson heuristic and the Toyoda and Senju heuristic (introduced earlier) as

well as the Scaled Dobson heuristic, whose efficiency values are

ek =
1∑m

i=1(Wik/ci) +W(m+1)k/B
, k = 1, 2, ..., d.

Note that ek > 0, k = 1, 2, ..., d, unless the budget and all origin capacities are zero. The effi-

ciency values are updated after each new target is covered, which change the remaining capacities

c1, c2, ..., cm and the remaining budget B.

In the second stage, one of two greedy heuristics are used (the Dobson heuristic and the Toyoda

and Senju heuristic) that correspond to the objective that maximizes either the FC, PC, or BC

measure. The adjusted budget and capacities (e.g., after adjusting for the flights that were covered

in order to cover T targets) are used to compute the efficiency values for the FCP, PCP, and BCP

heuristics. Thus, six greedy heuristics are applied to each goal programming model, each of which

uses one of three heuristics for the first stage and one of two heuristics for the second stage. A

comparison of all of the greedy heuristics is performed in the next section.

4.7 Computational Results
This section introduces and analyzes a real-world example using the discrete optimization models

from Sections 4.4 and 4.5. The results shed light on how bags are screened according to different

performance measures while maintaining identical EN measures.
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A set of flights was constructed using all flights for a single day between eighteen international

airports (m = 18) and fifteen domestic airports, resulting in a total of n = 469 flights. Table

4.2 reports the airports used and their corresponding airport codes. The data gathered include the

type of aircraft used for a particular flight, the number of seats available, and the available cargo

capacity. The example defines each target as one of the destination airports, resulting in (d = 15)

targets.

The number of passengers aboard a flight was determined by using the seating capacity of the

aircraft. It is assumed that the enplanement rate on a flight is uniformly distributed between 0.80

and 0.92, to be consistent with the average enplanement rate of 0.86 (United States Department

of Transportation 2009). The number of bags on each flight is assumed to be a function of the

number of passengers on the flight. The average number of bags per passenger is 1.45 (U.S.

Transportation Security Administration 2009). Therefore, it is assumed that the number of bags

per passenger on each flight is uniformly distributed between 1.3 and 1.6. It is assumed that all

bags are large enough to contain a nuclear weapon. This assumption can be lifted by redefining the

set of bags as only those that are large enough to contain a nuclear weapon. The size and weight

of nuclear weapons varies according to the source used and its construction, and some nuclear

devices, such as those made from a plutonium source, are small enough to fit in checked baggage.

The numbers of passengers and bags on each flight were randomly generated and then interpreted

as known, deterministic values. Table 4.3 summarizes the total number of flights, passengers,

and bags between origin airports and destination airports. For instance, there are a total of 745

passengers with 1117 bags flying from Amsterdam to Atlanta across 3 flights.

The other parameters include the screening capacities at each of the origin airports, the budget,

and the cost to cover each flight. The screening capacities for the origin airports are based on many

factors, such as the type of the baggage screening device and the number available. It is assumed

that the total screening capacity at an origin airport is ci = C × vi, where vi is the number of

screening devices for that airport and C is the screening capacity per device. Four values for the

capacity per device are considered, with C = 1000, 1250, 2000, 2500 bags per day based on ten

hours of operation per day. The number of screening devices at each origin airport is determined

by the number of bags that depart from that airport divided by 5000 and rounded up to ensure that

there would be at least one device per airport. This results in vi =
⌈∑

j∈Fi
wj

5000

⌉
. The budget B
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ranges from $25K to $300K US per day in increments of $25K. The expected cost of screening a

flight aj includes the purchase price, installation price, cost of modifications, and the lifetime for

the machine, in addition to an employee’s salary and the number of employees for each machine.

The cost was estimated to be q = $2 US per bag. This results in aj = q wj, j = 1, 2, ..., n.

A Monte Carlo simulation with 100, 000 replications was performed in order to analyze the

impact of random screening. The simulation was run using Matlab 7.9.0.529 (R2009b). To reflect

a best case scenario, the capacity per device used is C = 2500 across all budget values. The EN

is computed by taking the minimum of either the total number of bags leaving the origin airport

or the screening capacity at the origin airport. Therefore, the largest possible value of EN in each

replication when the budget is unlimited is

EN =
m∑
i=1

min{ci,
∑
j∈Fi

wj} = 91, 455.

For general values of the budget when the budget is not sufficient to screen all of the bags, the

baggage screening capacity at each origin is reduced proportionally until the resulting capacities

would lead to budget feasible solutions.

At each origin airport, ci of the
∑

j∈Fi
wj bags are randomly screened with equal likelihood

unless ci ≥
∑

j∈Fi
wj , in which case all bags are screened. In all replications with an unlimited

budget, the FC measure is 10 flights, since the screening capacity at several origins was large

enough to screen all departing flights. This would mean that 0.0213 of the flights are covered

if screening is random and the devices are fully utilized, thus maximizing the EN. The PC, BC,

and TC measures are 2782, 3955, and 0, respectively, in all replications. The best Monte Carlo

simulation values across 100, 000 replications are compared to the optimal solution values later in

this section.

4.7.1 Optimization Results

The optimization models were solved using CPLEX 10.0 on a Linux Opteron 2.6 GHz processor

with 4 GB RAM. For the models involving the FC measure, FCP, TCP, and TCFCP, the CPU

time required less than one second for each instance. For PCP and TCPCP, nearly all instances

required less than a minute of CPU time, although several instances required 24 hours of CPU

time. For BCP and TCBCP, most instances required less than five minutes of CPU time. However,

significant number of instances required between one to seven days. Three instances of TCBCP
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did not complete within seven days. The long CPU times for several of the models motivates

the application of greedy heuristics. Long CPU times were not unexpected, since the problem

parameters for the discrete optimization models with the PC and BC measures result in strongly

correlated knapsack problem instances, which often lead to long CPU times in branch and bound

algorithms (Martello et al. 2000).

Figure 1 illustrates the optimal solution values for FCP, PCP, BCP, and TCP for all capacity

levels. Figure 4.1(a) shows that FCP obtains a solution value of 322 covered flights when C = 2500

and B ≥ $175K. This can be compared to the Monte Carlo simulation results that cover ten flights,

which reveals substantial improvement in covered flights. Figure 4.1(b) illustrates that the greatest

number of passengers on covered flights is 64, 686 when C = 2500 and B ≥ $200K. This can

be compared a PC measure of 2, 782 in the Monte Carlo simulation. Figure 4.1(c) illustrates that

when C = 2500 and B ≤ $75K, the BC measure is the same for all screening capacities. The

largest BC measure occurs when C = 2500 and B ≥ $200K, resulting in 91, 010 bags on covered

flights. Figure 4.1(d) shows the TC values, in which up to ten targets could be covered when

C = 2500 and B ≥ $125K. Note that when the budget is less than $50K, FCP is the only model

with different objective function values across the four capacity levels.

Figure 2 illustrates the same information as in Figure 1 in terms of the EN value rather than

the budget. It illustrates how the same EN value can lead to different FC, PC, BC, and TC mea-

sure values, depending on the device capacities, and it highlights the need to consider additional

performance measures for determining how to use limited screening capacities.

Figure 3 illustrates the corresponding FC, PC, BC, and TC measure values when solving FCP,

PCP, BCP, and TCP when C = 2500. Note that these solution values are not necessarily optimal,

except when the performance measure matches the problem considered (e.g., the TC measure and

TCP). Figure 4.3(a) illustrates the FC measure for FCP, PCP, BCP, TCP, and EN (from the Monte

Carlo simulation results). At most 322 flights can be covered when solving the FCP, whereas TCP

results in FC measure values of at most 225. All discrete optimization models exceed the EN by

at least 215 flights when B ≥ $150K. Figure 4.3(b) illustrates the PC measure across all models.

The PC measure reaches a value of 64, 686 when solving PCP, whereas the TCP results in a PC

measure of at most 47, 429. Note that all proposed models exceed the corresponding EN by at

least 44, 647 passengers on covered flights. Figure 4.3(c) illustrates the BC measure across all
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models. The BC measure is at most 91, 010 when solving BCP. The BC measure indicates that

the FCP, PCP, BCP, and TCP fully utilize the available screening capacity for B ≤ $125K, which

suggests that all performance measures are robust in terms of the BC measure. All of the discrete

optimization model BC values exceed the EN by at least 87, 055 bags when B ≥ $150K. Figure

4.3(d) illustrates the TC measure across all models. The PCP and EN result in TC values of zero

across all levels of the budget. BCP covers at most two targets, FCP covers at most one target,

and PCP and EN cover no flights. This suggests that the FC, PC, BC, and EN measures are not

robust in terms of covering targets, and it motivates a comparison of the tradeoffs between the TC

measure and the FC, PC, and BC measures in the goal programming models.

Figure 4 illustrates the tradeoff between the FC, PC, BC measures and the TC measures as

reflected in the TCFCP, TCPCP, and TCBCP solutions with C = 2500 and B = $275K. In Figure

4.4(a), 322 flights can be covered while ensuring that up to four targets are covered and that 312

flights can be covered while ensuring that ten targets are covered. Figure 4.4(b) suggests that ten

targets can be covered with a reduction of 997 passengers not on covered flights, which is a relative

reduction of 0.015 in the PC measure as compared to when no targets are covered. Three TCBCP

instances did not complete after one week of CPU time (for T = 8, 9, 10). The best integer BC

values are reported, indicated by the circled values in Figure 4.4(c), which are not necessarily

optimal. Figure 4.4(c) suggests that ten targets can be covered with a reduction of 22 bags not on

covered flights, which is a relative reduction of 2.4×10−4 in the BC measure as compared to when

no targets are covered. These results suggest that the EN measure is not adequate for evaluating

baggage screening systems, since many targets and flights can be covered with identical EN values.

Figure 5 illustrates the optimal solution values for TCFCP, TCPCP, and TCBCP when C =

1250, 2500 for T = 0, 7, 10 as a function of EN. Note that it is not possible to cover ten targets in

any of the models when C = 1250. In Figure 4.5(a), when C = 1250 and B ≥ $100K, there is

a difference of at most 21 in the FC measure when comparing T = 0 to T = 7. When C = 2500

and B ≥ $175K, there is a difference of at most 10 in the FC measure when comparing T = 0

to T = 7. Figure 4.5(b) illustrates similar results when comparing PC measure and the number of

covered targets across both values of C. For example, when C = 2500, there is a difference of 100

passengers when comparing T = 0 to T = 10 with B = $275K. Figure 4.5(c) also yields similar

results when comparing BC measure and the number of covered targets across both values of C.
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Table 4.2: Airport codes of origins and targets

ORIGIN TARGET

Amsterdam-AMS Atlanta-ATL

Beijing-PEK Baltimore-BWI

Brussels-BRU Boston-BOS

Frankfurt-FRA Chicago-ORD

Hong Kong-HKG Cincinnati-CVG

London-LHR Denver-DEN

Madrid-MAD Detroit-DTW

Manila-MNL Houston-IAH

Montreal-YUL Los Angeles-LAX

Moscow-DOM Minneapolis-MSP

Mumbai-BOM New York-JFK

Munich-MUC Newark-EWR

Paris-CDG San Francisco-SFO

Rome-FCO Seattle-SEA

Shanghai-SHA Washington D.C.-IAD

Tokyo-NRT

Toronto-YYZ

Zurich-ZRH

When C = 2500, there is no difference in the BC measure between the T = 0 to T = 10 scenarios

across all values of B, which indicates that the baggage screening capacity is fully utilized for

all scenarios. Similar to Figure 2, the TCFCP result in the greatest relative difference in the FC

measure when compared to the relative differences in the PC measure (from TCPCP) or in the BC

measure (from TCBCP). This implies that the tradeoff in the PC or BC values when moving from

T = 0 to T = 7 (or 10) is much lower than the tradeoff in the FC values.

82



Table 4.3: Total number of flights, passengers, and bags from origins to targets
TARGET

ORIGIN ATL BWI BOS ORD CVG DEN DTW IAH LAX MSP JFK EWR SFO SEA IAD

AMS
Flights 3 0 1 1 0 0 4 3 1 3 4 3 1 1 2

Passengers 745 0 283 252 0 0 1227 1017 278 753 977 722 382 273 470
Bags 1117 0 397 401 0 0 1812 1568 420 1080 1465 1034 606 392 633

PEK
Flights 0 0 0 1 0 0 0 0 1 0 1 1 2 1 1

Passengers 0 0 0 330 0 0 0 0 278 0 400 336 589 251 335
Bags 0 0 0 448 0 0 0 0 382 0 578 506 806 399 523

BRU
Flights 0 0 0 1 1 0 0 0 0 0 3 2 0 0 1

Passengers 0 0 0 318 178 0 0 0 0 0 589 473 0 0 308
Bags 0 0 0 496 249 0 0 0 0 0 872 668 0 0 439

FRA
Flights 2 0 2 6 2 1 2 1 2 0 4 4 3 1 4

Passengers 539 0 580 1923 519 307 525 279 699 0 1341 1482 1167 283 1321
Bags 800 0 828 2791 754 477 790 394 1042 0 1981 2208 1598 415 1870

HKG
Flights 0 0 0 1 1 0 0 0 2 0 2 1 4 0 0

Passengers 0 0 0 414 399 0 0 0 765 0 785 343 1503 0 0
Bags 0 0 0 620 560 0 0 0 1047 0 1191 475 2177 0 0

LHR
Flights 3 1 7 12 9 2 0 5 7 1 18 7 5 2 9

Passengers 896 263 1819 3487 2574 671 0 1667 2513 240 6015 2004 1847 712 2854
Bags 1210 352 2611 5211 3770 966 0 2387 3710 382 8648 2961 2859 977 4161

MAD
Flights 1 0 0 1 0 0 0 0 0 0 3 1 0 0 1

Passengers 250 0 0 320 0 0 0 0 0 0 827 178 0 0 304
Bags 377 0 0 455 0 0 0 0 0 0 1161 278 0 0 434

MNL
Flights 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

Passengers 0 0 0 0 0 0 0 0 422 0 0 0 385 0 0
Bags 0 0 0 0 0 0 0 0 657 0 0 0 523 0 0

YUL
Flights 3 0 5 13 2 0 4 0 1 1 6 8 1 0 5

Passengers 183 0 220 743 120 0 260 0 110 66 297 395 101 0 321
Bags 263 0 316 1076 180 0 377 0 153 93 431 568 133 0 479

DVG
Flights 1 0 0 1 0 0 0 0 1 0 2 0 0 0 1

Passengers 249 0 0 254 0 0 0 0 233 0 493 0 0 0 233
Bags 350 0 0 394 0 0 0 0 320 0 685 0 0 0 318

BOM
Flights 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Passengers 267 0 0 0 0 0 0 0 0 0 246 0 0 0 0
Bags 383 0 0 0 0 0 0 0 0 0 325 0 0 0 0

MUC
Flights 1 0 1 2 0 0 0 0 0 0 2 1 1 0 2

Passengers 265 0 258 678 0 0 0 0 0 0 383 309 332 0 578
Bags 381 0 343 939 0 0 0 0 0 0 607 403 483 0 841

CDG
Flights 4 0 2 2 2 0 1 2 3 1 7 6 1 1 4

Passengers 1094 0 641 573 503 0 239 584 970 240 2067 1208 401 228 1225
Bags 1549 0 967 890 673 0 329 796 1330 328 3061 1797 594 336 1811

FCO
Flights 1 0 0 2 0 0 0 0 0 0 6 2 0 0 2

Passengers 267 0 0 508 0 0 0 0 0 0 1480 434 0 0 549
Bags 358 0 0 733 0 0 0 0 0 0 2133 654 0 0 786

SHA
Flights 1 0 0 2 0 0 0 0 0 0 1 1 1 0 0

Passengers 331 0 0 692 0 0 0 0 0 0 335 337 380 0 0
Bags 480 0 0 1055 0 0 0 0 0 0 529 480 607 0 0

NRT
Flights 1 0 0 4 0 0 1 1 7 1 4 1 5 2 2

Passengers 398 0 0 1504 0 0 411 302 2406 404 1317 330 1602 269 630
Bags 605 0 0 2182 0 0 607 447 3601 595 1893 442 2303 849 914

YYZ
Flights 12 4 11 25 5 4 8 7 4 5 7 22 3 1 5

Passengers 768 130 619 3474 304 386 515 347 518 378 555 1558 340 93 276
Bags 1106 189 888 4956 447 552 738 492 739 542 773 2220 514 140 381

ZRH
Flights 1 0 0 2 0 0 0 0 1 0 3 2 0 0 1

Passengers 257 0 0 531 0 0 0 0 249 0 770 319 0 0 256
Bags 402 0 0 774 0 0 0 0 349 0 1163 454 0 0 339
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(d) TCP

Figure 4.1: Optimal solution values for FCP, PCP, BCP, and TCP as a function of budget
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(c) BCP
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(d) TCP

Figure 4.2: Optimal solution values for FCP, PCP, BCP, and TCP as a function of the EN
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(a) FC Measure

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Budget (USD, Thousands)

P
C

 M
ea

su
re

 (
T

ho
us

an
ds

)
 

 
PCmeasure for PCP
PCmeasure for BCP
PCmeasure for FCP
PCmeasure for TCP
PCmeasures for EN
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(c) BC Measure
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Figure 4.3: Corresponding FC, PC, BC, and TC measures for FCP, PCP, BCP, TCP and EN as a
function of budget for C = 2500
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Figure 4.4: TCFCP, TCPCP, and TCBCP for C = 2500 and B = $275K USD
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(b) TCPCP
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Figure 4.5: TCFCP, TCPCP, and TCBCP optimal solution values as a function of budget for C =
1250, 2500 and T = 0, 7, 10
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4.7.2 Greedy Heuristics Results

The long CPU times to solve several PCP, BCP, TCPCP, and TCBCP motivate the use of greedy

heuristics introduced in Section 6 to efficiently identify near-optimal solutions. All heuristics were

run using Matlab 7.9.0.529 (R2009b) on an Intel Xeon X5365 3 GHz processor with 3.25 GB of

RAM. The results are illustrated for the scenarios when C = 2500.

Tables 4.4 – 4.7 summarize the solution values for each performance measure from the Dobson

heuristics and Toyoda & Senju (T & S) heuristics. Table 4.4 reports the values of the FC measure

using the Dobson heuristic and the Toyoda and Senju heuristic for FCP, PCP, BCP, and TCP. For

convenience, the optimal solution values for FCP are listed. Heuristic values that match the optimal

solution values are in boldface. Both FCP heuristics identify the optimal solutions for all values

of B. The PCP heuristics identify solutions whose FC values are at least a factor of 0.370 of the

optimal solution values, the BCP heuristics identify solutions whose FC values are at least a factor

of 0.227 of the optimal solution values, and the TCP heuristics identify solutions whose FC values

are at least a factor of 0.244 of the optimal solution values. The PCP, BCP, and TCP heuristics all

fail to cover many flights.

Table 4.5 reports the values of the PC measure using the Dobson heuristics and the Toyoda and

Senju heuristics for FCP, PCP, BCP, and TCP. The PCP Dobson heuristic identifies one optimal

solution (when B = $25K), and the PCP Toyoda and Senju heuristic does not identify any optimal

solutions. The PCP Dobson heuristic and the Toyoda and Senju heuristics identify PC solutions

whose values are at least a factor of 0.990 of the optimal solution values. The FCP heuristics

identify solutions whose PC values are at least a factor of 0.904 of the optimal solution values,

the BCP heuristics identify solutions whose PC values are at least a factor of 0.893 of the optimal

solution values, and the TCP heuristics identify solutions whose PC values are at least a factor of

0.590 of the optimal solution values.

Table 4.6 reports the values of the BC measure using the Dobson heuristics and the Toyoda and

Senju heuristics for FCP, PCP, BCP, and TCP. The BCP Dobson heuristic identifies two optimal

BCP solutions (when B = $100K, $150K), and the BCP Toyoda and Senju heuristic identifies

one optimal solution (when B = $100K). The BCP Dobson heuristic and the Toyoda and Senju

heuristics identify solutions to BCP whose values are at least a factor of 0.980 of the optimal
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solution value. The FCP heuristics identify solutions whose BC values are at least a factor of 0.957

of the optimal solution values, the PCP heuristics identify solutions whose BC values are at least

a factor of 0.985 of the optimal solution values, and the TCP heuristics identify solutions whose

BC values are at least a factor of 0.608 of the optimal solution values. The FCP, PCP, and BCP

heuristics tend to nearly fully-utilize the baggage screening capacity.

Table 4.7 reports the values of the TC measure using the Dobson heuristics and the Toyoda and

Senju heuristics for FCP, PCP, BCP, and TCP. It reveals that both the TCP Dobson heuristic and the

TCP Toyoda and Senju heuristic identify the optimal TCP solutions for all scenarios considered.

The PCP heuristics do not cover any targets, whereas both FCP heuristics cover at most one target,

and both BCP heuristics cover at most four targets. The results of Tables 4.4 – 4.7 suggest that the

FCP, PCP, and BCP heuristics are effective in covering targets, and that the TCP heuristics are not

effective for covering flights, passengers, or bags.

The Dobson heuristics identify solutions whose values are at least as good as the their corre-

sponding Toyoda and Senju heuristic solution values in all but two scenarios across all four models

considered (BCP with B = $25K, $175K), which suggests that despite its simplicity, the Dobson

heuristic is more effective for FCP, PCP, BCP, and TCP.

Tables 4.8, 4.9, and 4.10 summarize the solution values identified by the heuristics used for

the three goal programming models when C = 2500, B = $275K, and T varies from 1 to 10.

All heuristics cover T targets in the scenarios considered, and hence, only the objective function

values are reported (either FC, PC, or BC values). Table 4.8 reports the FC values for all of

the heuristics. The TCFCP heuristics identify FC solution values that are at least 0.985 of the

optimal solution values, whereas the TCPCP heuristics identify FC solution values that are at

least 0.898 of the optimal solution value, and the TCBCP heuristics identify FC solution values

that are at least 0.811 of the optimal solution values. A heuristic dominates the other heuristics

if it identifies solution values whose values are at least as good as the those identified by the

other heuristics for all scenarios considered (in this case, across all values of T ). None of the six

TCFCP heuristics dominate the other heuristics in terms of the FC values. However, each of the

three TCFCP heuristics that use the Toyoda and Senju heuristic in the FC phase dominate other

heuristics in all but two or fewer scenarios, which suggests that the Toyoda and Senju heuristic in

the FC phase identifies better solution values than the Dobson heuristic in the FC phase.
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Table 4.9 reports the PC values for the heuristics. The TCPCP heuristics identify PC solution

values that are at least 0.983 of the optimal solution values, whereas the TCFCP heuristics identify

PC solution values that are at least 0.930 of the optimal solution value and the TCBCP heuristics

identify PC solution values that are at least 0.926 of the optimal solution values. None of the six

TCPCP heuristics dominate the other heuristics in terms of the PC values.

Table 4.10 reports the BC values for the heuristics. The TCBCP heuristics identify solution val-

ues that are at least 0.955 of the optimal BC solution values, whereas the TCFCP heuristics identify

BC solution values that are at least 0.945 of the optimal solution values, and the TCPCP heuristics

identify BC solution values that are at least 0.978 of the optimal solution values. The TCBCP

heuristic that uses the Scaled Dobson heuristic in the TC phase and then the Toyoda and Senju

heuristic in the BC phase dominates all other TCBCP heuristics. The three TCBCP heuristics that

use the Toyoda and Senju heuristics in the BC phase identify significantly better BC values than

the corresponding TCBCP heuristic that uses the Dobson heuristic in the BC phase. This observa-

tion mirrors that of the TCFCP heuristics (and, to a lesser extent, of the TCPCP heuristics), which

suggests that the Toyoda and Senju heuristic for the second phase is more effective than using the

Dobson heuristic. We also note that the three TCPCP heuristics that use the Dobson heuristic in the

BC phase outperform the corresponding TCBCP heuristic in terms of the BC solution values they

identify in all thirty instances. The TCPCP heuristics that use the Toyoda and Senju heuristic in the

BC phase outperform the corresponding TCBCP heuristics in terms of the BC solution values they

identify in fourteen of the thirty instances. This observation is surprising, since it suggests that

heuristics aimed at covering the most passengers more fully utilize the baggage screening capacity

than heuristics designed to fully utilize the baggage screening capacity. This is largely the result of

the TCBCP having a Subset Sum Problem, where the efficiency values are identical across many

flights.
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Table 4.4: FCP, PCP, BCP, and TCP heuristic results for FC measure
Budget Optimal FCP PCP BCP TCP

(in USD) FC Values Dobson T & S Dobson T & S Dobson T & S Dobson T & S

25000 135 135 135 50 53 31 32 33 33

50000 175 175 175 93 101 61 85 72 72

75000 210 210 210 133 144 89 111 123 123

100000 242 242 242 181 183 114 144 158 158

125000 271 271 271 225 227 169 208 186 186

150000 298 298 298 254 256 198 237 186 186

175000 322 322 322 285 284 263 264 186 186

200000 322 322 322 290 290 268 268 186 186

225000 322 322 322 290 290 268 268 186 186

250000 322 322 322 290 290 268 268 186 186

275000 322 322 322 290 290 268 268 186 186

300000 322 322 322 290 290 268 268 186 186

Table 4.5: FCP, PCP, BCP, and TCP heuristic results for PC measure
Budget Optimal FCP PCP BCP TCP

(in USD) PC Values Dobson T & S Dobson T & S Dobson T & S Dobson T & S

25000 9518 8603 8603 9518 9444 8497 8560 6264 6264

50000 18842 17698 17708 18841 18675 17076 17298 13635 13635

75000 27980 26491 26574 27975 27743 25701 25750 22651 22651

100000 36918 34923 35106 36915 36664 34267 34364 29162 29162

125000 45690 43692 43695 45686 45470 42999 42974 38187 38187

150000 54307 52382 52417 54302 53927 51625 51561 38187 38187

175000 62673 60766 60766 62641 62420 60082 60065 38187 38187

200000 64685 60766 60766 64047 64047 61372 61372 38187 38187

225000 64685 60766 60766 64047 64047 61372 61372 38187 38187

250000 64685 60766 60766 64047 64047 61372 61372 38187 38187

275000 64686 60766 60766 64047 64047 61372 61372 38187 38187

300000 64686 60766 60766 64047 64047 61372 61372 38187 38187
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Table 4.6: FCP, PCP, BCP, and TCP heuristic results for BC measure
Budget Optimal FCP PCP BCP TCP

(in USD) BC Values Dobson T & S Dobson T & S Dobson T & S Dobson T & S

25000 12500 12242 12242 12499 12488 12482 12494 9064 9064

50000 25000 24846 24913 24997 24993 24996 24985 19801 19801

75000 37500 37393 37460 37495 37486 37498 37484 32784 32784

100000 50000 49923 49974 49995 49976 50000 50000 42165 42165

125000 62500 62136 62193 62498 62499 62489 62395 55368 55368

150000 75000 74600 74685 74993 74995 75000 74961 55368 55368

175000 87500 87090 87090 87462 87231 87330 87403 55368 55368

200000 91010 87090 87090 89664 89664 89232 89232 55368 55368

225000 91010 87090 87090 89664 89664 89232 89232 55368 55368

250000 91010 87090 87090 89664 89664 89232 89232 55368 55368

275000 91010 87090 87090 89664 89664 89232 89232 55368 55368

300000 91010 87090 87090 89664 89664 89232 89232 55368 55368

Table 4.7: FCP, PCP, BCP, and TCP heuristic results for TC measure
Budget Optimal FCP PCP BCP TCP

(in USD) TC Values Dobson T & S Dobson T & S Dobson T & S Dobson T & S

25000 4 0 0 0 0 0 0 4 4

50000 6 0 0 0 0 0 0 6 6

75000 8 1 1 0 0 0 0 8 8

100000 9 1 1 0 0 0 0 9 9

125000 10 1 1 0 0 0 0 10 10

150000 10 1 1 0 0 0 3 10 10

175000 10 1 1 0 0 3 4 10 10

200000 10 1 1 0 0 4 4 10 10

225000 10 1 1 0 0 4 4 10 10

250000 10 1 1 0 0 4 4 10 10

275000 10 1 1 0 0 4 4 10 10

300000 10 1 1 0 0 4 4 10 10
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Table 4.8: FC measure for TCFCP, TCPCP, and TCBCP heuristics for B = $275K
Number of Targets

1 2 3 4 5 6 7 8 9 10

TC Heuristic FC Heuristic FC FC FC FC FC FC FC FC FC FC

TCFCP

DOBSON DOBSON 322 320 319 319 318 317 316 316 315 309

T & S 322 321 320 320 319 318 317 317 316 310

S. DOBSON DOBSON 322 320 319 319 318 318 316 316 315 308

T & S 322 321 320 320 319 319 317 317 316 308

T & S DOBSON 322 320 319 319 318 317 316 316 315 309

T & S 322 321 320 320 319 318 317 317 316 310

TCPCP

DOBSON DOBSON 292 290 290 289 288 289 291 292 294 292

T & S 292 289 290 289 288 289 291 292 294 292

S. DOBSON DOBSON 292 290 290 289 290 291 289 292 294 290

T & S 292 289 290 289 290 291 289 292 294 290

T & S DOBSON 292 290 290 289 288 289 291 292 294 292

T & S 292 289 290 289 288 289 291 292 294 292

TCBCP

DOBSON DOBSON 268 261 262 262 262 268 268 273 274 273

T & S 268 267 268 268 268 274 274 279 279 278

S. DOBSON DOBSON 268 261 262 262 263 265 273 273 274 276

T & S 268 267 268 268 269 271 279 279 279 280

T & S DOBSON 268 261 262 262 262 268 268 273 274 273

T & S 268 267 268 268 268 274 274 279 279 278

TCFCP Optimal FC Values 322 322 322 322 321 321 320 319 316 312
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Table 4.9: PC measure for TCFCP, TCPCP, and TCBCP heuristics for B = $275K
Number of Targets

1 2 3 4 5 6 7 8 9 10

TC Heuristic PC Heuristic PC PC PC PC PC PC PC PC PC PC

TCFCP

DOBSON DOBSON 60766 60289 60100 60196 60413 60460 60581 60627 60772 60706

T & S 60766 60711 60522 60618 60835 60882 61003 61049 61194 61128

S. DOBSON DOBSON 60766 60289 60100 60196 60226 60266 60438 60627 60772 60830

T & S 60766 60711 60522 60618 60648 60688 60860 61049 61194 60830

T & S DOBSON 60766 60289 60100 60196 60413 60460 60581 60627 60772 60706

T & S 60766 60711 60522 60618 60835 60882 61003 61049 61194 61128

TCPCP

DOBSON DOBSON 64043 64021 63901 63763 63533 63677 63583 63342 63388 62820

T & S 64043 63845 63901 63763 63533 63677 63583 63342 63388 62820

S. DOBSON DOBSON 64043 64021 63901 63763 63735 63616 63580 63342 63388 62600

T & S 64043 63845 63901 63763 63735 63616 63580 63342 63388 62600

T & S DOBSON 64043 64021 63901 63763 63533 63677 63583 63342 63388 62820

T & S 64043 63845 63901 63763 63533 63677 63583 63342 63388 62820

TCBCP

DOBSON DOBSON 61372 59868 59913 60082 60077 60100 60100 60101 60358 59998

T & S 61372 61415 61460 61629 61624 61647 61647 61648 61648 61288

S. DOBSON DOBSON 61372 59868 59913 60082 60087 60074 60101 60101 60358 60383

T & S 61372 61415 61460 61629 61634 61621 61648 61648 61648 61424

T & S DOBSON 61372 59868 59913 60082 60077 60100 60100 60101 60358 59998

T & S 61372 61415 61460 61629 61624 61647 61647 61648 61648 61288

TCPCP Optimal PC Values 64681 64664 64636 64604 64566 64492 64411 64301 64085 63689
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Table 4.10: BC measure for TCFCP, TCPCP, and TCBCP heuristics for B = $275K
Number of Targets

1 2 3 4 5 6 7 8 9 10

TC Heuristic BC Heuristic BC BC BC BC BC BC BC BC BC BC

TCFCP

DOBSON DOBSON 87090 86373 86009 86105 86395 86439 86600 86738 87015 87129

T & S 87090 87030 86666 86762 87052 87096 87257 87395 87672 87786

S. DOBSON DOBSON 87090 86373 86009 86105 86080 86215 86485 86738 87015 87587

T & S 87090 87030 86666 86762 86737 86872 87142 87395 87672 87587

T & S DOBSON 87090 86373 86009 86105 86395 86439 86600 86738 87015 87129

T & S 87090 87030 86666 86762 87052 87096 87257 87395 87672 87786

TCPCP

DOBSON DOBSON 89665 89664 89502 89355 89038 89338 89327 89144 89526 89302

T & S 89665 89385 89502 89355 89038 89338 89327 89144 89526 89302

S. DOBSON DOBSON 89665 89664 89502 89355 89362 89302 89317 89144 89526 89120

T & S 89665 89385 89502 89355 89362 89302 89317 89144 89526 89120

T & S DOBSON 89665 89664 89502 89355 89038 89338 89327 89144 89526 89302

T & S 89665 89385 89502 89355 89038 89338 89327 89144 89526 89302

TCBCP

DOBSON DOBSON 89232 86955 87001 87194 87167 87169 87169 87174 87576 87152

T & S 89232 89259 89305 89498 89471 89473 89473 89478 89478 89054

S. DOBSON DOBSON 89232 86955 87001 87194 87188 87188 87174 87174 87576 87715

T & S 89232 89259 89305 89498 89492 89492 89478 89478 89478 89268

T & S DOBSON 89232 86955 87001 87194 87167 87169 87169 87174 87576 87152

T & S 89232 89259 89305 89498 89471 89473 89473 89478 89478 89054

TCBCP Optimal BC Values 91010 91010 91010 91010 91010 91010 91010 (91008) (91003) (90988)

4.8 Conclusions
This chapter analyzes alternative performance measures to the encounter number (or encounter

probability) when examining how to deploy and use baggage screening devices for detecting nu-

clear WMDs in aviation baggage on international commercial aviation flights. Seven discrete

optimization models are formulated and solved for protecting against a direct-to-target attack, in-

cluding three goal programming models that balance the protection of targets with the protection of

flights, passengers, and device utilization. Although the performance measures proposed here are

by no means exhaustive, they demonstrate the importance of focusing on potential targets when
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designing systems to protect against WMDs and motivate the need to use advanced analytical

techniques to create new aviation security performance measures for WMD attacks.

The encounter number (i.e., a measure of device utilization) is inadequate for covering targets

and flights. The analysis of a real-world example illustrates that given identical values of the

encounter numbers, it is possible to screen baggage in such a way that it covers many flights,

passengers, and targets. The example suggests that the flights covered (FC) performance measure

is robust across the PC and BC measures (not not across the TC measure). The goal programming

models show that there are few tradeoffs between covering targets and the FC, PC, or BC measures.

In particular, the TCBCP results show that up to ten targets could be covered while almost fully

utilizing the screening device capacity. A detailed analysis of several of greedy heuristics illustrate

that near-optimal solutions to the models can be identified quickly.

Future research directions include using risk-based models to take passenger and cargo pre-

screening into account, as well as associating a risk factor for the targets for weighing the impor-

tance of each target. All of the performance measures considered in this paper focus on coverage, a

binary measure. One extension would be to consider non-binary performance measures that reflect

the quality of the screening performed as well as the impact of false alarms. Another extension

would be identify performance measures that balance multiple types of attacks rather than solely

focusing on a direct-to-target attack.
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Chapter 5

Conclusions

The fight against terrorism has become an increased focus for homeland security. It is known

that terrorist groups are trying to obtain nuclear material, in hopes of creating a WMD, with the

intention of detonating it on American soil. In order for a terrorist group to get the WMD or

nuclear material into the United States, the terrorist group must smuggle it in through the borders.

There are many avenues for terrorists to use in order to achieve smuggling in the nuclear weapon

or nuclear material. Two of these avenues are through ports and aircrafts, in which there are many

vulnerabilities within each. Homeland security is currently implementing new technology and

screening procedures to reduce the vulnerabilities within these sectors. The focus of this thesis is

to use operations research methodologies, such as linear programming models, to make screening

decisions for these sectors more effective and efficient, in hopes at detecting smuggled nuclear

material or WMD.

Chapter 2 illustrates a more granulated risk-based system for prescreening classifications of

cargo containers arriving at the United States ports. Instead of only classifying a container by

high-risk and low-risk, analysis is provided that uses the classification of high-background and

low-background. The second classification is based on radiation that is emitted from a container,

in which the goal is to reduce the number of false alarms in the system due to NORM contain-

ers. This chapter also uses a multi-layered screening approach. Furthermore, the proposed model

applies the knapsack problem to a linear programming model given resource limitations to an-

alyze the tradeoffs between prescreening intelligence and the efficacy of the radiation detectors.

Results suggest that prescreening intelligence is crucial and the more accurate the prescreening
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intelligence, the layers of screening needed can be reduced. This would lead to a more efficient

screening system as well as being more cost effective.

Chapter 3 extends some ideas from Chapter 2, including greater detail about specific detec-

tion devices and the risk-based prescreening intelligence, as well as determining optimal primary

and secondary screening decisions. This chapter uses a linear programming model, in addition

to decision analysis, to provide a simplistic and versatile approach that could be applied to other

avenues of transportation. As the prescreening intelligence increases, or becomes more accurate,

the optimal primary and secondary screening decisions become more focused on high-risk clas-

sified containers. Sensitivity analysis is performed on the costs on secondary screening and a

comparison between current technology and next-generation technology is analyzed. Results sug-

gest that as the cost of secondary screening increases and prescreening intelligence is high, a more

in-depth level of primary screening will be used for high-risk containers, whereas when the sec-

ondary screening cost is low, containers, namely high-risk containers, will skip primary screening

and will only be screened in the secondary screening level. In the comparison of current and next-

generation technology, results suggest that next-generation technology may not be worthwhile to

employ since the detection capabilities are not a significant improvement and the costs are similar

for both technologies.

Chapter 4 applies a linear programming using the knapsack problem to screening procedures

in commercial aviation security. Performance measures, such as covering flights, passengers, bag-

gage, and targets are evaluated with regards to screening. Tradeoffs between the performance

measures are analyzed and compared to the current proposed screening policies for flights incom-

ing to the United States from a foreign location. Results suggest that a minimal expense, flights and

targets can be covered, ensuring safety to those flights and targets. Greedy heuristics are performed

and analyzed against the optimal solutions. These reveal that certain greedy heuristics can be ap-

plied and result in the optimal solution values, with a better solving time. By using the operations

research methodologies, as described throughout this thesis, many improvements to screening pro-

cedures can be achieved. However, there is always a constant need for improving these systems,

since terrorist groups are evolving and adapting to the current procedures and coming up with new

ways to skirt around our security. Future ideas for research include using more decision analysis

and behavioral analysis to try and determine what terrorist groups may do before they are success-
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ful. Also, another expansion could include creating a network of defenses while using multiple

modes of transportation. For example, if aviation and maritime security systems were analyzed us-

ing the same system, to ensure a constant defense. This would help with the notion of simultaneous

attacks being prevented or at least deterred.
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