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Figure 5.3 – WIN2 has no interaction with TRPV1 in spite of its mRNA expression in MCF-
7 cells. (A) RT-PCR for TRPV1 (B) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and 
vehicle or capsazapine (10 µM). (C) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and 
vehicle or capsaicin (100 µM). Cell count with trypan blue was used to assess cell viability at 96 
h. Data presented reflect the means of 3 individual experiments + se; no significant difference 
found.  
 
Statistics  

(B) Two way repeated measures ANOVA: CPZ-WIN2 interaction (p=0.2164) 
(C) Two way repeated measures ANOVA: CAP-WIN2 interaction (p=0.8076). CAP 

treatment main effect (p=0.1410) 
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Figure 5.4 – GPR55 mRNA was not found in MCF-7 cells. Representative blot of three.  
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cells (Fig 5.4), and a lack of GPR55 expression eliminated the need for further assessment of 

its involvement in WIN2 mediated anti-proliferative actions. 

 

Section 5.5 - MCF-7 cell sensitivity to growth inhibition by WIN2 is increased under 

serum free conditions 

 

Studies to be presented next will utilize a low serum condition. Pertinent to this, 

Jacobsson et al. (2001) reported that AEA has different potencies for inhibiting C6 glioma cell 

growth depending on the serum concentration used in media. To assess the antiproliferative 

and stereospecific actions of WIN2 under low serum conditions, dose-responses for WIN2 and 

its inactive enantiomer WIN55,212-3 (WIN3) were compared using 0.1% serum conditions (Fig 

5.5). Comparison of WIN2 and WIN3 show that WIN2 retains it dose-dependent and 

stereospecific inhibition of MCF-7 cell growth under low serum conditions, and comparisons of 

the ED50 for WIN2 under low (3.13+0.29 µM) and normal (11.96+1.65 µM) serum also show 

WIN2 to be more potent under low serum with a potency ratio of 3.39 relative to normal serum 

conditions. The ED50 for WIN2 in normal serum was reported in section 3.1.  

 

Section 5.6 - WIN2 antagonizes growth stimulation by sphingosine-1-phosphate and 

SEW2871 but not estradiol 

 

Unpublished studies by Dr. Dana E. Selley suggested WIN2 has actions at the 

sphingosine-1-phosphate (S1P) system, and the S1P signaling system has been shown 

important to the proliferation of MCF-7 cells (Sarkar et al 2005). These data suggested that 

WIN2 inhibited MCF-7 cell growth through activity at S1P receptors; therefore studies were 

designed to evaluate the S1P system as a potential site for the antiproliferative actions of WIN2  
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Figure 5.5 – Influence of low serum (0.1%) conditions on response of MCF-7 cells to WIN2 
and WIN3. MCF-7 cells were treated with WIN2 (1-10μM) and WIN3 (1-10μM) and cell growth 
monitored by the crystal violet assay 96 h after treatment. Data presented reflect the means of 3 
individual experiments + se; *=p<0.05 vs WIN3 at each respective concentration of drug; 
darkened symbols=p<0.05 vs vehicle. 
 
Statistics  

Two way repeated measures ANOVA: drug-dose interaction (F10,22=9.6, p<0.0001) 
Individual comparisons: WIN2-WIN3 4-10 µM (p<0.025). WIN2-vehicle 5-10 µM 

(p<0.025). WIN3-vehicle (no significant differences) 
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Figure 5.6 – WIN2 interferes with sphingosine-1-phosphate induced growth stimulation. 
MCF-7 cells were incubated under low serum conditions with 100 nM sphingosine-1-phosphate 
± WIN2 (3 µM). Trypan blue exclusion was used to assess cell viability at 96 h post treatment. 
Values are presented as percent of control and represent means+se for 3-4 replicate 
experiments; * p<0.05 vs vehicle; #p<0.05 indicated by bars.  
  
Statistics  

Two way repeated measures ANOVA: WIN2-S1P interaction (F1,4=20.8, p=0.0103) 
Individual comparisons: S1P-vehicle (p=0.0302). Vehicle-WIN2 (no significant difference). 

S1P-WIN2 + S1P (p=0.0074).  
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in MCF-7 cells. Under low serum conditions of 0.1 percent serum, 100 nM S1P stimulated MCF-

7 cell growth, which was subsequently suppressed by WIN2 (3 µM); this concentration of WIN2 

was not able to inhibit basal cell growth by itself (Fig 5.6).  

In complementary studies, a sub-effective dose of WIN2 (8 µM) under normal serum 

conditions prevented the growth stimulatory effects SEW2871 (5 µM), the synthetic S1P1 

receptor-selective agonist (Fig 5.7A). In contrast, 25 µM THC failed to inhibit growth stimulation 

by SEW2871 (Fig 5.7B). The differential actions of WIN2 and THC indicate that not all 

cannabinoids are capable of antagonizing SEW2871 induced breast tumor cell growth. To 

explore the possibility that WIN2 might be interfering with another growth stimulatory pathway, 

cells were exposed to 100 nM estradiol in the absence and in the presence of 8 µM WIN2 (Fig 

5.8); however, WIN2 failed to antagonize the growth stimulating effects of estradiol. In summary, 

these studies show that WIN2 antagonism of growth stimulation appears to be selective for the 

S1P signaling system. 

 

Section 5.7 - WIN2 does not antagonize S1P-stimulated [35S]GTPγS binding 

 

Agonist-stimulated [35S]GTPγS binding assays were used to test the ability of WIN2 to 

antagonize S1P stimulated G protein activation. S1P (0.1,1 and 10 µM) was incubated alone or 

in combination with WIN2 (30 µM; Fig 5.9). WIN2 was unable to alter S1P-stimulated 

[35S]GTPγS binding, which may or may not suggest WIN2 has capacity to antagonize S1P 

signaling at S1P receptors (further elaboration in discussion). WIN2 stimulated [35S]GTPγS 

binding was also not found to be significantly greater than basal levels. The S1P receptor 

system has 5 receptors (Rosen et al. 2009), and Dr. Dana Selley’s work has implicated WIN2 as 

a partial agonist at S1P1 receptors. The inability of WIN2 to stimulate [35S]GTPγS binding in 

MCF-7 cells could reflect that S1P1 receptors are not present in MCF-7 cells or that S1P1 
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receptors are not present in high enough density compared to other S1P receptors to allow 

detection. 
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Figure 5.7 – WIN2 but not THC interferes with SEW2871 induced growth stimulation. 
MCF-7 cells were incubated with (A) 5 µM SEW2871 ± 8 µM WIN2 or (B) 5 µM SEW2871 ± 25 
µM. Trypan blue exclusion was used to assess cell viability at 96 h post treatment. Values are 
presented as % of control and represent means+se for 3-4 replicate experiments; * p<0.05 vs 
vehicle; #p<0.05 indicated by bars.  
 
 
Statistics  

(A) Two way repeated measures ANOVA: WIN2-SEW2871 interaction (F1,4=36.3, 
p=0.0038) 

(A) Individual comparisons: Vehicle-SEW2871 (p=0.0254). Vehicle-WIN2 + SEW2871 
(p=0.0416). SEW2871-WIN2 + SEW2871 (p=0.0038) 

(B) Two way repeated measures ANOVA: THC-SEW2871 interaction (p=0.5969). 
SEW2871 treatment main effect (F1,4=19.7, p=0.0113) 

(B) Individual comparisons: Vehicle-SEW2871 (p=0.0178). Vehicle-WIN2 + SEW2871 
(p=0.0131).  
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Figure 5.8 – WIN2 fails to interfere with estradiol induced growth stimulation. MCF-7 cells 
were incubated with 100 nM estradiol ± 8 µM WIN2. Trypan blue exclusion was used to assess 
cell viability at 96 h post treatment. Values are presented as % of control and represent 
means+se for 3-4 replicate experiments; * p<0.05 vs vehicle; #p<0.05 indicated by bars.  
 
 
Statistics  

Two way repeated measure ANOVA: WIN2-Estradiol interaction (p=0.7317). Estradiol 
treatment main effect (F1,6=14.4, p=0.0090) 

Individual comparisons: Vehicle-estradiol (p=0.0062). Vehicle-WIN2 + estradiol 
(p=0.0098). 
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Figure 5.9 – WIN2 does not antagonize S1P stimulated G protein activation. Sphingosine-
1-phosphate stimulation of [35S]GTPγS binding (0.1-10 µM) + 30 µM WIN2. WIN2 was also 
tested alone as a control. Data presented as % stimulation and represent mean+se for 3-7 
replicate experiments. No significant differences detected between S1P and S1P + WIN2.  
 
Statistics  

Two way repeated measures ANOVA: WIN2-S1P interaction (p=0.3580). S1P treatment 
main effect (F1,21=9.5, p=0.0011) 
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Discussion 

 

Known cannabinoid sensitive targets are not mediating WIN2 effects 

 

In the current studies, WIN2 was not antagonized by the CB1 selective antagonist AM251. 

This is surprising because the CB1 selective antagonist SR141716 suppressed AEA inhibition of 

MCF-7 cell growth in Melck et al. 2000. Both WIN2 and AEA are agonists for the CB1 receptor 

and should mimic each other’s actions at CB1 (Sim et al. 1996, Showalter et al. 1996). The most 

likely explanation for this discrepancy is the differences between mRNA expression of CB1 in 

MCF-7 cells between the studies. Melck et al. reported a clear expression of CB1 message in 

MCF-7 cells while my work showed a poorly detected level of CB1 message. This is unexpected 

but differences in RT-PCR results within MCF-7 cells are not unfounded. Varying RT-PCR 

results in MCF-7 cells include a strong signal for both CB1 and CB2 (Melck et al. 2000), low 

expression of both (Ligresti et al. 2006), no expression of either (Takeda et al. 2008), CB1 

(McKallip et al. 2005) or CB2 alone (Caffarel et al. 2006). Differences in the RT-PCR protocol 

could explain the differences in CB1 expression reported in the presented studies compared to 

Melck et al., but they would not explain the inability of AM251 to antagonize WIN2 here and full 

reversal of AEA growth inhibition by SR141716 in Melck et al. Two more likely explanations are 

that either WIN2 is more potent at a secondary target, which is masking WIN2 actions at those 

CB1 receptors present, or the expression of CB1 in MCF-7 cells is different between these 

studies due to genomic differences in the cell lines. 

Published reports support the possibility of genomic differences between Melck et al.’s 

work and the work presented above. One study demonstrated that genomic instability can 

contribute to cancer progression by showing that subclones of the murine fibrosarcoma UV-

2237 derived at different times after thawing of stock cells had significant differences in their 
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metastatic potential when injected into C3H mice (Cifone and Fidler et al. 1981). A more recent 

demonstration linked genetic instability to alterations in tumor population heterogeneity. 

Masramon et al. 2006 used DNA fingerprinting by arbitrarily primed PCR in various colon cancer 

cell lines (SW480, LoVo and HT116) to measure increases in heterogeneity in each population 

after clonal expansion when compared to parent cells. Genomic instability manifesting as 

changes in genetic heterogeneity could easily explain the variability in cannabinoid receptor 

expression between the studies described above: Melck et al. 2000, Ligresti et al. 2006, Takeda 

et al. 2008, McKallip et al. 2005, Caffarel et al. 2006. Nevertheless, based on the present work it 

can be concluded that WIN2 is not acting via CB1 under the current experimental conditions.  

In the present studies, WIN2 failed to interact with CB2, PPARy and TRPV1, all of which 

have previously been shown to mediate potential antiproliferative roles in cancer (Qamri et al. 

2009, Caffarel et al. 2010, Yin et al. 2001, Thoennissen et al. 2010). Although message for all 

three receptors was identified by RT-PCR, the antagonists AM630 (CB2), GW9662 (PPARy) and 

capsazepine (TRPV1) failed to antagonize WIN2 action (Walpole et al. 1994, Ross et al. 1999, 

Bendixen et al. 2001). The agonists, pioglitazone (PPARy) and capsaicin (TRPV1), also failed to 

recapitulate antiproliferative effects of WIN2 when administered to MCF-7 cells with the same 

drug treatment protocol used for WIN2. PPARα/δ are known to be expressed in MCF-7 cells 

(Suchanek et al. 2002a and 2002b), but bezafibrate, the pan-PPAR agonist, also failed 

recapitulate WIN2 inhibition of MCF-7 cell growth. In the end, these studies indicate that CB2, 

TRPV1 and all members or the PPAR family are not involved in the antiproliferative effects of 

WIN2. 

Convergent lines of evidence eliminate the possibility of GPR55 involvement in WIN2 

mediated effects. β-arrestin luciferase reporter assay and GPR55 activated luciferase reporter 

assay in transfected Hek-293 cells (Yin et al. 2009), as well as [35S]GTPγS binding assays in 

HEK-293T cell over expressing GPR55 (Johns et al. 2007), have shown GPR55 to be sensitive 
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to a variety of cannabinoids. However, WIN2 was unable to activate GPR55 in either of these 

studies suggesting it may not be an agonist for GPR55. In addition, GPR55 has been linked to 

tumor growth stimulating effects. Expression of GPR55 in human tumors was correlated with 

decreased patient survival, overexpression of GPR55 in HEK, EVSA-T and T98G cells 

increased growth rates, and GPR55 knockdown decreased growth rates in EVSA-T and T98G 

cells (Andradas et al. 2011). These growth stimulating effects of GPR55 were further supported 

by Pineiro et al. (2011) when genetic knockdown of GPR55 decreased growth rates in PC-3 and 

OVCAR3 cells. However, the strongest evidence for lack of GPR55 involvement in WIN2 growth 

inhibition is that RT-PCR indicated no GPR55 message present in MCF-7 cells utilized in these 

studies. 

 

WIN2 acts through the sphingosine-1-phosphate fatty acid signaling network 

 

S1P is present at concentrations between 0.1 µM in fetal bovine serum used for culturing 

and 0.8-1 µM in human plasma (Murata et al. 2000), and can be synthesized intracellularly by 

sphingosine kinase 1 (cytoplasmic/membrane) and 2 (nuclear) (Rosen et al. 2009). S1P is also 

known to activate the 5 known S1P G protein coupled receptors (GPCRs), S1P1-5, (Rosen et al. 

2009). S1P has been implicated in a host of disease processes including arthritis, asthma, 

atherosclerosis, cancer, diabetes and osteoporosis (Maceyka et al. 2012, Orr Grandy et al. 

2012). Cancer related effects of S1P include increased proliferation, cell transformation, cell 

death evasion, drug resistance, inflammation, metastasis and angiogenesis (Takabe et al. 2008, 

Pyne et al. 2010). In MCF-7 breast cancer cells, knocking down sphingosine kinase 1 (SPK1) 

depresses chemotactic migration, increases apoptosis after adriamycin treatment and 

decreases proliferative rates (Sarkar et al. 2005). Western blotting and RT-PCR in MCF-7 cells 

demonstrates strong expression of S1P3, which has been identified as a mediator of SPK1 
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novel site of action for WIN2 in MCF-7 cells that interacts with or is present in the S1P signaling 

system. Future studies are still required to determine the novel site of actions and confirm that 

WIN2 actions at this site mediate the WIN2/IR augmentation.  
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Section 6 
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Summary, Discussion and Future Studies 

 

The primary findings of this work are that WIN55,212-2 (WIN2) has the capacity to 

augment the antiproliferative effects of radiation in breast tumor cells, and that other 

cannabinoids that fail to have this effect do not interfere with the actions of radiation. Studies in 

MCF-7 cells were confirmed in MDA-MB231 cells and 4T1 cells. WIN2 augmentation of the 

antiproliferative effects of radiation were also shown to be stereospecific using the inactive 

enantiomer of WIN2, WIN55,212-3 (WIN3). These findings serve as effective proof of principle 

that WIN2, or similar compounds could enhance patient survival if given in combination with 

radiation, but due to complications with the in vivo studies, discussed below, it remains 

imperative that future studies expand this work beyond the in vitro models used here.  

Opposite to its combination with radiation, WIN2 failed to augment the effects of 

doxorubicin (Adriamycin) in MCF-7 cells. As is the case with radiation, ADR induces 

senescence in MCF-7 cells (Jones et al. 2005; Goehe et al. 2012). One possible explanation for 

why WIN2 enhanced the antiproliferative effects of radiation but not doxorubicin is that 

senescence induced by doxorubicin is different than senescence induced by radiation. Bristol et 

al. (2012) demonstrated that blockade of autophagy after radiation treatment forced the cells to 

switch from an entirely senescent response to cell death through apoptosis, while Goehe et al. 

(2012) demonstrated blockade of autophagy after ADR treatment only caused a delay in the 

onset of senescence without a significant enhancement of the antiproliferative effects of ADR. 

With these differing reports of senescent responses in MCF-7 cells, it cannot be assumed that 

WIN2 actions will interact with radiation and ADR in the same way.  

The mechanism of action for the WIN2/IR combination identified in vitro was studied 

primarily in the MCF-7 cell model. Radiation-induced senescence, assessed by β-galactosidase 

staining, confirmed previous findings of radiation-induced senescence (Jones et al 2005); 
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however, WIN2 had no effect on the extent of senescence induction. Quantification of DNA 

damage and repair by γH2AX labelling also indicated that WIN2 did not increase the extent of 

DNA damage or interfere with cellular repair of DNA elicited by radiation treatment. Salazar et 

al. (2009) showed that a ∆9-tetrahydrocannabinol (THC) treatment in U87-MG glioblastoma 

induced autophagy that was toxic to tumor cells, and studies presented here show autophagy 

was clearly induced by both radiation and WIN2. However, pharmacological blockade of 

autophagy did not interfere with the effectiveness of the combination treatment, demonstrating 

that cellular sensitivity to radiation was not augmented by WIN2 via autophagy. Annexin V and 

PI staining combined with DAPI imaging of nuclear morphology demonstrated that apoptosis, 

necrosis and mitotic catastrophe were not induced by the WIN2/IR combination. When the 

effects of the WIN2/IR combination on senescence are considered in the absence of cell death, 

it can be concluded that WIN2 is likely to be inducing classical growth arrest, either as a growth 

delay or cell cycle arrest type event, and this is confirmed by temporal studies. Additionally, this 

classical growth arrest conclusion combined with the temporal studies indicates that the 

augmentation of the antiproliferative effects of radiation by WIN2 is mediated by parallel 

mechanisms of classical growth arrest (WIN2) and senescent growth arrest (IR).  

Subsequent studies were designed to identify the receptor(s) mediating the 

antiproliferative actions of WIN2 in breast tumor cells. Although expression of CB1, CB2, PPARy 

and TRPV1 were shown in the MCF-7 cells, pharmacological experiments using various 

agonists and antagonists of these selected receptor pathways demonstrated that CB1, CB2, 

PPARy and TRPV1 were not mediating the antiproliferative effects of WIN2. Pharmacological 

experiments were extended to show that PPARα-γ were also not involved in the antiproliferative 

mechanism of WIN2. GPR55 was excluded as a potential target based on a lack of receptor 

expression, as well as reports that GPR55 supports tumor growth and does not interact with 

WIN2 (Johns et al. 2007; Yin et al. 2009; Andradas et al. 2011; Pineiro et al. 2011; Perez-
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Gomez et al. 2012). Previous work in CB1 knockout brains has demonstrated that WIN2 has 

actions at a GPCR that is as of yet unidentified in the literature, which supports the possibility 

that WIN2 is acting at a novel site of action (Brievogel et al. 2001). With all known cannabinoid 

sensitive targets eliminated as potential sites of action for WIN2, studies were designed to 

address possible interactions with sphingosine-1-phosphate (S1P) (Selley D., unpublished 

data).    

A sub-effective dose of WIN2 antagonized growth stimulation by S1P receptor agonists 

(S1P and SEW2871) in MCF-7 cells; this finding connects the antiproliferative properties of 

WIN2 to the S1P signaling pathway, but it does not identify a specific target of action. Several 

complementary lines of evidence did, however, narrow the pool of potential candidate sites. For 

example, WIN2 did not antagonize the growth stimulating effects of estradiol, confirming that the 

mechanism for WIN2 is specific to S1P signaling. Also, WIN2 antagonism of exogenous S1P 

and SEW2871 shows that WIN2 is not altering intracellular S1P synthesis or degradation. 

[35S]GTPγS binding studies were attempted to confirm or refute the involvement of WIN2 

actions at the S1P receptors, but limitations of the studies prevent a conclusion of this nature. 

Future studies are still requires assess WIN2 actions at or on the S1P receptors present within 

MCF-7 cells.  

It is also possible that WIN2 is directly antagonizing a downstream component of the S1P 

signaling system, but this cannot be concluded since WIN2 could be acting outside of the S1P 

signaling pathways causing alterations to the S1P signaling system indirectly. One example of 

this type of indirect mechanism is the inhibition of MCF-7 growth by methanandamide (MAEA) 

reported by Laezza et al. (2006; 2010). MAEA treatment caused down regulation of HMG-CoA 

reductase leading to decreases in pools of mevalonic acid and prevented various proteins from 

trafficking to the membrane from the cytosol, one of which included the well-known growth 

stimulating protein RAS. This indirect down regulation of RAS by MAEA was shown to inhibit 



 
 

133 
 
 

growth of MCF-7 cells. Although WIN2 may cause down regulation of RAS in MCF-7 cells, it is 

unlikely that WIN2 would do so by down regulating HMG-CoA reductase. MAEA was shown to 

down regulate HMG-CoA via a CB1 dependent mechanism in Laezza et al. 2006, and studies 

presented in this document demonstrated that CB1 is not involved in the actions of WIN2. 

Nevertheless, based on the classical growth arrest mechanism associated with WIN2 in MCF-7 

cells presented here, and Shu et al.’s (2001) demonstration of S1P signaling through RAS, it 

would be logical to evaluate RAS under WIN2 treatment. Initial studies would determine RAS 

levels and activity after vehicle, WIN2, IR and WIN2 + IR treatments.  

A second potential target was identified in studies reported by Park et al. (2011), where 

WIN2 induced AKT down regulation and a G1 cell cycle growth arrest in gastric cancer cells that 

were rescued by overexpression of active myristoylated-AKT. Caffarel et al. (2010) also showed 

AKT dependent growth inhibition where overexpression of AKT in N202.1A breast cancer cells 

prevented both THC and JWH-133 from inhibiting cell growth. Furthermore, S1P signaling was 

connected to AKT in hepatoma cells where S1P administration decreased apoptosis and 

increased p-AKT expression, and antagonism of the kinase responsible for S1P production, 

sphingosine kinase 1, increased apoptosis and decreased p-AKT expression (Osawa et al. 

2001). Quantifying AKT and p-AKT levels after vehicle, WIN2, IR and WIN2 + IR treatment in 

MCF-7 cells would evaluate potential involvement of AKT in the WIN2 mediated mechanism of 

growth inhibition. 

There still remains a great deal of work to do before identification of the site of action for 

WIN2 can be elucidated conclusively. These studies may also include broader studies that 

utilize microarray, proteomic or metabolomic work to identify novel targets and non-canonical 

mechanisms that were not hypothesized here, and even when this site of action is identified it 

must still be connected to the WIN2 mediated augmentation of radiation. Nevertheless it can be 
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concluded from the work presented in this document that WIN2 has the capacity to interact with 

the S1P signaling system in some capacity to affect growth.  

In addition to MCF-7 cells, discussed above, studies were completed using the WIN2/IR 

combination in the MDA-MB231 cell line where WIN2 demonstrated significant augmentation of 

the antiproliferative effects of radiation. Similar to the augmentation in MCF-7 cells, the 

augmentation in MDA-MB231 cells was also confirmed to be stereospecific in nature using 

WIN3. Time course studies showed that a growth inhibitory phenotype was present in MDA-

MB231 cells as was present in MCF-7 cells. Mechanistic studies were not performed in MDA-

MB231 cells, in part due to the differences in the reported mechanisms of action for radiation in 

MCF-7 and MDA-MB231 cells, senescence and apoptosis respectively (Jones et al. 2005). 

Identification of a target of action for WIN2 in MCF-7 cells could guide receptor evaluations in 

MDA-MB231 cells, but until a novel site of action is elucidated all cannabinoid sensitive targets 

(CB1, CB2, PPARα-y, TRPV1 and GPR55) must be systematically evaluated in MDA-MB231 

cells just as they were in MCF-7 cells. This systematic evaluation would also include the 

interaction between WIN2 and S1P growth stimulation.  

The WIN2/IR combination also augmented the effects of radiation in 4T1 cells in vitro. 

However, in vivo studies using the 4T1-Balb/c syngeneic tumor growth model failed to show 

augmentation of the antiproliferative effects of radiation by WIN2. However, this lack of 

augmentation was likely confounded by the fact that WIN2 did not inhibit tumor growth alone in 

these animals, which was entirely unexpected since the dose of WIN2 used in the combination 

study was based on a previous dose-response study in the 4T1-Balb/c model where WIN2 

significantly inhibited tumor growth. It is unclear why WIN2 failed to replicate its inhibition of 

tumor growth in vivo between the two studies, and, to date, no variables have been identified 

that could explain the differences between the studies. Studies should be conducted to 

ascertain the effects that WIN2 and IR have in combination using a whole animal, but future 
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efforts utilizing the MCF-7 model in immune compromised mice implanted with estrogen pellets 

might prove to be a better approach.  

Contrasting the breast cancer cells used (MCF-7, MDA-MB231 and 4T1 cells), MCF-10A 

cells are a non-transformed immortalized breast epithelial cell line that was used in these 

studies to test the ability of WIN2 to augment the toxicities of radiation to normal cells. While 

high doses of WIN2 (30 μM) did augment radiation mediated antiproliferative actions in MCF-

10A cells, the dose of WIN2 used in the MCF-7 cell studies (12 μM) was unable to elicit growth 

inhibition by WIN2 alone or in combination with radiation in MCF-10A cells. This finding 

demonstrates that WIN2 is less potent in the non-transformed MCF-10A cells, and this lower 

potency suggests a therapeutic window in treatment that would create selectivity for cancer cells 

over normal tissue. As non-cancerous tissues in the body exist largely in a non-proliferative 

state, if WIN2 is acting through a classical growth arrest mechanism without inducing cell death, 

then adverse effects on non-cancerous tissue would be even more unlikely to occur in the whole 

animal. Nevertheless, future studies should be performed using proliferating non-cancerous 

tissues such as gastrointestinal epithelial cells to determine if WIN2 is capable of antagonizing 

their growth, because unlike focused irradiation, WIN2 will be distributed throughout the body by 

systemic blood circulation.  

In addition to testing the WIN2/IR combination in multiple cells lines, multiple 

cannabinoid/IR combinations were tested in MCF-7 cells. These include THC, CBD, nabilone, 

CP55,940 and methanandamide, which all failed to interact with radiation in MCF-7 cells. The 

aminoalkylindoles, JWH-015 and pravadoline however, significantly augmented the effects of 

radiation at the highest concentrations tested (45 μM). Later studies showed that WIN2 

antagonized S1P stimulated growth but THC failed to replicate this antagonism, which may 

have provided some indications as to why only some cannabinoids interacted with radiation. 
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Pertinent future studies will include testing JWH-015 and pravadoline as antagonists of S1P 

stimulated growth in MCF-7 cells.  

Future work should include structure-activity relationship studies to screen analogs of 

WIN2 for compounds that are more efficacious at inhibiting MCF-7 cell growth and/or 

augmenting the antiproliferative effects of radiation. Structure-activity relationship studies could 

be performed even in the absence of a confirmed target of action for WIN2. Identification of 

more efficacious analogs of WIN2 as antagonists of S1P stimulated growth, could additionally 

screen for compounds that possess less profound cannabimimetic effects compared to the 

parent compound WIN2, as these side-effects have impeded clinical development of WIN2 thus 

far (Howlett et al. 2002; Pertwee et al. 2010). Decreases in the cannabimimetic effects of these 

drugs could also enhance their likelihood of FDA approval, which is the first step to using novel 

drugs with radiation augmenting properties like WIN2 to prolong patient survival.  
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