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Abstract

A HORIZONTAL EDGES BOUND FOR THE INDEPENDENCE NUMBER OF A
GRAPH

By Michelle Lynn Grigsby, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2012.

Director: Craig E. Larson, Assistant Professor, Department of Mathematics and Applied
Mathematics.

The independence number α of a graph is the size of a maximum independent set of

vertices. An independent set is a set of vertices where every pair of vertices in non-adjacent.

This number is known to be hard to compute. The bound we worked with is defined as

ε = maxv∈V{e(v)− eh(v)}. e(v) is the number of vertices at even distance from v. eh(v)

is the number of edges both of whose endpoints are at even distance from v. ε can be

calculated in polynomial time. Siemion Fajtlowicz proved that α ≥ ε for any graph. We

worked to characterize graphs where α = ε .
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Preliminaries

This sections gives important definitions that will be used. We begin with an independent

set and the independence number, α , since we worked with a lower bound on α .

DEFINITION 1.1. An independent set, I, is a set of vertices of a graph where any pair of

vertices, a,b ∈ I, are not adjacent.

a b c

Figure 1.1: An example of an independent set for this graph is I = {a,c}.

DEFINITION 1.2. The independence number α = α(G) of a graph G is the cardinality of a

maximum independent set.

Figure 1.2: For this graph α = 2.

DEFINITION 1.3. The distance between two vertices, a and b, d(a,b) is the length of the

shortest path from a to b. A path is a sequence of vertices v1,v2, ...,vn such that vi is adjacent

to vi+1 for i = 1, ...,n−1.

a

v

Figure 1.3: For this graph, d(a,v) = 2.
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DEFINITION 1.4. The set Di(v) of a graph G is the set of vertices at distance i from a vertex

v.

a

v

b

de

Figure 1.4: For this graph the set D0(v) = {v}, D1(v) = {a,b}, and D2(v) = {d,e}.

DEFINITION 1.5. A v-horizontal edge is an edge ab such that d(v,a) = d(v,b).

a

v

b

Figure 1.5: The edge ab is a v-horizontal edge since d(v,a) = d(v,b) = 1.

DEFINITION 1.6. An even horizontal edge is a v-horizontal edge, ab, such that d(v,a) is

even.

a

v

b

Figure 1.6: For this graph, d(v,a) = d(v,b) = 2. So the edge ab is an even-horizontal edge

to v.

DEFINITION 1.7. An odd-horizontal edge is a v-horizontal edge, ab, such that d(v,a) is

odd.
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a

v

b

Figure 1.7: For this graph, d(v,a) = d(v,b) = 1. So the edge ab is an odd-horizontal edge

to v.

DEFINITION 1.8. E(v) is the set of vertices at even distance from v in a graph G. e(v) is the

cardinality of E(v). Also, EG(v) is used when refering to a specific graph G.

v

Figure 1.8: For this graph, e(v) = 1.

DEFINITION 1.9. O(v) is the set of vertices at odd distance from v. o(v) is the cardinality

of O(v). OG(v) is used when refering so a specific graph G.

v

Figure 1.9: For this graph, o(v) = 3.

DEFINITION 1.10. EH(v) is the set of v-even horizontal edges. eh(v) is the cardinality of

EH(v).
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v

Figure 1.10: For this graph, eh(v) = 1.

DEFINITION 1.11. For any graph G = (V,E), ε = maxv∈V{e(v)− eh(v)}.

a

c

b

d

e

f

Figure 1.11: For this graph, e(a)− eh(a) = 2, e(b)− eh(b) = 2, e(c)− eh(c) = 3, e(d)−

eh(d) = 3, e(e)− eh(e) = 2, e( f )− eh( f ) = 2. Since ε = max{e(v)− eh(v)} we get ε = 3.

DEFINITION 1.12. An induced subgraph of a graph G is a graph on a subset V1 of V (G)

and the edges from G between the vertices of V1. This graph is denoted G[V1].

a

b

c

de

Figure 1.12: G

a c

d

Figure 1.13: The above graph is the induced subgraph of 1 on the set {a,c,d}.
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DEFINITION 1.13. A graph G is a split graph if the vertex set V can be partitioned into sets

V1,V2 so that the graph induced on the vertices of V1, G[V1] is an independent set and G[V2]

is complete, where the graph induced on a set of vertices is the graph with the vertices in the

set and the edges between only the vertices in the set.

a

b

c

d

e

f

Figure 1.14: For this graph, V1 = {a,b,c} is the complete graph on three vertices, K3 and

V2 = {d,e, f} is an independent set.

DEFINITION 1.14. A complete split graph is a split graph such that all the vertices in V1 are

adjacent to every vertex in V2.

a

b

c

d

e

f

Figure 1.15: Again, V1 = {d,e, f} is an independent set and V2 = {a,b,c} is the complete

graph on three vertices, K3. α of a complete split graph equals |V1|.

DEFINITION 1.15. A complete graph, Kn is the graph on n vertices with an edge between

ever pair of vertices.
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Figure 1.16: This graph is the complete graph K4.

DEFINITION 1.16. A graph is unicyclic if it contains a single cycle. A cycle is a sequence

of vertices v1,v2, ...,vn such that vi is adjacent to vi+1 for i = 1, ...,n−1 and v1 is adjacent

to vn .

DEFINITION 1.17. A bipartite graph is a graph G where the vertices can be partitioned into

two sets V1 and V2 where each set is an independent set.

DEFINITION 1.18. A complete bipartite graph, Km,n is a bipartite graph with bipartition

(A,B) where |A| = m and |B| = n, with an edge between any vertex in one set of the

bipartition to a vertex in the other set.

Figure 1.17: This is the complete bipartite graph, K2,2.

DEFINITION 1.19. A matching, M, in a graph is a set of edges which are independent, that

is, no pair of edges in the matching have a common endpoint. A maximum matching is a

largest matching for a graph.
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a b c d

Figure 1.18: For this graph, {bc} is a matching but it is not a maximum matching, whereas,

{ab,cd} is a maximum matching.

1.1 The Independence Number

In general the independence number α , of a graph is hard to compute. The independence

number of a graph is the size of a maximum independent set of vertices. Since α is hard to

compute the goal is to find bounds on this number to estimate α . Many people have tried to

find bounds that approximate α well. The naive algorithm for computing the independence

number looks at every subset of the vertices and there are 2n of them, where n is the number

of vertices of the graph. The algorithm with the best wosrt-case bound is due to Robson [9]

and can be computed in order 2.276n time which is still exponential.

There are known formulas for the independence number of the common graph classes.

The following are examples of these common graph classes along with the formulas for

computing α , where n is the number of vertices of the graph.

S4

Figure 1.19: The stars, Sn. Here α(S4) = 3 and α(Sn) = n−1.
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K4

Figure 1.20: The complete graphs, Kn. Here α(K4) = 1 and α(Kn) = 1.

C5

Figure 1.21: The cycles, Cn. Here α(C5) = 2 and α(Cn) =
⌊n

2

⌋
.

E3

Figure 1.22: The empty graphs, En. Here α(E3) = 3 and α(En) = n.

W5

Figure 1.23: The wheels, Wn. Here α(W4) = 1 and α(Wn) =
⌊n−1

2

⌋
.

P3

Figure 1.24: The path, Pn. Here α(P3) = 2 and α(Pn) =
⌈n

2

⌉
.
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K2,2

Figure 1.25: The complete bipartite graphs, Km,n. Here α(K2,2) = 2 and α(Km,n) =

max{m,n}.

The bound that we explore is an adaptation of a bound that was conjectured by a

computer program called Graffiti. This program was created by Siemion Fajtlowicz to

make conjectures about graph theory. These conjectures are discussed in the manuscript

"Written on the Wall" [4]. The original conjectured bound was α ≥ maxv∈V{|O(v)|}−

minv∈V{|H(v)|}. The benefit of this bound is that it is fully distance related. Since distance

is easy to compute, this made a bound on α easy to compute. A counterexample to the

original bound was found by Peter Puget. Thus, this bound was modified by Siemion

Fajtlowicz to α ≥ ε = maxv∈V (G){e(v)− eh(v)} for any graph G.

1.2 The Even Horizontal Bound

A very important fact about ε is that it can be computed efficiently. In this section we will

describe one algorithm for computing ε .

For any graph G, the distance between any pair of vertices, v and w can be computed

efficiently. One algorithm for computing this distance runs in O(n3) time, where n is the

number of vertices in G. This algorithm is known as Dijkstra’s Shortest Path algorithm [12].

Using this algorithm we can find the distance matrix, D, where Di j = d(vi,v j). Since there

are n2 entries in D, this matrix can be computed inO(n5) time.

Now, for any vertex vi ∈V (G), e(vi) is defined as the number of vertices at even distance

from vi. This can now be found by checking which entries in the ith row of D are even. The
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following is an example.

v1

v2

v3

v4

v5

Figure 1.26: G

The distance matrix, D, for this graph is

0 1 2 2 3

1 0 1 1 2

2 1 0 1 2

2 1 1 0 1

3 2 2 1 0


For this graph, E(v1) = {v1,v3,v4}.

Also, the adjacency matrix, A, for this graph, G, is

0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0


Where Ai j = 0 if vi is not adjacent to v j and Ai j = 1 if vi is adjacent to v j.

Now, the even horizontal edges with respect to a vertex v can be found simply by

considering the graph induced on E(v).
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G[E(v1)]

v1

v3

v4

Figure 1.27: EH(v1) = {v3v4} and eh(v1) = |EH(V1)|= 1.

Thus, e(v1)− eh(v1) = 3− 1 = 2. This quantity can now be calculated in the same

way for the remaining vertices. After doing this, we find that e(v3)− eh(v3) = 3 and

ε(G) = max{e(v)− eh(v)}= 3.

Here we found formulas for ε for some of the common graph classes. For all the

following graph classes the formulas for α and ε were equal.

S4

Figure 1.28: The stars, Sn. Here ε(S4) = 3 and ε(Sn) = n−1.

K4

Figure 1.29: The complete graphs, Kn. Here ε(K4) = 1 and ε(Kn) = 1.
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C5

Figure 1.30: The cycles, Cn. Here ε(C5) = 2 and ε(Cn) =
⌊n

2

⌋
.

W5

Figure 1.31: The wheels, Wn. Here ε(W5) = 2 and ε(Wn) = 2 for all n > 4.

P3

Figure 1.32: ε(P3) = 2 and ε(Pn) =
⌈n

2

⌉
.

K2,2

Figure 1.33: The complete bipartite graphs, Km,n. Here ε(K2,2) = 2 and ε(Km,n) =

max{m,n}.

1.2.1 The Difference Between α and ε can be arbitrarily large

Is there an example of a family of graphs where ε is a bad bound for α?
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A family of graphs which demonstrates that the difference between α and ε can be

arbitrarily large.

Figure 1.34: This is the graph of G2.

Let Gr be a triangle with r pendants adjacent to each vertex. The pendents of Gr form a

maximum independent set. So α = 3r. There are two types of vertices in Gr, pendents and

triangle vertices. For a pendent vertex v, |E(v)|− |EH(v)|= (r+2)−1 = r+1. For each

triangle vertex w, |E(w)|−|EH(w)|=(2r+1)−0= 2r+1. So α−ε = 3r−(2r+1)= r− l,

where r−1 will go to ∞.

1.2.2 Basic Facts About ε

The main goal we focused on was to characterize graphs where α = ε . To begin doing this

we worked to learn about the properties of the ε bound and how we could work with the

sets E(v) and EH(v).

LEMMA 1.20. For any graph G, α(G)≥ n(G)− e(G) where n(g) is the number of vertices

of G and e(G) is the number of edges in G.

Proof. Let Gi be a component of G. We know α(Gi)≥ 1. Then e(Gi) is at least the number

of edges of any spanning tree of Gi. So e(Gi)≥ n(Gi)−1. Hence, n(Gi)− e(Gi)≤ 1. We

also know, α(G)≥∑α(Gi)≥ the number of components of G≥∑1≥∑[n(Gi)−e(Gi)] =

∑n(Gi)−∑e(Gi) = n(G)− e(G).
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So, α(G[Di(v)])≥ n(G[Di(v)])−e(G[Di(v)])= n(G[Di(v)])−|EH(v)∩E(Di(v))| since

E(Di(v)) is contained in EH(v).

THEOREM 1.21. For any fixed vertex v of a graph G, α ≥ e(v)− eh(v). Similarly, α ≥

|O(v)|− |OH(v)|.

Proof. Let Di(v) be the set of vertices at distance i from v. Then, E(v) = D0(v)∪D2(v)∪ . . ..

So α(G)≥ ∑α(G[D2i(v)]) since ∑α(G[D2i(v)]) is the size of an independent set because

each D2i(v) is disjoint. Then α(G)≥ ∑α(G[D2i(v)])≥ ∑[n(G[D2i(v)])− e(G[D2i(v)])] =

∑(n(G[D2i(v)]))−∑(e(G[D2i(v)])) = |E(v)|−|EH(v)|. The second inequality comes from

Lemma 1.20.

THEOREM 1.22. (Fajtlowicz [4]) For any graph G, α ≥ ε .

This is a direct consequence of Theorem 1.21.

PROPOSITION 1.23. For a bipartite graph maxv{e(v)− eh(v)}= maxv{e(v)}.

Proof. Since there are no odd cycles in bipartite graphs and even horizontal edges only

occur when an odd cycle is present. So |EH(v)|= 0.

PROPOSITION 1.24. If G is a connected bipartite graph, then the vertices at even and odd

distance from a vertex v in V (G) form a partition of the vertices into two independent sets.

Proof. Let v ∈V (G) then the sets E(v) and O(v) form a partition because there can not be

a vertex at both even and odd distance from v. Since G is bipartite, there are no odd cycles

and no even horizontal edges. Then there are no edges between vertices in E(v) since there

are no horizontal edges. Also, there are no edges between vertices in O(v) since there are

no odd cycles. Hence both sets E(v) and O(v) are independent sets.

LEMMA 1.25. If ∑
n
i=1 xi = ∑

n
i=1 yi and, for all i, xi ≥ yi and xi ≥ 1

then, for all i, xi = yi.
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Proof. Suppose there exists a j such that x j > y j then ∑
n
i=1 xi =∑

i= j−1
i=1 xi+x j+∑ i = j+1nxi

> ∑
i= j−1
i=1 yi + y j +∑

n
i= j+1 yi, which is a contradiction. Hence no such j exists.

LEMMA 1.26. If G is connected, then α(G) = n(G)− e(G) if and only if G is a K1 or a K2.

Proof. For a connected graph, e≥ n−1. So, n− e≥ n− (n−1) = 1≤ α . So, α = n− e

implies α = 1. Hence, G is a K1 or K2.

LEMMA 1.27. For any graph G, α(G) = n(G)−e(G) if, and only if, every component of G

is a K1 or K2.

Proof. Let G1, ...,Gk be the components of G. Then α(G) = ∑
k
i=1 α(Gi). Suppose α(G) =

n(G)− e(G). Then α = ∑
k
i=1[n(Gi)− e(Gi)]. Since α(Gi) ≥ n(Gi)− e(Gi) for all i, it

follows from Lemma 1.25 that α(Gi) = n(Gi)− e(Gi). Then by the Lemma 1.26 each

component, Gi, is a K1 or a K2.

Conversely, assume every component of G is a K1 or a K2. Let A be the set of K1s and B

be the set of K2s. Then α(G) = ∑α(Gi)

= ∑A α(Gi)+∑B α(Gi) = ∑A[n(Gi)− e(Gi)]+∑B[n(Gi)− e(Gi)]

= ∑n(Gi)−∑e(Gi) = n(G)− e(G).
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The Main Conjecture

While trying to characterize graphs where α = ε we came up with a conjecture in which it

would be easy to determine whether or not a graph is of this form. The conjecture says that

α will equal ε if an only if for an ε-maximizing vertex v, the graph induced on the vertices

at even distance from v consists of isolated vertices or paths of length one and there exists a

matching M that saturates the vertices at odd distance from v. This conjecture is still open

as it has not been proved and no counterexample has been found.

CONJECTURE 2.1. For any graph G, α = ε if and only if, for every ε-maximizing vertex v,

the components of the graph induced on E(v) are K1s and K2s and there is a matching that

saturates O(v).

For any graph G and any set X ⊆V (G), it can be checked in polynomial-time whether

there is a matching that saturates X . This can be computed using Edmonds’ algorithm for

finding a maximum matching of a graph [8]. Let X ⊆ V (G). We need only consider the

graph induced on X ∪N(X), since any edge which saturated a vertex of X will be included

in the induced edges. Let G′ = G[X ∪N(X)]. Find a maximum matching M for G′. If M

saturates X in G′ then M saturates X in G. If M does not saturates X in G′ then no matching

saturates X in G.

For this conjecture, it is important to note that the conditions that need to be checked

can all be found efficiently.

THEOREM 2.2. For any graph G if α = ε and v is an ε-maximizing vertex then the graph

G[E(v)] consists of components which are K1s and K2s.
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Proof. Let v be a vertex which maximizes e(v)− eh(v). Then e(v)− eh(v) = |E(v)| −

|EH(v)|= ∑ |D2i(v)|−∑ |EH2i(v)|

= ∑(|D2i(v)|− |EH2i(v)|) = ∑[n(G[D2i(v)])− e(G[D2i(v)])].

Assume α = e(v)− eh(v). By Lemma 1.20, α(G[D2i(v)])≥ n(G[D2i(v)])− e(G[D2i(v)]).

So, ∑[n(G[D2i(v)])− e(G[D2i(v)])] = e(v)− eh(v) = α(G)≥ ∑α(G[D2i(v)])

≥ ∑n(G[D2i(v)])− e(G[D2i(v)]).

So, they all must be equal. Now, for all i, α(G[D2i(v)]) = n(G[D2i(v)])− e(G[D2i(v)]) by

Lemma 1.25. Hence, by Lemma 1.27, each G[D2i(v)] has components which are K1s or K2s.

So G[E(v)] has components which are K1s or K2s.

CONJECTURE 2.3. For any graph G, α = ε if, and only if, for every ε-maximizing vertex v,

the components of G[E(v)] are K1s and K2s.

A counterexample to this conjecture is the Benzenoid in Figure 2.1. For this graph

G[E(v)] consists of only K1s and α ≥ 22 but ε = 21. So α 6= ε .

CONJECTURE 2.4. If G is a graph with ε-maximizing vertex v and the components of

G[E(v)] are K1’s or K2’s, then α(G) = e(v)− eh(v).

v

Figure 2.1: This graph is a benzenoid and is bipartite so for all v, eh(v) = 0. Here α ≥ 22

but ε = 21. So α 6= ε . This is a counterexample to Conjecture 2.4. [8]

THEOREM 2.5. If α = ε then, for any ε-maximizing vertex v, there is a matching which

saturates O(v).



18

Proof. Assume α = ε . Let v be an ε-maximizing vertex. By Lemma 1.27, we know G[E(v)]

consists of components which are K1s and K2s. So if we take all the vertices from the K1s

and one vertex from each of the K2s in G[E(v)] we will get an independent set with ε vertices.

So, we get a maximum independent set, I, that is contained in E(v). Now, by Theorem 2.9

we know that any maximum matching of G saturates V/I. Since I is contained in E(v), then

O(v) is contained in V/I. Hence any maximum matching must saturate O(v).

COROLLARY 2.6. If α = ε then, for any ε-maximizing vertex v, the components of G[E(v)]

are K1s and K2s and there is a matching which saturates O(v).

Corollary 2.6 was generalized to get the main conjecture (Conjecture 2.1).

CONJECTURE 2.7. For any graph, α = ε if, and only if, for any ε-maximizing vertex v

there exists a matching which saturates O(v).

v

a

g f

b c

e

d

Figure 2.2: This graph is a counterexample since for ε-maximizing vertex v with O(v) =

{a,d,g} there is a matching M = {va,bc,de, f g} which saturates O(v), but α = 3 and ε = 2.

However, this is not a counterexample to the main conjecture (Conjecture 2.1) since the

components of E(v) do not consist of K1s and K2s.

THEOREM 2.8. (Hall’s Theorem) If G is a bipartite graph with bipartition G = (A,B) then

there is a matching which saturates A if and only if, for any set S⊂ A, |N(S)| ≥ |S|.
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THEOREM 2.9. For any graph G and any maximum independent set I, there is a matching

which saturates Ic.

Proof. Let I be a maximum independent set of a graph G. Let M be a maximum matching of

Ic. So I′ = Ic\V (M) is an independent set. Let G′ = G[I∪ I′]. G′ is bipartite with bipartition

(I, I′). Let S ⊂ I′. So, |NG′(S)| ≥ |S|, otherwise I\NG′(S)∪ S is a larger independent set

than I. Then by Hall’s Theorem, there exists a matching in G′ which saturates Ic, and this

matching necessarily saturates Ic in G.

If I is an independent set and there is a matching which saturates IC is it true that I is a

maximum independent set?

No, C5 is a counterexample as I can be any single vertex, then there is a matching that

saturates the remaining four vertices, but α(C5) = 2 and I is not a maximum independent

set.

2.0.3 Working With ε

The independence number α is a well-behaved invariant as deleting a vertex can never

increase the independence number. That is, for every vertex v, α(G− v)≤ α(G). ε is not

well-behaved. It can either increase, decrease, or stay the same when a vertex is deleted.

Here we explore ε and other distance related properties as we try to develop tools for

attacking conjectures.

The following conjecture was found to be false. We conjectured that there exists a

vertex in any graph such that removing that vertex does not affect the distance between

the remaining vertices. We hoped this would help to prove the main conjecture 2.1 by

completing the attempted proof by induction above.

CONJECTURE 2.10. For any connected graph G, there is a vertex w so that for all x,y ∈

V (G−w), dG(x,y) = dG−w(x,y).
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x

a

y

Figure 2.3: A counterexample for Conjecture 2.10 is C5, since every vertex is on a unique

shortest path between some vertices x and y. For this graph, deleting the vertex a increases

the distance between x and y.

After working with the ε bound we found that is does not behave very well. By removing

a vertex from a graph ε can increase, decrease, or stay the same.

ε can stay the same when removing a vertex w as in C5 or C6. ε can increase like the

examples from Conjecture 2.11.

ε can also decrease, for example in P3, by removing a vertex that satisfies the conditions,

ε decreases from 2 to 1.

v

Figure 2.4: Example of ε decreasing

CONJECTURE 2.11. For any connected graph, either α = ε or there is a vertex v so that

α(G) = α(G− v) and ε(G)< ε(G− v).

Assume α 6= ε . Then some counterexamples to Conjecture 2.11 include the following

two graphs.
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v

Figure 2.5: G

Figure 2.6: G− v

For this graph α(G) = 3, ε(G) = 2, α(G− v) = 3, and ε(G− v) = 3.

v

Figure 2.7: G
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Figure 2.8: G− v

For this graph α(G) = 4,ε(G) = 3,α(G− v) = 4, and ε(G− v) = 4.

DEFINITION 2.12. A connector is a non-cut-vertex.

CONJECTURE 2.13. For any graph G, if α(G) = ε(G) and v is an ε-maximizing connector,

then α(G− v) = ε(G− v) and ε(G− v)≤ ε(G).

v

Figure 2.9: This is a counterexample to Conjecture 2.13 since α = ε = 4 where v is an

ε-maximizing connector but α(G− v) = 4 and ε(G− v) = 3.

CONJECTURE 2.14. For any graph G, if α(G) = ε(G) and v is an ε-maximizing vertex

then ε(G− v)≤ ε(G).

This conjecture is still open.

2.1 Vertex Transitive Graphs

The next class of graphs we looked at were vertex transitive graphs. A graph G is vertex-

transitive if for any pair of vertices v,w there is an automorphism of the vertices of G that



23

sends v to w. These graphs were very easy to work with since we only had to compute e(v)−

eh(v) once to determine ε . This is because for any two vertices v,w in a vertex transitive

graph G, we prove that e(v)− eh(v) = e(w)− eh(w). The main conjecture (Conjecture 2.1)

was true for all the cubic vertex-transitive graphs up to 22 vertices [11].

DEFINITION 2.15. An isomorphism from graph G to H is a bijective function θ : V (G)→

V (H) such that for all v,w ∈V (G), v is adjacent to w if and only if θ(v) is adjacent to θ(w).

a

b

c

d

G

e

f

g

h

H

Figure 2.10: Let θ : V (G)→ V (H) be defined as follows. θ(a) = e, θ(b) = f , θ(c) = g,

and θ(d) = h. θ defines an isomorphism between G and H. So, G and H are isomorphic.

DEFINITION 2.16. An automorphism is an isomorphism from a set to itself.

a

b

c

d

Figure 2.11: An automorphism for the graph is φ : V →V defined by φ(a) = a, φ(d) = d,

φ(b) = c, φ(c) = b.
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DEFINITION 2.17. A graph G is vertex-transitive if for every pair of vertices v,w there is an

automorphism φ : V (G)→V (G) such that φ(v) = w.

LEMMA 2.18. If G is a vertex-transitive connected graph then for all v,w in V (G) and

automorphism θ : V (G)→V (G), d(v,w) = d(θ(v),θ(w)).

Proof. Let d(v,w) be the length of a shortest path from v to w defined by v= v0,v1, ...,vk =w.

So, by the definition of an automorphism, θ(v) = θ(v0),θ(v1), ...,θ(vk) = θ(w) is a path of

length k from θ(v) to θ(w). So, d(θ(v),θ(w))≤ k. Suppose there is a shorter path from θ(v)

to θ(w). Then θ(v)= u0,u1, ...,ul = θ(w), with l < k. Then v= θ−1(u0),θ
−1(u1), ...,θ

−1(ul)=

w is a path from v to w of length less than k. Which is a contradiction since d(v,w) = k.

Therefore d(v,w) = d(θ(v),θ(w)).

COROLLARY 2.19. Let G be a vertex-transitive connected graph, then e(v)− eh(v) =

e(w)− eh(w) for v,w in V (G).

Proof. Assume a graph G is vertex-transitive. Then for every pair of vertices v,w in V (G)

there is an automorphism, θ : V (G)→V (G) such that θ(v) = w. Then for any vertex y, at

even distance from v, θ would send y to a vertex z at the same even distance from w, by

Lemma 2.18. So e(v) = e(w). Then any even-horizontal edge to v with endpoints x and y

would be sent to an edge with endpoints u and z, by θ that would be an even-horizontal edge

to w. Hence eh(v) = eh(w). Therefore, e(v)− eh(v) = e(w)− eh(w).

THEOREM 2.20. Let G be a vertex-transitive graph, then for any vertex v ∈V (G), there is a

maximum independent set containing v.

Proof. Let I = {v1, ...,vα} be a maximum independent set in G and v ∈ V (G). Let φ :

V (G)→V (G) be an automorphism, so that φ(v1) = v. Now, let φ(I) = {φ(v1), ...,φ(vα)}.

By the definition of an automorphism, φ(I) is a maximum independent set containing v.
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CONJECTURE 2.21. For any vertex-transitive connected graph G, α = ε if and only if there

exists an ε-maximizing vertex v where the components of E(v) consists of K1s and K2s and

there exists a matching which saturates O(v).

This conjecture is still open. As mentioned above the statement holds for all vertex-

transitive graphs up to 22 vertices.

v

Figure 2.12: For this graph ε = α = 4, the components of E(v) are K1s and K2s and there is

a matching which saturates O(v).

v

Figure 2.13: For this graph α = 3 and ε = 2. There is a matching which saturates O(v) but

the components of E(v) do not consist of K1s and K2s.

2.2 The Case of Bipartite and KE Graphs

Kónig-Egerváry graphs are graphs where α(G)+α ′(G) = n(G). α ′(G) is the matching

number which is the size of a maximum matching. These graphs will be referred to as KE

graphs. KE graphs are a larger class of graphs than bipartite graphs since all bipartite graphs

are KE, Figure 2.2. Bipartite graphs are a special case of graphs that could be characterized
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when α = ε . We worked with bipartite graphs since there are no horizontal edges, as was

proved earlier in Proposition 1.23. This made the ε bound even easier to compute since for

these graphs ε = maxv∈V{e(v)}.

THEOREM 2.22. (Kónig-Egerváry Theorem) If a graph G is bipartite then α(G)+α ′(G) =

n(G). [12]

THEOREM 2.23. If G is bipartite, with bipartition (B,W ) then α = |W | ≥ |B| if, and only if,

there is a matching which saturates B.

Proof. Assume G is bipartite with bipartition (B,W ).

Assume α = |W |. We know that α +α ′= n by the Kónig-Egerváry theorem and |B|+ |W |=

n. So, by substitution we get α ′ = |B|. Let M be a maximum matching. So, α ′ = |M|. Since

W and B are independent sets and all edges in M must have one endpoint in B and one in W ,

it follows that M must saturate B.

Conversely, assume there is a matching that saturates B. Then α ′ ≥ |B|. We know

|W |+ |B|= n and by Theorem 2.22 n = α +α ′. So, |W |+ |B| ≥ α +α ′ = |W |+ |B|. Now,

α ≥ |W |. Assume α > |W |. So, n = α +α ′ > |W |+ |B| = n. This says n > n which is a

contradiction. Hence, α = |W |.

This statement does not hold in general. The following graph is an example.
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v

a

g f

b c

e

d

Figure 2.14: This graph is a counterexample since for ε-maximizing vertex v with O(v) =

{a,d,g} there is a matching M = {va,bc,de, f g} which saturates O(v), but α = 3 and ε = 2.

COROLLARY 2.24. If G is a bipartite graph, α = ε if, and only if, there is a vertex v and a

matching M so that M saturates O(v).

Proof. Let G be bipartite. Suppose, α = ε = max{e(v)− eh(v)}. Let v be a vertex so

that e(v) = |E(v)| is maximized. We know, for every v, EH(v) = φ and eh(v) = 0. So,

e(v)− eh(v) = e(v). Since G is bipartite, (E(v),O(v)) is a bipartition. By our assumption,

we get α = e(v)− eh(v) = e(v) = |E(v)|. So, |E(v)| ≥ |O(v)|. By Theorem 2.23 there is a

matching that saturates O(v).

Conversely, assume there is a vertex v and a matching M so that M saturates O(v). We

know, |E(v)|+ |O(v)|= n and α +α ′ = n since G is bipartite. Suppose, α ′ > |O(v)| then

n=α+α ′> |E(v)|+ |O(v)|= n. This gives us the contradiction that n> n. So, α ′= |O(v)|

and α = |E(v)|.

After looking at bipartite graphs, we moved onto a larger class of graphs. Since every

bipartite graph is KE, the next step was to explore the case of KE graphs.
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Figure 2.15: An example of a non-bipartite KE graph where α = ε . For this graph α =

2,α ′ = 2,n = 4,ε = 2.

PROPOSITION 2.25. For any graph G and maximum independent set I, there is a KE

subgraph G′ of G with maximum independent set I. So α(G′) = α(G).

Proof. Let G′ = G[I].

It follows from Proposition 2.25 that, for any graph G, any maximum independent set

I there is an induced KE subgraph G′ containing I which is maximum with respect to the

number of vertices.

Let G be a connected graph with maximum independent set I. Let G′ be a maximum KE

subgraph containing I. So I ⊂V ′ ⊂V (G) with G′ = G[V ′]. Let v be an ε-maximizing vertex

in G′. Then by Proposition 2.25, α(G) = α(G′). Can ε(G′) > ε(G)? The next example

shows that the answer is no.
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G

G′

Figure 2.16: For this example ε(G′) = 4 > ε(G) = 2. G′ is a maximum KE subgraph since

adding any other edge from G would make G′ no longer KE.

2.3 Residue

The residue, R, of a graph is an invariant that is found after completing the Havel-Hakimi

process. The Havel-Hakimi process is defined in this section. The residue is the number

of zeros in the sequence when the Havel-Hakimi process is completed. This invariant is

considered to be a good lower bound for the independence number, α , of a graph. The

intent of working with this bound was to see how the ε bound and residue compared. We

found that ε was as good if not better than residue, for the examples we considered. Some

examples of graphs where ε was better than residue were vertex-transitve cubic graphs. See

Figure 2.3 for an example.

DEFINITION 2.26. Given a degree sequence d = (d1, ...,dn) of a graph with d1 ≥ d2 ≥ ...≥

dn the derived sequence d′ is the sequence formed by deleting d1 and reducing the next d1

terms in the sequence by one.
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DEFINITION 2.27. A non-negative sequence of integers d = (d1, ...,dn) is graphic if it is

the degree sequence of a graph.

THEOREM 2.28. (Havel-Hakimi Theorem) A sequence d of non-negative integers is graphic

if and only if the derived sequence d′ is graphic.

COROLLARY 2.29. Given a graphic sequence d, repeated application of the Havel-Hakimi

process must end with a sequence of zeros.

DEFINITION 2.30. The residue, R, of a graph is the number of zeros in the resulting

sequence at the end of the Havel-Hakimi process. (This definition is due to Fajtlowicz [6].)

THEOREM 2.31. The residue R of a graph is a lower bound for the independence number

for the graph.

This theorem has been proved multiple times, first by Favaron, Maheo and Sacle [5].

CONJECTURE 2.32. For any graph G, ε ≥ R.

This conjecture is true for all vertex-transitive cubic graphs with up to n = 22 vertices.

Graphs where ε is a better bound on α than R are vertex-transitive cubic graphs like the

graph below.

Figure 2.17: For this graph R = 2, ε = 4 and α = 4.

The derived sequence and residue for Figure 2.3 is found as follows. Since there are two

zeros in the final sequence the residue R = 2.
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3,3,3,3,3,3,3,3

3,3,3,3,2,2,2

2,2,2,2,2,2

2,2,2,1,1

1,1,1,1

1,1,0

0,0

2.4 Unicyclic and Split Graphs

We looked at unicyclic and split graphs to further classify graphs using the epsilon bound.

A unicyclic graph has only one cycle so, for any vertex v of the graph would have at most

one even-horizontal edge. Split graphs can be partitioned into a complete graph and an

independent set. We were able to classify split graphs completely when α = ε .

Unicyclic graphs are not all KE.

Figure 2.18: For this graph α = ε = 2,α ′ = 2,n = 5.

CONJECTURE 2.33. For any unicyclic graph, α = ε .
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v

Figure 2.19: This graph is a counterexample to Conjecture 2.33 as α = 7 and ε = 6.

After finding a counterexample where α 6= ε for a unicyclic graph, we worked on finding

graphs where α = ε . Since a unicyclic graph has one cycle, we noted that if we remove

the cycle the remaining graph would be a tree. Since all trees are bipartite, we know that

ε = maxv∈V e(v). So we decided to use graph minors to accompish this. The graph minor H

of a unicyclic graph was formed by contracting the vertices of the cycle to a single vertex.

To do this, start with any vertex in the cycle and one of its neighbors. Remove the edge

between these and combine the two vertices into one vertex keeping the neighbors intact.

Continuing this process until the cycle is one vertex we can obtain the graph minor.

DEFINITION 2.34. A graph H is a minor of a graph G if there is a partition P = {V1, ...Vt}

of V (G) with V (H) = P and E(H) = {ViVj|∃v ∈Vi,∃w ∈Vj,andvw ∈ E(G)}

CONJECTURE 2.35. For a unicyclic graph G, with minor H formed by contracting the

vertices of the cycle, α(G) = ε(G) if and only if α(H) = ε(H).
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Figure 2.20: For the graph G, α(G) = ε(G) = 7.

a b

d

e

c

l

j
g

k

Figure 2.21: The partition used to create the minor H of G is P =

{{a},{b},{c},{d},{e},{g},{ j},{k},{ f ,h, i}}. The vertex l in H is created by

contracting the vertices in the set { f ,h, i} into one vertex. Now, α(H) = 7 and ε(H) = 5.

This graph is a counterexample to the conjecture.

THEOREM 2.36. For a complete split graph, α = ε .

Proof. Let v be an ε-maximizing vertex for a complete split graph G. If v is in the in-

dependent set I then E(v) = I and EH(v) is empty. If v is in the complete part C then

E(v) = {v} and EH(v) is empty. So, max{e(v)− eh(v)}= |E(v)|− |EH(v)| for any v in I.

Then |E(v)|− |EH(v)|= |I|−0 = α .



34

2.5 Spanning Trees

A spanning tree, T , of a connected graph, G, is a tree on the vertex set of G that uses only

edges in G. We worked with spanning trees hoping that knowing about ε for trees would

give information about the original graph. To use this we would find an ε maximizing vertex

in G and use that vertex to construct a spanning tree in a specific way which is explained in

this section.

LEMMA 2.37. Let G be a connected graph and let v be any vertex and u a vertex at maximum

distance from v. Then G′ = G−u is connected.

Proof. Assume G′ = G−u is not connected. We know G is connected so deleting the vertex

u must have created components. Let A be the component containing v. Let B be another

component. So there must be a w in B with u adjacent to w. This means that there are no

edges between vertices of A and B and every path from v to w must contain u. So, u must be

on a shortest path from v to a w. So, d(v,w) = d(v,u)+1 and there exists a path of length

longer than the path from v to u. This contradicts the fact that u was a vertex at maximum

distance from v in G. Hence, G′ = G−u is connected.

LEMMA 2.38. For a connected graph G, and any vertex v, there is a spanning tree T of G so

that dT (v,w) = dG(v,w) for any w in V (G).

Proof. Let Di(v) = {w|dG(v,w) = i}. Assume the statement is true for connected graphs

with fewer than n vertices. Let G be a graph with n vertices and v in V (G) so that no

spanning tree T has dT (v,w) = dG(v,w). Let u be a vertex so that d(u,v) is maximum. By

Lemma 2.37, G′ = G−u is connected. By assumption there is a spanning tree T ′ of G′ so

dT ′(v,w) = dG′(v,w) for every vertex w in G′.

Now, we show dT (v,w) = dG(v,w). Let u′ be a neighbor of u on a shortest path from v

to u in G. Form T with V (T ) =V (G) and E(T ) = E(T ′)∪ vu′ where u must have degree
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1 in T . So, clearly T is a tree. Let w be in G. Case I: Let w 6= u. So dT ′(v,w) = dG′(v,w)

by assumption, and dG′(v,w) = dG(v,w). Now, there is no shortest path from v to w in

G,G′ or T ′ containing u. So the distances must be the same. Case II: Let w = u. So

dT (v,w) = dT (v,u) = dT (v,u′)+dT (u′,u) since u′ is on a shortest path from v to u. Then

dt ′(v,u′) = dG′(v,u′) = dg(v,u′)+1 = dG(v,u).

The following is the construction for a spanning tree.

Let v be a vertex of G. Separate the remaining vertices of G into levels by distance from

v,D1(v),D2(v), ...,Di(v). Let Dm(v) be the level at maximum distance from v. Start with a

vertex w in Dm(v). Find one neighbor of w in Dm−1 and draw an edge between them. Repeat

for all vertices in Dm(v) then continue for vertices in Dm−1(v) and neighbors in Dm−2(v).

Continue until v is reached. Let the resulting graph be called T . T is a tree since there will

be no cycles, otherwise two vertices in the same level would have to be adjacent which

would not happen by construction. T is a spanning tree of G since the construction will use

all vertices of G only once. Finally, dT (v,w) = dG(v,w) for all w in G as the vertices are

separated into levels of distance first and paths are created using only one vertex from each

level. See Figures 2.5, 2.5, and 2.5.

We tried to use the trees as a proof technique. By their construction we know eT (v)−

ehT (v) ≥ eG(v)− ehG(v). We also know Theorem 2.24 which characterizes α = ε for

bipartite graphs. Since all trees are bipartite, the same result holds for trees.

CONJECTURE 2.39. Let v be a vertex so ε = e(v)− eh(v). Let T be a spanning tree that

preserves distances from v. Let T ′ be formed with E(T ′) = E(T )∪EG(v). If α(T ′) = α(G)

then ε(T ′) = ε(G).
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v

G

T

T ′

Figure 2.22: For this example, G is not KE and α(G) = ε(G) = 1. T ′ is also not KE and

α(T ′) = ε(T ′) = 1.

v

G

T

T ′

Figure 2.23: For this example, G is not KE and α(G) = ε(G) = 2. T ′ is KE and α(T ′) =

ε(T ′) = 3.
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v

G

T

T ′

Figure 2.24: For this example, G is not KE and α(G) = ε(G) = 4. T ′ is not KE and

α(T ′) = ε(T ′) = 4.

Hence, T ′ is not always KE and α(G) 6=α(T ′) or ε(G) 6= ε(T ′). Though, α(T ′) = ε(T ′)

for all examples.

2.6 Summary of Results and Open Problems

Important results obtained from working on the main conjecture include:

1. For any graph G, if α(G) = ε(G) then for every ε-maximizing vertex v, the graph

G[E(v)] consists of components which are K1s and K2s.

2. If α = ε then, for any ε-maximizing vertex v, there is a matching which saturates

O(v).
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3. The main conjecture (Conjecture 2.1) is true for vertex-transitive graphs up to 22

vertices.

4. The main conjecture (Conjecture 2.1) is proven to be true for bipartite graphs.

5. α = ε for complete split graphs.

Ideas that were disproven include:

1. For any graph G, α = ε if and only if, for every ε-maximizing vertex v, the components

of G[E(v)] are K1s and K2s.

2. For any graph G, α(G) = ε(G) if and only if for all ε-maximizing vertices v there

exists a matching which saturates O(v).

3. For unicyclic graphs, α(G) = ε(G).

A few open problems include:

1. The main conjecture (Conjecture 2.1). For any graph G, α(G) = ε(G) if and only if

there is an ε-maximizing vertex v such that the components of G[E(v)] consists of

K1s and K2s and there exists a matching which saturates O(v).

2. Is the main conjecture (Conjecture 2.1) true for KE graphs?

3. Is the main conjecture (Conjecture 2.1) true for unicyclic graphs?

4. Is ε a better bound than residue for all graphs?

5. Is the main conjecture (Conjecture 2.1) true for vertex-transitive graphs?



39

Related Graffiti Conjectures

This chapter states and explores other conjectures of Graffiti from Fajtlowicz’s "Written on

the Wall" [4]. These are related to the original conjecture that was modified to give us the ε

bound for α .

DEFINITION 3.1.

• The number of vertices at even distance from v is e(v).

• The number of vertices at odd distance from v is o(v).

• The number of edges that are horizontal to v is h(v).

• The number of edges that are even horizontal to v is eh(v).

• The number of edges that are odd horizontal to v is oh(v).

• e(v) is the average of e(v) for all vertices v.

DEFINITION 3.2. A cubic graph is one in which every vertex has degree three.

CONJECTURE 3.3. (WoW # 842) For a fullerene and a vertex v such that h(v) is maximized,

α ≤ e(v)−2.

CONJECTURE 3.4. (WoW # 750) For any graph, α ≥maxv∈V o(v)−minv∈V h(v).

As stated in "Written on the Wall" a counterexample to this conjecture was found by

Peter Puget [4].
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The remaining conjectures do not apply to the majority of the standard graph classes

Cn, Pn, Sn, Kn except K4, and Km,n except K3,3 since they are not cubic graphs. Noticing that

both K4 and K3,3 are vertex-transitive graphs, we decided to explore these conjectures for

cubic vertex-transitive graphs.

CONJECTURE 3.5. (WoW # 766) If G is a cubic graph then α ≥mino(v)−minoh(v) and

α ≥mine(v)−mineh(v).

We don’t know the truth for cubic graphs, but a parallel statement is true for vertex-

transitive graphs.

THEOREM 3.6. If G is a vertex-transitive graph then α ≥mino(v)−minoh(v) and

α ≥mine(v)−mineh(v).

Proof. If G is vertex-transitive with ε-maximizing vertex v and w any vertex in V (G),

minw e(w) = e(v) and minw eh(w) = eh(v). So minw(e(w)− eh(w)) = e(v)− eh(v) =

minw e(w)−minw eh(w). So α ≥minw e(w)−minw eh(w).

The proof that α ≥mino(v)−minoh(v) is similar.

CONJECTURE 3.7. (WoW # 767) If G is a cubic graph then α ≥ e(v)−eh(v) = e(v)− eh(v).

THEOREM 3.8. If G is a vertex-transitive graph then α ≥ e(v)− eh(v) = e(v)− eh(v).

Proof. If G is vertex-transitive, e(v) = e(v) and eh(v) = eh(v). Also, e(v)− eh(v) = e(v)−

eh(v). Therefore, α ≥ e(v)−eh(v). Since G is vertex-transitve, e(v)−eh(v) = max{e(v)−

eh(v)}. Hence, α ≥ max{e(v)− eh(v)}.

CONJECTURE 3.9. (WoW # 768) If G is a cubic graph then α ≥ e(v)−minv∈V eh(v).

THEOREM 3.10. If G is a vertex-transitive graph then α ≥ e(v)−minv∈V eh(v).

Proof. If G is vertex-transitive, e(v) = e(v) and minv∈V eh(v) = eh(v). Then α ≥ e(v)−

eh(v) = max{e(v)− eh(v)}.
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CONJECTURE 3.11. (WoW # 769) If G is a cubic graph then α ≤maxv∈V e(v).

As stated in "Written on the Wall" a counterexample was found to this conjecture by

Gilles Caporossi, Pierre Hansen, and Florian Pujol with an 18-vertex graph [4].

CONJECTURE 3.12. (WoW # 770) If G is a cubic graph then α ≥ 1+maxv∈V e(v)
2 .
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ε-critical Graphs and the Core

An ε-critical graph is defined in this section as a graph where removing any vertex either

disconnects the graph or increases ε . The goal of identifying this class of graphs was to

determine what conditions apply to these.

DEFINITION 4.1. A graph is ε-critical if removing any vertex either disconnects the graph

or increases ε .

Figure 4.1: C5 is an example.

PROPOSITION 4.2. If G is ε-critical, then α > ε .

Proof. Suppose α = ε . Let v be a vertex that is not in every maximum independent set.

Then α(G− v) = α(G) and ε(G− v)> ε(G). This gives, ε(G− v)> α(G− v) which is a

contradiction.

DEFINITION 4.3. A connector is a non-cut-vertex.

DEFINITION 4.4. The core of a graph is the set of vertices which are in every maximum

independent set.

For example, P3 has two vertices in its core, and the core of P4 is empty.
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CONJECTURE 4.5. If G is a graph where every connector is in the core, then α(G) = ε(G).

CONJECTURE 4.6. Every connected graph G has a connected induced subgraph G′ where

α(G) = α(G′) = ε(G′).

Figure 4.2: This graph is a counterexample to both conjectures because the pendant set is the

unique maximum independent set. So, for any connected subgraph G′ with α(G) = α(G′),

G′ must include all pendants. Since G′ is connected it must include all the neighbors of

the pendants. Hence G′ = G. This graph is not a counterexample if the statement does not

require the subgraph to be an induced subgraph.

CONJECTURE 4.7. Every connected graph G has a connected subgraph G′ where α(G) =

α(G′) = ε(G′).
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Generalized Petersen Graphs

A Generalized Petersen graph, G(n,k), is a graph on the vertex set {u0,u1, ...,un−1,v0,v1, ...,vn−1}

with the edges {uiui+1,uivi,vivi+k : i = 0, ...,n−1} with the subscripts reduced modulo n.

We expected ε to be a good bound for these graphs but it was not. Examples of this are

shown in this section.

Figure 5.1: This graph is the Petersen graph, G(5,2) where α = 4 and ε = 1. The indepen-

dence number was calculated for many Generalized Petersen graphs by Azadi, Besharati,

and Ebrahimi. [1]

Figure 5.2: This graph is the Generalized Petersen graph, G(5,1) where α = 4 and ε = 4.
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Figure 5.3: This graph is the Generalized Petersen graph, G(6,1) where α = 6 and ε = 6.

Figure 5.4: This graph is the Generalized Petersen graph, G(6,2) where α = 4 and ε = 3.

CONJECTURE 5.1. For a Generalized Petersen graph G, α = ε if, and only if, there exists

an ε-maximizing vertex v so that the components of G[E(v)] are K1s and K2s.

This conjecture is still open. The necessary condition follows from Theorem 2.2.
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Difficult Graphs

Difficult and Super Difficult graphs are those whose independence numbers are very hard

to compute or even estimate using known upper and lower bounds for the independence

number. William Willis computed many known bounds for α on these Difficult and Super

Difficult graphs in his Master’s Thesis [10]. We computed ε for these graphs to see how

well the ε bound compared to known bounds. For all of the graphs in this section, either ε

was equal to α or ε was one less than α .

Difficult Graphs where ε is a better bound than the lower bounds investigated by Willis

in his thesis.

v

Figure 6.1: For this graph ε = α = 3.
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v

Figure 6.2: For this graph ε = α = 3.

v

Figure 6.3: For this graph ε = 3 but α = 4.

v

Figure 6.4: For this graph ε = α = 3.



48

Super Difficult graphs where ε is a better bound than known lower bounds.

v

Figure 6.5: For this graph ε = α = 5

v

Figure 6.6: For this graph ε = 4 but α = 5.
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v

Figure 6.7: For this graph ε = α = 6.
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