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Multisensory processing in the brain underlies a wide variety of perceptual 

phenomena, but little is known about the underlying mechanisms of how multisensory 

neurons are generated and how the neurons integrate sensory information from 

environmental events. This lack of knowledge is due to the difficulty of biological 

experiments to manipulate and test the characteristics of multisensory processing. By using 

a computational model of multisensory processing this research seeks to provide insight 

into the mechanisms of multisensory processing. From a computational perspective, 

modeling of brain functions involves not only the computational model itself but also the 

conceptual definition of the brain functions, the analysis of correspondence between the 

model and the brain, and the generation of new biologically plausible insights and 

hypotheses. In this research, the multisensory processing is conceptually defined as the 

effect of multisensory convergence on the generation of multisensory neurons and their 



   

 xiii  

integrated response products, i.e., multisensory integration. Thus, the computational model 

is the implementation of the multisensory convergence and the simulation of the neural 

processing acting upon the convergence. Next, the most important step in the modeling is 

analysis of how well the model represents the target, i.e., brain function. It is also related to 

validation of the model. One of the intuitive and powerful ways of validating the model is 

to apply methods standard to neuroscience for analyzing the results obtained from the 

model. In addition, methods such as statistical and graph-theoretical analyses are used to 

confirm the similarity between the model and the brain. This research takes both 

approaches to provide analyses from many different perspectives. Finally, the model and 

its simulations provide insight into multisensory processing, generating plausible 

hypotheses, which will need to be confirmed by real experimentation. 
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CHAPTER 1 Introduction 
 

 

One of the challenges in neuroscience is to understand the processes that govern 

multisensory processing as it underlies a wide variety of perceptual phenomena. The 

natural complexity of the brain and the difficulty of biological manipulations on the brain 

make it difficult to better understand the mechanism behind multisensory processing. 

Therefore, the scope of this research is to provide insights into the brain function by 

computational modeling. In this sense, the ultimate goal of this research is to have a 

computational model which is able to mimic multisensory processing and perform 

computational experiments that are currently not possible as biological experiments. On 

the other hand, as shown in Figure 1.1, the act of neural multisensory processing can be 

thought of as an analogue to heterogeneous data recognition in the field of engineering. In 

Figure 1.1: Effects of modeling research on neuroscience and engineering.   
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spite of some progress in the latter area, there remains equally challenging engineering 

tasks in designing systems that seamlessly fuse information coming from heterogeneous 

data sources. Although not within the scope of this research we think that an understanding 

of some, if not all, of the brain’s multisensory processing underlying principles will result 

in better designs of engineering solutions to the problem of fusing heterogeneous 

information.  

The main objective of this work is to model multisensory processing using a 

network of spiking neurons to provide insights into the mechanisms of multisensory 

processing. In particular, it includes, firstly, the development of a simulation software 

environment that is able to define the desired network components, build a network, 

simulate it and analyze the simulation results. Secondly, modeling of multisensory 

convergence, the first and definitive step in the multisensory processing, is achieved and 

validated. Thirdly, the manipulation of multisensory processing in a spiking neurons 

network model of multisensory convergence is obtained by changing connectional 

parameters. Lastly, the model and its simulation generates new hypotheses, to be 

biologically verified, about the mechanisms underlying multisensory processing. 
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CHAPTER 2 Literature Review 
 

 

2.1 Multisensory Processing 
 

Behavior and perception are highly dependent on sensory information processed by 

the brain, and it is becoming increasingly clear that multisensory processing underlies a 

wide variety of behavioral and perceptual phenomena. As shown in Figure 2.1, multiple 

stimuli emanate from an environmental event such as a falling tree hitting the ground, a 

bird singing, or a lightning strike. Receptors that are sensitive to those physical energies 

(e.g., light/eyes, sound/ears) transduce those stimuli into neural responses that are relayed 

into the brain. When projections that carry different unisensory messages synapse upon an 

individual neuron in a convergent area (multisensory convergence) the recipient neuron 

Figure 2.1: Multisensory processing. 
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can become multisensory. As a consequence, multisensory neurons respond to their 

combined inputs in a manner that is significantly different (i.e., multisensory 

integration/interaction; either enhancement or depression) than that elicited by either input 

alone. Multisensory processing at the neuronal level must ultimately lead to behavioral, 

perceptual, and/or cognitive manifestations. These effects are manifest across the neuraxis 

and throughout the animal kingdom (Stein and Meredith, 1993), including escape 

behaviors mediated by abdominal ganglia in crayfish, or predatory detection and 

orientation behaviors controlled by the optic tectum of reptiles (Newman and Hartline, 

1981) and birds (Knudsen, 1982) or the superior colliculus in mammals (Meredith and 

Stein, 1983; 1986; King and Palmer, 1985). 

Multisensory perception is largely regarded as a cortical phenomenon. 

Accordingly, effects like integration of auditory and visual cues (e.g., lip movement) in 

speech perception have been localized to portions of auditory cortex (Sams et al., 1991; 

Woods and Recanzone, 2004), while crossmodal attention is evident throughout the cortex 

(Teder-Salejarvi et al., 1999).  

 

2.1.1 Neuron Types 
 

 In terms of the response to sensory inputs neurons are categorized as bimodal 

multisensory, subthreshold multisensory, unisensory and nonresponsive. Only the first two 

types are considered as multisensory. 
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 Bimodal Multisensory Neurons: this type of multisensory neuron is easily 

identified by its suprathreshold response to stimuli from more than one modality (including, 

at a minimum bimodal-responsivity). When activated by both sets of effective inputs, 

bimodal neurons can integrate that information in a manner not predicable by the same 

inputs activated alone (Meredith and Stein, 1983; 1986). When bimodal neurons process 

multisensory information, the level of integration varies dynamically within individual 

neurons (as well as between neurons), depending on the spatial, temporal and physical 

properties of the stimuli and the response properties of the involved neurons (Meredith and 

Stein, 1986; 1996; Meredith et al., 1987; Stein, et al., 1995). Levels of integration seem 

largely dependent on the processing range of individual neurons (Perrault et al., 2005) such 

that some are capable of great levels of integration while others are much more restricted. 

In addition, these operational modes may be structure-specific, since the high levels of 

integration observed in some superior colliculus neurons have not been observed in 

cortical regions (Wallace et al., 1992; Meredith et al., 2006; Clemo et al., 2007). 

Nevertheless, numerous studies in a wide range of animals and brain areas have repeatedly 

observed bimodal multisensory neurons, and such prevalence naturally appears to 

underscore their robustness as an overall model of multisensory processing. 

 Subthreshold Multisensory Neurons: more recently a new type of multisensory 

neuron has been identified: the subthreshold multisensory neuron (also known as 

“modulated”) (Driver and Noesselt, 2008). Unlike the traditional bimodal neuron, the 

subthreshold multisensory neuron responds with suprathreshold excitation to only one 

modality. This activity can be significantly facilitated, or suppressed, by the presence of 
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stimuli from another modality that, by itself, appears ineffective (Dehner et al., 2004; 

Meredith et al., 2006; Allman and Meredith, 2007). Consequently, these modulatory 

multisensory effects have been detected largely within sensory-specific cortical areas, both 

in individual neurons as well as, via imaging techniques, at an areal level (Driver and 

Noesselt, 2008). Subthreshold multisensory neurons have been demonstrated in the cat 

anterior ectosylvian (AES; Meredith, 2002; Dehner et al., 2004; Meredith et al., 2006) and 

posterolateral lateral suprasylvian (PLLS; Allman and Meredith, 2007) cortices, and ferret 

visual area 21 (Allman et al., 2008) although this form of multisensory processing appears 

to be in several other reports (Bizley et al., 2006; Newman and Hartline, 1981; Sugihara et 

al., 2006). Ultimately, in contrast to the strong levels of integration achieved by their 

bimodal counterparts, subthreshold neurons effect only subtle modulatory changes of 

activity level. Thus, the physiological effects of these neurons seem to be calibrated for the 

subtle multisensory changes observed at the perceptual level and would seem an ideal 

pairing with bimodal neurons, giving the cortex an unbroken continuum of multisensory 

processing capacity. 

 Unisensory and nonresponsive neurons: neurons that are only activated by one 

modality are designated as unisensory. Other modalities neither stimulate nor significantly 

modulate their responsiveness. Finally, the neurons that are unaffected by inputs from any 

modality are designated as unresponsive. Unisensory and nonresponsive neurons are not 

multisensory. 
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2.1.2 Multisensory Integration 
 

Of particular interest is the phenomenon of generating strong multisensory 

response changes that are dissimilar to those evoked by the separate inputs of the stimulus. 

Known as “multisensory integration” or “response enhancement” or “response depression”, 

this effect is regarded as the core of multisensory processing at the neuronal (Stein and 

Meredith, 1993) and macroscopic levels (Calvert, 2001; Beauchamp, 2005; Ghazanfar and 

Schroeder, 2006). In short, multisensory integration refers to the neural processes that 

combine information from two or more different modalities. Multisensory integration 

results either in multisensory enhancement, in which the response to the cross-modal 

stimulus is greater than the one to the most effective of its component stimuli, or in the 

multisensory depression, where the combined stimulus response is significantly less than 

the best unimodal stimulus. Multisensory integration has been shown to influence escape, 

orientation and detection behaviors, as well as shorten reaction time and aid posture control 

and language perception (Stein and Meredith, 1993). 

 

2.2 Network of Spiking Neurons 
 

2.2.1 Single Neuron Models 
 

 All neuron models are based, to some degree, on biological neurons and are 

intended to mimic them with a certain fidelity. They range from a simple neuron with a 
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Figure 2.2: A leaky IAF model as electrical circuit. V: the membrane potential, I: the 
total membrane current, CM: the membrane capacity per unit area, RM = membrane 
resistance, Vthresh: a threshold value for V, Vreset: a reset value for V. 

sigmodal function, to a fully-developed membrane conductance-based model, which is 

described by a more complex mathematical formula. Reference to "spiking neuron model", 

in this research means an artificial neuron with high degree of biological resemblance such 

as Integrate-and Fire (IAF), Hodgkin-Huxley (HH), or Izhikevich models. Such neuron 

models generate a series of action potentials, i.e., spikes in response to a given input. 

 Integrate and Fire Neuron Model (IAF): even though there is some controversy 

on the origin of the model, a model by Lapicque in 1907 (Abbott, 1999) is known as the 

earliest IAF model of a neuron, and similar model was introduced by Hill (1936). 

However, the term ‘integrate-and-fire’ began to appear in papers in the 1960s. Since then 

many variations of this model have been proposed and used for computational modeling of 
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Figure 2.3: The membrane as an electrical circuit. I : the total membrane current, I i : the 
ionic current, V : the displacement of the membrane potential from its resting value, CM : 
the membrane capacity per unit area, t : time, INa : sodium current, IK  : potassium 
current, I l : leakage current, E : membrane potential, RNa = 1/gNa (sodium conductance). 
RK=1/gK(potassium conductance). Rl =1/ġl (leakage conductance), ENa : the equilibrium 
potential for the sodium ion, EK : the equilibrium potential for the potassium ion, El : the 
equilibrium potential for the leakage ion. 

biological systems (Cios et al., 2004; Lovelace and Cios, 2007). The computational 

economy and simplicity of this model make it especially useful in elucidating the 

properties of large networks. One of the most widely used IAF models in computational 

modeling of brain functions is the leaky IAF model. As illustrated in Figure 2.2, the basic 

form of a leaky IAF neuron can be described with a simple electrical circuit. The leak 

feature helps the neuron model to include a more realistic time-contingent membrane 

behavior with minimal memory overhead. 

 Hodgkin-Huxley Neuron Model: Hodgkin and Huxley (1952) proposed the model 

that accommodated the ionic mechanisms directly related to the activity of action 
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potentials in the squid giant axon. In their model, the action potential is described as a set 

of nonlinear ordinary differential equations. The total membrane current consists of a 

capacity current and an ionic current, and ionic current can be represented with potassium 

current(IK), sodium current(INa) and a leakage current(I l) as shown in Figure 2.3. 

 Izhikevich Neuron Model: the Izhikevich neuron model (Izhikevich, 2003 & 

2004), also known as a nonlinear IAF model, has been widely used because not only it can 

generate outputs as realistic as Hodgkin-Huxley neuron but also it is computationally 

efficient. The dynamics of the model are based on a system of two first order differential 

equations defined by eq. (2.1). 
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where v is the membrane potential of the neuron and u is a membrane recovery variable 

based on the activation levels of sodium +Na  and potassium +K  ionic currents and cba ,,  

and d are parameters for this model. Therefore, a simple change of the one or more of the 

parameter values will result in a different spiking pattern. These parameter sets can be 

selected specifically to represent spiking populations of well-defined biological neurons, 

making it ideal for efficiently representing neuronal spiking pattern diversity within a 

network model. Figure 2.4 illustrates the range of spiking patterns which this model can 

produce. 
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Figure 2.4: Spiking patterns of Izhikevich neurons (Izhikevich, 2003 & 2004). The 
figure and reproduction permission are available at 
http://vesicle.nsi.edu/users/izhikevich. 
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2.2.2 Synaptic Plasticity/Learning Rules 
 

Long suspected to be the key to understanding the mechanisms involved in learning 

and memory within the brain and investigated for more than century now, synaptic 

plasticity is the capability of the synapse between two neurons to change in strength (Cajal, 

1894). Mathematically, much of our understanding of synaptic plasticity has been first 

defined by Jerzy Konorski (Konorski, 1948) and then popularized famously by Donald 

Hebb (Hebb, 1949). In this research, two key synaptic plasticity rules are introduced to 

explain our modeling of learning in a network of spiking neurons: the Spike-Timing 

Dependent Plasticity (STDP) and the Synaptic Activity Plasticity Rule (SAPR) (Song et 

al., 2000; Swiercz et al., 2006). 

 Spike-Timing Dependent Plasticity (STDP) and Synaptic Activity Plasticity 

Rule (SAPR): the synaptic plasticity rule can be summarized as follows: neurons 

connected by a synapse that fire together strengthen their synapse if the postsynaptic 

neuron fires soon after the presynaptic neuron; otherwise it gets weaker. The mathematical 

representation of the STDP is specified by eq. (2.2) and its learning function is illustrated 

in Figure 2.5(b). 

 ( ) ( )
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where ∆t is the time between pre-and post-synaptic neuron firings; A+−  is the maximum 

amounts of synaptic modification; and τ+−  is the time constant. 
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Figure 2.5: Comparison of learning functions used in the SAPR (a) and in the STDP 
(b), ∆t: the time difference between pre- and postsynaptic neuron firings; SAPR(∆t): 
synaptic strength modification when using SAPR; STDP(∆t): synaptic strength 
modification when using STDP.  

 In contrast to many learning rules including STDP, SAPR uses the actual synaptic 

temporal dynamics to decide the amount of adjustment, as is illustrated in Figure 2.5(a). 

SAPR follows the general scheme of synaptic plasticity reward as STDP but provides a 

continuous form for the learning function. This is one of the primary reasons for using the 

SAPR over the STDP, since there is no explicit equation or function shape for synaptic 

strength adjustment. The adjustment only approximates possible function using a pre-

synaptic potential (PSP) shape. Figure 2.5(a) shows just one example of a learning function 

using a general PSP shape for one excitatory and one inhibitory neuron. 
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Figure 2.6: Multisensory integration in the deep layers of the superior colliculus. Target 
is an environmental event. V and A are random variables which are inputs from the 
visual and auditory system. T is a binary random variable representing the target. A 
block on a grid represents a deep SC neuron.  

2.3 Existing Computational Models of Multisensory Processing 
 

Anastasio and Patton (2000) were the first to model multisensory integration. 

Based on the observation that there is uncertainty on the presence of a target in its 

receptive field when sensory inputs are provided, each deep Superior Colliculus (SC) 

neuron was modeled with conditional probability using Bayes' rule. A deep SC neuron 

computes the probability that a target is present in its receptive field given its sensory 

inputs as shown in Figure 2.6.  

P(T=1|V, A) is the Bayesian probability that a target is present given sensory inputs 

visual (V) and auditory (A). Based on this statistical interpretation, Anastasio and Patton 

provided plausible explanation for multisensory enhancement and the inverse effectiveness 
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rule in multisensory SC neurons. Later, they extended their study by adding an information 

theoretic analysis. Their study hypothesized that unimodal SC neurons may have higher 

average information gain (i.e., mutual information) in the presence of unambiguous 

unimodal input. The relative entropy of such neurons (as measured by the Kullback-

Leibler difference) possess little difference between spontaneous and driven inputs, and 

thereby have little or no increase in information gain with inputs from additional 

modalities. On the other hand, multisensory neurons, which receive ambiguous unimodal 

input and grant larger relative entropy, could have higher average information gain in the 

presence of additional modalities. As a result, they proposed that unimodal SC neurons 

may receive more informative input from a single modality than from one or more 

additional modalities, while multisensory neurons which receive ambiguous input from a 

single modality could be more informative when there is additional modality (Patton et al., 

2002).  

Similar approach was used by (Colonius and Diederich, 2001) who used maximum 

likelihood. The basis of the model is that the deep SC neurons' behavior is related to the hit 

probability under a maximum likelihood decision strategy. In addition to features of 

multisensory integration, such as multisensory response enhancement and inverse 

effectiveness, the model was capable of discrimination between relevant stimuli (targets) 

and irrelevant stimuli (distracters).  

Further extending their earlier work, Patton and Anastasio (2003) combined their 

previous Bayesian model with a perceptron model using Poisson density inputs because 

they required only one parameter (mean) and reasonably represented neuronal firing-rate 
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Figure 2.7: A network model of the corticotectal system using a two-stage unsupervised 
learning algorithm.  

distributions. A deep SC neuron was represented as a perceptron which is in the form of 

the logistic function so that the output of perceptron is equal to Bayesian (posterior) 

probability of a target. In addition, an augmented perceptron was used to show the role of 

NMDA receptors and modality-specific suppression.  

Anastasio and Patton (2003) once again made a huge step in modeling multisensory 

processing by extending the level of modeling from a single neuron to a network. By 

introducing a network model of the corticotectal system using a two-stage unsupervised 

learning algorithm, the model was able to simulate multisensory enhancement and self-

organization of the corticotectal system as illustrated in Figure 2.7. The network consists of 

100 deep SC (DSC) units, each of which is represented with a perceptron model and 



   

 17

Figure 2.8: A diagram of a model of the circuitry underlying SC multisensory 
integration and the algebraic form of the SC multisensory neuron. I indicates a 
population of inhibitory neurons, SC is the multisensory neuron in SC. V and A are 
visual and auditory input and the u and d subscripts indicate ascending(up) and cortico-
collicular(down) source of input, respectively. τ and α are constants. ln[⋅]+ is a 
logarithmic transfer function restricted to positive values. 

receives primary and modulatory inputs from sensory systems and sensory projections 

from parietal cortex respectively. At the first stage of learning, the weights related to 

primary inputs were updated using the self-organizing map in the presence of the target. 

The stage-two learning updates the modulatory weights, which is related to projections 

from neurons in paritetal cortex to the DSC neurons. In this way, the corticotectal model 

provides insights into how multisensory enhancement and self-organization may happen in 

the brain.  

Another model was proposed by Rowland et al. (2007) to account for the best-

known features of the SC multisensory integration. The model is described in two different 

aspects: algebraic and compartmental form. As shown in Figure 2.8. in its algebraic form, 

the model transforms two numerical values from different sensory inputs into a quantity 
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( i.e., R in Figure 2.8) which is the spike frequency of the neuron. More importantly, the 

compartmental form of the model both provides the validity of its algebraic form and, at 

the same time, enhances the model to handle temporal issues of the multisensory 

integration. Based on the simulations, the model showed similar results to empirical 

findings such as multisensory enhancement, superadditivity, inverse effectiveness, cortical 

deactivation, within-modal integration, NMDA-receptor deactivation, temporal disparity 

and temporal profile. This model was also evaluated on several physiological levels related 

to unisensory integrative capabilities of multisensory SC neurons using multiple visual 

stimuli (Alvarado et. al., 2008).  

Still another model used a simple neural network in order to mimic the integrative 

responses of neurons in the superior colliculus area when stimuli of different modalities are 

given (Cuppini et. al., 2007, Magosso et. al., 2008, Ursino et. al., 2009). A neuron model 

was represented as a first order differential equation with a sigmoidal relationship. The 

topology of the network consisted of three areas: two unimodal (auditory and visual) and 

multimodal. They used excitatory connections (upstream) from neurons in the unimodal 

areas to multimodal neurons in the SC area and also excitatory connections (downstream) 

from multimodal neurons to unimodal neurons. Based on the simulation results, it was 

claimed that the model could explain several aspects of multisensory integration such as 

inverse effectiveness, dynamic range of multimodal neurons, cross-modality and within 

modality integration and spatial relationship between within-modal and cross-modal 

stimuli.  
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Figure 2.9: The diagram of the network structure and a single neuron model. AES is an 
association cortex area, and sends visual inputs (from subregion AEV) and auditory 
inputs (from subregion FAES) to SC area. Non-AES represents sensory regions sending 
ascending inputs(i.e., V sends ascending visual inputs to the SC area and A does 
ascending auditory inputs). SCn is multisensory SC neurons and Ia and In are SC 
inhibitory neurons. In the single neuron model, for a neuron i in region s with time 
constant τ receiving net input u(t) at a moment in time t, the output z(t) is calculated 
with the differential equation.  ϕ(⋅) indicate a sigmoid function with parameter ϑ(the 
central point) and p (the slope).  

More recently, a similar but architecturally simpler approach was used to simulate 

the inverse-effectiveness property, spatial locality, and ontogenesis of multisensory 

enhancement (Martin et. al., 2009). Very recently, a more biologically realistic model in 

topology was proposed to simulate the relationship between multisensory enhancement 

and the association cortex and changes in the SC response according to NMDA receptor 

blockade (Cuppini et. al., 2010) as shown in Figure 2.9. It is known that the SC receives 
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converging connections from many subcortical and cortical areas but the experimental 

findings indicate that inputs from association cortex (AES and rLS in cat) are the key for 

multisensory integration in the area.  

In summary, it is clear that a preponderance of multisensory computational efforts 

have been directed toward providing insights mainly into the features of multisensory 

integration. 
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CHAPTER 3 A Neuronal Multisensory Processing Simulator 
 

 

Simulation of a brain function, in a broad sense, involves processes that include 

conceptual definition and design, computational (or mathematical) modeling, testing the 

correlation between the model output and brain, and the generation of biologically 

plausible and testable hypotheses. Simulators provide a specific environment in which 

computational models can be custom built according to their conceptual model of interest, 

as well as evaluate the results of simulation by using analytic tools in the simulator. We 

describe a new simulator, the Neuronal Multisensory Processing Simulator (NMPS) 

designed primarily to model multisensory processing. The NMPS generated a network of 

spiking neurons and stimulated the network by giving inputs to neurons. Analysis of both 

neurons and network revealed responses similar to biological multisensory processing, and 

provided insight into multisensory features currently inaccessible to either observation or 

experimentation. 

 

3.1 Motivation 
 

Numerous aspects of brain function have been approached by in vivo and in vitro 

experiments, and computational models have incorporated these observations with a 

variety of simulation designs. However, modeling spike-generating mechanisms in a 



   

 22

network of spiking neurons provides a way to simulate neuronal circuits that are 

“biologically realistic.” Similar to the conductance-based neuron model of Hodgkin and 

Huxley, there have been many biologically-plausible neuron models designed to mimic 

variety of neuronal activities. Examples include the FitzHugh–Nagumo model (a 

simplified version of the Hodgkin and Huxley model) (FitzHugh, 1961), the integrate and 

fire neuron model (computationally efficient, but less biologically realistic) and 

Izhikevich’s modified integrate and fire neuron model (computationally simple). In each 

format, a network consisting of spiking neurons, organized in a spatial/connectional 

topology, has been successful in simulating a variety of brain functions (Markram, 2006; 

Lovelace, 2008; Izhikevich, 2008).  

Simulators that include these biologically-realistic features provide a specific 

synthetic environment in which computational models can be constructed according to the 

conceptual model of interest. NEURON is one of the best-known simulation tools in the 

field of computational neuroscience (Carnevale, 2006). GENESIS, NEST and NCS are 

other popular simulators (Bower, 1998; Gewaltig, 2007; Wilson, 2001). More recently, 

SNNAP tool has been designed for the purpose of teaching neuroscience (Av-Ron, 2008). 

Brette reviewed the most popular simulators with regard to their simulation strategies and 

algorithms (Brette, 2007). However, the complexity of the brain makes it unlikely that the 

available simulation tool packages can adequately address all neural properties. Therefore, 

new simulators are developed to address specific facets of brain organization and function. 

A particularly useful feature of such synthetic networks is their ability to simulate 

biological features that are experimentally inaccessible, such as the manipulation and 
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control of neural connectivity that underlies neuronal activity. This is especially relevant to 

the examination of the multisensory nature of the brain, where connections from one 

sensory modality impinge on those from another to influence neural activity that underlies 

important functions from behavior to perception. Of particular interest is whether simple 

convergence of inputs from different sources can generate features of multisensory 

processing, or are special constants/factors or training required? It has not been reported 

that the available simulator packages address this convergence problem. Therefore, the 

Neuronal Multisensory Processing Simulator (NMPS) is introduced as a computational 

environment for designing networks of spiking neurons to evaluate the properties that 

underlie multisensory processing. The novelty of the NMPS is that it performs simulations 

of multisensory convergence by generating network models and evaluates the functional 

result of that convergence with onboard analysis tools that measure the spiking activity of 

the constituent neurons. 

 

3.2 The Simulator 
 

The NMPS consists of several software components, including Morphology and 

Electrophysiology Managers for designing neuron types, the Network Builder for network 

generation, the Simulation Manager for network simulation, and the Neuron and Network 

analysis Managers for analysis of the simulation results. The schematic view of the 

simulator is shown in Figure 3.1. 
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Figure 3.1: The Neuronal Multisensory Processing Simulator (NMPS) overview.  

3.2.1 Neuron type 
 

A neuron is described by both its electrophysiological properties and its 

morphology; the Morphology and Electrophysiology Managers are in charge of these 

tasks. The electrophysiological characteristics are related to spike generation, and three 

different single neuron models are implemented, as described by eq. (3.1) for the HH 

model, eq. (3.2) for Izhikevich model and eq. (3.3) for the McGregor model which is an 

IAF model (MacGregor, 1993). Although the HH model consists of four differential 

equations, three of them that are related to opening of ionic channels are not shown here 

for simplicity. The user can define the neuron’s spiking properties by adjusting parameters 

such as maximum sodium conductance (gNa), maximum potassium conductance (gK) and 

leak ion conductance (gL). Likewise, the other two single neuron models, McGregor’s and 

Izhikevich’s, also use several parameters that characterize their spiking patterns. 
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where V is a membrane potential and all the parameters that can be modified in a neuron 

model are listed in Table 3.1. These adjustable parameters determine a neuron’s spiking 

pattern that correspond with known activity patterns of biological neurons. For instance, 

the Izhikevich model accommodates 22 types of spiking patterns of cortical neurons, such 

as RS (regular spiking), IB (intrinsically bursting), or CH (chattering) excitatory neurons, 

or FS (fast spiking) or LTS (low-threshold spiking) inhibitory neurons; each discharge type 

is achieved by changing electrophysiological parameters, a, b, c, and d (see Table 3.1). 

The NMPS provides flexible interfaces allowing the user to determine and save the 

parameter variables for later use and analyses. To establish the parameters for a particular 

neuron model, both dynamic and static variables are used. A dynamic variable is a random 

variable that can be assigned to a parameter, namely, each time a neuron is created, a 

different value is assigned to it according to a specified random process. On the other hand, 
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a user determines a value for a static variable. For instance the parameters a and d in the 

Izikevich model can be set up as random variables while parameters b and c can be static. 

The simulator thus provides for a wide diversity of neuronal behaviors. In addition to a 

neuron's electrophysiology, the NMPS provides a tool for specifying the morphology of 

the neurons in the network. All neurons are composed of three compartments: a single 

point soma, a dendrite consisting of many dendritic synapses, and an axon with many 

axonal terminals. A synapse is defined as a connection between an axonal terminal (from 

extrinsic or intrinsic sources) and a dendritic synapse. Synapses can occur between two 

different neurons or on the same neuron (as a recurrent connection). The spatial position of 

each compartment of a neuron can be defined in terms of location and distribution (e.g., 

Table 3.1: Neuron models and their parameters 

Neuron models Parameters 

HH  gNa: maximum conductance of Na channel 
gK: maximum conductance of K channel 
gL: conductance of the leakage channel 
VNa: sodium reversal potential 
VK: potassium reversal potential 
VL: leakage reversal potential 

Izhikevich a: the time scale of the recovery variable u 
b: the sensitivity of the recovery variable u 
c: the after-spike reset value of the membrane potential v. 
d: the after-spike reset value of the recovery variable u. 

McGregor VK: potassium reversal potential 
Tmem: membrane time constant 
TGK: potassium conductance time constant 
B: amplitude of the postfiring potassium conductance 
c: amplitude of the threshold 
Tth: time constant for decay of threshold  
Tth0: resting threshold  
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Figure 3.2: A synthetic neuron, its compartments (soma, dendritic synapses, and axon 
terminals) and their distribution by layers (L1-L5).  

dendritic synapses in one layer might be scattered wider than those in another layer) and 

the spatial relationships among compartments of neurons also indicate temporal ones(i.e., 

delay times). For instance, the longer the distance between a dendritic synapse and its 

soma, the more delay time is seen.  

Figure 3.2 may suggest that a neuron with dendritic synapses and axon terminals 

needs to be distributed into cortex-like layers. In general, this does not have to be the case 

as the (computational) “layer” may have no correspondence to the biological layer. The 

number of axon terminals and the number of dendritic synapses within each layer is 

calculated from two ratios. The first specifies how many axon terminals are to be placed in 

each of the layers; similarly the second ratio specifies how many dendritic synapses are to 

be in each layer. For example, the user wants to use the total of 3 axonal terminals 

distributed into the six layers, shown in Figure 3.2, as 0:0:0:0:3:0, and 13 dendritic 



   

 28

synapses distributes as 5:2:2:4:0:0. Figure 3.2 shows that the axons project only into layer 

L5 while dendritic synapses are distributed into layers: L1, L2, L3 and L4. In this way the 

Morphology Manger provides users with flexibility in building a variety of networks in 3D 

space. Note that the simulator treats the two neuronal features (morphology and 

electrophysiology) independently. Finally, all combinations of parameter settings for 

different morphology and electrophysiology types are saved for the subsequent generation 

of a network. 

 

3.2.2 Network Topology 
 

The Network Builder creates the network and all subtasks related to it. First, a 3D 

network space is created (X×Y×Z) that sets its limits. Then, the user selects the neuron 

model from one of the three models (HH, McGregor, Izhikevich). In our example, we 

created a cube of the size 30×10×50 (as is shown in Figure 3.3) using the Izhikevich 

neuron model. 

 Before placing neurons in the empty network, the user may divide its 3D space 

depending on the desired application. It may be subdivided into six layers that represent a 

specific cortical region, or several regions to represent some cortical regions. In our 

example, we subdivided it into six horizontal regions of the same size. Essentially, these 

subdivisions define cortical regions in the designed 3D network. 

The next step is to populate the network with neurons. To do so, the user needs to 

specify the following parameters for each neuron: electrophysiology type, morphology 
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type, number of neurons, number of dendritic synapses, and number of axonal terminals. 

For example, 300 excitatory neurons with approximately the same numbers of RS, IB and 

CH types (e.g. about 100 of each type) were selected to populate a specific region with no 

dendritic synapses, that project 100 axonal terminals (per neuron) into another region. The 

Network Builder then placed the somas of the 300 neurons randomly in the above 

specified region, with 30,000 axon terminals randomly distributed in the other region.  

  

3.2.3 Simulation 
 

The Simulation Manager helps the user to determine synaptic transmission 

properties, choose one of the two plasticity rules for modifying synaptic strengths, 

determine the number of input regions, and to perform its main task of simulation. 

Synaptic transmission and plasticity rules: synaptic transmission occurs when an 

action potential that reaches a synapse generates a postsynaptic potential (PSP) in the 

postsynaptic neuron that is either excitatory (EPSP) or inhibitory (IPSP), depending on the 

nature of the presynaptic neuron. Excitatory synapses simulated glutamate-gated channels 

using N-methyl-D-aspartate (NMDA) (long lasting) or α-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA) (rapid) ionotropic receptors. Inhibitory 

synapses emulated γ-amino-butyric acid (GABA)-gated channels via GABAA (fast) and 

GABAB (slow) receptors. 
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where α and β are maximum conductances, t is time, tf is the arrival time of presynaptic 

action potential, τd and τr are decay and rise time constants and τf and τs are fast and slow 

time constants. In our simulator, the synaptic transmission is governed by eq. (3.4) 

(Gerstner, 2002). For both excitatory and inhibitory synaptic transmissions, only fast 

synaptic transmissions by AMPA and by GABA receptors are considered here. 

Another feature of the Simulation Manager is to incorporate the activity dependent 

plasticity known to occur at synapses. This feature adjusts the weight of the synapse 

relative to its firing history. The simulator allows the use of two Konorski /Hebbian type 

synaptic plasticity rules: STDP and SAPR as specified in eq. (3.5).  
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where w(t) is current synaptic weight, sig(⋅) is a sigmoid function, α is learning rate, ∆t is 

the spike time difference between pre- and post synaptic neurons, β is the maximum 

amounts of synaptic modification, and τ is a time constant. The STDP is the mechanism 

for long-term potentiation and depression of synaptic transmission, and it adjusts synaptic 
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plasticity depending on the relative timing of pre- and postsynaptic spikes and is 

represented with a mathematical function observed from real experiments. On the other 

hand, instead of using a fixed learning function as in the STDP, the SAPR makes 

adjustments based on synaptic dynamics: the actual EPSPs and IPSPs (i.e., )( tPSP∆ ).  

Stimulation: there are two types of input to the network: noise input and current 

injection/stimulation. Biological neurons show spontaneous activity and neuronal noise 

plays important role in brain function (Ermentrout, 2008). Therefore, the Simulation 

Manager permits the addition of white noise to neurons in the network to emulate the 

spontaneous (non-driven) activity of the brain. White noise is added to each neuron at 

every moment during simulation using a Gaussian noise with specific mean current and 

variance values. This noise input alone can generate some network activity. 

The network is also capable of receiving stimulation by injecting current into 

selected neurons. The Simulation Manager performs this task by helping the user to set the 

amplitude, duration, and the interstimulus interval of such stimuli, as well as selecting the 

coordinates at which they will be applied. Let us assume we have a six-layer network as 

shown in Figure 3.3. Creating input regions requires specification of the spatial coordinates 

of the specific layer number, or its part; for example the two dashed regions shown in 

Figure 3.3 may have been specified by a user. The user can select as many input regions as 

needed for an application. In the case of using the simulator for multisensory processing, 

the space not identified as input regions is treated as the convergent area (so we have two 

input regions and the rest of the space of the cube contains convergent neurons). Note that 

the network shown in Figure 3.3 has been already populated with neurons (not shown in 
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Figure 3.3: Input regions are defined within the created network.  

Figure 3.3), in the previous step. The NMPS also allows for receiving the inputs from data 

files that contain biological neuron recordings. 

The process of simulation starts by clicking the ‘Start’ button. The spiking activity 

of the entire network is saved in a result file so that information about each neuron’s 

spiking history is available for further analysis. The analysis is normally performed within 

the simulator itself, but can be exported to other software tools for analysis. 

3.2.4 Analysis 
  

A simulation produces spiking information for each neuron as well as other 

parameters of the network. The first is analyzed by the Neuron Analysis Manager and the 

other by the Network Analysis Manager. Because spiking neurons in the network simulate 
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showed that the proposed convergence model is sufficient to generate various types of 

neurons. The results also revealed that as a result of training there is a change of synaptic 

strength values of neurons, which relates to the change of modality of the neuron; however, 

the statistical difference between neuron types, in terms of the instrength values, remained 

the same in the trained networks. Third, we demonstrated that many forms of convergence, 

by changing connectional parameters, contribute to the generation of the synthetic 

multisensory neurons. Especially, extrinsic projections played a dominant role in the 

generation of multisensory properties. However, when their levels of convergence were 

low, they were insufficient for generating multisensory effects. It is expected that these 

findings, about the relationship between the connectional parameters for multisensory 

convergence and multisensory processing, will lead to new biological experiments to 

assess their validity. 

The defined randomized connections, within a network with excitatory and 

inhibitory neurons, helped to clarify the important role of the convergence. In the future, 

the addition of more realistic biologically-accurate topologies of sensory systems should 

help to build a more detailed model of cortical sensory processes and thus allow for better 

exploration of the complexities of convergence.   
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APPENDIX List of parameter values used in Chapter 4  
 

The appendix A provides parameter values for computational experiments in 

Chapter 4.  

Table A.1: Parameter values for computational experiments in Chapter 4. 

Neuron 
model 

Izhikevich 

Excitatory 
(RS,IB,CH) 

a: 0.02; b: 0.2; c: -65+15γ2;  
d: 8-6γ2 

Inhibitory 
(FS, LTS) 

a: 0.02 + 0.08γ;b: 0.25 - 0.05γ 
c: -65;d: 2 

Network 
topology 

Area A 
100 Excitatory neurons;  

5K connections to Area C  

Area B 
100 Excitatory neurons;  

5K connections to Area C 

Area C 
400 Excitatory and 100 inhibitory neurons;  
30K intrinsic and 10K extrinsic connections 

Synaptic 
plasticity 

PSPs 
EPSP α = 4, τd = 4, τr = 3 

IPSP α = -5, τf = 7, τs = 5 

STDP α = 0.1, β = 0.1, τ = 20 

Experiment 

Noise 
Excitatory 
neurons  µ = 3, σ = 2.5 

Inhibitory neurons µ = 1.5, σ = 2 

Stimulation 
Amplitude 4mV 
duration 200ms 
Interval 2000ms 

time 
Network training 102,000 ms 

Network 
simulation 

400,000 ms 

Analysis 
Spike density function σ = 30, Thd = 90 

t-test p < 0.05 

γ is a uniform random variable between 0 and 1 
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APPENDIX B List of parameter values used in Chapter 5 
 

The appendix A provides parameter values for computational experiments in 

Chapter 5. 

Table B.1: Parameter values for computational experiments in Chapter 5. 

Neuron 
model 

Izhikevich 

Excitatory 
(RS,IB,CH) 

a: 0.02; b: 0.2; c: -65+15γ2;  
d: 8-6γ2 

Inhibitory 
(FS, LTS) 

a: 0.02 + 0.08γ;b: 0.25 - 0.05γ 
c: -65;d: 2 

Network 
topology 

Area A 
100 Excitatory neurons;  

  

Area B 
100 Excitatory neurons;  

 

Area C 
400 Excitatory and 100 inhibitory neurons;  

 

Synaptic 
plasticity 

PSPs 
EPSP α = 4, τd = 4, τr = 3 

IPSP α = -5, τf = 7, τs = 5 

STDP α = 0.01, β = 0.1, τ = 20 

Experiment 

Noise 
Excitatory 
neurons  µ = 3, σ = 4 

Inhibitory neurons µ = 3, σ = 4 

Stimulation 
Amplitude 4mV 
duration 200ms 
Interval 2000ms 

time 
Network training N/A 

Network 
simulation 

400,000 ms 

Analysis 
Spike density function σ = 30, Thd = 90 

t-test p < 0.05 

γ is a uniform random variable between 0 and 1 
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