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To improve relatively poor outcomes for locally-advanced lung cancer patients, many 

current efforts are dedicated to minimizing uncertainties in radiotherapy.  This enables the 

isotoxic delivery of escalated tumor doses, leading to better local tumor control.  The current 

dissertation specifically addresses inter-fractional uncertainties resulting from patient setup 

variability.  An automatic block-matching registration (BMR) algorithm is implemented and 

evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided 

radiation therapy.  In this algorithm, small image sub-volumes, termed “blocks”, are 

automatically identified on the tumor surface in an initial planning computed tomography (CT) 

image.  Each block is independently and automatically registered to daily images acquired 
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immediately prior to each treatment fraction.  To improve the accuracy and robustness of BMR, 

this algorithm incorporates multi-resolution pyramid registration, regularization with a median 

filter, and a new multiple-candidate-registrations technique.  The result of block-matching is a 

sparse displacement vector field that models local tissue deformations near the tumor surface.  

The distribution of displacement vectors is aggregated to obtain the final tumor registration, 

corresponding to the treatment couch shift for patient setup correction.  Compared to existing 

rigid and deformable registration algorithms, the final BMR algorithm significantly improves the 

overlap between target volumes from the planning CT and registered daily images.  Furthermore, 

BMR results in the smallest treatment margins for the given study population.  However, despite 

these improvements, large residual target localization errors were noted, indicating that purely 

rigid couch shifts cannot correct for all sources of inter-fractional variability.  Further reductions 

in treatment uncertainties may require the combination of high-quality target localization and 

adaptive radiotherapy. 
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CHAPTER 1. INTRODUCTION 

The availability of reliable imaging techniques and the ability to visualize the internal 

anatomy of oncology patients has given rise to an almost limitless number of opportunities to 

reduce treatment-related uncertainties.  These advancements are all comprised within the broad 

scope of image-guided radiotherapy (IGRT), which is defined as the use of advanced patient 

imaging to better diagnose, stage, and treat cancerous lesions and to assess the outcomes of these 

treatments.  This work focuses on the branch of IGRT dedicated to reducing uncertainties in 

treatment delivery specifically through more accurate, precise, and robust patient setup prior to 

the delivery of each treatment fraction.   

State of the art three-dimensional and even four-dimensional imaging modalities have 

become essential to modern radiotherapy treatments, which rely on highly conformal dose 

distributions with little room for error.  These imaging modalities have contributed to significant 

improvements in tumor localization and the ability to position nearby risk structures safely away 

from high dose regions.  By reducing positional uncertainties, it becomes possible to treat more 

conformal target volumes, thereby decreasing the dose to healthy tissues.  As a result, escalated 

doses can be delivered without a corresponding increase in the risk of treatment-related 

toxicities.  The importance of dose escalation stems from an established link with improved local 

tumor control.
1,2

  For lung cancer patients in particular, relatively poor outcomes
3
 have motivated 
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more aggressive treatments that have only become possible by reducings treatment-related 

uncertainties. 

Patient setup and tumor localization errors directly impact the efficacy of radiation 

delivery.  To ensure that the prescribed dose is accurately delivered, a number of patient setup 

correction strategies are currently employed.  In some cases, manual alignment of on-treatment 

images to an initial planning computed tomography (CT) image has been shown to provide 

reliable target localization.  Other studies rely on automatic registration algorithms to improve 

the reproducibility (and oftentimes efficiency) of patient setup corrections.  This dissertation 

addresses the limitations of current target localization strategies specifically for locally-advanced 

lung cancer patients.  For these patients, large changes in primary tumor shape, volume, and 

position are commonly observed in response to treatment, which can lead to corresponding 

changes in pulmonary anatomy.  These changes present a major complicating factor in reliable 

target localization for radiotherapy.  Although existing localization techniques can help to 

mitigate setup uncertainties, large registration errors often persist.  A more robust target 

localization strategy is warranted for efficient, accurate, and robust patient setup corrections 

during routine IGRT. 

The purpose of the current dissertation is to improve upon existing methods of target 

localization by implementing an automatic registration technique known as “block-matching 

registration.”  In the following sections, the importance of on-treatment imaging for accurate 

target localization is emphasized.  A summary is then presented on the accuracy, benefits, and 

shortcomings of currently available patient setup protocols.  In light of this discussion, block-

matching registration is introduced as an attractive solution for many of the current limitations in 

lung tumor localization.  Finally, an overview of specific aims in this dissertation is provided. 
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On-treatment imaging for patient setup corrections 

Imaging is an integral and essential component of modern radiotherapy.  Before initiating 

a treatment course, patients receive an initial CT scan to assess the extent of the gross tumor 

volume (GTV) and create a suitable treatment plan.  The initial CT is thus referred to as the 

“planning” CT.  The planning CT provides a snapshot of the patient’s internal anatomy and 

represents the reference geometry for future treatment fractions.  In the current work, it is 

assumed that a static treatment plan will be delivered for all fractions without adaption or 

modification.  Therefore, the tumor position must be well-known at the time of radiation 

delivery, regardless of potential changes in tumor shape or volume.  Uncertainties in tumor 

position throughout treatment can reduce the dose to target structures and increase the dose to 

neighboring risk structures.  These uncertainties must be carefully controlled in order to promote 

safe dose escalation. 

Inter-fractional uncertainties can be effectively reduced by acquiring images of the 

patient at the time of radiation delivery.  These images, referred to as “on-treatment” images, 

provide new snapshots of the target volume and internal anatomy of patients in the treatment 

position.  By comparing on-treatment images against the initial planning CT, tumor localization 

uncertainties can be identified and corrected by simple couch shifts or, in the case of larger 

discrepancies, repositioning of the patient on the treatment couch.
4
  Numerous studies have 

shown the benefit of on-treatment imaging in reducing tumor localization uncertainties, relative 

to setup protocols without imaging (e.g., relying on external surrogates of tumor position such as 

skin tattoos or immobilization devices).
5–10

  As a result, IGRT continues to be a very active area 

of research for reducing treatment-related uncertainties. 
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Throughout the past decade, much work has focused on incorporating three-dimensional 

(3D) and even four-dimensional (4D) imaging in the treatment room.
11–13

  Currently, on-

treatment kilovoltage (kV) or megavoltage (MV) CT images can be acquired using a dedicated 

CT scanner within the treatment room
14

 or using the inherent imaging capabilities of 

Tomotherapy units,
15

 respectively.  In addition, cone-beam CT (CBCT) images can be acquired 

on conventional linear accelerators by tomographic reconstruction of planar projection images, 

either using the gantry’s MV beam
16,17

 or a separately mounted kV x-ray source on the 

gantry.
18,19

  Research has even demonstrated the feasibility of integrating a linear accelerator 

with magnetic resonance imaging (MRI) for superior soft-tissue visualization during 

radiotherapy.
20

  The assortment of on-treatment imaging modalities further demonstrates the 

importance of these images to modern radiotherapy. 

On-treatment 3D imaging provides sufficient soft-tissue visualization for numerous 

applications to radiotherapy.
4,13,21,22

  For example, routine imaging provides the means to assess 

changes in tumor shape, volume, or position throughout treatment and has been instrumental in 

identifying patients that require new or revised treatment plans.
23–26

  Furthermore, the ability to 

directly visualize primary lung tumors has improved the accuracy of patient setup by reducing 

uncertainties in target localization.
4,17,27

  This consequently reduces treatment-related margins, 

decreases the irradiation of healthy tissues, and enables the safe delivery of escalated doses.  As a 

result, it becomes increasingly possible to improve the generally poor outcomes currently 

observed for lung cancer patients. 

From imaging to target localization 

Within the broad scope of IGRT, this dissertation focuses specifically on reducing inter-

fractional uncertainties in target localization.  A variety of techniques have been explored for this 



 

5 

 

purpose, with methods that can be classified as either manual or automatic.  Localization 

techniques can be further distinguished by their intended region of registration—either direct 

alignment of the primary tumor or indirect alignment of surrogates of tumor position.  The 

following section begins by highlighting the benefits and limitations of surrogate registration.  

Current methods of direct target localization are then described, including manual tumor 

alignment, automatic rigid registration, and deformable registration. 

Tumor surrogate registration 

Perhaps the greatest benefit of tumor surrogate registration is the reproducibility that 

results from aligning well-defined and relatively stable structures near the primary tumor.  

Common surrogates of lung tumor position and motion, for example, include the carina, 

diaphragm, and spine.  These structures are well-visualized and easily registered due to their high 

contrast in on-treatment images.  In a recent study by Higgins et al., alignment of either the spine 

or the carina provided more reproducible registrations than direct alignment of the primary 

tumor.
22

  Similarly, Mohammed et al. established that bony anatomy registration could be just as 

accurate for simultaneous alignment of multiple treatment targets (i.e., primary lung tumors and 

involved mediastinal lymph nodes) as direct registration of these targets.
28

  In retrospective 

analyses, surrogate registrations were shown to provide sufficient target coverage during 

treatment. 

These findings ultimately depend on the stability of treatment targets with respect to the 

registered surrogates, an assumption which does not always hold.  Lung cancer patients are prone 

to substantial variability with respect to the target volume and surrounding anatomy.  Many 

recent studies have reported the potential for significant target volume regression in response to 

treatment, although tumor growth is also possible.
29–33

  The anisotropic nature of tumor 



 

6 

 

regression can cause apparent GTV shifts with respect to the clinical target volume and other 

local anatomical structures.
34

  Another complicating factor is the presence of atelectasis near the 

primary tumor.
24,35,36

  These regions obscure the surface of lung tumors, leading to uncertainties 

in target definition and localization throughout treatment.  Furthermore, as regions of atelectasis 

progress or resolve, the position of lung tumors may change relative to bony anatomy or other 

soft-tissue surrogates.
36

  Similar effects are observed for patients with pleural effusion, where 

changes in pulmonary anatomy lead to systematic offsets in tumor position.
24,33

  Finally, baseline 

shifts in tumor position have been reported as a result of changes in respiratory motion.
37–39

 

Changes in tumor shape, volume, and position limit the accuracy of target localization 

based on the alignment of tumor surrogates.  To better account for these sources of uncertainty, 

direct registration of treatment targets is required. 

Manual tumor alignment 

Guckenberger et al. were among the first to report positional uncertainties of 

intrapulmonary tumors using on-treatment volumetric imaging.
40

  Their study included 21 

patients with early stage non-small-cell lung cancer (NSCLC) undergoing stereotactic body 

radiotherapy (SBRT) in 1 to 8 fractions.  Patients were first immobilized using a stereotactic 

body frame (SBF), with kV CBCT images subsequently acquired in the treatment position.  The 

on-treatment image was then matched to the planning CT by manual alignment of the gross 

tumor volume.  Assuming that manual tumor registrations were the ground truth for patient setup 

corrections, they retrospectively determined systematic and random tumor positioning errors of 

7.8 mm and 1.6 mm respectively relative to the SBF, with respective errors of 5.4 mm and 

1.3 mm relative to bony anatomy alignment.  Maximum errors exceeded 10 mm in both cases.  
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This demonstrated the importance of volumetric image guidance and direct tumor alignment to 

improve the accuracy of SBRT. 

The group from Princess Margaret Hospital pursued similar end points in two recent 

studies.  Purdie et al.
41

 assessed 31 SBRT patients in a protocol similar to that of Guckenberger 

et al. above.  During each treatment fraction, patient setup was based on direct, manual 

alignment of the primary tumor.  Bony anatomy registrations were also performed 

retrospectively.  In their analysis, the magnitude of discrepancies between these two localization 

strategies averaged 6.8 mm (90
th

-percentile: 13.9 mm).  This illustrates the potential variability 

in tumor position relative to surrogates such as the spine. 

In a second study, Bissonnette et al.
4
 stratified a new patient population into two different 

cohorts: early stage NSCLC patients prescribed SBRT and locally-advanced NSCLC patients 

receiving conventionally fractionated radiotherapy.  They instituted an action threshold of 3 mm 

and 5°, where patient setup errors exceeding this degree of translation or rotation were repeatedly 

corrected until the target was localized to within tolerance.  Data was reported only after a single 

round of imaging and setup correction for consistency purposes.  For early-stage lung cancer 

patients, bony-anatomy-based setup resulted in just 16% of all fractions initially within the 

tolerance limits, compared to 82% of fractions after manual tumor alignment.  Similarly, for 

locally-advanced lung cancer patients, only 30% of fractions were within tolerance after bony 

alignment.  Manual tumor registration increased this percentage to 76% using manual couch 

corrections and to 84% using remote (automatic) couch corrections.  This study demonstrates the 

potential of volumetric on-treatment imaging for improved patient setup correction and 

illustrates the feasibility of direct tumor matching. 
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Despite these benefits, manual target registration suffers from several limitations.  First, 

the studies mentioned above primarily involved SBRT treatments, for which target volume 

regression and other internal changes are generally not severe.  The similarity between on-

treatment images and the initial planning CT would thus be expected to facilitate accurate 

registrations.  More substantial changes commonly observed throughout conventionally 

fractionated radiotherapy may lead to much greater uncertainties in manual registration.  As a 

second potential limitation, primary lung tumors are not always well-visualized in on-treatment 

images.  Guckenberger et al. reported 3 out of 21 patients with primary tumors near the 

diaphragm which were difficult to visualize on free-breathing CBCT images.
40

  Tumor borders 

may also be partially obscured by the mediastinum or surrounding atelectasis.  This complicates 

the registration in these regions and may lead to increased variability in target localization.   

A final limitation of manual target registration is the time consuming nature of this 

process.  Studies have reported manual registration times averaging four to five minutes, in 

contrast to sub-minute execution times necessary for automatic registration algorithms.
22,40

  An 

increase in registration time may lead to subtle changes in the true tumor position relative to that 

observed in the on-treatment image.  As a result, the final setup correction may contain some 

residual uncertainty.  Furthermore, an inefficient setup protocol prolongs the duration of each 

treatment fraction, which can significantly influence the positional reproducibility of targets by 

the end of the fraction.
41

  Fast and efficient registration algorithms are thus highly desirable to 

better control target localization uncertainties. 

To summarize, manual tumor alignment can provide reliable target localization, but 

primarily for patients with hypofractionated treatments.  Major limiting factors for manual tumor 

alignment include the time required for registration and large observer variability.  For locally-
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advanced lung cancer patients in particular, configurational changes between multiple primary 

tumors or metastatic lymph nodes can further complicate manual alignment.
42

  As such, 

automatic rigid and non-rigid registration algorithms provide an attractive alternative for direct 

localization of lung cancer targets. 

Automatic rigid registration 

The group from William Beaumont Hospital is one of several that rely on automatic rigid 

registration of the primary tumor between on-treatment CBCT images and the initial planning 

CT.  Grills et al. describe this protocol in a study of 24 patients with peripheral early-stage lung 

tumors undergoing SBRT.
43

  For each treatment fraction, patients were immobilized using either 

a SBF or an alpha-cradle.  Initial setup involved the alignment of either SBF coordinates or skin 

tattoos with treatment-room lasers.  A CBCT image was then acquired and automatically 

registered to the planning CT using a normalized cross-correlation similarity metric.  The 

registration volume was limited to the extent of the target volume.  Using this protocol, they 

found that initial setup errors of 2 to 6 mm could be reduced to 1 mm or less.  Corresponding 

margins were initially as large as 9 to 14 mm but could be reduced to 1 to 3 mm.  This provided 

a sufficient level of accuracy for delivering highly conformal SBRT treatments. 

In a subsequent study, Galerani et al. reported on dosimetric improvements from online 

image-guidance.
21

  Following the same protocol for a cohort of 20 SBRT patients, the initial 

setup would have reduced the dose delivered to 95% (D95%) of the GTV and clinical target 

volume (CTV) by 2.1% ± 4.4% and 3.5% ± 7.0%, respectively, relative to the planned dose 

distribution.  The dose delivered to 99% (D99%) of the GTV and CTV would have likewise been 

reduced by 3.2% ± 4.9% and 6.1% ± 10.7%.  Using volumetric image-guidance with automatic 

target registration, the planned and delivered doses agreed to within 0.5%.   
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Worm et al. further demonstrated the potential for automatic rigid registration during 

routine image-guidance.
9
  Their study included 19 consecutive lung cancer patients treated with 

SBRT using a protocol very similar to the William Beaumont group.  Patients were immobilized 

in a SBF and initially setup according to stereotactic coordinates.  A kV CBCT image was then 

acquired and automatically registered based on the GTV plus an additional 10 mm of 

neighboring soft-tissue.  The magnitude of setup corrections averaged 5.6 ± 1.8 mm.  Three 

patients required additional manual correction following automatic tumor registration, the first 

due to a particularly small target volume and the other two due to respiratory motion for tumors 

situated near the diaphragm.  A similar study has recently been published by Josipovic et al.
44

  In 

their retrospective review, they computed the 3D difference between bony anatomy and 

automatic tumor registration to be 3.0 mm, ranging from 0.0 to 8.3 mm.  They reported no 

registration difficulties, concluding that GTV-based automatic registration ultimately improved 

the precision of lung SBRT. 

Based on the studies above, automatic rigid registration algorithms provide sufficient 

accuracy for patient setup corrections during SBRT.  These treatments are executed over a period 

of one to two weeks, during which large internal changes are generally not observed.
29

  The 

resulting similarity between on-treatment images and the planning CT facilitates accurate and 

robust registration.  For conventionally fractionated radiotherapy patients, however, target 

volume regression and other anatomical changes may be substantial.  These large-scale changes 

complicate automatic rigid registration and can lead to large target localization errors, as 

demonstrated by the following studies. 

Yeung et al. reviewed daily CBCT scans for 13 lung cancer patients treated with 

conventionally fractionated radiotherapy.
7
  In their retrospective study, each image was 
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automatically registered to the planning CT using a sub-volume containing vertebrae at the level 

of the primary tumor.  After returning the images to their initial orientation, each image was 

subsequently registered using a rectangular sub-volume containing the planning target volume 

(PTV).  Visual inspection of the registration showed that the primary tumor “appeared properly 

aligned,” even for patients with substantial tumor regression or reduced atelectasis.  Although 

direct tumor registration reduced setup uncertainties compared to bony anatomy alignment, final 

margins as large as 5 to 14 mm were still necessary for adequate tumor coverage. 

Preliminary work to this dissertation confirmed that bony anatomy alignment resulted in 

potentially large target localization errors (Appendix I).
45

  However, in contrast to the 

conclusions of Yeung et al., automatic rigid registration failed to significantly improve the 

localization accuracy of locally-advanced lung tumors.  Briefly, a cohort of 17 patients with 

locally advanced NSCLC received CT scans once per week throughout conventionally 

fractionated radiotherapy.  The initial week-1 CT scan was designated as the planning CT, to 

which all subsequent images were registered.  Images were manually aligned to bony anatomy 

including the spine, sternum, and ribs at the level of the primary tumor.  This resulted in mean 

3D displacements of 7.3 ± 5.4 mm in the GTV centroid.  Next, automatic rigid registration was 

performed for the GTV plus a uniform 10 mm margin using a mutual information algorithm 

(Pinnacle version 8.1y, Philips Medical Systems, Fitchburg, WI).  Centroid localization errors 

were reduced to 5.8 ± 6.0 mm, although the reduction was not statistically significant.  The most 

difficult registration cases were attributed to patients with atelectasis or pleural effusion which 

either progressed or resolved throughout treatment.  For this subpopulation, mean centroid 

displacements from both bony anatomy and automatic tumor registrations were 9.2 ± 6.9 mm 

and 7.8 ± 8.8 mm, respectively.  In general, substantial changes in target volume and shape, as 



 

12 

 

well as in atelectasis and pleural effusion, were major complicating factors in the rigid 

registration of locally-advanced lung tumors. 

Several modified registration techniques were explored in this study to improve the 

accuracy of target centroid localization.  Although significant error reductions were possible, 

most of these techniques would require varying degrees of manual interaction in practice, and 

thus were no longer considered fully automatic.  A more ideal registration algorithm should 

provide fast, fully automatic target localization and should be robust against large-scale changes 

in target volume and shape, atelectasis, and pleural effusion.  The results of Appendix I 

demonstrated that rigid registration does not meet these criteria for lung cancer patients, and that 

more sophisticated alternatives must be explored. 

Deformable image registration 

To better address deforming anatomy and target volume changes throughout 

conventionally fractionated radiotherapy, deformable image registration (DIR) algorithms could 

be used.  However, in general, computing the deformation between planning and on-treatment 

images provides much more information than is necessary for simple couch corrections, which 

only require translational and rotational degrees of freedom.  Instead, fully deformable 

algorithms are much more commonly used for adaptive radiotherapy, where efforts have focused 

on modifying the initial dose distribution throughout treatment to better conform to a patient’s 

daily anatomy.  These efforts in adaptive radiotherapy are outside the scope of the current work.  

In this dissertation, it is assumed the initial treatment plan is static and will be delivered for every 

fraction throughout the treatment course. 

Few studies have actually explored deformable registration for the specific purpose of 

patient setup corrections.  One example involves the work of Brock et al., who developed a 



 

13 

 

biomechanical model-based algorithm for localizing primary liver tumors.
46

  These tumors are 

poorly visualized on CBCT images without contrast and are difficult to register directly.  Instead, 

their algorithm relies on finite-element modeling to deformably register liver contours from an 

on-treatment image to those of the initial planning CT.  The deformation field is then used to 

estimate the tumor position on the CBCT, from which the required setup correction can be 

computed.  For 12 patients treated in 6 fractions, their algorithm effectively localized the GTV 

center-of-mass to an average of 1 mm or less in each direction.  It is unclear how well this 

algorithm would extend to lung tumor localization.  Online contouring, whether through manual 

or automated segmentation, may be inaccurate for patients with large pathological or anatomic 

variability throughout treatment.  Furthermore, baseline shifts in tumor position relative to 

nearby anatomic landmarks would likely lead to larger localization errors than were observed for 

liver tumors. 

Deformable algorithms have several other drawbacks as a potential solution for tumor 

localization.  In general, these algorithms are designed to be accurate in the registration of high-

quality images such as diagnostic fan-beam CTs.  On-treatment CBCT images demonstrate a 

greater degree of noise and reduced image contrast, presenting a major challenge to conventional 

DIR algorithms.  Another limitation is the ability of DIR to model large local deformations.  For 

the specific case of primary lung tumors, Guckenberger et al. noted severe deformation artifacts 

in 3 of 13 patients, two with dissolving pleural effusion and the third with resolving atelectasis 

throughout treatment.
47

  Deformable registration accuracy may also be reduced for primary lung 

tumors that demonstrate “infiltrative” growth patterns.  This occurs when a tumor invades or 

dissolves from surrounding tissues without substantially displacing them.  Deformable 



 

14 

 

registration may incorrectly warp surrounding tissues in favor of tumor alignment, potentially 

leading to dosimetric consequences for nearby risk structures. 

Deformable registration algorithms are much more computationally demanding than is 

necessary for online patient setup corrections.  Recent developments have decreased execution 

times to several minutes or less, with substantial improvements offered by GPU 

implementations.
48,49

  However, introducing specialized hardware into clinical practice may not 

always be practical.  The final and perhaps most important limitation of deformable registration 

is the lack of effective validation and quality assurance measures for lung cancer targets.  These 

measures are essential in order to guarantee both adequate tumor coverage and the sparing of 

nearby risk structures.
50

 

Block-matching registration 

The limitations of manual lung tumor localization include observer variability and the 

potential for relatively inefficient registrations.  Automatic registration algorithms are therefore 

preferable in terms of speed and reproducibility.  Rigid registration provides a straightforward 

and efficient method for calculating patient setup corrections; however, large localization errors 

have been reported for patients with substantial target volume regression or changing 

pathoanatomical conditions, including atelectasis or pleural effusion.  Deformable image 

registration may be better suited for these patients, but existing algorithms are not robust and fast 

enough for this application. 

A more ideal registration tool for lung tumor localization should balance the efficiency 

and reproducibility of rigid registration with the flexibility of deformable registration.  This tool 

must also be accurate and robust with respect to the many complicating factors in conventional 

lung radiotherapy.  These requirements are met by a sparsely-sampled deformable registration 



 

15 

 

technique referred to as “block-matching”.  The following section describes the background and 

basic formulation of block-matching registration.  An overview of block-matching applications 

to medical image processing is then presented.  Lastly, preliminary results are reported for the 

application of block-matching to lung tumor localization. 

Background 

Block-matching registration is executed in three predominant steps.  The first step 

involves the identification of sub-volumes, termed “blocks”, in the reference (e.g., planning) 

image.  Blocks may be uniformly distributed throughout the image
51,52

 or placed non-uniformly 

according to distinct image features.
53,54

  The choice ultimately depends on the application.  

Next, each block is independently registered to the moving (e.g., on-treatment) image using a 

rigid transform, most commonly including translations only.  Rotations are typically excluded at 

this stage for efficiency purposes.  Each block registration results in a displacement vector that 

maps local intensity features between reference and moving images.  The set of all (rigid) block 

registrations yields a sparsely-sampled displacement vector field, illustrating the classification of 

block-matching as a sparsely-sampled deformable registration algorithm.  The final step in this 

algorithm is to compute the global image registration from the raw displacement field.  This is 

most commonly achieved by regularization and smoothing to obtain a fully deformable 

registration.
51,55

  However, for the specific purpose of tumor localization, the displacement field 

is reduced to a global rigid transform that represents the required couch shift for patient setup 

corrections.
56,57

 

Block-matching algorithms originated in the 1980s with applications including video 

compression and motion estimation.
58

  More recently, these algorithms have gained popularity in 

medical image analysis primarily for fast deformable registration.  In a series of studies, Rösch et 
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al. described the development of a block-matching tool for deformable registration of pulmonary 

anatomy.
59

  Their work included the optimization of block placement, including selection and 

rejection criteria to further improve registration quality.
53

  Their algorithm was later used to 

measure and compensate for respiratory motion.
60

  Söhn et al. also explored deformable lung 

registration via block-matching.
52

  In their implementation, a uniform distribution of blocks was 

registered throughout the entire thoracic region.  The resulting displacement field was then 

regularized by minimizing a measure of “deformation energy”, which constrained the transform 

vector field to enforce locally smooth deformations.  Similar algorithms were developed by Clatz 

et al., Bhattacharjee et al., and Liu et al. for deformable registration of cranial and head-and-neck 

anatomy.
54,55,61

  However, none of these studies addressed target localization as a potential 

application, and none of them considered CBCT images in their registrations, relying instead on 

high-quality MRI scans. 

For the purpose of patient setup corrections, block-matching registration must be capable 

of computing the nominal rigid registration between images, in which the rigid transform 

represents a shift of the treatment couch.  Ourselin et al. provided such a tool, although the 

application of target localization was not pursued.
56

  In their work, a uniform distribution of 

blocks were registered to obtain a sparsely sampled displacement vector field, similar to the 

deformable algorithms above.  Then, to obtain the optimal global rigid transform, the authors 

implemented a least-trimmed-squares minimization of the displacement vectors.  This algorithm 

was proven effective in aligning histological slices, computing the mid-sagittal plane for MRI 

and SPECT images, and performing general multimodality registration between CT and MR 

images.
57

  This work was recently extended as part of the “NiftiReg” deformable registration 

tool, an open source GPU-based algorithm.
62
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Block-matching for target localization 

To date, two different groups have applied a variant of block-matching registration to 

setup corrections for head and neck cancer patients.  Birkner et al. relied on the alignment of 

manually-identified bony landmarks in two-dimensional MV portal images.
63

  A principle-

component analysis was applied to the resulting displacement vectors to obtain translational, 

rotational, and deformable measures of the setup inaccuracies.  The group of Sonke et al. 

pursued a similar approach in 3D FBCT-CBCT registrations.  Referred to as multiple region-of-

interest (ROI) registration, their implementation began as a method to explore the degree of 

deformation present in head-and-neck cancer patients.
64

  Eight separate blocks were identified to 

encompass bony structures such as the mandible and vertebrae.  By individually registering each 

structure, the authors measured a large non-rigid component in patient setup that could 

potentially exceed existing treatment margins.  In a second study, this group extended their 

registration tool to compute the optimal couch shift for patient setup corrections.
65

  Indications 

for adaptive replanning were also considered.  The multiple-ROI registration technique was 

implemented clinically and revealed as many as 40% of CBCT scans with at least one ROI 

exceeding 5 mm or 5° from the expected position.
66

 

Most pulmonary tumors lack such distinct features to guide block-matching registration.  

Even when such features may be available, care must be taken to avoid baseline shifts that can 

range from 3 to 4 mm throughout treatment.
39,42

  Thus, the multiple-ROI approach is not 

considered to be directly applicable for lung cancer patients. 

Preliminary results 

To assess the feasibility of block-matching registration for localizing primary lung 

tumors, preliminary data was collected for 15 patients who had received weekly CT scans using 
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an active-breath hold protocol.
67

  Using a similar study design as Appendix I, the first weekly CT 

was designated as the planning image, with all remaining CTs designated as on-treatment 

images.  Each on-treatment image was registered to the planning CT using manual bony-

anatomy alignment.  Then, six blocks approximately 1 to 10 cm
3
 were manually identified on the 

planning CT along the left, right, anterior, posterior, superior, and inferior tumor borders.  Each 

block was independently registered to the on-treatment image in the Pinnacle treatment planning 

system using a mutual information cost function.  The final aggregate registration was then 

computed as the vector mean of the block transforms, providing a translational patient setup 

correction.  Rotational corrections were not considered in this study.  Target localization errors 

were defined in this study as the vector distance between center-of-volumes from the planning 

and on-treatment GTV contours.  Initial localization errors from manual bony-anatomy 

registration averaged 3.0 ± 2.7 mm to 3.8 ± 3.7 mm.  After block-matching registration, these 

errors were reduced to 1.4 ± 1.2 mm to 1.9 ± 1.6 mm.  For comparison, whole-target rigid 

registration resulted in errors ranging from 1.6 ± 1.5 mm to 2.4 ± 2.3 mm for these patients 

(Appendix I). 

One major limitation in this preliminary analysis was the influence of tumor shape and 

volume changes on the reproducibility of the target centroid position.  For example, consider a 

target volume that demonstrates anisotropic regression in a single predominant direction.  A 

corresponding offset in the target centroid would be observed, even if the remaining cancerous 

tissue is stationary with respect to surrounding normal tissue structures.  The potential bias in 

centroid position complicates the interpretation of results in this preliminary work..  The 

remaining analyses in this dissertation do not quantify target localization errors in terms of 
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centroid reproducibility.  Instead, studies will rely on measures of target border variability and 

volume overlap.
68

  These analyses will be further described in the following chapters. 

Results from this study demonstrated that block-matching registration can potentially 

provide accurate lung tumor localization.  Further improvements are anticipated for a more 

general block-matching tool, for example, by optimizing the distribution of blocks throughout 

the GTV.  A more reliable set of displacement vectors would be generated, leading to more 

accurate tumor registration. 

Purpose and novelty 

The purpose of the current dissertation is to implement and evaluate a block-matching 

registration algorithm to improve upon existing methods of lung tumor localization.  All stages 

of this algorithm—block placement, block-matching, and target registration—will be assessed 

for accuracy and robustness in the final tumor alignment.  Although block-matching is an 

established registration technique, the current work is novel in its application of block-matching 

to the localization of lung cancer targets for patient setup corrections in image-guided 

radiotherapy.  The following section highlights the hypothesized advantages and limitations of 

block-matching for this purpose. 

In contrast to the multiple-ROI registration technique, which relies on bony landmarks in 

the head and neck, the proposed registration algorithm will rely solely on the similarity of soft-

tissue features between planning and on-treatment images.  Peripheral lung tumors often contain 

high-contrast borders with surrounding lung tissue, providing rich image detail for reliable 

block-matching and robust target registration.  However, portions of the target surface may also 

be obscured for tumors extending into the mediastinum, anchored to the chest wall or diaphragm, 
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or bordering atelectasis.  The lack of contrast between the primary tumor and neighboring tissues 

is anticipated to complicate block-matching in those regions. 

Another advantage of block-matching is the efficiency that results from rigid registration 

of small image sub-volumes.  This assumes that deformations in local anatomy can be 

approximated by a rigid transform.  The block size must therefore be small enough for this 

assumption to apply.  However, blocks must also be large enough to contain sufficient tissue 

structure for meaningful registrations.  The balance between these competing factors may be 

challenging to determine for lung cancer patients, for which substantial changes in tumor shape 

and volume are possible. 

Despite these perceived difficulties, block-matching registration has several key 

advantages over existing target localization strategies.  The intended algorithm is fully automatic, 

requiring no user interaction during the registration process.  This eliminates observer variability 

and ideally improves the reproducibility of target localization compared to manual tumor 

alignment.  An efficient block-matching implementation may also reduce the time needed for 

patient setup. 

In comparison to automatic rigid registration, block-matching is hypothesized to be at 

least as efficient by limiting block placement in regions more likely to contribute to an accurate 

and robust target alignment.  In contrast, rigid tumor registration is typically applied to larger 

image regions containing the entire target volume.
45

  Further efficiency gains may be realized 

from the highly parallel nature of block-matching through multi-core or GPU execution,
62,69

 

although this is outside the scope of the current work.  Block-matching is also likely to be more 

robust against local deformations, such as those arising from changes in target volume, 

atelectasis, or pleural effusion.  In this case, accurate registration of a majority of blocks is often 
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sufficient for detecting and mitigating mis-registration of the remaining blocks.  This reduces the 

impact of changes in target volume or pulmonary anatomy on the accuracy and robustness of the 

final target registration.
45

 

Finally, in comparison to deformable registration, block-matching is again hypothesized 

to benefit from faster implementation and increased robustness.  Fully deformable algorithms 

may provide more accurate registration of deforming regions within or around the primary 

tumor, but at the cost of increased computational complexity.  This is unnecessary for computing 

simple couch shifts, and block-matching is projected to be more efficient in computing patient 

setup corrections during image-guided radiotherapy.  Another advantage of block-matching is 

that neighboring blocks are independently registered.  This may help to reduce the impact of 

local “discontinuities” between planning and on-treatment images, such as those arising from 

tumor regression or resolving atelectasis.  While these complications may lead to regional 

failures in deformable image registration,
47

 only those blocks in the immediate vicinity of these 

regions will be influenced, without propagating potential registration errors to other neighboring 

blocks.  Finally, block-matching may actually be more robust against image noise typical of 

CBCT images, whereas deformable registration can suffer in cases of substantial noise, blurring, 

or image artifacts. 

Overview of dissertation aims 

The primary focus of this dissertation is the application and evaluation of a block-

matching registration tool for lung tumor localization during IGRT.  Major results, analyses, and 

conclusions have been organized into exclusive manuscripts provided in the appendices.  

Appendix I includes preliminary work on automatic rigid registration, the limitations of which 

have motivated the aims of this dissertation.  Appendices II, III, and IV provide new 
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contributions reporting on the three specific aims in this work.  Chapters 2, 3, and 4 supplement 

the appendices with further details on project development and analysis.  It is intended that each 

appendix be read prior to its corresponding chapter. 

To assess target localization errors resulting from block-matching registration, physician-

delineated target volumes will be used as a gold standard.  However, target contours cannot be 

used to directly assess registration errors for individual blocks.  The first specific aim therefore 

involves an important preliminary step to develop a measure of block registration quality.  

Chapter 2 and Appendix II describe the motivation and methodology behind a deformable 

surface mesh registration (DMR) tool for this purpose.  Briefly, this tool is designed to compute 

the nominal orientation between tumor surfaces from planning and on-treatment images.  This 

information can then be used to predict the rigid, intensity-based registration of individual 

blocks.  Although DMR is capable of validating the local displacements computed by any 

general registration algorithm, the focus of Chapter 2 specifically involves the application of 

DMR as a gold standard for block-matching accuracy. 

With this validation tool in place, the next major milestone is to implement a block-

matching registration algorithm and to optimize its performance for the localization of primary 

lung tumors.  Chapter 3 and Appendix III describe the major steps involved in this pursuit.  First, 

because block-matching accuracy depends on the presence of distinct soft-tissue features, initial 

efforts focus on the identification of features that best indicate accurate block registrations.  

These features will be used to guide block placement on the planning CT.  Next, the registration 

of individual blocks is addressed, with several developments to improve block-matching 

accuracy for locally advanced lung tumors.  Finally, registration of the entire target volume is 

performed, and the accuracy of lung tumor localization is assessed. 
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To better evaluate the potential of block-matching registration to improve the setup of 

lung cancer patients, Chapter 4 and Appendix IV include a comparison study between block-

matching and other possible rigid and non-rigid registration algorithms.  The primary endpoint 

for this comparison is the accuracy with which primary lung tumors can be localized for 

treatment, although other clinical considerations are discussed. 

Table 1.1. Overview of patient populations.  In general, the first study cohort contained high-

quality fan-beam CT (FBCT) images well-suited for algorithm development, whereas the second 

study cohort contained kilovoltage (kV) cone-beam CT (CBCT) images more representative of a 

true image guided radiotherapy workflow. 

 
Study Cohort 1 Study Cohort 2 

Studies 
Specific aim 1 

Specific aim 2 
Specific aim 3 

Patients 18 16 

Primary Tumor Site Locally advanced non-small-cell lung cancer 

Imaging Protocol Active breathing control 
4D audiovisual-biofeedback 

End-of-inspiration phase only
*
 

Planning Image FBCT FBCT 

On-Treatment Images FBCT kV CBCT 

Imaging Frequency Weekly Weekly 

Duration of Treatment 4 to 7 Weeks 6 to 8 Weeks 

*
All registrations were performed for three-dimensional image sets. 
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Figure 3.2. Registration errors as a function of intensity feature values for the voxels contained 

within each block.  Registrations were performed with a 10 mm nominal block size and the 

correlation ratio similarity metric.  Data were categorized into true positives (TP: lower right 

quadrant), false positives (FP: upper right quadrant), true negatives (TN: upper left quadrant), 

and false negatives (FN: lower left quadrant). 

 

 

The Variance, Gradient, Laplacian, and Eigenvalue intensity features were compared 

using the same patient images, block distributions, and registration errors as the previous study.  

A receiver operating characteristic (ROC)-based analysis was used to distinguish the predictive 

capabilities of each feature.  Block registrations were categorized as “accurate” if registration 

errors were less than 5 mm and “inaccurate” if registration errors exceeded this threshold.  For a 

voxel size of 1.2 mm axially and 2.0 mm in the slice direction, inaccurate registrations included 

displacement errors greater than 4 voxels axially, greater than 2 voxels in the slice direction, or 

equal to 2 voxels simultaneously in all directions.  Thresholds of 3 mm and 8 mm were also 
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tested in preliminary work, with no observed impact on the relative results between intensity 

features.  Figure 3.2 shows the classification of block registrations into true positives (TP), false 

positives (FP), true negatives (TN), and false negatives (FN). 

Figure 3.3. Mean positive predictive value (PPV) for four intensity features as a function of the 

percent of points included in each PPV calculation.  Registrations were performed using 

artificially-deformed images for a subset of 12 patients from study cohort 1 (Table 1.1). 

 

 

The presence of a large fraction of FN registrations caused a substantial reduction in the 

sensitivity, or true positive fraction (TPF), defined as TP / (TP + FN).  The resulting ROC curve 

failed to distinguish between the intensity features.  Instead, the positive predictive value (PPV) 

was computed for each intensity feature as TP / (TP + FP).  PPV therefore represented that 
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fraction of all blocks containing sufficient structural content (i.e., predicted to be well-registered) 

that were actually well-registered.  A major limitation to this approach was the dependence of the 

PPV on the intensity feature threshold, which affected the total number of positive blocks (TP + 

FP) included in the analysis.  To extract consistent data for all intensity features, registration 

errors were separately ranked according the values of each intensity feature.  The PPV was then 

computed for the top 2%, 5%, 10%, 20%, 50%, and 100% of blocks with respect to the ranked 

intensity features. 

Figure 3.3 shows the mean PPV for all patients as a function of the number of blocks 

included in each PPV calculation.  At 100% of blocks, the PPV for all intensity features 

converged to the same value.  This reflected the fact that when all blocks were included in the 

analysis, the fraction of accurate block registrations remained the same regardless of the intensity 

feature.  The variance measure used in the original PBNRR algorithm resulted in the lowest PPV 

in this study, regardless of nominal block size or similarity metric.  The top 10% of points ranked 

according to variance had a predictive value less than or approximately equal to that of 100% of 

points, indicating that feature detection with a variance measure could actually be detrimental to 

the final registration accuracy.  For NCC and CR metrics, the highest PPV was provided by the 

minimum gradient eigenvalue.  This was also demonstrated by NMI registration with a nominal 

block size of 15 mm, although less evident for 10 mm blocks.  Using the combination of CR and 

10 mm blocks, the top 5% of blocks with respect to Eigenvalue features were registered with 

99% accuracy. 

Although the similarity metrics may also be considered intensity features, they were not 

actually suitable for predicting accurate block registrations.  This was because their values were 

only known after each block was registered.  Selection of a subset of blocks would therefore 



 

52 

 

require all blocks to be registered, resulting in a highly inefficient algorithm.  Instead, block 

selection required intensity features that could be computed prior to registration.  This enabled a 

large number of (indistinct) blocks to be discarded to improve the overall efficiency of 

registration.  Furthermore, the remaining blocks were expected to contain high structural content, 

improving registration accuracy.  While the similarity metrics may still provide useful 

information on the quality of block-matching, that information is best applied after block-

matching has completed. 

The results of this study support the existing workflow for automatic block identification, 

namely, sorting blocks according to a measure of distinctiveness and extracting a user-specified 

fraction of the most distinct blocks for registration.  However, in direct contrast to the original 

PBNRR code, variance was found to poorly predict accurate block registrations.  Instead, the 

minimum gradient eigenvalue is recommended in conjunction with the CR metric and 10 mm 

blocks.  This combination was implemented for all subsequent registrations. 

The previous studies relied on the registration of an extremely dense distribution of 

overlapping blocks, which severely limited the efficiency of the block-matching algorithm.  In 

practice, a much smaller number of blocks are necessary for determining a reliable target 

registration.  By selectively registering only those blocks with distinct intensity features (i.e., 

according to the minimum gradient eigenvalue), a greater fraction of these blocks is expected to 

be well-registered.  The net result is a more accurate and more efficient block-matching 

algorithm.  The workflow for extracting a sparse block distribution is described in the following 

section. 
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Sparse block distribution 

A final modification of the block identification paradigm was necessary due to 

fundamentally different requirements for target localization, as compared with deformable 

registration provided by the original PBNRR code.  Despite the fact that some image regions 

provided more discriminative structures for block-matching than other regions, the most reliable 

target localization required that all portions of the tumor surface were equally important in the 

block-matching algorithm.  Therefore, feature points were drawn from both distinct and 

indistinct regions along the tumor surface.  Finally, the total number of feature points was not 

constrained by a user-specified fraction but was given by the maximum number of points that 

could be identified based on block size and block spacing parameters. 

Even with blocks distributed throughout the entire surface, the identification of distinct 

soft-tissue features was still an important requirement.  The order of feature point selection 

depended on the magnitude of the minimum gradient eigenvalue, but in contrast to Figure 3.3, 

the final distribution of blocks did not correspond to a percentage of the most distinct blocks.  As 

briefly mentioned in Appendix III, it was desirable that the first few blocks be placed in (i.e., 

centered on) the most distinct regions of the image.  Subsequent blocks could then be placed 

according to a decreasing measure of distinctiveness until no additional non-overlapping blocks 

could be placed on the tumor surface.  The block placement algorithm was fully automatic, and 

the block distribution was reproducible. 

3.2. Block-matching modifications 

Because blocks were distributed throughout the entire tumor surface, registrations were 

performed for both distinct and indistinct image regions.  This increased the probability of block 

mis-registrations (Figure 3.2), which led to poor initial results as shown by Appendix III, Figures 
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3 and 4.  Evaluation of initial block registration errors motivated two major developments to the 

BMR algorithm: multi-resolution pyramid registration and the multiple-candidate registrations 

(MCR) technique.  Briefly, the multi-resolution strategy involved the registration of images 

down-sampled by a factor of 4, down-sampled by a factor of 2, and at full resolution.  The 

coarse-to-fine registration sequence enables efficient and accurate block-matching within a 

relatively large search window.   The MCR technique served to address block mis-registrations 

that resulted from similar anatomical features located in distinct regions of the search window.  

In addition to extracting a single block displacement with the maximum similarity score, this 

method also considers displacements with near-optimal similarity scores.  The final 

displacement is then iteratively determined to better reflect local changes at the tumor surface.  

This section highlights the observations that motivated these improvements as well as the 

development process that contributed to the final block-matching algorithm. 

Pyramid registration: Motivation and implementation 

Large block registration errors from the initial BMR algorithm were associated with large 

displacements that differed substantially from the mean block displacement (Figure 3.4).  It was 

possible to reduce the impact of these large errors by discarding statistical outliers.  However, the 

resulting set of blocks would no longer be distributed uniformly throughout the target surface.  

To avoid eliminating blocks from the initial distribution, a better solution involved multi-

resolution pyramid registration. 
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Figure 3.4. Relationship between block displacements and registration errors in left-right (LR), 

anterior-posterior (AP), and superior-inferior (SI) directions.  Patients refer to Appendix III, 

Figure 3 (see also: Table 1.1, study cohort 1). 

 

 

By itself, pyramid registration did not lead to dramatic improvements.  In addition to the 

correlation between large block displacements and large registration errors, it was also observed 

that registration errors at coarse resolutions impacted the accuracy of higher-resolution 

registrations (Figure 3.5).  To prevent error propagation throughout pyramid registration, 

displacements were regularized using a median filter.
77

  The ability to correct block 

displacements during registration was a major advantage of the multi-resolution pyramid 

approach.  However, this method required a sufficiently dense distribution of blocks for reliable 

median filtering, and it was possible that large, accurate displacements were incorrectly 

modified.  In general, eliminating large displacement errors was more beneficial to the total 

registration accuracy than preserving the relatively small number of large, accurate 

displacements. 
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Figure 3.5. Block registration errors (BRE) after registration at coarse, intermediate, and full 

resolutions for patient 8 (Figure 3.4). 

 

 

Figure 3.6 demonstrates the registration accuracy of the initial block-matching algorithm 

(“Initial”) compared with pyramid registration without the median filter (“Pyramid-Unfiltered”) 

and with the median filter (“Pyramid-Filtered”).  For artificially-deformed images, five patients 

demonstrated errors of 1 mm from the Initial registration, which remained approximately 1 mm 

for Pyramid-Unfiltered and Pyramid-Filtered registrations.  Of the remaining seven patients, 

Pyramid-Unfiltered and Pyramid-Filtered registrations reduced mean errors by an average of 

1.9 mm and 4.3 mm, respectively.  Registration of the weekly patient images better demonstrated 

the necessity of median filtering.  Pyramid-Unfiltered registration reduced mean errors by just 

1.5 mm and increased systematic and random errors by 1.2 and 0.8 mm, respectively.  In 

contrast, Pyramid-Filtered registrations reduced errors by 6.3 mm compared to the Initial 

registration, with reductions in systematic and random errors by 1.7 and 6.9 mm, respectively. 

-4 -2 0 2 4

-4

-2

0

2

4

BRE: Coarse Resolution (cm)

B
R

E
: 

In
te

rm
e

d
ia

te
 R

e
s

o
lu

ti
o

n
 (

c
m

)

-4 -2 0 2 4

-4

-2

0

2

4

BRE: Intermediate Resolution (cm)

B
R

E
: 

F
u

ll
 R

e
s

o
lu

ti
o

n
 (

c
m

)

 

 

LR

AP

SI



 

57 

 

Figure 3.6. Comparison of the initial block-matching algorithm against pyramid registrations 

with and without median filtering.  Registrations were performed for a subset of 12 patients from 

study cohort 1 (Table 1.1). 

 

 

Although pyramid registration with median filtering reduced block-matching errors for 

all patients, the potential for large registration errors remained.  For patient 8, this was attributed 

to complications in registering a sub-carinal tumor with more substantial deformation (due to 

anisotropic target volume regression and re-expanded airways) than demonstrated by other 

patients.  For registrations of the weekly patient images, registration errors were computed by 

comparison against deformable mesh registration (Chapter 2, Appendix II), which introduced an 

inherent uncertainty of 1 to 2 mm in these results.  Additional sources of error were primarily 
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due to block mis-registrations, which motived the exploration of the multiple-candidate 

registrations technique. 

Multiple candidate block registrations 

As described in Appendix III, large registration errors were commonly observed for 

blocks that contained soft-tissue features matching at multiple locations in the search region.  

Problems arose when the highest degree of similarity (e.g., the maximum correlation ratio) was 

located in a region distant from the tumor surface.  These large errors could be mitigated by 

median filtering, but the corrected displacement was only an indirect estimate of the desired 

registration.  A better solution was to directly compute the expected registration during block-

matching.  This was possible by searching for all near-optimal block displacements with respect 

to the similarity score, then extracting the single displacement which best agreed with those of 

neighboring blocks.  To quantify the agreement between neighboring block displacements, a 

measure of “local variance” (LV) was computed within each block neighborhood to reflect the 

consistency of displacement vectors.  Large variations in neighboring block displacements, for 

example due to potential mis-registrations, result in a larger measure of LV.  When summed over 

all possible block neighborhoods, the “total local variance” (TLV) can be used to compare two 

sets of displacement vectors resulting from the same distribution of blocks.  The following 

formalism illustrates this calculation. 

Let each block be defined by the coordinates of its central voxel, bi.  The neighborhood 

of blocks surrounding bi was defined in Appendix III as 

  (  )     {     ‖     ‖                 }  [3.18] 

Note that block bi is included in its own neighborhood by this definition.  The factor of   

              was used so that only immediately adjacent blocks (bj) were considered 



 

59 

 

neighbors.  This parameter should be adapted for block distributions that differ from the current 

spacing.  In the following formalism, the number of blocks in neighborhood  (  ) is given by 

Ni, and the total number of blocks in the distribution is given by N. 

Assume for now that each block is associated with a single displacement,  

   (              ).  The set of all displacements in a neighborhood of blocks is given by  

  (  )  {                
}  [3.19] 

The mean and variance of the displacement vectors in  (  ) can be respectively computed 

(separately in each direction) as: 

 〈 (  )〉  
 

  
∑    

  

 

 [3.20] 

    [ (  )]  
∑ (     〈 (  )〉 )

 
 

    
 [3.21] 

The local variance can now be defined for the given neighborhood as the scalar sum of the 

variance in each direction, or 

        [ (  )]     [ (  )]     [ (  )]     [ (  )]  [3.22] 

As the LVi approaches zero, all displacement vectors within the given neighborhood of blocks 

become more similar.  In contrast, larger values indicate an increased degree of variability in the 

displacement vectors.  Because neighboring regions of the tumor were expected to demonstrate 

similar displacements, lower values of LVi were associated with better local registration of the 

tumor surface.  The TLV for all block neighborhoods is given by the sum of the LV for each 

neighborhood, 

     ∑   

 

   

 [3.23] 
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TLV can be interpreted in a similar manner as the LV.  Smaller values indicated that 

displacement vectors were more consistent across small block neighborhoods throughout the 

entire tumor surface.   

The TLV was designed to compare multiple sets of displacement vectors for the same 

distribution of blocks.  Specifically, this measure can be quickly recomputed for each set of 

displacement vectors to determine the set with the highest degree of local consistency.  This 

strategy was used to detect the most likely registration for each block from the collection of 

multiple candidate registrations.  Assume that a given block bi now has a total of n candidate 

registrations, {                }.  The TLV was recomputed separately for each candidate 

registration, resulting in the set of TLV measures {   (    )    (    )      (    )}.  The 

most likely registration was selected as the one with the minimum TLV, 

           
    

[ {   (    )            } ]  [3.24] 

By repeating this process for each block with multiple candidate registrations, it was possible to 

determine a set of displacement vectors that better registered the target surface, as compared with 

the initial set of displacements having the maximum correlation ratio.  Figure 3.7 provides an 

example of this iterative process. 

The primary advantage of the MCR technique is that it enables the exact calculation of 

the desired block registrations at the tumor surface.  This is superior to regularization (e.g., using 

a median filter), which indirectly estimates the desired block registration and ultimately depends 

on the accuracy of surrounding block displacements.  However, MCR also has several 

limitations, including the possibility that none of the candidate registrations provides the desired 

registration.  In this case, the MCR method is not expected to detract substantially from the 

overall registration accuracy, and median filtering is used to mitigate large block mis-
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registrations.  A second limitation is that convergence of the iterative solution (Figure 3.7) is not 

guaranteed.  To avoid potential non-convergence, several constraints were imposed to limit the 

number of candidate registrations for each block.  In Appendix III, it was found that more than 

40% of block registrations resulted in a single possible displacement.  These displacements were 

essential for influencing the selection of all other block displacements to arrive at a unique 

solution.  Finally, although MCR demonstrated substantial improvements compared to the initial 

BMR implementation, the benefit of MCR was less substantial when used in conjunction with 

pyramid registration.  This was primarily attributed to the larger search window necessary in the 

initial implementation, which increased the potential magnitude of individual block corrections 

and resulted in a larger fraction of corrected blocks (Appendix III, Figure 5).  Because MCR 

required a very small percentage of the total registration time and reduced registration errors for 

patients in this study, MCR was considered to be a recommended approach for improving the 

robustness of block-matching registration. 

Implications for capturing local tumor changes 

The above modifications to the block-matching algorithm had several implications in 

registering small portions of the tumor surface.  First, the pyramid down-sampling scheme 

enabled the registration of both coarse and fine-level details.  At the coarsest resolution, a 

nominal block size of 40 mm enclosed a large portion of both the primary tumor and surrounding 

anatomy.  This generally promoted accurate registrations even in cases of moderate to substantial 

target volume regression.  By progressively registering finer image details, the algorithm could 

effectively pinpoint the desired block displacements that reflected the true underlying 

pathological changes.  In practice, however, block mis-registrations at coarse resolutions 

severely limited the accuracy of the algorithm at full resolution (Figure 3.5). 
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Figure 3.7. One-dimensional example of the multiple candidate registrations iterative workflow.  

Top: candidate registrations (vertical displacements) are shown for a series of six blocks.  Black 

vectors denote “active” displacements, which initially correspond to the registrations with 

maximum correlation ratio.  Iteration 1: candidate registrations are tested for a single block at a 

time.  Red vectors show modified “active” displacements.  These displacements are not actually 

updated until all blocks have been evaluated for the current iteration.  Iteration 2: additional 

iterations result in further modifications to the displacement vectors.  Iterations continue until no 

more vector modifications are necessary.  Bottom: the final set of displacement vectors ideally 

represents the most consistent spatial configuration. 

 

 

To more accurately register the tumor surface at each resolution, the algorithm employed 

the MCR technique followed by median filtering.  Both approaches regularized the sparsely 

sampled displacement vector field, but each method provided unique advantages and 

disadvantages.  MCR was executed first as a method of identifying all near-optimal 

displacements for each block.  The subsequent iterative selection process (Figure 3.7) then 

identified the set of displacements that best satisfied the local consistency requirement of 
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Equation 3.24.  The resulting displacements therefore reflected some degree of interdependence, 

in contrast to the completely independent block displacements without MCR.  The major 

advantage of MCR was the ability to replace large initial block mis-registrations (i.e., before 

MCR) with displacements that better approximated the true changes in the tumor surface 

(Appendix III, Figure 5).  As a potential disadvantage, MCR was still prone to block mis-

registrations.  The accuracy of MCR ultimately depended on the successful registration of a 

majority of blocks in order for the iterative selection process to properly converge.  Furthermore, 

even the best registration for an individual block could demonstrate large residual errors.  This 

emphasizes the need for additional regularization, which was provided by a final median filtering 

step. 

The primary benefit of the median filter was to reduce the impact of large block mis-

registrations, which served two important roles in the BMR algorithm.  First, block 

displacements computed using low resolution images initialized subsequent registration of higher 

resolution images.  Median filtering therefore improved the initialization of block registrations 

for all but the first pyramid level.  Second, after all pyramid levels had been evaluated, the final 

set of displacement vectors were likely to contain some residual uncertainties.  Median filtering 

improved the final registration accuracy by reducing these uncertainties.  As a potential 

disadvantage, displacement vectors after median filtering only approximated the true underlying 

pathological changes.  Block registrations were generally close to, but not necessarily equal to, 

the optimal match with respect to the similarity metric.  A second disadvantage was the 

underlying assumption that large block displacements always corresponded to large registration 

errors.  While this assumption was generally true, it was possible that median filtering incorrectly 

modified large but accurate block displacements. 
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One example of this effect was observed for blocks partially containing bony structures.  

For these blocks, registrations tended to prioritize the alignment of high-intensity bone rather 

than the surface of the primary tumor.  The resulting displacement vector therefore promoted the 

alignment of rigid objects such as bones.  Despite the advantages of such a registration, these 

displacements could be modified by median filtering to obtain a better approximation of local 

changes in the tumor surface.  This outcome was consistent with the initial design goals of the 

BMR algorithm.  Disabling the median filter would prevent the modification of large, accurate 

block displacements, but this solution fails to mitigate the effect of mis-registrations.  More 

complex regularization schemes could be devised, but the impact on block registration (and 

target localization) accuracy was not projected to be substantial. 

The combination of multi-resolution pyramid registration, the MCR technique, and 

regularization through median filtering resulted in reasonably accurate block registrations for 

both artificially-deformed and weekly patient images, with mean block registration errors of 

1.7 mm and 4.8 mm, respectively.  These errors were not an indication of target localization 

accuracy but rather reflected the capacity of the final BMR algorithm to match small regions of 

the tumor surface.  Further modifications to the block-matching workflow were not anticipated to 

substantially improve block registration accuracy, so final efforts were focused on global image 

alignment and the assessment of target localization accuracy. 

3.3. Target localization via Procrustes analysis 

To compute the optimal tumor registration, it was necessary to reduce the sparsely 

sampled displacement vector field to a set of three translations and three rotations representing a 

couch shift for patient setup corrections.  This was a major departure from the existing PBNRR 
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code.  A Procrustes analysis was implemented for this purpose, the advantages and limitations of 

which are presented in the following section, but first, another potential solution is discussed. 

Ourselin et al. designed a BMR algorithm for the purpose of fast and robust, general-

purpose rigid registration of medical images.
56

  Their solution for global image registration 

involved a least trimmed squares (LTS) method that explicitly accounted for potential block mis-

registrations.  Briefly, the residual distance between an initial and registered block pair, (ai, bi), is 

given by ri = ai – T(bi), where T(x) represents the global rigid transform of the on-treatment 

image.  This transform is computed such that the sum of squared residuals is minimized.  

According to the “trimmed” version of least-squares analysis, a given fraction of the largest 

residuals are excluded from the calculation.  This eliminates the influence of outliers on final 

global registration. 

Although robust from a statistical point of view, the LTS method was not optimal for the 

BMR algorithm in this work, in which it was undesirable to discard blocks from the initial 

distribution.  For reliable target localization, all blocks were required to contribute to the final 

image registration.  Eliminating displacements from a portion of the tumor surface could 

potentially skew the global image registration in favor of the remaining blocks, leading to 

suboptimal target localization.  A traditional least-squares solution might have been more closely 

aligned with the current block-matching algorithm, but the Procrustes analysis was pursued as an 

alternative solution. 

The Procrustes solution is a common method of shape analysis that can be used to 

determine the optimal orientation between two corresponding point distributions.
70

  This 

approach benefits from straightforward calculation of the translations, rotations, and optional 

scaling parameters in a least squares sense.  Scaling parameters do not apply to patient setup 
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corrections, but this information may allow target volume changes to be estimated and tracked 

throughout treatment.  The solution is analytical, requires very little computational time, and can 

be modified by weighting factors associated with each block.  Although outlier displacements 

will affect the final Procrustes solution, developments in the current BMR algorithm have limited 

the magnitude of large registration errors to minimize their influence on the final target 

alignment. 

The results in Appendix III highlight the improvements in target localization from BMR 

with an unweighted implementation of the Procrustes solution.  An initial bony anatomy 

alignment resulted in median and 10
th

-percentile target volume overlaps of 0.82 and 0.51, 

respectively.  One patient demonstrated no overlap during the final three weeks of treatment.  

This was due to a pleural effusion that progressed throughout treatment, causing notable 

systemic offsets in tumor position relative to bony anatomy.  After applying the Procrustes 

solution, BMR increased the median and 10
th

-percentile volume overlaps to 0.94 and 0.79.  A 

minimum overlap of 0.59 indicated that BMR was a more robust method of primary tumor 

localization than bony anatomy alignment.  BMR also facilitated smaller treatment margins for 

all patients in the current study population (Table 1.1: study cohort 1), with reductions of 

3.5 mm, 6.9 mm, and 5.0 mm in the left-right, anterior-posterior, and superior-inferior directions.  

Even more substantial improvements were noted for the subset of patients demonstrating 

atelectasis and pleural effusion. 

It may be possible to further improve the Procrustes solution using block weighting 

factors, for example based on the minimum gradient eigenvalue, correlation ratio, or local 

variance from MCR.  However, because the final displacement vector field is regularized 

through both median filtering and the MCR technique, it is currently uncertain whether such a 
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weighting scheme would substantially influence the final target registration.  This marks an area 

of potential improvement in the event that future registrations require more accurate target 

localization. 

Conclusion 

In this work, the three primary stages of block-matching registration were assessed for 

the specific purpose of lung tumor localization.  Several developments were necessary to 

improve robustness including more reliable feature detection, multi-resolution pyramid 

registration, and a novel multiple candidate registration technique.  Although the BMR algorithm 

has only been tested for CT-CT registration, similar results are anticipated for the CT-CBCT 

registrations that will be explored in the following chapter.  The final specific aim involves a 

comparison between BMR and several other registration algorithms for direct tumor localization.  

Registrations will be performed for a broader dataset including CBCT images, providing a more 

clinically relevant assessment of these algorithms. 
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CHAPTER 4. COMPARISON OF AUTOMATIC REGISTRATION 

ALGORITHMS FOR LUNG TUMOR LOCALIZATION 

Introduction 

The previous chapter and the results of Appendix III indicate that block-matching 

registration (BMR) is capable of robust lung tumor localization.  However, these preliminary 

findings were based on the registration of high-quality computed tomography (CT) images, and 

improvements were only demonstrated relative to bony anatomy alignment.  To establish BMR 

as a viable tool for online image-guided patient setup, robust registrations must be demonstrated 

for cone-beam computed tomography (CBCT) images more representative of online image-

guided patient setup.  Furthermore, it is necessary to compare BMR against other potential 

solutions for direct lung tumor localization.  The purpose of this final study was to evaluate the 

accuracy of automatic registration algorithms for the direct localization of locally-advanced lung 

tumors.  This study is presented in Appendix IV.  In the following sections, the extension of 

BMR to CT-CBCT registration is first discussed, followed by a summary of the implications of 

this work. 
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Figure 4.2. Differences in target volume overlap between study cohorts (Table 1.1).  Study 

cohort 1 included CT-CT registrations, whereas study cohort 2 included CT-CBCT registrations.  

Although these cohorts were not directly comparable, significant differences highlighted the 

potential for reduced CBCT image quality to negatively impact the accuracy of block-matching 

registration. 

 

 

Implications and future direction 

In addition to the demonstrated improvements in lung tumor localization, BMR may 

provide a wide assortment of other benefits to image-guided patient setup corrections.  This 

algorithm is fast and efficient to implement, yet provides a wealth of information throughout the 

registration process.  This has several implications that may help to further reduce inter-

fractional uncertainties throughout treatment. 

Simultaneous registration of multiple targets 

To this point, analyses have only considered the alignment of the primary lung tumor 

resulting from intensity-based registration of blocks on the tumor surface.  Because such small 

portions of the planning and on-treatment images were included in the registration, the final 

tumor alignment cannot guarantee that other structures in the thorax are properly aligned.  These 
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