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Abstract

COMPUTATIONAL MODELING OF MULTISENSORY PROCESSING&ING
NETWORK OF SPIKING NEURONS
By Hun Ki Lim, Ph.D.

A dissertation submitted in partial fulfillment thfe requirements for the degree of Degree

of Doctor of Philosophy in Engineering (Computeredce track) at Virginia

Commonwealth University.
Virginia Commonwealth University, 2011
Major Director: Krzysztof J. Cios
Professor and Chair, Department of Computer Science

Multisensory processing in the brain underlies demariety of perceptual
phenomena, but little is known about the underlymechanisms of how multisensory
neurons are generated and how the neurons integmasery information from
environmental events. This lack of knowledge is ttutne difficulty of biological
experiments to manipulate and test the charadterigt multisensory processing. By using
a computational model of multisensory processitgrgsearch seeks to provide insight
into the mechanisms of multisensory processingnFracomputational perspective,
modeling of brain functions involves not only thengputational model itself but also the
conceptual definition of the brain functions, timakysis of correspondence between the
model and the brain, and the generation of newogioally plausible insights and

hypotheses. In this research, the multisensorygsging is conceptually defined as the

effect of multisensory convergence on the generaifanultisensory neurons and their

Xii



integrated response products, i.e., multisensdegmtion. Thus, the computational model
is the implementation of the multisensory conveogeand the simulation of the neural
processing acting upon the convergence. Next, the important step in the modeling is
analysis of how well the model represents the targe, brain function. It is also related to
validation of the model. One of the intuitive amalyerful ways of validating the model is
to apply methods standard to neuroscience for amgjythe results obtained from the
model. In addition, methods such as statisticalgmagh-theoretical analyses are used to
confirm the similarity between the model and thaifor This research takes both
approaches to provide analyses from many diffguergpectives. Finally, the model and
its simulations provide insight into multisensompgessing, generating plausible

hypotheses, which will need to be confirmed by exgderimentation.
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CHAPTER 1 Introduction

One of the challenges in neuroscience is to unaledsghe processes that govern
multisensory processing as it underlies a wideetpiof perceptual phenomena. The
natural complexity of the brain and the difficutifbiological manipulations on the brain
make it difficult to better understand the mechaniehind multisensory processing.
Therefore, the scope of this research is to prowvigights into the brain function by
computational modeling. In this sense, the ultinggtal of this research is to have a
computational model which is able to mimic multisery processing and perform
computational experiments that are currently naisgae as biological experiments. On
the other hand, as shown in Figure 1.1, the aseafal multisensory processing can be

thought of as an analogue to heterogeneous daigni¢ion in the field of engineering. In

Sensory D
Information

Insights into
brain functions
) . ’

: . Heterogeneous

Engineering

Data Recognition

/ ~ ~

Processing Neuroscience

Multisensory J

—_————— . —— — — — —

Computational Model

Figure 1.1: Effects of modeling research on neuroscience agaheering.



spite of some progress in the latter area, themaires equally challenging engineering
tasks in designing systems that seamlessly fusennaition coming from heterogeneous
data sources. Although not within the scope of tesearch we think that an understanding
of some, if not all, of the brain’s multisensoryppessing underlying principles will result

in better designs of engineering solutions to ttedlem of fusing heterogeneous
information.

The main objective of this work is to model multisery processing using a
network of spiking neurons to provide insights itite mechanisms of multisensory
processing. In particular, it includes, firstlyetdevelopment of a simulation software
environment that is able to define the desired ngtwomponents, build a network,
simulate it and analyze the simulation resultso8dly, modeling of multisensory
convergence, the first and definitive step in thédtisensory processing, is achieved and
validated. Thirdly, the manipulation of multiseng@rocessing in a spiking neurons
network model of multisensory convergence is oletdibny changing connectional
parameters. Lastly, the model and its simulatiaregates new hypotheses, to be

biologically verified, about the mechanisms undedymultisensory processing.



CHAPTER 2 Literature Review

2.1 Multisensory Processing

Behavior and perception are highly dependent os@grinformation processed by
the brain, and it is becoming increasingly cleat tihultisensory processing underlies a
wide variety of behavioral and perceptual phenomAsahown in Figure 2.1, multiple
stimuli emanate from an environmental event such fafling tree hitting the ground, a
bird singing, or a lightning strike. Receptors thet sensitive to those physical energies
(e.g., light/eyes, sound/ears) transduce thoseubtinto neural responses that are relayed
into the brain. When projections that carry diffgranisensory messages synapse upon an

individual neuron in a convergent area (multisep®onvergence) the recipient neuron

Stimuli Receptors Nervous System
N
Visual Convergence
— N N
) i i | Multisensory | —— |
Auditory ! | | Processing erception
! : : Memory
— 1 I Integration
: — | |
Yot
Tactile
|

Figure 2.1: Multisensory processing.



can become multisensory. As a consequence, mudbsgneurons respond to their
combined inputs in a manner that is significantffedent (i.e., multisensory
integration/interaction; either enhancement or dggion) than that elicited by either input
alone. Multisensory processing at the neuronall lexest ultimately lead to behavioral,
perceptual, and/or cognitive manifestations. Thederts are manifest across the neuraxis
and throughout the animal kingdom (Stein and Menedi993), including escape
behaviors mediated by abdominal ganglia in crayfislpredatory detection and
orientation behaviors controlled by the optic tectof reptiles (Newman and Hartline,
1981) and birds (Knudsen, 1982) or the superidrocdlis in mammals (Meredith and
Stein, 1983; 1986; King and Palmer, 1985).

Multisensory perception is largely regarded asréica phenomenon.
Accordingly, effects like integration of auditorgévisual cues (e.g., lip movement) in
speech perception have been localized to portibaaditory cortex (Sams et al., 1991;
Woods and Recanzone, 2004), while crossmodal atteistevident throughout the cortex

(Teder-Salejarvi et al., 1999).

2.1.1 Neuron Types

In terms of the response to sensory inputs nelamnsategorized as bimodal
multisensory, subthreshold multisensory, unisenso/nonresponsive. Only the first two

types are considered as multisensory.



Bimodal Multisensory Neurons: this type of multisensory neuron is easily
identified by its suprathreshold response to stifinain more than one modality (including,
at a minimum bimodal-responsivity). When activabgdooth sets of effective inputs,
bimodal neurons can integrate that information mamner not predicable by the same
inputs activated alone (Meredith and Stein, 19886). When bimodal neurons process
multisensory information, the level of integratigaries dynamically within individual
neurons (as well as between neurons), dependitigesspatial, temporal and physical
properties of the stimuli and the response progedf the involved neurons (Meredith and
Stein, 1986; 1996; Meredith et al., 1987; Steiralgtl995). Levels of integration seem
largely dependent on the processing range of iddalineurons (Perrault et al., 2005) such
that some are capable of great levels of integratibile others are much more restricted.
In addition, these operational modes may be streetpecific, since the high levels of
integration observed in some superior colliculusrogs have not been observed in
cortical regions (Wallace et al., 1992; Mereditlalet 2006; Clemo et al., 2007).
Nevertheless, numerous studies in a wide rangaiofads and brain areas have repeatedly
observed bimodal multisensory neurons, and suchafmece naturally appears to
underscore their robustness as an overall modalutifsensory processing.

Subthreshold Multisensory Neurons: more recently a new type of multisensory
neuron has been identified: the subthreshold nems&sry neuron (also known as
“modulated”) (Driver and Noesselt, 2008). Unlike tihaditional bimodal neuron, the
subthreshold multisensory neuron responds withagbigshold excitation to only one

modality. This activity can be significantly fa¢dted, or suppressed, by the presence of



stimuli from another modality that, by itself, appe ineffective (Dehner et al., 2004,
Meredith et al., 2006; Allman and Meredith, 2002dnsequently, these modulatory
multisensory effects have been detected largelyimgensory-specific cortical areas, both
in individual neurons as well as, via imaging taghes, at an areal level (Driver and
Noesselt, 2008). Subthreshold multisensory neunane been demonstrated in the cat
anterior ectosylvian (AES; Meredith, 2002; Dehneale 2004; Meredith et al., 2006) and
posterolateral lateral suprasylvian (PLLS; Allmand &eredith, 2007) cortices, and ferret
visual area 21 (Allman et al., 2008) although tbisn of multisensory processing appears
to be in several other reports (Bizley et al., 200éwman and Hartline, 1981; Sugihara et
al., 2006). Ultimately, in contrast to the stroegédls of integration achieved by their
bimodal counterparts, subthreshold neurons effielgt subtle modulatory changes of
activity level. Thus, the physiological effectstbése neurons seem to be calibrated for the
subtle multisensory changes observed at the per@dpiel and would seem an ideal
pairing with bimodal neurons, giving the cortexuarbroken continuum of multisensory
processing capacity.

Unisensory and nonresponsive neurons. neurons that are only activated by one
modality are designated as unisensory. Other magkaheither stimulate nor significantly
modulate their responsiveness. Finally, the neutloaisare unaffected by inputs from any
modality are designated as unresponsive. Uniser@utynonresponsive neurons are not

multisensory.



2.1.2 Multisensory Integration

Of particular interest is the phenomenon of gemsgagtrong multisensory
response changes that are dissimilar to those dumkéhe separate inputs of the stimulus.
Known as “multisensory integration” or “responséamcement” or “response depression”,
this effect is regarded as the core of multisenpoogessing at the neuronal (Stein and
Meredith, 1993) and macroscopic levels (Calver@12Beauchamp, 2005; Ghazanfar and
Schroeder, 2006). In short, multisensomggrationrefers to the neural processes that
combine information from two or more different métdas. Multisensory integration
results either in multisensognhancemenin which the response to the cross-modal
stimulus is greater than the one to the most efedf its component stimuli, or in the
multisensorydepressionwhere the combined stimulus response is sigmifigdess than
the best unimodal stimulus. Multisensory integmati@s been shown to influence escape,
orientation and detection behaviors, as well astshaeaction time and aid posture control

and language perception (Stein and Meredith, 1993).

2.2 Network of Spiking Neurons

2.2.1 Single Neuron Models

All neuron models are based, to some degree,aadical neurons and are

intended to mimic them with a certain fidelity. Jhenge from a simple neuron with a



sigmodal function, to a fully-developed membranediatance-based model, which is
described by a more complex mathematical formuddefence to "spiking neuron model",
in this research means an artificial neuron witihidegree of biological resemblance such
as Integrate-and Fire (IAF), Hodgkin-Huxley (HHJ,Inhikevich models. Such neuron
models generate a series of action potentials spgkes in response to a given input.
Integrate and Fire Neuron Model (IAF): even though there is some controversy
on the origin of the model, a model by Lapicquda®®7 (Abbott, 1999) is known as the
earliest IAF model of a neuron, and similar modakwntroduced by Hill (1936).
However, the term ‘integrate-and-fire’ began toegopn papers in the 1960s. Since then

many variations of this model have been proposeédiaed for computational modeling of
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biological systems (Cios et al., 2004; Lovelace @mas, 2007). The computational
economy and simplicity of this model make it espkygiuseful in elucidating the
properties of large networks. One of the most widsled IAF models in computational
modeling of brain functions is the leaky IAF mod&s illustrated in Figure 2.2, the basic
form of a leaky IAF neuron can be described withnaple electrical circuit. The leak
feature helps the neuron model to include a makste time-contingent membrane
behavior with minimal memory overhead.

Hodgkin-Huxley Neuron Model: Hodgkin and Huxley (1952) proposed the model

that accommodated the ionic mechanisms directitedlto the activity of action
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potentials in the squid giant axon. In their modled, action potential is described as a set
of nonlinear ordinary differential equations. Thé&at membrane current consists of a
capacity current and an ionic current, and ionicent can be represented with potassium
current(x), sodium currentf,) and a leakage currehj(as shown in Figure 2.3.

| zhikevich Neuron Model: the Izhikevich neuron model (Izhikevich, 2003 &
2004), also known as a nonlinear IAF model, has bbadely used because not only it can
generate outputs as realistic as Hodgkin-Huxleyarebut also it is computationally
efficient. The dynamics of the model are based syséem of two first order differential

equations defined by eq. (2.1).

004v? +5v+140-u+ 1|
u' = albv-u), (2.1)

VI

if v=30mV, then{v
Uu—u+d,

whereV is the membrane potential of the neuron and a membrane recovery variable
based on the activation levels of sodilva” and potassiuniK * ionic currents and, b, c
and d are parameters for this model. Therefore, a sirdipémge of the one or more of the
parameter values will result in a different spikpattern. These parameter sets can be
selected specifically to represent spiking popaltatiof well-defined biological neurons,
making it ideal for efficiently representing neuabspiking pattern diversity within a
network model. Figure 2.4 illustrates the rangspking patterns which this model can

produce.
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Figure 2.4: Spiking patterns of Izhikevich neurons (Izhikevi2®03 & 2004). The
figure and reproduction permission are available at

http://vesicle.nsi.edu/users/izhikevich.
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2.2.2 Synaptic Plasticity/L ear ning Rules

Long suspected to be the key to understanding #ahamisms involved in learning
and memory within the brain and investigated foreriban century novgynaptic
plasticityis the capability of the synapse between two n&uto change in strength (Cajal,
1894). Mathematically, much of our understandingyfaptic plasticity has been first
defined by Jerzy Konorski (Konorski, 1948) and tpepularized famously by Donald
Hebb (Hebb, 1949). In this research, two key syinggasticity rules are introduced to
explain our modeling of learning in a network oifképg neurons: the Spike-Timing
Dependent Plasticity (STDP) and the Synaptic Agtiflasticity Rule (SAPR) (Song et
al., 2000; Swiercz et al., 2006).

Spike-Timing Dependent Plasticity (STDP) and Synaptic Activity Plasticity
Rule (SAPR): the synaptic plasticity rule can be summarized#sws: neurons
connected by a synapse that fire together stremgtineir synapse if the postsynaptic
neuron fires soon after the presynaptic neurongaothse it gets weakemhe mathematical
representation of the STDP is specified by eq. @2l its learning function is illustrated
in Figure 2.5(b).

STDHAt) = {

A exd-At/r,) if 4t>0

- Aa_exd-At/r.) if At<0 (22)

whereAt is the time between pre-and post-synaptic neuromg$; A.- is the maximum

amounts of synaptic modification; and is the time constant.
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In contrast to many learning rules including STBRPR uses the actual synaptic
temporal dynamics to decide the amount of adjustpaanis illustrated in Figure 2.5(a).
SAPR follows the general scheme of synaptic plagtieward as STDP but provides a
continuous form for the learning function. Thiise of the primary reasons for using the
SAPR over the STDP, since there is no explicit @qoaor function shape for synaptic
strength adjustment. The adjustment only approx@spbssible function using a pre-
synaptic potential (PSP) shape. Figure 2.5(a) shostone example of a learning function

using a general PSP shape for one excitatory aadndbitory neuron.

(a) SAPR (b) STDP
SAPR(AY) | STDP(N) 4
A At
A

Figure 2.5: Comparison of learning functions used in the SABRand in the STDP
(b), 4t: the time difference between pre- and postsynayaticon firings SAPRAL):
synaptic strength modification when using SABRDP¢t): synaptic strength
modification when using STDP.
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2.3 Existing Computational Models of Multisensory Processing

Anastasio and Patton (2000) were the first to maddtisensory integration.
Based on the observation that there is uncertaimtyne presence of a target in its
receptive field when sensory inputs are provideghedeep Superior Colliculus (SC)
neuron was modeled with conditional probabilityngsBayes' rule. A deep SC neuron
computes the probability that a target is preseiisireceptive field given its sensory

inputs as shown in Figure 2.6.

Environmental Receptors Superior colliculus

event
I . Y I r
Visual

P(T=1|V,A)
/

-

Auditory I //

POV, A|T=)P(T =1)
P(V, A)

P(T=1|V.,4)=

Figure 2.6: Multisensory integration in the deep layers ofshperior colliculus. Target
is an environmental event.andA are random variables which are inputs from the
visual and auditory systenh.is a binary random variable representing the takge
block on a grid represents a deep SC neuron.

P(T=1|V, A)is the Bayesian probability that a target is pnegéven sensory inputs
visual (V) and auditory(A). Based on this statistical interpretation, Andstasd Patton

provided plausible explanation for multisensory@amtement and the inverse effectiveness
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rule in multisensory SC neurons. Later, they ex¢enttheir study by adding an information
theoretic analysis. Their study hypothesized timahodal SC neurons may have higher
average information gain (i.e., mutual informatianj}he presence of unambiguous
unimodal input. The relative entropy of such nesr@as measured by the Kullback-
Leibler difference) possess little difference bedswspontaneous and driven inputs, and
thereby have little or no increase in informati@ngwith inputs from additional
modalities. On the other hand, multisensory neyrawhgch receive ambiguous unimodal
input and grant larger relative entropy, could hiaigher average information gain in the
presence of additional modalities. As a resulty thiposed that unimodal SC neurons
may receive more informative input from a singledaldty than from one or more
additional modalities, while multisensory neurortsich receive ambiguous input from a
single modality could be more informative when #hisradditional modality (Patton et al.,
2002).

Similar approach was used by (Colonius and Diede£601) who used maximum
likelihood. The basis of the model is that the d8€&pneurons' behavior is related to the hit
probability under a maximum likelihood decisioreségy. In addition to features of
multisensory integration, such as multisensoryeasp enhancement and inverse
effectiveness, the model was capable of discrinandietween relevant stimuli (targets)
and irrelevant stimuli (distracters).

Further extending their earlier work, Patton andgtasio (2003) combined their
previous Bayesian model with a perceptron modeigiBioisson density inputs because

they required only one parameter (mean) and reagprepresented neuronal firing-rate
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distributions. A deep SC neuron was representedpasceptron which is in the form of
the logistic function so that the output of perceptis equal to Bayesian (posterior)
probability of a target. In addition, an augmenpedceptron was used to show the role of
NMDA receptors and modality-specific suppression.

Anastasio and Patton (2003) once again made adtegen modeling multisensory
processing by extending the level of modeling f@single neuron to a network. By
introducing a network model of the corticotectadteyn using a two-stage unsupervised
learning algorithm, the model was able to simutatdtisensory enhancement and self-
organization of the corticotectal system as illatgtd in Figure 2.7. The network consists of

100 deep SC (DSC) units, each of which is represkntth a perceptron model and

modulatory inputs

nunyna

‘ Hebb-anti-Hebb learning ‘

fltw)=P(T=1|m)

)

H

Hebbian SOM learning

e

primary inputs

Figure 2.7: A network model of the corticotectal system usangvo-stage unsupervised
learning algorithm.
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receives primary and modulatory inputs from sensgstems and sensory projections
from parietal cortex respectively. At the firstggaof learning, the weights related to
primary inputs were updated using the self-orgaigiznap in the presence of the target.
The stage-two learning updates the modulatory wejgthich is related to projections
from neurons in paritetal cortex to the DSC neur¢mshis way, the corticotectal model
provides insights into how multisensory enhanceraedtself-organization may happen in
the brain.

Another model was proposed by Rowland et al. (2@®3&ccount for the best-
known features of the SC multisensory integratidme model is described in two different
aspects: algebraic and compartmental form. As showamgure 2.8. in its algebraic form,

the model transforms two numerical values fromedéht sensory inputs into a quantity

Cortico-collicular inputs(d)

V2 A2+ (V,+ A
V. +V,+4,+A4,

Rzrln{a

Ascending inputs(u)

Figure 2.8: A diagram of a model of the circuitry underlyin@ $ultisensory
integration and the algebraic form of the SC metisory neuron. | indicates a
population of inhibitory neurons, SC is the multisery neuron in SC. V and A are
visual and auditory input and the u and d subskrpticate ascending(up) and cortico-
collicular(down) source of input, respectivetyanda are constants. Ifj[ is a
logarithmic transfer function restricted to posstivalues.
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(i.e.,Rin Figure 2.8) which is the spike frequency of tieeiron. More importantly, the
compartmental form of the model both provides thkdhty of its algebraic form and, at
the same time, enhances the model to handle temgsuas of the multisensory
integration. Based on the simulations, the modehsd similar results to empirical
findings such as multisensory enhancement, supgiratyd inverse effectiveness, cortical
deactivation, within-modal integration, NMDA-receptieactivation, temporal disparity
and temporal profile. This model was also evaluatedeveral physiological levels related
to unisensory integrative capabilities of multisenysSC neurons using multiple visual
stimuli (Alvarado et. al., 2008).

Still another model used a simple neural networérarer to mimic the integrative
responses of neurons in the superior colliculua atgen stimuli of different modalities are
given (Cuppini et. al., 2007, Magosso et. al., 2008ino et. al., 2009). A neuron model
was represented as a first order differential agoavith a sigmoidal relationship. The
topology of the network consisted of three areas:unimodal (auditory and visual) and
multimodal. They used excitatory connections (wg@str) from neurons in the unimodal
areas to multimodal neurons in the SC area andealsitatory connections (downstream)
from multimodal neurons to unimodal neurons. Basethe simulation results, it was
claimed that the model could explain several aspefitinultisensory integration such as
inverse effectiveness, dynamic range of multimeodalrons, cross-modality and within
modality integration and spatial relationship bedgwevithin-modal and cross-modal

stimuli.

18



More recently, a similar but architecturally simpég@proach was used to simulate
the inverse-effectiveness property, spatial logaiihd ontogenesis of multisensory
enhancement (Martin et. al., 2009). Very receralyore biologically realistic model in
topology was proposed to simulate the relationbeigveen multisensory enhancement
and the association cortex and changes in the §fomee according to NMDA receptor

blockade (Cuppini et. al., 2010) as shown in Figlee It is known that the SC receives
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Figure 2.9: The diagram of the network structure and a singl&on model. AES is an
association cortex area, and sends visual inpudsi(§ubregion AEV) and auditory
inputs (from subregion FAES) to SC area. Non-AF8asents sensory regions sending
ascending inputs(i.e., V sends ascending visuaitinip the SC area and A does
ascending auditory inputs). $6G multisensory SC neurons andhd |, are SC

inhibitory neurons. In the single neuron model,dareuron in regions with time
constantr receiving net inputi(t) at a moment in timg the outputz(t) is calculated

with the differential equationg()/indicate a sigmoid function with paramet#the
central point) ang (the slope).

19



converging connections from many subcortical antical areas but the experimental
findings indicate that inputs from association errfAES and rLS in cat) are the key for
multisensory integration in the area.

In summary, it is clear that a preponderance otiserisory computational efforts
have been directed toward providing insights maimiy the features of multisensory

integration.
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CHAPTER 3 A Neuronal Multisensory Processing Simulator

Simulation of a brain function, in a broad sensegplves processes that include
conceptual definition and design, computationaing@thematical) modeling, testing the
correlation between the model output and brain,thadyeneration of biologically
plausible and testable hypotheses. Simulators gecispecific environment in which
computational models can be custom built accortbriheir conceptual model of interest,
as well as evaluate the results of simulation liygianalytic tools in the simulator. We
describe a new simulator, the Neuronal Multisengtmcessing Simulator (NMPS)
designed primarily to model multisensory processirige NMPS generated a network of
spiking neurons and stimulated the network by gunputs to neurons. Analysis of both
neurons and network revealed responses similaptogical multisensory processing, and
provided insight into multisensory features curieirtaccessible to either observation or

experimentation.

3.1 Motivation

Numerous aspects of brain function have been appeabbyin vivo andin vitro
experiments, and computational models have incatpdrthese observations with a

variety of simulation designs. However, modelintkeggenerating mechanisms in a
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network of spiking neurons provides a way to sirteuiteeuronal circuits that are
“biologically realistic.” Similar to the conductaexbased neuron model of Hodgkin and
Huxley, there have been many biologically-plausit#eiron models designed to mimic
variety of neuronal activities. Examples include EitzHugh—Nagumo model (a
simplified version of the Hodgkin and Huxley mod@)tzHugh, 1961), the integrate and
fire neuron model (computationally efficient, bes$ biologically realistic) and
Izhikevich’s modified integrate and fire neuron neb(tomputationally simple). In each
format, a network consisting of spiking neurongjamized in a spatial/connectional
topology, has been successful in simulating a tyadgebrain functions (Markram, 2006;
Lovelace, 2008; Izhikevich, 2008).

Simulators that include these biologically-reatisgatures provide a specific
synthetic environment in which computational moaels be constructed according to the
conceptual model of interest. NEURON is one ofliast-known simulation tools in the
field of computational neuroscience (Carnevale 620GENESIS, NEST and NCS are
other popular simulators (Bower, 1998; Gewaltig)20Wilson, 2001). More recently,
SNNAP tool has been designed for the purpose chteg neuroscience (Av-Ron, 2008).
Brette reviewed the most popular simulators withard to their simulation strategies and
algorithms (Brette, 2007). However, the complexityhe brain makes it unlikely that the
available simulation tool packages can adequatidyess all neural properties. Therefore,
new simulators are developed to address specdet$af brain organization and function.

A particularly useful feature of such syntheticwetks is their ability to simulate

biological features that are experimentally inastd®e, such as the manipulation and
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control of neural connectivity that underlies nenabactivity. This is especially relevant to
the examination of the multisensory nature of tfery where connections from one
sensory modality impinge on those from anothentiuénce neural activity that underlies
important functions from behavior to perception.pgafticular interest is whether simple
convergence of inputs from different sources caregge features of multisensory
processing, or are special constants/factors mrigarequired? It has not been reported
that the available simulator packages addresstimgergence problem. Therefotiee
Neuronal Multisensory Processing Simulator (NMRShtroduced as a computational
environment for designing networks of spiking neartm evaluate the properties that
underlie multisensory processinghe novelty of the NMPS is that it performs siatidns
of multisensory convergence by generating netwooklels and evaluates the functional
result of that convergence with onboard analyssstthat measure the spiking activity of

the constituent neurons.

3.2 The Smulator

The NMPS consists of several software componemttyding Morphology and
Electrophysiology Managers for designing neuroresyphe Network Builder for network
generation, the Simulation Manager for network $ation, and the Neuron and Network
analysis Managers for analysis of the simulaticults. The schematic view of the

simulator is shown in Figure 3.1.
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Figure 3.1: The Neuronal Multisensory Processing Simulator (Nl overview.

3.2.1 Neuron type

A neuron is described by both its electrophysiatagproperties and its
morphology; the Morphology and Electrophysiologyrgers are in charge of these
tasks. The electrophysiological characteristicyelaed to spike generation, and three
different single neuron models are implementediessribed by eq. (3.1) for the HH
model, eq. (3.2) for Izhikevich model and eq. (3®)the McGregor model which is an
IAF model (MacGregor, 1993). Although the HH modehsists of four differential
equations, three of them that are related to ogewiimonic channels are not shown here
for simplicity. The user can define the neuron’skisyy properties by adjusting parameters
such as maximum sodium conductangg)( maximum potassium conductange)(and
leak ion conductancey(). Likewise, the other two single neuron modelsGviegor’s and

Izhikevich’s, also use several parameters thatatherize their spiking patterns.

dv
C—=gm’h -V) +g,n*(V, -V
at InaM™N(Vy, =V) +gn" (V¢ —V) (3.1)

+ gL(VL _V) + Iext
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av_ 004v® +5v+140-u+1 % =a(bv-u)
dt dt

Ve c (3.2)
if v>30mV,the
r{u ~u+d

dv _ -V +G, [(V, -V)+SCN

dt Toen !
dG, _ -G, +BI[8 dT, _ - (T, -T,,)+clV

dt Ty dt T, ’ (33)
(1 ifvaT,

'{o if vV <T,

whereV is a membrane potential and all the parametets#rabe modified in a neuron
model are listed in Table 3.1. These adjustablarpaters determine a neuron’s spiking
pattern that correspond with known activity patseoh biological neurons. For instance,
the Izhikevich model accommodates 22 types of sgikiatterns of cortical neurons, such
as RS (regular spiking), IB (intrinsically burstjpgr CH (chattering) excitatory neurons,
or FS (fast spiking) or LTS (low-threshold spikinghibitory neurons; each discharge type
is achieved by changing electrophysiological patenses, b, c, andd (see Table 3.1).

The NMPS provides flexible interfaces allowing tieer to determine and save the
parameter variables for later use and analysessiiablish the parameters for a particular
neuron model, both dynamic and static variablesiaegl. A dynamic variable is a random
variable that can be assigned to a parameter, yaesath time a neuron is created, a

different value is assigned to it according to ecsied random process. On the other hand,
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Table 3.1: Neuron models and their parameters

Neuron models Parameters

HH Ona: Maximum conductance dfa channel
Ok: maximum conductance &f channel
g.: conductance of the leakage channel
Vna: Sodium reversal potential

Vk: potassium reversal potential

V.: leakage reversal potential

Izhikevich a: the time scale of the recovery variable

b: the sensitivity of the recovery variahle

c: the after-spike reset value of the membrane piaien
d: the after-spike reset value of the recovery \deia.

McGregor \k: potassium reversal potential

Tmem Membrane time constant

Tek: potassium conductance time constant

B: amplitude of the postfiring potassium conductanc
c: amplitude of the threshold

Ti: time constant for decay of threshold

Tino: resting threshold

a user determines a value for a static variableiristance the parameteasindd in the
Izikevich model can be set up as random variablatevparameters b and ¢ can be static.
The simulator thus provides for a wide diversitynetironal behaviors. In addition to a
neuron's electrophysiology, the NMPS provides &ftmospecifying the morphology of

the neurons in the network. All neurons are compagehree compartments: a single
point soma, a dendrite consisting of many dendsi§itapses, and an axon with many
axonal terminals. A synapse is defined as a coiorebetween an axonal terminal (from
extrinsic or intrinsic sources) and a dendriticagyse. Synapses can occur between two
different neurons or on the same neuron (as aneduconnection). The spatial position of
each compartment of a neuron can be defined instefrfocation and distribution (e.g.,
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dendritic synapses in one layer might be scattenddr than those in another layer) and
the spatial relationships among compartments ofamsualso indicate temporal ones(i.e.,
delay times). For instance, the longer the distdoeateeen a dendritic synapse and its

soma, the more delay time is seen.

ASoma ——@ Dendritic synapses ——> Axon terminals

Figure 3.2: A synthetic neuron, its compartments (soma, déndrynapses, and axon
terminals) and their distribution by layers (L1-L5)

Figure 3.2 may suggest that a neuron with dendsyi@pses and axon terminals
needs to be distributed into cortex-like layersgémeral, this does not have to be the case
as the (computational) “layer” may have no corresiemce to the biological layer. The
number of axon terminals and the number of dermdsithapses within each layer is
calculated from two ratios. The first specifies hmany axon terminals are to be placed in
each of the layers; similarly the second ratio ggschow many dendritic synapses are to
be in each layer. For example, the user wantsddhestotal of 3 axonal terminals

distributed into the six layers, shown in Figur2,&s 0:0:0:0:3:0, and 13 dendritic
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synapses distributes as 5:2:2:4:0:0. Figure 3.@/shibat the axons project only into layer
L5 while dendritic synapses are distributed infela: L1, L2, L3 and L4. In this way the
Morphology Manger provides users with flexibility building a variety of networks in 3D
space. Note that the simulator treats the two maldeatures (morphology and
electrophysiology) independently. Finally, all candtions of parameter settings for
different morphology and electrophysiology types saved for the subsequent generation

of a network.

3.2.2 Network Topology

The Network Builder creates the network and alltasks related to it. First, a 3D
network space is created (XxYxZ) that sets itstBmrhen, the user selects the neuron
model from one of the three models (HH, McGregazhjKevich). In our example, we
created a cube of the size 30x10x50 (as is showigure 3.3) using the Izhikevich
neuron model.

Before placing neurons in the empty network, therumay divide its 3D space
depending on the desired application. It may belstidied into six layers that represent a
specific cortical region, or several regions toresegnt some cortical regions. In our
example, we subdivided it into six horizontal reg@f the same size. Essentially, these
subdivisions define cortical regions in the desty8B network.

The next step is to populate the network with nesrdo do so, the user needs to

specify the following parameters for each neurdecteophysiology type, morphology
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type, number of neurons, number of dendritic syaspand number of axonal terminals.
For example, 300 excitatory neurons with approxétyaihe same numbers of RS, IB and
CH types (e.g. about 100 of each type) were salg@otpopulate a specific region with no
dendritic synapses, that project 100 axonal terlmifgeer neuron) into another region. The
Network Builder then placed the somas of the 3Qfares randomly in the above

specified region, with 30,000 axon terminals ranbodmstributed in the other region.

3.2.3 Simulation

The Simulation Manager helps the user to detersynaptic transmission
properties, choose one of the two plasticity réidesmodifying synaptic strengths,
determine the number of input regions, and to perfils main task of simulation.

Synaptic transmission and plasticity rules. synaptic transmission occurs when an
action potential that reaches a synapse genergiestsynaptic potential (PSP) in the
postsynaptic neuron that is either excitatory (ER8mhibitory (IPSP), depending on the
nature of the presynaptic neuron. Excitatory syaagsmulated glutamate-gated channels
using N-methyl-D-aspartate (NMDA) (long lasting)aamino-3-hydroxy-5-
methylisoxazole-4-propionic acid (AMPA) (rapid) mmopic receptors. Inhibitory
synapses emulatgeamino-butyric acid (GABA)-gated channels via GABfast) and

GABAg (slow) receptors.
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EPSRt) = a e[tt] —e_[t_ftf] 5(t-t")

(3.4)

=s

IPSR(t) = e_[t?‘f] —e[ ) St -t")

wherea andp are maximum conductancess time,t' is the arrival time of presynaptic
action potentialzg andr; are decay and rise time constants giaad 75 are fast and slow
time constants. In our simulator, the synapticgnaission is governed by eq. (3.4)
(Gerstner, 2002). For both excitatory and inhilyitsynaptic transmissions, only fast
synaptic transmissions by AMPA and by GABA receptare considered here.

Another feature of the Simulation Manager is tonporate the activity dependent
plasticity known to occur at synapses. This feaadjests the weight of the synapse
relative to its firing history. The simulator allswhe use of two Konorski /Hebbian type
synaptic plasticity rules: STDP and SAPR as spatiin eq. (3.5).

w(t +1) = sig(w(t) + a [PSRY) [ f,(At)),

( Mt
STDRAL) = ple Tif At>0

Mt (3.5)
-ple Tif At<O

| SAPRAt) = PSRAt)

fp(At) =1

wherew(t) is current synaptic weight, sifi(s a sigmoid functiory is learning ratet is
the spike time difference between pre- and posasyn neurons is the maximum
amounts of synaptic modification, ands a time constant. The STDP is the mechanism

for long-term potentiation and depression of syrapansmission, and it adjusts synaptic
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plasticity depending on the relative timing of pagd postsynaptic spikes and is
represented with a mathematical function observad feal experiments. On the other

hand, instead of using a fixed learning functiomae STDP, the SAPR makes

adjustments based on synaptic dynamics: the aEf@Ps and IPSPs (i.d2 SFHAt) ).

Stimulation: there are two types of input to the network: nangeit and current
injection/stimulation. Biological neurons show sgareous activity and neuronal noise
plays important role in brain function (Ermentro2®08). Therefore, the Simulation
Manager permits the addition of white noise to nearin the network to emulate the
spontaneous (non-driven) activity of the brain. Wmoise is added to each neuron at
every moment during simulation using a Gaussiasenwiith specific mean current and
variance values. This noise input alone can geaa@nhe network activity.

The network is also capable of receiving stimulatiy injecting current into
selected neurons. The Simulation Manager perfonmgask by helping the user to set the
amplitude, duration, and the interstimulus intefasuch stimuli, as well as selecting the
coordinates at which they will be applied. Let sstane we have a six-layer network as
shown in Figure 3.3. Creating input regions recggpecification of the spatial coordinates
of the specific layer number, or its part; for exdethe two dashed regions shown in
Figure 3.3 may have been specified by a user. $aeaan select as many input regions as
needed for an application. In the case of usingstimeilator for multisensory processing,
the space not identified as input regions is tegkakethe convergent area (so we have two
input regions and the rest of the space of the cob&ins convergent neurons). Note that
the network shown in Figure 3.3 has been alreagylated with neurons (not shown in
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Figure 3.3: Input regions are defined within the created nekwo

Figure 3.3), in the previous step. The NMPS alkmnal for receiving the inputs from data
files that contain biological neuron recordings.

The process of simulation starts by clicking th&f® button. The spiking activity
of the entire network is saved in a result filelsat information about each neuron’s
spiking history is available for further analysi$ie analysis is normally performed within

the simulator itself, but can be exported to odwtware tools for analysis.

3.2.4 Analysis

A simulation produces spiking information for eawuron as well as other
parameters of the network. The first is analyzedhigyNeuron Analysis Manager and the

other by the Network Analysis Manager. Becauseisgikeurons in the network simulate
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showed that the proposed convergence model icmiuffito generate various types of
neurons. The results also revealed that as a i@&suétining there is a change of synaptic
strength values of neurons, which relates to tlamgh of modality of the neuron; however,
the statistical difference between neuron typesenms of the instrength values, remained
the same in the trained networks. Third, we denmatexd that many forms of convergence,
by changing connectional parameters, contributegageneration of the synthetic
multisensory neurons. Especially, extrinsic progt played a dominant role in the
generation of multisensory properties. However, wteir levels of convergence were
low, they were insufficient for generating multiseny effects. It is expected that these
findings, about the relationship between the conoeal parameters for multisensory
convergence and multisensory processing, will teatew biological experiments to
assess their validity.

The defined randomized connections, within a netwdth excitatory and
inhibitory neurons, helped to clarify the importaoke of the convergence. In the future,
the addition of more realistic biologically-accuabpologies of sensory systems should
help to build a more detailed model of corticals®y processes and thus allow for better

exploration of the complexities of convergence.
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APPENDI X List of parameter values used in Chapter 4

The appendix A provides parameter values for coatfmrtal experiments in

Chapter 4.

Table A.1: Parameter values for computational experimen@hapter 4.

Excitatory a: 0.02; b: 0.2; c: -65+15
Neuron zhikevich (RS,B.CH) |d: 8-6/°
model Inhibitory a: 0.02 + 0.0@¢b: 0.25 - 0.0%
(FS, LTS) c: -65;d: 2
100 Excitatory neurons;
Area A 5K connections to Area C
Network Area B 100 Excitatory neurons;
topology 5K connections to Area C
Area C 400 Excitatory and 100 inhibitory neurons;
30K intrinsic and 10K extrinsic connections
PSPs EPSP a=414=4,1,=3
Synaptic IPSP a=-51=771=5
plasticity
STDP a=014=0.11=20
Excitatory _ _
Noise neurons W=3,0=25
Inhibitory neurons H=150=2
Amplitude 4mV
Experiment | Stimulation duration 200ms
Interval 2000ms
Network training 102,000 ms
time
Network 400,000 ms
simulation
Spike density function o =30, Thk=90
Analysis
t-test p<0.05

yis a uniform random variable between 0 and 1
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APPENDI X B List of parameter values used in Chapter 5

The appendix A provides parameter values for coatfmrtal experiments in

Chapter 5.

Table B.1: Parameter values for computational experimen@hiapter 5.

Excitatory a: 0.02; b: 0.2; c: -65+15
Neuron zhikevich (RS,B.CH) | d: 8-6y°
model Inhibitory a: 0.02 + 0.0@¢b: 0.25 - 0.0%
(FS, LTS) c. -65;d: 2
Area A 100 Excitatory neurons;
Network Area B 100 Excitatory neurons;
topology
Area C 400 Excitatory and 100 inhibitory neurons;
_ PSPs EPSP a=414=4,1,=3
Synaptic IPSP =-51=71=5
plasticity
STDP 2=0.014=0.1,1=20
Excitatory _ _
Noise neurons W=3,0=4
Inhibitory neurons n=3,0=4
Amplitude amV
Experiment | Stimulation duration 200ms
Interval 2000ms
Network training N/A
time
Network 400,000 ms
simulation
Spike density function o =30, Thk=90
Analysis
t-test p<0.05

yis a uniform random variable between 0 and 1
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