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Abstract 

!
PLANAR  CELL  POLARITY  IN  NEURODEVELOPMENT 

By Simon D Sun, B.S. 

!
A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science 

at Virginia Commonwealth University. 

!
Virginia Commonwealth University, 2014 

Major Director: Dr. Gregory S. Walsh, Department of Biology 

!
  

 Planar cell polarity (PCP) is a developmental signaling mechanism that establishes a 

polarity within the plane of an epithelium. PCP has been shown to play a role in guiding 

numerous neurodevelopmental processes such as convergent extension, neuron migration, and 

axon pathfinding. Certain commissural neurons in the dorsal spinal cord make a series of 

guidance decisions en route to the brain: first, a ventral projection along the D-V axis, followed 

by a midline crossing, and after exiting the floorplate, a dorso-anterior turn along the A-P axis. 

Here, we provide in vivo evidence that the axons of the Commissural Primary Ascending 

(CoPAs) neurons in zebrafish require the PCP genes fzd3a, vangl2, and scribble for rostral 

pathfinding both before and after crossing the midline. Dorsoventral guidance of CoPA axons is 

unaltered in fzd3a, vangl2, and scribble mutants, suggesting that the PCP signaling pathway only 
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controls A-P guidance of CoPAs. Our results have provided evidence for two potential non-

mutually exclusive models: (i) A-P axon guidance is achieved by cell-autonomous Wnt-Frizzled 

signaling or that (ii) A-P axon guidance is achieved by non-cell-autonomous PCP signaling in the 

neuroepithelial environment. The single-cell nature of the CoPA axon system allows for simple 

genetic manipulation and visualization, which will potentially elucidate the validity of either 

model. 

 Scribble (Scrib), a member of the LAP family, plays a critical role in establishing and 

regulating cell polarization in epithelia and during cell migration. In zebrafish, Scrib mutants 

have defects in convergent extension (CE) cell movements and facial branchiomotor neuron 

(FBMN) migration. Despite our understanding of Scrib’s genetic role in neurodevelopment, little 

is known about the subcellular localization of endogenous Scrib in vivo during CE and FBMN 

migration. We have generated a monoclonal antibody against the C-terminus of zebrafish Scrib 

and have shown that this antibody is specific against endogenous Scrib in both western blot and 

immunocytochemical applications. Confocal microscopy of Scrib immunocytochemistry shows 

that at various developmental stages, Scrib distinctly localizes to basolateral membranes of non 

polarized epithelium, to the membrane in mesodermal cells undergoing CE, and to the membrane  

of migrating FBMNs. Furthermore, the distribution of Scrib puncta along membranes of FBMN-

FBMN contact is significantly altered in the PCP mutant pk1b. Further application of our newly 

generated Scrib antibody will potentially lead to new insight on Scrib’s role in neurodevelop-

ment.
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Chapter I:  Introduction 

  

!
 Planar cell polarity (PCP), which comprises a subset of non-canonical Wnt signaling, is a 

developmental signaling mechanism that coordinates the polarity and organization of structures 

within the plane of an epithelium. PCP was initially described in the wing of Drosophila 

melanogaster, in which each epithelial cell possesses an actin-based hair called a trichome that is 

asymmetrically localized to the distal side of the cell (Vinson & Adler, 1987). Subsequent studies 

have identified several “core”-PCP genes that are required for the orientation of trichomes within 

each wing epithelial cell. These include the seven-pass transmembrane protein Frizzled (Fzd), 

the atypical seven-pass transmembrane cadherin Flamingo (Fmi), the four-pass transmembrane 

protein Van Gogh (Vang), and the cytosolic adaptor proteins Dishevelled (Dsh, DVL), Prickle 

(Pk), and Diego (Dgo). The asymmetric distribution and stabilization of these PCP proteins is 

what establishes the polarity of these cells, with Fzd, Dsh, and Dgo accumulating at the distal 

apical junction, while Vang and Prk accumulate at the proximal side. Fmi is the only core PCP 

protein that is localized to both distal and proximal apical junctions. Current evidence indicates 

that distal components and proximal components mutually exclude each other to opposite sides 

of the cell. For instance, Vang and Pk both bind Dsh and inhibit its membrane recruitment and 

function. In addition, the generation of intracellular asymmetry can be mediated both by the 
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action of ubiquitin ligases that locally target PCP proteins for degradation (Narimatsu et al., 

2009) and polarized recycling and trafficking of Fzd and Fmi to the distal side of cells (Das, 

Jenny, Klein, Eaton, & Mlodzik, 2004; Giese et al., 2012; Y. Guo, Zanetti, & Schekman, 2013; 

Shimada, Yonemura, Ohkura, Strutt, & Uemura, 2006; H. Strutt & Strutt, 2005; 2008; Tree, Ma, 

& Axelrod, 2002). This asymmetrical localization of these two multi protein complexes 

generates planar polarity signals that are translated into alignment of cells and cellular 

appendages, such as the distally placed Drosophila actin-based hair, with respect to an 

anatomical axis (figure S1a). A loss of any one of these components results in the loss of the 

asymmetric localization of the other core proteins (D. Strutt, 2003) and consequently leads to 

defects in planar polarity, such as the loss of epithelial polarity and hair directionality. 

 In addition to the core set of PCP genes, there are many other genes that play a role in 

PCP signaling. Upstream of PCP are global factors, non cell-autonomous signals that coordinate 

planar polarity across an entire tissue via activity gradients. In the example of the fly wing, these 

include the atypical cadherins Dachsous (Ds) and Fat (Ft) and the typical II transmembrane 

protein Four-jointed (Fj), the details of which are beyond the scope of this study, but are 

reviewed in their context to PCP in (H. Strutt & Strutt, 2005) and in (Tissir & Goffinet, 2013). 

Downstream, there is a growing list of PCP effectors that serve to translate the established 

polarity of the core proteins to tissue specific cellular mechanisms (Park, Mitchell, Abitua, 

Kintner, & Wallingford, 2008; Turner & Adler, 1998; Vladar, Bayly, Sangoram, Scott, & 

Axelrod, 2012). Some PCP effectors, such as DAAM1 and DAAM2, are formins that interact 

with Dsh to signal c-Jun-N-terminal kinase (JNK), RhoA, and Rac1, which all play a role in 

actin bundle elongation and control cytoskeletal dynamics (Habas, Kato, & He, 2001; Liu et al., 
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2008). The resulting model describes a global cue, initiated across a developing embryo, that 

instructs cells within a tissue to establish intracellular polarity through the core PCP components, 

which is subsequently communicated to PCP-dependent cellular machinery by tissue-specific 

effectors, resulting in the appropriate orientation and alignment of cellular morphology and 

architecture (figure S1b). 

 In addition to establishing intracellular polarity, there has been substantial evidence that 

these intracellular cues are also communicated to neighboring cells via interactions between the 

membrane-bound proteins Fzd and Vang. Clones of cells mutant for fzd (Gubb & García-Bellido, 

1982) or vang (Casal, Lawrence, & Struhl, 2006; Taylor, Abramova, Charlton, & Adler, 1998) in 

wild type tissue results in disruption of the planar polarity in neighboring cells, a process called 

domineering non-autonomy. Specifically, Fzd in the distal side of one epithelial cell (Vinson & 

Adler, 1987) can stabilize Vang proteins in the proximal side of the neighboring cell (Taylor et 

al., 1998). The process requires the presence of the atypical cadherin Fmi. Several models 

suggest that a Fzd-Fmi complex on the distal side of epithelial cells can physically bind and 

stabilize a Vang-Fmi complex on the adjoining membrane of a neighboring cell (Bastock, Strutt, 

& Strutt, 2003; Chen et al., 2008; Das, Reynolds-Kenneally, & Mlodzik, 2002; Devenport & 

Fuchs, 2008; Shimada, Usui, Yanagawa, Takeichi, & Uemura, 2001; Usui et al., 1999). In this 

way, the planar polarity of an individual epithelial cell can be propagated to the adjacent cells, 

resulting in the common alignment of neighboring epithelial cells. Indeed, planar cell polarity 

should be thought of as a form of cell-to-cell communication of polarity information that can 

coordinate the global alignment of all cells within a tissue. 
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PCP components and processes in vertebrates 

 The core PCP proteins described in Drosophila have been evolutionarily conserved in 

vertebrates and analysis of mouse mutants with mutation in the core PCP genes has identified 

vertebrate planar polarity processes. This analysis has also uncovered additional proteins not 

found in Drosophila that regulate PCP related processes in vertebrate development. Vertebrates 

possess at least one orthologue of the core PCP genes (see Table S1, adapted from (Tissir & 

Goffinet, 2013)) in addition to genes specifically implicated in vertebrate PCP signaling. 

Mutations in these “accessory” PCP components such as Wnt5 (Kilian et al., 2003; Qian et al., 

2007) and Wnt11 (Heisenberg et al., 2000; Tada & Smith, 2000) the Fzd coreceptor Glypican 4 

(Gpc4) (Ohkawara, 2003; Topczewski et al., 2001), Scribble (Bilder & Perrimon, 2000; 

Montcouquiol, Rachel, Lanford, Copeland, & Kelley, 2003a; Murdoch et al., 2003; Walsh, Grant, 

Morgan, & Moens, 2011),  and Protein Tyrosine Kinase 7 (Ptk7) (Lu et al., 2004) results in many 

PCP phenotypes, some analogous to those seen in Drosophila, and others specifically seen in 

vertebrates.  

 In contrast to the static wing epithelium in Drosophila, many of the core PCP proteins in 

vertebrates play a role in dynamic phenotypes, involving individual and/or groups of cells 

conducting temporally and spatially coordinated movements. Mutations in fzd3, fzd6, (Mitchell 

et al., 2009; Y. Wang, Badea, & Nathans, 2006a; Y. Wang, Guo, & Nathans, 2006b), dvl1-3 (Park 

et al., 2008), vangl2 and scrib (Montcouquiol, Rachel, Lanford, Copeland, & Kelley, 2003a; 

Walsh et al., 2011) result in defective hair follicle orientation (fzd3, fzd6, dvl1-3) auditory-

vestibular hair cell alignment (fzd3, fzd6, dvl1-2, vangl2, scrib), and loss of floorplate polarity 

(vangl2, scrib). These vertebrate PCP phenotypes occur in static epithelial tissue that are 
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reminiscent of invertebrate PCP phenotypes and require PCP signaling to direct the orientation 

and organization of cellular structures. However, in addition to these static phenotypes, 

vertebrate PCP mutants possess defects in dynamic developmental processes. These phenotypes 

include convergent-extension cell movements, neurulation, directed cranial facial motor neuron 

migration, and axon pathfinding.  

!
PCP in convergent extension and neurulation 

 Coordinated cell movements in early vertebrate development have been shown to require 

PCP components. Convergent extension (CE) is one of these movements and was initially 

described in Xenopus (Keller, Danilchik, Gimlich, & Shih, 1985). During gastrulation, cells 

converge along the mediolateral (ML) axis (convergence), simultaneously narrowing the tissues 

mediolaterally, and elongating the body along the anterior-posterior (A-P) axis (extension). This 

intercalation can occur within a specific cell layer of a tissue (mediolateral intercalation) and also 

across layers in the same tissue (radial intercalation) (reviewed in (Solnica-Krezel & Sepich, 

2012)). CE has been shown to occur by two mechanisms: i) polarized cell divisions and ii) 

collective cell movements. Polarized cells can give rise to daughter cells that are aligned with the 

A-P axis, thereby extending the A-P length of the embryo (Gong, Mo, & Fraser, 2004). 

Additionally, CE can occur by collective cell migration. In zebrafish, cells in the lateral 

mesoderm during gastrulation migrate along a trajectory directed toward the dorsal midline. The 

population then converges with the contralateral mesodermal population and then extends the A-

P axis. Those cells closer to the anterior animal pole possess a slight anterior migration bias and 

those closer to the vegetal pole possess a slight posterior migration bias. Therefore, the 
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convergence of the lateral mesoderm at the dorsal midline results in an extension of the body in 

both the anterior and posterior directions (Sepich, Calmelet, Kiskowski, & Solnica-Krezel, 

2005).  

 These CE cell movements continue on into neurulation. The extension of the body results 

in an elongated neural plate that develops a central groove. The dorsal margins of the two walls 

of this groove form an invaginated U-shaped structure that eventually fuse and form the neural 

tube. Failure of the neural tube to fully fuse results in neural tube defects (NTDs), which 

ultimately result from a failure of the floorplate to undergo CE. A wider floorplate inhibits the 

ultimate fusion of the dorsal neural tube, leaving it open. NTDs in humans affects 1 in 1000 live 

births (Copp, Greene, & Murdoch, 2003). NTDs in humans and mice such as cranioarchischisis 

and myelomeningocele occur as a result of mutations in core PCP components VANGL1 (Kibar 

et al., 2007), VANGL2 (Doudney & Stanier, 2005), FZD3 (Y. Wang, Guo, & Nathans, 2006b), 

FZD6 (De Marco et al., 2012), PRICKLE1 (Bosoi et al., 2011), and CELSR1(Allache, De Marco, 

Merello, Capra, & Kibar, 2012; Robinson et al., 2012). Similar CE defects and NTDs occur in 

frogs, (Tada & Smith, 2000; Wallingford et al., 2000), and mice (Kibar et al., 2001; J. Wang, 

2006; Ybot-Gonzalez et al., 2007). Zebrafish do not have neural tube defects because the neural 

tube forms differently. However, mutations in these aforementioned PCP genes result in CE 

extension defects where the embryo is shorter along the A-P axis and wider (Jessen et al., 2002). 

These and other studies (reviewed in Wang and Nathans, 2007; Tissir and Goffinet, 2013) 

involving core PCP components and other PCP accessory proteins such as Scribble (Robinson et 

al., 2012; Wada, 2005) have linked PCP signaling to the cell movements of CE and neurulation.  

!6



 Previous to gastrulation and CE in zebrafish, mesodermal  and neuroectodermal cells are 

initially unpolarized with random protrusions. In response to global Wnt gradient cues, these 

cells then polarize along the A-P axis, restricting their protrusions to the mediolateral edges as 

they crawl along one another during mediolateral intercalation (Yin et al., 2008). At later stages, 

evidence suggests that neuroepithelial cells remain planar polarized along the A-P axis. 

Furthermore, Prickle has been shown to localize asymmetrically to the anterior membranes of 

neuroepithelial cells undergoing CE (Ciruna et al., 2006; Walsh et al., 2011) and Dsh localized 

along posterior membranes (Yin et al., 2008) indicating a planar polarization of these cells. 

Indeed, in the floorplate cells, which arise from this CE population, polarity is lost in vangl2 and 

scrib mutants (Walsh et al., 2011).  

!
PCP and neurodevelopment 

 In addition to its role in gastrulation, neurulation, auditory-vestibular hair cell alignment, 

and spinal cord floorplate polarity, PCP plays a significant role in other neurodevelopmental 

processes. This study will focus on PCP’s role in neuron migration and axon pathfinding, though 

it has been shown to also influence neural crest migration (De Calisto, Araya, Marchant, Riaz, & 

Mayor, 2005; Shnitsar & Borchers, 2008) and dendritic development (Shima, Kengaku, Hirano, 

Takeichi, & Uemura, 2004). The most apparent example of PCP in directed cell migration is in 

the migration of the facial branchiomotor neurons (FBMNs) in zebrafish. These neurons, which 

form cranial nerve VII, migrate both tangentially and caudally (in the posterior direction, toward 

the tail) from their birthplace in rhombomere 4 (r4) to rhombomere 6 (r6) and 7 (r7) through the 

ventral neuroepithelium, adjacent to the floorplate. There, they form the facial motor nucleus 
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from which axons exit the hindbrain in r4 and innervate muscles in the head derived from the 

second branchial arch (Chandrasekhar, Moens, Warren, Kimmel, & Kuwada, 1997a). With the 

ability to easily visualize FBMN migration using the islet1:GFP transgenic zebrafish, mutations 

in PCP genes fzd3a (Wada, Tanaka, Nakayama, Iwasaki, & Okamoto, 2006), vangl2 (Bingham, 

Higashijima, Okamoto, & Chandrasekhar, 2002; Jessen et al., 2002), celsr2 (Wada et al., 2006), 

scribble (Wada, 2005), and knockdown of prk1a (Carreira-Barbosa, 2003) result in impaired or 

abolished FBMN migration. Additionally, the results of numerous transplantation experiments 

have revealed that PCP gene function both within the FBMNs (cell-autonomously) and in the 

neuroepithelial environment (non-cell-autonomously) to control the trajectory of FBMNs 

migration. Frizzled3a, celsr2 (Wada et al., 2006), pk1b (Rohrschneider, Elsen, & Prince, 2007), 

vangl2, and scrib (Walsh et al., 2011) function both cell-autonomously and non-cell-

autonomously in FMBN migration. However, these studies have not provided any insight on the 

localization of PCP genes involved in FBMN migration. PCP mutant FBMNs produce random 

protrusions, similar to cell protrusions before becoming polarized and undergoing CE. Much like 

how PCP components are asymmetrically localized in polarized CE cells, it is important to 

determine if PCP components possess a similar cellular localization of these components during 

directed FBMN migration either cell-autonomously or non-cell-autonomously.  

 PCP components have also been implicated in axon guidance. In mammals, mutations in 

fzd3 or Celsr3 results in elimination of major axons tracts in the cortex and the misguidance of 

spinal cord sensory neurons. Specifically, tracts that connect the cortex and the thalamus are 

absent in Fz3 and Celsr3 mutants (Tissir, Bar, Jossin, De Backer, & Goffinet, 2005; Y. Wang, 

Thekdi, Smallwood, Macke, & Nathans, 2002; Y. Wang, Zhang, Mori, & Nathans, 2006c). 
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Though neuroproliferation and migration in the forebrain remains unaffected by these mutations, 

axons enter the intermediate zone, but then fail to extend, and are subsequently degraded (Y. 

Wang, Zhang, Mori, & Nathans, 2006c). In the spinal cord, commissural neurons make rostral 

turns after crossing the midline. In ex vivo experiments, Wnt4-Fzd3 signaling has been shown to 

be sufficient to make this anterior decision (Lyuksyutova et al., 2003). It has been proposed that 

in the presence of a Wnt4 mRNA expression gradient, the Fzd3 receptor is utilized in these 

commissural neurons to guide the axon to its target in the rostral direction, somehow responding 

to a signaling gradient. It still remains unclear how PCP, transduced by the Fzd3a receptor, 

directs axon pathfinding and which specific mechanisms are utilized. 

 It is the aim of this study to further elucidate the role of PCP in neurodevelopment. To do 

so, we have selected two ares of focus. The first, is to examine the role of PCP in axon guidance 

of commissural neurons in the zebrafish spinal cord. The second is to examine the subcellular  

distribution of one PCP protein, Scribble, in migrating cells and their environment to better 

understand how PCP provides migratory cues. We will expound upon each aim in detail, in the 

following chapters. 

!
!
!

!!
!
!
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!!

Chapter II: Planar cell polarity genes control anterior-posterior axon 
guidance by Commissural Primary Ascending (CoPA) neurons in spinal 

cord of zebrafish !
!!!

II.A.  Introduction 

 Nervous system function depends on the precise organization of synaptic connections 

made during development. A critical step in the assembly of these neural circuits is the proper 

guidance of axons to their target cells during early neural development. Extensive work in both 

vertebrate and invertebrates have revealed that multiple guidance cues control the trajectory of 

growing axons along both the dorso-ventral (D-V) and anterior-posterior (A-P) axes of the 

developing neural tube.  

 One population of early born neurons that are guided in both the D-V and A-P axes are 

commissural neurons in the spinal cord. Commissural axon pathfinding has been extensively 

studied, implicating a range of guidance cues that control axon trajectories both ipsilaterally 

towards the midline and contralaterally after midline crossing. The cell somas of these neurons 

reside in the dorsal spinal cord, where they project their axons ventrally and enter the floorplate. 

From there, commissural axons will exit the floorplate on the contralateral side of the spinal 

cord, and then turn dorsally and anteriorly. 
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 Molecules that guide commissural axons along the dorsal-ventral axis and through the 

midline in zebrafish have been well identified. Commissural axons are first attracted to the 

ventral midline by floorplate-derived chemo-attractants (such as Netrins and Shh), and 

permissive cell-contact cues enable their entry to the floorplate. While navigating the floorplate, 

commissural axons lose their sensitivity to these attractants and acquire responsiveness to 

various midline repellents such as Slit, Ephrin and Semaphorin family members (reviewed in 

Nawabi and Castellani, 2011). The midline repellents then expel commissural axons from the 

floorplate.  

 Upon exit from the floorplate, responsiveness to anterior-posterior gradients of attractive 

and repulsive cues presumably guide the axons to turn rostrally (anteriorly). Recent evidence in 

mice suggests that the non canonical Wnt/PCP signaling pathway may influence anterior turning 

of axons of commissural neurons in the developing spinal cord (see below) (Lyuksyutova et al., 

2003; Shafer, Onishi, Lo, Colakoglu, & Zou, 2011).  

  In zebrafish spinal cord, there are several interneurons that can be classified as 

commissural neurons in that they send axonal projections to the contralateral side through the 

floorplate during neural development. These include the excitatory glutamatergic neurons: 

commissural primary ascending (CoPAs), commissural secondary ascending (CoSAs), 

multipolar commissural descending (MCoDs), and unipolar commissural descending (UCoDs). 

Inhibitory glycinergic neurons that cross the midline include the commissural secondary 

ascending (CoSAs), commissural bifurcating longitudinal (CoBLs), commissural local (CoLo), 

commissural longitudinal ascending (CoLAs) (Bernhardt, Chitnis, Lindamer, & Kuwada, 1990; 

Hale, Ritter, & Fetcho, 2001; Higashijima, Mandel, & Fetcho, 2004; Kuwada, Bernhardt, & 
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Chitnis, 1990a; Kuwada, Bernhardt, & Nguyen, 1990b) (figure S2). All these neurons possess 

axons that pathfind through the floorplate into the contralateral side of the spinal cord to reach 

their targets. 

 CoPA neurons are easily distinguishable by their distinct appearance. These neurons exist 

on average, one per hemisegment and are the earliest commissural ascending neurons in 

development. CoPA neurons are born around 16-17 hpf and begin to send out their axons shortly 

thereafter. After emerging from the soma, the axon projects ventrally towards the floorplate of 

the spinal cord and enter the floorplate at approximately 18-19hpf. After crossing the midline, it 

exits the floorplate and enters the contralateral side of the spinal cord and then projects both 

dorsally and anteriorly. By 20-21 hpf, the axon returns to the dorsal level of other contralateral 

CoPA somas and continues anteriorly by joining the dorsal longitudinal fasciculus (DLF). The 

axon reaches the hindbrain by 27 hpf (Kuwada, Bernhardt, & Nguyen, 1990b). Similarly, the 

CoSAs following a similar pathfinding route as the CoPAs. However, CoSA cell bodies are 

slightly more ventral in comparison to CoPA cell bodies. Additionally, CoSAs appear later in 

development than CoPAs and possess smaller dendrites and axons. The axons of CoSAs do not 

project into the hindbrain, rather appear to extend no more than ten segments from the soma 

(Bernhardt et al., 1990).   

 Functionally, CoPAs in zebrafish have been implicated in the glutamatergic-driven touch 

response of the tail and receive sensory input from Rohan-Beard (RB) neurons (Gleason et al., 

2003; Pietri, Manalo, Ryan, Saint-Amant, & Washbourne, 2009). CoPA neurons send projections 

into the contralateral rostral (anterior) spinal cord where they synapse with descending 

interneurons, such as the circumferential descending interneurons (CiD), that make up the 
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contralateral motor network (Bernhardt et al., 1990; Hale et al., 2001; Pietri et al., 2009; Saint-

Amant & Drapeau, 2001). The resulting circuit is responsible for contralateral contraction in 

response to touch on the ipsilateral side (Pietri et al., 2009).  

 Due to their isolated single cell nature and their distinct visual appearance, CoPAs serve 

as a simple system to study axon pathfinding. As previously described, CoPAs make numerous 

pathfinding decisions on the way to their targets. These include a (1) ipsilateral ventral 

projection, (2) midline crossing, and (3) a dorso - (4) anterior projection (figure 1A)  (Kuwada, 

Bernhardt, & Nguyen, 1990b). A recent study has found that the ventral projection and midline 

crossing rely on attractive netrin-dcc signaling and repulsive slit-robo signaling.  Knockdown 

and knockout of dcc (deleted in colorectal cancer) results in CoPA neurons unable to make a 

midline cross, while still making anterior projections. Additionally, robo2 knockout results in 

CoPA neurons unable to escape the ventral midline and do not pathfind dorsally after crossing. 

Again, anterior pathfinding is left unhindered (Bonner et al., 2012). This suggests that CoPA 

axon D-V patterning is guided by netrin-dcc and slit-robo signaling while the mechanisms of A-P 

axon pathfinding are independent of this signaling pathway. 

 Recent insights in mouse commissural axons have implicated non-canonical Wnt/PCP 

signaling as a means to establish and guide A-P pathfinding. In ex vivo spinal cord experiments, 

knockout of the Wnt4 receptor fzd3 resulted in random pathfinding of commissural neurons after 

exiting the floorplate (Lyuksyutova et al., 2003). Additional in situ evidence has shown a Wnt4 

A-P expression gradient in floorplate cells, with relatively higher levels of expression in more 

anterior spinal sections (Lyuksyutova et al., 2003). This evidence suggests that Wnt4 signaling is 

sufficient to guide axons, yet it remains unanswered if indeed the same signaling mechanism is 
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utilized in vivo. As it is known that the core PCP component Fzd3 is required in anterior axon 

guidance, the question remains what role PCP plays in commissural axon pathfinding and 

whether or not such mechanisms are cell-autonomous or non-cell-autonomous in vivo. This study 

aims to provide further evidence for the role of PCP signaling in the anterior guidance of these 

CoPA neurons, identify other potential PCP components in anterior axon guidance, and propose 

models that describe the signaling mechanisms of CoPA axon pathfinding. 

!
II.B.  Results 

CoPA axon pathfinding requires PCP components Fzd3a, Vangl2, and Scrib 

 To visualize CoPA neurons, immunostaining was conducted using the 3A10 antibody as 

previously described (Bonner et al., 2012). Immunostaining was performed on fixed embryos at 

33hpf  when CoPA pathfinding is complete. At this developmental timepoint, there are numerous 

commissural neurons present in the spinal cord (figure S2), but only CoPAs were labeled with 

the 3A10 antibody (figure S2) (Bernhardt et al., 1990; Kuwada, Bernhardt, & Chitnis, 1990a; 

Kuwada, Bernhardt, & Nguyen, 1990b). Neurons labeled by 3A10 were determined to 

specifically be CoPAs by the following criteria: (1) neuron somas were furthest dorsal in the 

spinal cord, proximal to the DLF; (2) after crossing the midline, the axon projects dorso-

anteriorly for 1-2 segments before joining the DLF at the level of the neuron soma on the 

contralateral side; (3) axons projected more than 10 segments; and (4) possess no branches 

(figure 1A and S2). Based on these criteria and what has been previously described, the 3A10 

stained neurons were consistent with described CoPA characteristics (Bernhardt et al., 1990; 

Bonner et al., 2012; Kuwada, Bernhardt, & Chitnis, 1990a; Kuwada, Bernhardt, & Nguyen, 
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1990b). In order to conduct consistent analysis, only CoPA neurons below the 9th somite were 

analyzed. Wild type embryos showed no CoPA pathfinding defects. 

 In order to determine if commissural axon A-P guidance mechanisms described in 

mammalian systems are conserved in zebrafish, CoPA pathfinding was analyzed in fzd3arw689/689 

homozygous mutants. The fzd3arw689/rw689 allele contains a missense point mutation in the second 

extracellular cysteine-rich domain (CRD), preventing Fzd3arw689/rw689 protein from associating 

with the membrane (Wada et al., 2006). In fzd3arw689/rw689 homozygous mutants, CoPA neurons 

undergo normal D-V guidance, with all axons properly crossing the midline through the 

floorplate (figure 1 D,E). However, once axons exited the floorplate, 41.8% of CoPAs in 

fzd3arw689/rw689 homozygous mutants failed to project anteriorly, with 3.8% stalling after 

pathfinding dorsally, and 38.0% (figure 1 L) projecting posteriorly (n = 79). This finding is 

consistent with previous ex vivo reports (Lyuksyutova et al., 2003) and reinforces CoPAs 

(Bonner et al., 2012) as a zebrafish single cell model for commissural pathfinding in vivo.  

 To determine whether other PCP components other than fzd3a play a role in A-P 

guidance decisions of CoPA axons, we examined CoPA neurons in other zebrafish planar polarity 

mutants. Embryos from homozygous mutants for vangl2m209/m209, pk1bfh122/fh122, and scribrw468/

rw468 were analyzed for CoPA phenotypes as well. The vangl2m209/m209 allele contains a 13 base 

pair insertion of intronic sequence that results in a frameshift mutation at Ala 441 and 

prematurely terminates translation. Homozygous vangl2m209/m209 embryos are non-viable past 5 

days, exhibit a characterized CE defect, and a FBMN migration defect (Jessen et al., 2002). The 

scribrw468/rw468 allele contains a point mutation that results in a pre-mature stop codon in the 

leucine rich repeat (LRR) domain of scrib. Homozygous vangl2m209/m209 mutants and 
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homozygous scribrw468/rw468 mutants both display several planar polarity phenotypes including a 

CE defect, a defect in FBMN migration, and a defect in the planar polarity of floorplate cells in 

the neural tube. It should be noted that scribrw468/rw468 mutants only display a partial CE defect 

(Wada et al., 2005). It is proposed that scrib is a required PCP component both cell-

autonomously and non-cell autonomously (Wada, 2005; Walsh et al., 2011). Whereas vangl2 and 

scrib are expressed ubiquitously in the developing nervous system, pk1b is expressed only in 

distinct cell types including FBMNs, but has little expression in hindbrain and spinal cord 

neuroepithelial cells (Mapp et al., 2011). The pk1bfh122/fh122 allele possesses a missense mutation 

in the farnesylation motif (CAAX domain) C869F that is predicted to abrogate its function 

(Mapp et al., 2011). Indeed, homozygous pk1bfh122/fh122  have a FBMN migration defect, but do 

not exhibit a CE defect nor mispolarized floorplate cells (Mapp et al., 2011). 

 In homozygous vangl2m209/m209, scribrw468/rw468, and pk1bfh122/fh122 mutants, we observed 

that CoPA neurons undergo normal D-V pathfinding, with all neurons properly crossing the 

midline through the floorplate (figure 1D-K). After exiting the floorplate (data not shown), 

34.0% of CoPA axons in vangl2m209/m209 mutants (n = 94) (figure 1F,L) and 41.3% of CoPA axons 

in scribrw468/rw468 mutants (n = 104) (figure I,K,L) did not pathfind properly in the anterior 

direction. In vangl2m209/m209 mutants, 4.3% of CoPA axons stalled and 29.8% projected in the 

posterior direction. In scribrw468/rw468 mutants, 4.8% of CoPA axons stalled and 36.5% projected 

in the posterior direction (figure 1L). CoPAs in pk1bfh122/fh122 mutants possessed no pathfinding 

defect and appeared wild type (figure 1G,H,L). This is consistent with the lack of pk1b 

expression in the spinal cord (Mapp et al., 2011) 
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 In addition to analyzing homozygous mutants, we analyzed CoPA pathfinding in embryos 

that were heterozygous for mutations in the PCP components fzd3a, vangl2, and scrib. 

Heterozygous embryos vangl2m209/+ and scribrw468/+ did not possess any CoPA pathfinding defects 

and appeared wild type. Interestingly,  CoPAs in fzd3arw689/+ mutants had a significant anterior-

posterior pathfinding defect (15.3%, n = 68), albeit not as large as fzd3arw689/rw689 mutants (figure 2). 

Taken together, these data support the idea that PCP signaling  is required for A-P guidance 

decisions by CoPA axons. 

!
Anatomy and patterning of CoPAs and spinal cord remain intact in PCP mutants 

 To assess the possibility that the CoPA pathfinding phenotype is caused by the alteration 

of the spinal cord environment or by midline crossing defects, the length CoPA commissures 

were measured in wild type, fzd3arw689/rw689, and scribrw468/rw468 mutants (figure 3A-C). Since 

vangl2m209/m209 embryos possessed a severe CE defect (Jessen et al., 2002) which results in a 

shortening of the entire body along the A-P axis, they were not measured. The mean wild type 

commissure length was 14.23 ± 0.80µm (n = 79) , mean fzd3arw689/rw689 commissure length was 

15.78 ± 1.28µm (n = 57), and mean scribrw468/rw468 commissure length was 12.84 ± 0.80µm (n = 

79). There was no significance difference in mean commissure length across phenotypes (WT-

fzd3arw689/rw689  p = 0.2554; WT-scribrw468/rw468 p = 0.2687) (figure 3D) suggesting that midline 

and commissure anatomy is unaffected by A-P pathfinding defects. 

!
!
!
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PCP components influence CoPA axon pathfinding before midline crossing 

 In mice, commissural neurons do not respond to A-P cues before crossing the midline 

(Lyuksyutova et al., 2003). In contrast, we find that in zebrafish, CoPA axons have begun to 

respond to A-P cues, indicated by an appearance of an A-P bias of the pre-crossing axon in the 

anterior direction. We quantified the anterior-vertical-posterior directional bias of the ventrally 

projecting pre-crossing axons in wild-type and PCP mutants. We placed a line perpendicular to 

the A-P axis at each CoPA axon hillock. A second line was drawn from the axon hillock to the 

point of entry into the midline. If the angle between the two lines was beyond 2º to the left, the 

axon was marked as anteriorly biased, or 2º to the right, the axon was marked as posteriorly 

biased. If the axon did not exceed 2º in either direction, it was quantified as vertical, indicating a 

nearly perpendicular-ventrally projecting CoPA axon prior to midline crossing (figure 4A-D). In 

wild type, 45.8% of pre-crossing axons projected anteriorly, 31.8% possessed no A-P bias, and 

22.4% projected posteriorly.  Pre-crossing axons in fzd3arw689/rw689 (p < 0.01), vangl2m209/m209 (p 

< 0.01), and scribrw468/rw468 (p < 0.05) displayed a statistically significant difference in the 

directional bias of these axons, with a decrease in the percentage of anteriorly projecting axons 

and an increase in vertically or posteriorly projecting axons (figure 4E). Once again, pk1bfh122/

fh122 mutants were not different than wildtype. These data support the proposition that PCP 

components influence CoPA axon pathfinding both before and after crossing the midline. 

!
II.C. Discussion 

 Sensory neurons in the spinal cord receive signals from peripheral sensory receptors and 

send signals to the rostral spinal cord and the brain to process these signals that result in specific 
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stimulus-response behaviors. During development, these axons must pathfind far distances in 

order to synapse on their correct targets. The zebrafish spinal cord provides a simplified system 

in which axon pathfinding mechanisms can be easily visualized and studied. Study of the CoPA 

neurons of zebrafish provide a simple single cell system in which to study these pathfinding 

mechanisms.  

 Accumulating evidence supports the idea that planar polarity signaling plays an important 

role in numerous aspects of neural development. In vertebrates, Frizzled3 loss-of-function 

mutants possess a failure of the neural tube to close, a loss of planar polarity in the inner ear 

(Montcouquiol et al., 2006; Y. Wang, Guo, & Nathans, 2006b) and a loss of FBMN migration 

(Wada et al., 2006). Much like fzd3, vertebrate loss-of-function vangl2 and scrib mutants also 

possess a failure of the neural tube to close (Doudney et al., 2005; Murdoch et al., 2003; Ybot-

Gonzalez et al., 2007), a loss of planar polarity in the inner ear (Montcouquiol, Rachel, Lanford, 

Copeland, & Kelley, 2003a), and a loss of FBMN migration (Jessen et al., 2002; Wada, 2005; 

Walsh et al., 2011). Previous studies have also highlighted a role for Fzd3 in axon pathfinding. 

For instance, Fzd3 mutants in mouse possess a loss of numerous central nervous system tracts 

including the corticospinal tract, fornix, internal capsule, stria medullaris and terminalis. 

Additionally, there is a loss of the anterior and hippocampal commissures, as well as the corpus 

callosum (Y. Wang et al., 2002; Y. Wang, Zhang, Mori, & Nathans, 2006c). 

 Recent reports have supported the notion that planar polarity signaling controls anterior-

posterior guidance of commissural neurons. In mice, commissural neurons pathfinding after 

midline crossing becomes randomized in the A-P axis in mouse Frizzled3 mutants (Lyuksyutova 

et al., 2003). Moreover, a similar defect in anterior turning of commissural axons was observed 
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in Vangl2 and Celsr3 mutant mice (Shafer et al., 2011; Onishi et al., 2013). In this study, we 

examined the role of planar polarity signaling in controlling the axon pathfinding of CoPA 

neurons in the spinal cord of zebrafish. We show that Fzd3a and Vangl2 are also required for A-P 

guidance of CoPA axons, since approximately 45% of CoPAs in these mutants fail to properly 

turn anterior after midline crossing. Heterozygous fzd3a+/rw689 embryos also exhibit a CoPA axon 

pathfinding defect, though it is a less severe phenotype. This finding suggests that correct CoPA 

pathfinding is sensitive to the levels of Fzd3a protein. We also show for the first time that 

another PCP protein, Scrib, is essentially required for the anterior pathfinding of CoPA axons. 

 Importantly, our data also support previous results that the A-P guidance cues that control 

CoPA pathfinding are independent from D-V guidance cues. In zebrafish, CoPAs utilize Netrin-

DCC and Slit-Robo signaling to pathfind towards and away from the midline, respectively 

(Bonner et al., 2012). Loss function of Netrin-DCC and Slit-Robo causes defects in midline 

crossing, dorsal-ventral axon growth, and commissural length defects. In fzd3arw689/rw689 mutants, 

however, these D-V commissural defects are not present and there are no changes in D-V axon 

growth towards and away from the midline. Thus, our results suggest that the signaling pathways 

that mediate D-V guidance and A-P guidance are independent of one another. 

 In mice, PCP signaling only influences the anterior turning of commissural axons after 

they have crossed the midline. Even in the presence of exogenous Wnt ligands applied to an ex-

vivo mouse spinal cord preparation, commissural neurons fail to be attracted until after they have 

crossed the midline (Lyuksyutova et al., 2003; Shafer et al., 2011). In contrast, we have shown 

that zebrafish CoPA axons respond to A-P cues on both the prior to and after crossing the 

floorplate. While the majority of anterior turning occurs after midline crossing, we measured an 
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increase in the posterior bias of pre-crossing CoPA fibers in fzd3a, vangl2, and scrib mutants. 

This is consistent with a previous report that demonstrated that CoPA axons largely pathfind 

anteriorly even in midline crossing is blocked when the Netrin-receptor DCC is knocked down 

(Bonner et al., 2012).  

 Where is planar cell polarity required in order to guide CoPA axons? Formally, PCP 

genes could be required either in the CoPA growth cone or they could function in the 

environment to control CoPA axon trajectory. Evidence in mice support a role for Wnt-Frizzled 

signaling at the level of the growth cone. In the growth cones of mouse, commissural neurons, 

cultured in vitro, respond to the presence of Wnt5a , and in doing so, FZD3 is endocytosed at the 

tips of filopodia and subsequently, an increase in aPKC activation and growth cone turning 

occurs (Shafer et al., 2011; Onishi et al., 2013). Additionally, in the tips of filopodia, it is found 

that Vangl2 is enriched and may promote the internalization of the Wnt receptor, Frizzled3 at the 

growth cone, leading to PCP signaling (Shafer et al., 2011; Onishi et al., 2013). Although 

exogenous Wnt ligands have been shown to direct growth cone turning of commissural axons 

(Lyuksyutova et al., 2003), no loss-of-function study has yet clarified a role for Wnt ligands in 

vivo. 

 Additionally, these findings do not address the potential role of the cellular environment,          

through which these CoPA axons are pathfinding and how the in vivo environment may guide 

pathfinding through PCP mechanisms. In PCP-guided FBMN migration, it has been shown that 

the PCP components Fzd3a, Vangl2, and Scrib can act both cell-autonomously and non-cell-

autonomously (Wada et al., 2006; Walsh et al., 2011). Cell-autonomous cues act within a neuron, 

creating and maintaining an internal polarity while non-cell-autonomous cues act to polarize the 
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environment, which neurons may “read”  and align to in order to guide their directed migration. 

In Vangl2 and Scrib mutants, the neuroepithelium loses its anterior-posterior polarity (Walsh et 

al., 2011) and as such, it suggests that CoPAs are pathfinding through an unpolarized 

neuroepithelium in vangl2 and scrib mutants. Although there is evidence that Fzd3a acts non-

autonomously in the environment to control FBMN migration (Wada et al., 2006) there has yet to 

be a study that demonstrates direct evidence that a fzd3a mutant neuroepithelium environment is 

unpolarized. From our analysis of these PCP components, we are able to propose two models of 

A-P guidance, describing growth cones responding to cell-autonomous or non-cell-autonomous 

signaling mechanisms (figure 5). 

!
Cell-autonomous and non-cell-autonomous models of CoPA axon pathfinding 

 With these data, we describe two potential models to explain PCP mechanisms guiding          

CoPA axon pathfinding in the spinal cord. A cell-autonomous model illustrates PCP mechanisms 

acting within the CoPA (figure 5A) growth cone. A proposed Wnt-gradient, strongest on the 

anterior end, is present through the spinal cord. mRNA expression data in mice has shown that 

Wnt4 is expressed in a gradient with high levels on the anterior end of the embryo, with a 

gradual caudal decrease in the floorplate of the spinal cord (Lyuksyutova et al., 2003). The Wnt-

receptor Frizzled3a is present in the membranes of the growth cones and responds to this Wnt-

gradient. Vangl2-mediated internalization of Frizzled3a in the presence of this Wnt gradient 

directs these filopodia toward the source of the Wnt gradient and thereby guides the axon to its 

target (Onishi et al., 2013; Shafer et al., 2011). In a fzd3a mutant, the CoPAs do not possess 

functional Fzd3a, and cannot respond to the presence of a Wnt gradient, resulting in a 
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randomization of A-P guidance. In other PCP mutants, loss-of-function Vangl2 or Scrib results in 

a loss of Frizzled3a regulation internalization, and thereby cannot respond to the presence of a 

Wnt gradient, thus also resulting in a similar randomization of A-P guidance. 

 A non-cell-autonomous model illustrates PCP mechanisms acting in the neuroepithelial          

environment through which the CoPA neuron pathfinds (figure 5B & C), similar to proposed 

models in FBMN migration (Wada, 2005; Wada et al., 2006; Walsh et al., 2011). A global cue 

acts upon the neuroepithelial cells (perhaps through Wnt signaling) and polarizes the 

neuroepithelium in the A-P direction by the asymmetrical localization of Fzd3a and Vangl2 

complexes within the neuroepithelium. This polarity is communicated inter-cellularly through 

classic cell-cell PCP signaling mechanisms in epithelial tissue. The CoPA neuron thereby “reads” 

this polarized epithelium and aligns itself on the ipsilateral and contralateral sides of the spinal 

cord and pathfinds correctly to its target. In PCP mutants, the neuroepithelium is unable to align 

and polarize itself in relation to global cue and the CoPA axons are pathfinding through an 

unpolarized environment resulting in a randomization of A-P guidance. These descriptive models 

are not necessarily mutually exclusive, and may potentially occur concurrently to guide axon 

pathfinding. 

           

II.D. “Pathfinding” forward: Future Directions 

Identification of other PCP components in vivo in CoPA axon guidance 

 Here we have shown that Fzd3a, Vangl2, and Scrib are PCP components that are required          

in zebrafish CoPA axon pathfinding. We have also shown that Pk1b is not required for CoPA 

axon pathfinding. To fully understand PCP’s role in CoPA axon guidance, it is necessary to 
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determine what other known PCP components may also be required for in vivo. Such 

components include, but are not limited to, Pk1a (Thisse et al., 2005), Pk2 (Thisse et al., 2004), 

Celsr (Shafer et al., 2011; Tissir et al., 2005; Wada et al., 2006), Dvl (Onishi et al., 2013; Shafer 

et al., 2011), Gpc4 (Topczewski et al., 2001), Ptk7 (Hayes, Naito, Daulat, Angers, & Ciruna, 

2013; Lu et al., 2004), and Wnts (Lyuksyutova et al., 2003) which have all been previously 

shown to be required for many PCP dependent neurodevelopmental processes in vertebrates. 

Though again, much evidence has been presented describing Wnt gradients to be sufficient in 

guiding commissural pathfinding (Lyuksyutova et al., 2003; Onishi et al., 2013; Shafer et al., 

2011; Zou, 2012), there has been little evidence suggesting that such Wnt protein gradients exist 

in vivo or that these mechanisms are in fact utilized by these neurons. A combination of 

functional knockdown or genetic knockout analysis, similar to what was previously described in 

this work, should be sufficient to determine what other components maybe required for CoPA A-

P axon guidance. 

!
Utilization of tbx16:GFP transgenic zebrafish to molecularly image CoPA axon guidance 

 There is currently no understanding of the molecular dynamics of CoPA growth cone          

guidance and these PCP components in vivo. A line of tbx16:GFP transgenic zebrafish created by 

Wells et al., has resulted in the serendipitous expression of GFP within the CoPA neurons (Wells, 

Nornes, & Lardelli, 2011). This fortunate result opens the potential for live imaging of these 

neurons as they pathfind in living embryos. In conjunction with other molecular and genetic 

tools and manipulations, we will aim to image the molecular dynamics of these PCP components 

in vivo by using mCherry-tagged to PCP proteins of interest and the high speed acquisition rates 
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of spinning disk laser confocal microscopy. Such experiments could potentially yield valuable 

information on whether the dynamic cycling of components Vangl2 and Fzd3 seen in vitro 

(Onishi et al., 2013; Shafer et al., 2011) are seen in vivo, as there has been little or no evidence of 

such molecular dynamics occurring in live embryos. 

!
Determination of cell-autonomous/non-cell-autonomous mechanisms in CoPA axon 
guidance !
  It is unclear whether PCP components are acting cell-autonomously or non-cell-         

autonomously in these CoPA axons as they pathfinding during development. In order to provide 

insight on the nature of these mechanisms, we propose the utilization of transplant experiments. 

Transplant experiments have been previously utilized to determine the cell-autonomous/non-cell-

autonomous nature of PCP components in the migration of FBMNs (Carmany-Rampey & 

Moens, 2006; Kemp, Carmany-Rampey, & Moens, 2009; Walsh et al., 2011). In combination 

with the tbx16:GFP transgenic zebrafish, which express GFP in CoPA neurons (Wells et al., 

2011), creation of chimeric embryos containing wild type CoPAs (expressing in the background 

tbx16:GFP) in PCP mutant hosts (fzd3arw689/rw689, vangl2m209/m209, and scribrw468/rw468) will 

provide evidence of cell-autonomous/non-cell-autonomous requirements of these PCP genes and 

assess the validity of our two models. 

!
Examination of other commissural axon guidance mechanisms (CoLA, CoLo, CoBL, etc.) 

 It is unknown whether or not PCP components are required for the guidance of other          

commissural neurons in the spinal cord of zebrafish. As described previously, there exist many 
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other types of neurons, both glutamatergic and glycinergic, which also send commissural axons 

into the contralateral side of the spinal cord (figure S2) (Bernhardt et al., 1990; Higashijima et 

al., 2004; Kuwada, Bernhardt, & Chitnis, 1990a; Kuwada, Bernhardt, & Nguyen, 1990b; 

McLean & Fetcho, 2008). The analysis of these other commissurals is important for determining 

what potential factors distinguish these commissurals from others that are similar. For example, 

Commissural bifurcating longitudinal (CoBLs) and Commissural local (CoLos) have very 

similar axon trajectories, with the only distinguishing factor being synaptic location (with CoLos 

remaining within a hemisegment). Additionally, the guidance cues of the bifurcating axons is 

unknown. Presumably, A-P guidance accomplished by these previously described PCP 

components. As they belong to the same neuron, it is curious what guides one axon branch 

anterior, and the other posteriorly. Initial studies on these guidance cues can be done by HRP 

backlabelling (described in (Bernhardt et al., 1990)) in PCP loss-of-function knockout embryos. 

These experiments could provide preliminary evidence on the nature of the guidance cues of 

these other commissurals in the zebrafish spinal cord. 

!
!
!
!!!!!!!!!
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!!!!!
Chapter III: Subcellular Localization of PCP Component Scribble in 

Neurodevelopment !!!!
III.A. Introduction 

 Scribble (Scrib) is a member of the LAP family of proteins (LRR and PDZ domain (post-

synaptic density, Dlg1, and zonula-occulens 1)). It contains LRR (leucine rich repeats) domains, 

which function as a protein-protein interaction motif, and four PDZ domains, a multi-protein 

interaction domain (Bilder & Perrimon, 2000; Bilder, Schober, & Perrimon, 2002; Kallay, 

McNickle, Brennwald, Hubbard, & Braiterman, 2006). Scribble is thought to belong to a 

complex of proteins known as the Scribble Complex that includes Scrib, Disc large (Dlg), and 

Lethal giant larvae (Lgl) that appear to function in establishing apical-basal polarity. Mutations 

in Drosophila scrib, dlg, or lgl has been shown to result in loss of apical-basal (A-B) polarity, 

impaired cell cycle exit, and tissue, or tumor overgrowth (Bilder, 2004).  For that, they have been 

named the neoplastic tumor suppressor genes (nTSGs). Scrib, Dlg, and Lgl have been to shown 

to genetically interact and loss-of-function mutants of these genes result in similar developmental 

phenotypes. In Drosophila epithelial cells, Scrib is localized, along with Dlg and Lgl to the 

basolateral membrane. Scrib has also been shown to play a role in invertebrate neuronal synaptic 

scaffolding complex by associating physically with GUK (guanylate kinases) holder and Dlg 

(Mathew et al., 2002). 

!27



 In higher vertebrates, there is only one homologue of Scrib (Bilder, 2004; Humbert, 

Russell, & Richardson, 2003; Santoni, Pontarotti, Birnbaum, & Borg, 2002). In polarized 

epithelia in mammals, Scrib has been shown to physically associate with LgL2. Whereas loss-of-

function of Scrib in fly results in phenotypes characteristically similar to a loss of apico-basal  

polarity (Bilder, 2000; Bilder & Perrimon, 2000; Humbert et al., 2003). Loss-of-function scrib 

mutations in vertebrates leads to many phenotypes similar to planar cell polarity (PCP) loss-of-

function mutations. These include defects in convergent-extension (CE) cell movements (Wada, 

2005), neurulation and neural tube defects (Murdoch et al., 2003; Žigman, Le A Trinh, Fraser, & 

Moens, 2011), loss of inner ear hair cell polarity and alignment (Montcouquiol, Rachel, Lanford, 

Copeland, & Kelley, 2003a), loss of neuroepithelial planar polarity (Walsh et al., 2011), a loss of 

directed neuron migration of the FBMNs (Wada, 2005), and more recently, in commissural axon 

pathfinding as I have shown, discussed in the previous chapter of this work. Interestingly, Scrib 

has been shown to physically interact with Vangl2, a core PCP component. More specifically, 

Vangl2 binds selectively to the second and third, or all four PDZ-domains of Scrib 

simultaneously (Kallay et al., 2006). Moreover, Scrib can genetically interact with Vangl2 in 

neural tube closure and CE movements during gastrulation. This interaction with Vangl2 

potentially implicates Scrib as a component of vertebrate non-canonical Wnt/PCP signaling. 

 In other cell contexts, Scrib has a known function in regulating cell migration. 

Functionally, Scrib in cell culture has been shown to promote cell protrusions via subcellular 

modulation of Rac and Cdc42, which form a complex with the exchange factors βPIX and GIT1 

(Audebert et al., 2004; Dow et al., 2007; Nola et al., 2008; Osmani, Vitale, Borg, & Etienne-

Manneville, 2006). Other implicated Scrib interactions include the JNK signaling pathway 
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(Brumby & Richardson, 2003; Uhlirova, Jasper, & Bohmann, 2005) and the βPIX-GIT1 

complex, which regulates Rac1, Rho GTPase, and Cdc42 signaling (Audebert et al., 2004; Dow 

et al., 2007; Nola et al., 2008; Osmani et al., 2006). Given the fact that the βPIX-GIT1 complex 

can modulate focal adhesions, this implicates and links Scrib to focal adhesions and regulation of 

cytoskeletal dynamics (Hoefen, 2006). 

 The molecular function of PCP signaling is dependent on their asymmetric localization in 

epithelial cells. For example, the core PCP components, such as Fzd-Dsh and Vang-Pk, in 

Drosophila wing epithelium possess an asymmetrical subcellular distribution. Fzd-Dsh 

complexes localizes to the distal membrane while Vang-Pk complexes localizes to the proximal 

membrane. This subcellular asymmetry is translated into polarity in these epithelial cells (figure 

S2) (Das et al., 2004; Giese et al., 2012; Y. Guo et al., 2013; Shimada et al., 2006; H. Strutt & 

Strutt, 2005; 2008; Tree et al., 2002). Importantly, genetic loss of any one core PCP component 

leads to a loss of asymmetric distribution in the other proteins, indicating that their subcellular 

localization is mutually dependent on one another. 

 Scrib’s subcellular localization has provided evidence for the roles it plays in different 

cell contexts. In invertebrate epithelium, Scrib localizes specifically to the apical-basal (AB) 

border at the septate junction and acts as a determinant for the localization of zonula adherens to 

the apical membrane (Bilder, 2000; Bilder et al., 2002; Bilder & Perrimon, 2000). In migration 

assays, Scrib localizes to the leading edge in migrating cells and forms a complex with βPIX and 

GIT1 to increase cell protrusions by Rac, Rho, and Cdc42 signaling (Audebert et al., 2004; Dow 

et al., 2007; Nola et al., 2008; Osmani et al., 2006). 
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 In vertebrate epithelial cells, Scrib is also localized to the basolateral surface and 

adherents junctions (Yoshihara et al., 2011). However, its localization in migrating cells is less 

well characterized. As Scrib is required for many PCP-dependent processes, it is of interest to 

characterize its subcellular localization. To do so, an antibody was generated in mouse against 

the C-terminus of zebrafish Scrib protein. The aim of this study is to determine that our 

monoclonal IgG2b antibody is specific against Scrib. Subsequently, the antibody will be used to 

localize the subcellular distribution of Scrib in specific tissues and cells in zebrafish that are 

affected in planar cell polarity mutants. These include the the neuroepithelial cells, cells 

undergoing CE movements, and migrating FBMNs. Lastly, our goal is to determine if the 

subcellular localization of Scrib is dependent on other core PCP components. 

!
III.B. Results 

Monoclonal antibody is specific for Scrib 

 To generate an antibody, the Walsh lab fused the C-terminus of zebrafish Scrib with GST 

and expressed in bacteria. Glutathione-sepharose beads were used to purify the protein and GST-

(CT)SCRIB protein was injected into mouse. The whole blood serum was then extracted and 

initially tested for antibodies specific to Scrib by western blot and immunostaining (data not 

shown). Individual clones were harvested from the spleen and individual supernatants from 

clones were tested for specificity by western blot. An IgG2b clone was selected for its specificity 

in western blot  (figure 6A). In lane 2 of figure 6A, a band corresponding to endogenous Scrib at 

around 250kD can be seen in lysates from wild type embryos. This band is absent in lysates from 

maternal-zygotic (MZ)-scribrw468/rw468 embryos. We then tested this antibody in immunostaining 
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conditions. In wild types, Scrib immunostaining is present in an isl1:GFP background co-stained 

for GFP (figure 6C). In contrast, Scrib immunostaining is absent in MZ-scribrw468/rw468 embryos 

(figure 6F) while staining for GFP present in unmigrated FBMNs (figure 6B,D,E,G). These 

results indicate that our monoclonal antibody generated against the C-terminus of zebrafish Scrib 

is specific in both western blotting and immunocytochemistry. 

!
Scrib in vertebrate epithelium localizes to Apico-Basal boundary 

 Scrib in epithelial cells of invertebrates has been shown to localize to the apical-basal 

boundary at the septate junction as a determinant for the location of zonula adherens to the apical 

membrane (Bilder, 2000; Bilder et al., 2002; Bilder & Perrimon, 2000). To determine the 

localization of Scrib in zebrafish epithelial cells, Tg(β-actin:EGFP-CAAX) embryos were fixed 

at 24hpf and immunocytochemistry staining against GFP and Scrib was conducted. Scrib 

staining in epithelium of the otic vesicles was localized to the basolateral membranes (figure 

7D). Scrib was absent from the apical membrane of these otic epithelial cells (figure 7D,E). 

Additionally, distinct Scrib puncta were detected at the AB border of these epithelial cells (figure 

7D). To determine if the otic vesicle was planar polarized, immunocytochemistry was conducted 

against F-actin (phalloidin) and acetylated tubulin to determine the location of cilia in the otic 

vesicles (figure 7A,B). The cilia are located in the center of otic epithelial cells and do not appear 

to be planar polarized in a specific direction (figure 7A). There is no change in the location of 

cilia in MZ-scribrw468/rw468 (figure 7B). This immunocytochemistry study indicates that Scrib, in 

non-planar-polarized vertebrate epithelial tissue, is localized to the basolateral membrane, not the 

apical membrane, and as distinct puncta at the AB border.  
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!
Scrib localizes to cell membranes in mesoderm undergoing convergent-extension 
movements !
 The scribrw468/rw468 allele contains a point mutation that results in a stop codon in the LRR 

domain of scrib. Homozygous MZ-scribrw468/rw468 mutants possess a partial CE defect (Wada, 

2005). As Scrib plays an important role in CE movements, we immunostained for Scrib in tissues 

undergoing CE movements. At the tail bud stage, the dorsal mesoderm is undergoing CE (figure 

8A, F-H). These cells of the dorsal mesoderm possess a more elongated appearance (figure 8F) 

in comparison to cells not undergoing CE movements (figure 8C). In cells in the lateral 

mesoderm, Scrib localizes to the membrane (figure 8D,E) as well as in cells in the dorsal 

mesoderm (figure 8G,H). Scribble also localizes as foci on the membrane in both of these 

tissues. We did not detect any inherent asymmetry in Scrib localization within cells of the lateral 

mesoderm, nor in cells undergoing CE at the dorsal mesoderm.  

!
Scrib in migrating FBMNs localizes to membranes as distinct puncta 

 Scrib is required for the caudal-tangential migration of the facial branchiomotor neurons 

(FBMNs) from r4 to r6 and r7 (Wada, 2005) and in migrating cells in vitro, has been shown to 

localize to the leading edge (Audebert et al., 2004; Dow et al., 2007; Nola et al., 2008; Osmani et 

al., 2006). As the localization of Scrib is unknown in migrating cells, immunocytochemistry was 

conducted on Tg(isl1:GFP) embryos , that express GFP in cranial motoneurons, including 

FBMNs, at 18hpf when FBMNs begin to migrate and at 24hpf, during which FBMNs are 

undergoing migration through r5 (figure 9). Scrib staining again localizes to the membrane of 
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migrating FBMNs and as distinct puncta along the membranes. In should be noted that Scrib also 

appears to localize in the same manner in the surrounding neuroepithelium (figure 9E). The 

localization does not appear to be inherently asymmetric, nor does there appear to be any distinct 

localization to protrusions or lamellipodia (figure 9B,E).  

!
Scrib puncta distribution along sites of neuron-neuron contacts is influenced by Prk1b  !
 In PCP signaling, genetic loss of one component results in alteration of the distribution of 

the other PCP components (D. Strutt, 2003). As Scrib is required for the caudal-tangential 

migration of FBMNs, during which, neurons are in close contact with one another 

(Chandrasekhar, Moens, Warren, Kimmel, & Kuwada, 1997b), it was of interest to characterize 

the specific subcellular localization of Scrib at these points of contact and determine if the 

localization changes in other PCP mutants possessing a similar phenotype. The number of puncta 

specifically along a length of membrane FBMN-FBMN contacts at 24hpf (figure 10A-D) was 

quantified in wild type, pk1bfh122/fh122 and vangl2m209/m209 mutants. The mean number of puncta 

for each membrane length along FBMN-FBMN contact in wild type was 5.96 puncta (n = 51), in 

pk1bfh122/fh122 was 3.42 (n = 38), and in vangl2m209/m209 was 6.63 (n = 38) (figure 10E). A student’s 

t-test was conducted to compare mean puncta. There was a significant difference in means 

between wild type and pk1bfh122/fh122  (p < 0.0001). There was no significant difference between 

wild type and vangl2m209/m209. Due to the varying lengths of these points of FBMN-FBMN 

contact, the puncta count was normalized by the length of the measured membrane. Normalizing 

produced a distribution that could be considered a normal distribution. The normalized mean 

number of puncta per unit (µm) membrane length along FBMN-FBMN contact in wild type was 
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0.644 puncta/µm (n = 51), in pk1bfh122/fh122 was 0.464 puncta/µm (n = 38), and in vangl2m209/m209 

was 0.706 puncta/µm  (n=38) (figure 10F). A student’s t-test was conducted to compare mean 

puncta/µm. There was a significant difference in normalized means between wild type and 

pk1bfh122/fh122  (p < 0.0001). There was no significant difference between wild type and 

vangl2m209/m209. These data indicate that the subcellular localization of Scrib in FBMNs along 

points of contact with other FBMNs is significantly altered by loss-of-function of Pk1b. 

!
III.C. Discussion 

 PCP components play an important role in neurodevelopment. The subcellular 

localization of many of these PCP components signals internal polarity within cells and in the 

environment external to the cell (D. Strutt, 2003). It is the subcellular distribution of these PCP 

components that is translated into polarity and through effectors, directs many development 

processes (Das et al., 2004; Giese et al., 2012; Y. Guo et al., 2013; Shimada et al., 2006; H. Strutt 

& Strutt, 2005; 2008; Tree et al., 2002). Scrib is specifically required for many aspects of neural 

development that require PCP signaling, including convergent-extension (CE) cell movements 

(Wada, 2005), neurulation (Murdoch et al., 2003; Žigman et al., 2011), inner ear hair cell polarity 

and alignment (Montcouquiol, Rachel, Lanford, Copeland, & Kelley, 2003a), neuroepithelial 

polarity (Walsh et al., 2011), and directed cell migration of the FBMNs (Wada, 2005; Walsh et 

al., 2011). Within cells and tissues undergoing these PCP-dependent development processes, it is 

of interest to understand the endogenous subcellular localization of Scrib and if such localization 

will help elucidate its function, as either a PCP signal or an effector. To characterize endogenous 

Scrib localization, we have generated an antibody against zebrafish Scrib for use in 
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immunocytochemistry in fixed tissues. Our findings indicate that the expression of Scrib is 

ubiquitous and is generally membrane-localized; however, localization varies across tissues and 

is influenced by some PCP components. 

!
Our monoclonal antibody against Scrib is specific 

 Our control experiments have indicated that our antibody is specific against Scrib for 

applications in western blotting and immunocytochemistry. The absence of a signal in western 

blotting with our antibody in MZ-scribrw468/rw468 indicates that our antibody has minimal 

nonspecific binding, even though 90-100µg of protein  was loaded on the gel as evidenced by the 

ponceau-staining of the membrane (figure 6A). Moreover, immunostaining with anti-Scrib is 

completely absent from MZ-scribrw468/rw468 embryos, further confirming the specificity of the 

antibody. 

!
Localization of Scrib in epithelial tissues 

 Immunocytochemistry of the otic vesicle in zebrafish, which possesses classical epithelial 

characteristics, has shown that Scrib localizes to the basolateral membrane and also as distinct 

puncta at the apical-basal boundary. This localization is similar to that of invertebrates, where 

Scrib also is localized distinctly at the septate junction, just basal of the apical membrane (Bilder, 

2000; Bilder et al., 2002; Bilder & Perrimon, 2000). However, Scrib is not localized to basal 

membranes in invertebrate epithelial tissue, while our data indicates that Scrib localizes 

basolaterally in vertebrates. This localization suggests that Scrib plays a role in establishing 
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apical-basal polarity in both invertebrates and vertebrates in epithelial tissue. In vertebrates, this 

may result in the proper placement of adherens junctions in epithelial tissue.  

!
Scrib localizes to the membrane in migrating cells during development 

 Our results in tissues undergoing CE and not undergoing CE, and FBMNs indicates that 

Scrib ubiquitously localizes to the membrane, with occurrences of distinct puncta. It has been 

reported that Prickle is anteriorly localized in mesodermal cells undergoing convergent 

extension, whereas Disheveled is posteriorly localized (Yin et al., 2006). Importantly, although 

we observed Scrib to be localized to the membrane, we did not notice any clear asymmetric 

distribution between anterior or posterior membranes.  

 In other cell migration assays, Scrib has been shown to localize to the leading edge where 

it promotes actin polymerization and lamellipodial formation. In migrating FBMNs, we do not 

observe Scrib only at leading edges. In fact, we find that Scrib is localized along all membranes, 

often in bright puncta. These are not exclusive to the leading edge, but rather are found on all 

sides of the FBMNs, even at sites of neuron to neuron contact. The appearance of Scrib in 

membrane puncta could be due to several reasons. First, the staining pattern could be an artifact 

of fixation with trichloroacetic acid (TCA), which is known to cause protein aggregation and 

precipitation. Further studies testing other fixation protocols are necessary to resolve this issue. 

Second, the foci of Scrib staining could reflect Scribble association with other proteins 

complexes at or near the plasma membrane. Indeed, Scrib has four PDZ domains that may serve 

to scaffold other signaling proteins to the membrane (Kallay et al., 2006). Scrib has been shown 

to physically bind with Vangl2 at PDZ2 and PDZ3 domains (Kallay et al., 2006), and as such 
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may serve as an effector of PCP by interacting with Vangl2 at the plasma membrane. Lastly, 

there is evidence that Scribble interacting partners GIT1 and βPIX are known to associate with 

and modulate focal adhesion dynamics, which are necessary for proper cell migration. This 

suggests the intriguing possibility that Scrib puncta represent the association of Scrib with focal 

adhesion complexes in migration neurons.   

!
Scrib in PCP component knockout indicates its localization is tied with PCP signaling 

 Our data indicates that in pk1b loss-of-function mutants, the localization of Scrib is 

significantly altered in migrating FBMNs in contact with other FBMNs. A decrease in puncta in 

pk1bfh122/fh122 suggests that pk1b may play a role in localizing Scrib to the membrane at points of 

neuron-neuron contact. Interestingly, loss of another PCP protein, Vangl2, had no effect on the 

distribution of Scrib puncta. One interpretation of this finding is that Scrib should not be 

considered a core PCP protein. In fly, loss of any core component leads to a loss in the 

asymmetric distribution of all other core PCP proteins. Scribble could be an effector of PCP, 

whose localization depends not on each core member, but the activity of some of the PCP 

signaling proteins. Our data indicates that Scrib localization may be specifically dependent on 

Prickle function. Another possibility is that Scrib localization is dependent on the non-PCP 

functions of Prickle. Indeed, it has recently been reported that pk1b functions in FBMN 

migration through its nuclear localization, which acts independently of PCP signaling (Mapp et 

al., 2011). In this paper, they report that pk1b acts at the nucleus to regulate the neuronal 

transcriptional silencer REST. Therefore, in this scenario, pk1b would regulate Scrib localization 

secondary to its effects on REST localization and thus FBMN migration (Mapp et al., 2011).  
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III.D. Future Directions 

Other immunological applications of our antibody 

 We have shown that our antibody against zebrafish Scrib is specific and as such, other 

immunological applications of our antibody should be utilized. Our data show that the 

localization of Scrib is influenced by other PCP components. Therefore, it is of interest to 

determine if protein levels of Scrib are affected by PCP knockout through future western blotting 

studies of Scrib in other PCP component mutants. Other similar studies could utilize 

immunoprecipitation to identify other potential binding partners of Scrib, further describing 

Scrib’s role in development. It could also be determined if these protein interactions are affected 

or involve other PCP components. Such PCP components of interest include, but are not limited 

to Pk1b (Mapp et al., 2011), Vangl2 (Jessen et al., 2002), Fzd3a (Wada et al., 2006), Celsr 

(Shafer et al., 2011; Tissir et al., 2005; Wada et al., 2006), Dvl (Onishi et al., 2013; Shafer et al., 

2011), Gpc4 (Topczewski et al., 2001), Ptk7 (Hayes et al., 2013; Lu et al., 2004).  

!
Determination of a method to analyze Scrib localization in FBMN-NE contacts 

 Our study of Scrib localization in FBMN focused on Scrib puncta along membranes of 

FBMN-FBMN contacts. As such, it is of interest to determine a method to analyze Scrib puncta 

at sites of FBMN-neuroepithelium (NE) contact. This is of particular interest as FBMNs are 

migrating through the NE. Such analysis would require high resolution images and powerful 

image processing software due to the inconsistent shape and dynamic nature of FBMNs. A 

detailed analysis would require a method to measure surface area to normalize puncta counts, 

similar to our method of analysis. Two-photon confocal microscopy allows for deep tissue 
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analysis without scattered fluorescent excitation (Denk, Strickler, & Webb, 1990). Such tools 

may prove sufficient to acquire high-resolution images of Scrib in FBMNs to analyze 

localization at such a detailed level. 

!
Scrib localization in FBMN in other PCP component knockout 

 Here we have shown that Pk1b influences the distribution and subcellular localization of 

Scrib in migrating FBMNs. It is of interest to determine if there are other PCP components that 

significantly influence such localization. Other PCP components such as Fzd3a and Celsr (Wada 

et al., 2006) are required in FBMN migration.  Scrib also physically interacts with Nhsl1b 

(Walsh et al., 2011); mutants of Nhsl1b also have a FBMN migration defect. Analysis of the 

localization of Scrib in these knockouts may yield significant insight on Scrib’s role in the PCP-

dependent migration of FBMN, and where Scrib plays its role in this pathway. Methods to 

analyze such data can be similar to methods utilized in this study for FBMN-FBMN contacts.  

!
Scrib colocalization studies 

 Scrib has been previously shown to interact with many other proteins such as Dlg, Lgl, 

and Vang (Bilder et al., 2002; Bilder & Perrimon, 2000; Kallay et al., 2006, reviewed in 

(Humbert, Dow, & Russell, 2006) and has been implicated as a scaffolding protein through its 

PDZ domains. Other proteins of interest may further describe Scrib’s role in CE and FBMN 

migration. Candidate proteins include Nhsl1b (Walsh et al., 2011) and proteins in focal adhesion 

complexes. Focal adhesions (FAs) have been described in cell culture as large heterogenous 

protein complexes at which the intracellular matrix is linked to the extracellular matrix. Proteins 
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that influence FA turnover include Paxillin, which interacts with GIT-1, indirectly linking Scrib 

with FAs (Audebert et al., 2004; Hoefen, 2006; Matsumoto, Fumoto, Okamoto, Kaibuchi, & 

Kikuchi, 2010; Wehrle-Haller & Imhof, 2002). Colocalization studies with Scrib and these 

potential proteins in cells undergoing CE and FBMNs could directly link PCP signaling with FA 

turnover and control via Scrib. Such studies would also provide evidence of PCP influencing FAs 

in vivo cell migrations. 

!
!
!
!
!
!
!
!
!
!
!
!
!!!!!!!
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!
!!!

Materials & Methods !!
Fish Strains 

All Zebrafish were maintained according to standard procedures and were staged as 

previously described (C. B. Kimmel, Ballard, Kimmel, Ullmann, & Schilling, 1995). Wild type 

embryos were attained from natural mating of either Yoshi AB or ZIRC AB pairings. The fzd3a/

off-limits mutant was originally described as oltrw689 (Wada et al., 2006). The vangl2/trilobite 

mutant was originally described as trim209 (Jessen et al., 2002). The pk1bfh122/122 was originally 

described by (Mapp et al., 2011). The scrib/landlocked mutant was originally described as 

llkrw468 (Wada, 2005).Scrib/llkrw468 and fzd3a/oltrw689 embryos were attained through incrossing 

corresponding homozygous adults. Vangl2/trim209 embryos were attained through incrossing 

heterozygous adults. Heterozygous genotypes were attained by outcrossing mutant parents with 

either Yoshi AB or ZIRC AB parents. Genetic interaction embryos were attained by crossing 

scrib/llkrw468 and fzd3a/oltrw689 homozygous parents, scrib/llkrw468 homozygous and vangl2/

trim209 heterozygous parents, or fzd3a/oltrw689 homozygous and vangl2/trim209 heterozygous 

parents. 

!
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Embryonic Genotyping 

 Vangl2/trim209 embryos were often attained from crosses that would result in embryo 

clutches possessing more than one genotype. As such, these embryos were genotyped before 

conducting any further immunocytochemistry. Vangl2/trim209 homozygous embryos were 

genotyped by their convergent extension phenotype. Vangl2/trim209 heterozygous and genetic 

interaction embryos were fixed with 4% para-formaldehyde (in 1x PBS) at 33hpf overnight at 

4�C. Embryos were then washed in PBST (1 x PBS with 0.25% Triton X-100). After 

immunostaining, before glycerol dehydration, embryo heads were micro-dissected utilizing a 

Carl Zeiss stereo microscope Discovery.V8. DNA was prepped with 1x Base Solution (0.025M 

NaOH, 0.2mM EDTA) and incubated for 30mins at 95�C and neutralized with 1x Neutralization 

solution (0.04M Tris-HCl). PCR was conducted, utilizing TaKaRa ExTAQ polymerase and 

custom primers from Eurofins (forward: 5�-TAGGCCTGCATCTAACCAAAC; reverse: 5�-

CCAAAAATGCCTGACCACAGATTC). A restriction enzyme digest utilizing AlwNI was run at 

37�C overnight and then run on a 2% agarose gel stained with ethidium bromide. Heterozygous 

embryos possessed two bands at 70bp and 23bp. 

!
Immunocytochemistry & Immunofluorescence 

 The 3A10 antibody (mouse IgG1) from DSHB was used at a concentration of 1:10 on 

embryos at 33hpf that had been fixed in 4% paraformaldehyde (in 1 x PBS) overnight at 4�C. 

Embryos were washed in PBST (1 x�PBS with 0.25% Triton X-100) and permeablized with 

acetone and then washed again with PBST. Embryos were then blocked with PBST + 10% Goat 
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Serum + 10% BSA at Room Temperature for at least 1 hr.  Alexa Fluor��568 Goat Anti-Mouse 

IgG (H+L) Secondary Antibody (catalog number A11031, Life TechnologiesTM) was added at a 

concentration of 1:200 overnight at 4�C. Embryos were washed 5 x�30 min in PBST (1x�PBS 

with 0.25% Triton X-100) in between antibody incubations. The embryos were then dehydrated 

in 25%, 50%, and 75% glycerol sequentially.  

 The Scrib antibody (mouse IgG2b) was used at a concentration of 1:1 on embryos at 

various stages of development, and fixed with 2% tricholoracetic acid (TCA) (in 1 x PBS) for 1 

hour at room temperature. Embryos were washed in PBST (1 x PBS with 0.25% Triton X-100)  

and permeablized with Acetone and then washed again with PBST. Embryos were then blocked 

with PBST + 10% Goat Serum + 10% BSA at Room Temperature for at least 1 hr.  Alexa Fluor��

568 Goat Anti-Mouse IgG (H+L) Secondary Antibody (catalog number A11031, Life 

TechnologiesTM) was added at a concentration of 1:200 overnight at 4�C. Embryos were washed 

5 x�30 min in PBST (1x�PBS with 0.25% Triton X-100) in between antibody incubations. The 

embryos were then dehydrated in 25%, 50%, and 75% glycerol sequentially. 

!
Microscopy 

 For CoPA and SCRIB FBMN analysis, after immunocytochemistry and 

immunofluorescence, the yolks of the embryos were removed by micro-dissection and the body 

anterior to the yolk extension was removed. Embryo tails for CoPA analysis (the remaining 

posterior section) were mounted on coverslips on their sides for lateral visualization of the spinal 
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cords. Embryos were mounted in 75% glycerol. Wild Type and mutant embryos were visualized 

and mounted utilizing a Carl Zeiss stereo microscope Discovery.V8. 

!
Confocal Microscopy 

 Confocal images of labeled CoPA neurons were obtained on a Carl Zeiss Spinning Disk 

Laser Confocal Observer.Z1 (Virginia Commonwealth University, Biology Dept.). To obtain 

images of the left and right sides of the spinal cord for both wild type and aberrant contralateral 

axon pathfinding, confocal projections were made by imaging from the location of CoPA cell 

bodies on one side of the spinal cord through to the CoPA cell bodies on the other side of the 

spinal cord. Maximum intensity projections were created in Zen Blue in order to quantify the 

contralateral anterior-posterior pathfinding direction of CoPA neurons.  

!
Quantification of Caudal Axon Phenotype 

 CoPA neurons of embryos were screened for the rostral, medial, or caudal direction of the 

post-midline crossing axons. All identifiable neurons after the 8th somite were marked as to 

which direction along the A-P axis the axons were pathfinding. Analysis of axons before midline 

crossing was achieved by drawing a line perpendicular to the A-P axis at the axon hillock of each 

CoPA. A second line was drawn from the axon hillock to the point of entry at the floorplate. If 

the angle of the two lines was greater than 2º, the axon fiber was considered to have either an 

anterior or posterior bias. Pearson’s Chi-Square Test was utilized to test percentage for statistical 

significance. Student’s t-test was utilized to test mean proportion for statistical significance. All 
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statistical tests were conducted with JMP11 statistical software provided by Virginia 

Commonwealth University. 

!
Scribble Antibody Creation 

 The C-terminus of zebrafish SCRIB was fused to GST and expressed in bacteria and 

purified using glutathione-sepharose beads. Purified GST-SCRIB protein was injected into mice. 

Whole blood was tested for the presence of reactive antibodies by immunostaining and western 

blot. Spleens were harvested, fused, and single B cell clones arrayed in 96 well plates. Individual 

clones were again tested for highly reactive antibodies by immunostaining and western blot 

analysis. The staining conducted in this screen was from supernatant collected from clone P2H4-

D12-G5-E2, which is an IgG2 antibody. 

!
!
Western Blotting 

 Embryos at 24hpf were dechorionated with Pronase, then deyolked in 1/2 Ringer’s 

solution. 1uL of nonidet-P40 lysis buffer per embryo was used and embryos lysed, rocked for 

30mins at 4ºC, and centrifuged for 20 mins at 18.8xg. SDS sample buffer with 10% β-

mercarptoethanol was added at 1:4 concentration and boiled for 10 mins, then placed on ice for 2 

minutes. Pre-cast MINI-PROTEAN® protein gels were used and between 90µg-100µg of protein 

was loaded into each lane. Western immunoblotting was conducted on transfer membrane after 

5% BSA block for at least 1 hour. Scrib antibody was used at 1:10 concentration with 5% BSA 

overnight and subsequently washed with 1 x PBS 3x5mins. Secondary LI-COR® IRDye 680RD 
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Goat anti-Mouse IgG (H+L) was used at 1:5000 concentration with 5% BSA for at least 2 hours 

and subsequently washed with 1 x PBS 3x5mins. Blots were imaged with LI-COR® Odyssey 

(Virginia Commonwealth University). 

!
FBMN-FBMN Puncta Quantification 

 Puncta along membranes of FBMN-FBMN contact were counted by located membranes 

of contact. The beginning and end of membrane contact along the Z-axis was determined 

visually utilizing Zen Blue. The length of the contact membrane was measured and recorded and 

all puncta counted by hand, through the Z-axis range. For normalization, puncta number along a 

specific membrane were divided by the length of the membrane on which those puncta existed. 

Student t-test was utilized to determine significance. All statistical tests were conducted with 

JMP11 statistical software provided by Virginia Commonwealth University. 

!
!
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Figures 

!  

 � Legend on next page � 
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Figure 1: CoPA axon pathfinding requires PCP components Fzd3a, Vangl2, and Scrib.  At 
33hpf, CoPA axon pathfinding is complete. (A) Schematic representing a single CoPA neuron 
with axial legend. Numbered arrowheads indicate steps of typical CoPA axon pathfinding (1) 
ipsilateral ventral projection (2) midline crossing (3) dorso- (4) anterior projection. (B, D, F, G, 
I) Confocal maximum intensity projections of 3A10 immunofluorescence in the spinal cord of 
(B) wild type, (D) fzd3arw689/rw689 (F) vangl2m209/m209 (G) pk1bfh122/fh122 and (I) scribrw468/rw468. 
Asterisks indicate example CoPA neurons that are pathfinding incorrectly posterior.  (C, E, H, 
K) Confocal orthogonal projections of 3A10 immunofluorescence in the spinal cord of (C) wild 
type, (E) frd3arw689/rw689 (H) pk1bfh122/fh122 and (K) scribrw468/rw468. White line approximates 
midline of embryo. In all images, anterior is to the left and posterior is to the right unless 
otherwise noted. (L) Percentage comparisons of CoPA axon projections after crossing the 
midline of all mentioned genotypes. Scale bar = 20µm.  * p < 0.0001, Pearson’s Chi-Square Test. !
!

!  

Figure 2: Fzd3a heterozygotes have a mild CoPA pathfinding phenotype. Percentage 
comparisons of CoPA axon projections after crossing the midline with heterozygous mutants for 
PCP components. In fzd3a+/rw689 embryos, 15.3% of CoPA axons project posteriorly. * p < 
0.0001, ! p < 0.01  !
!
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!  !
Figure 3:  Anatomy and patterning of CoPA commissures remain intact in PCP mutants. 
(A-C) Single confocal planes of 3A10 immunofluorescence in the spinal cord of 33hpf embryos. 
(A) wild type CoPAs, (B) fzd3arw689/689 CoPAs, and (C) scribrw468/rw468 CoPAs. Scale bar  = 
10µm. (D) Mean commissure length of measured CoPAs. No significant difference was 
determined between genotypes (WT-fzd3a p=0.26; WT-scrib p=0.27; Student’s t-test). Error 
indicates SEM.   !
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Figure 4: PCP components influence CoPA axons before midline crossing. (A & C) Confocal 
projections of 3A10 immunofluorescence in the spinal cord of (A) wild type and (C) fzd3arw689/

rw689 mutants at 33hpf as examples of the method of measurement of pre-midline crossing fibers. 
(B & D) Confocal orthogonal projections of 3A10 immunofluorescence in the spinal cord of (B) 
wild type and (D) fzd3arw689/rw689 mutants at 33hpf. (E) Distribution of the direction of pre-
midline axons within genotypes. * p < 0.01, ! p < 0.05; Pearson chi square test.  
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Figure 5: Two models for PCP-guided anterior-posterior CoPA Pathfinding. Two non-
mutually exclusive models, (A) Cell-autonomous Wnt-Frizzled signaling and (B & C) Non-cell 
autonomous PCP signaling.  In cell-autonomous model (A) axons are utilizing Fzd3a receptor to 
respond to extracellular Wnt5a gradient. In fzd3arw689/rw689 mutants, CoPA neurons cannot 
capability to respond to Wnt5a gradient and pathfind incorrectly. In non-cell-autonomous model 
(B & C) axons are responding to a neuroepithelium that has been polarized along the anterior-
posterior axis. In a PCP mutant context (C) the neuroepithelium is unable to polarize, and as a 
result, the CoPA neuron pathfinds incorrectly. !
!
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Figure 6: Monoclonal antibody is specific against Scrib. (A) Western blot utilizing our IgG2b 
monoclonal mouse antibody against the C-terminus of zebrafish Scrib and ponceau loading 
control. Lane 1 is total protein from wild type embryos and lane 2 is total protein from MZ-
scribrw468/rw468. Note the absence of a distinct Scrib band in MZ-scribrw468/rw468. (B-D) 
Immunocytochemistry of (B-D) wild type isl1:GFP control neuroepithelium and FBMNs at 
24hpf and (E-G) of MZ-scribrw468/rw468 embryo. Note the absence of signal in (F) while GFP 
staining in the FBMNs is still present in MZ-scribrw468/rw468 embryo (E, G). Scale bar = 10µm. !!!
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Figure 7: Scrib localizes to basolateral membrane in vertebrate epithelium. (A-B) Single 
confocal planes of F-actin (phallodin) and acetylated tubulin staining of (A) wild type and (B) 
MZ-scribrw468/rw468 embryos of the otic vesicle. Note the central location of otic cilia (acetylated 
tubulin) staining in (A) and (B). (C-E) Single confocal planes of (C) GFP, and (D) Scribble 
immunocytochemistry of otic vesicle in Tg(β-actin:EGFP-CAAX) embryos at 24hpf. 
Arrowheads indicate examples of distinct puncta at the AB boundary. Scale bar = 10µm. !!!!!!
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Figure 8: Scrib localized to the membrane and as puncta during CE movements. 
Immunocytochemistry for (A, C, F) GFP and (D, G) Scrib in Tg(β-actin:EGFP-CAAX) embryos 
at Tail Bud stage. (B) Schematic representation of perspectives presented at high magnification 
of the (C-E) Lateral Ectoderm and the (F-H) Dorsal Mesoderm. Yellow arrowheads indicate 
distinct Scrib puncta localized to membranes of cells. Scale bar (A) = 50µm, Scale bar (C-H) = 
10µm !!!
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Figure 9: Scrib in migrating FBMNs localizes to membranes and as distinct puncta. Single 
confocal planes of migrating FBMNs at (A-C) 18hpf and (D-F) 24hpf. At 18hpf (A), FBMNs are 
born and beginning to migrate. At 24hpf FBMNs (D), are migrating through r5 into r6. Scale bar 
= 10µm. !!
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Figure 10: Scrib puncta distribution along sites of FBMN-FBMN contacts is influenced by 
Prk1b. (A-D) Single confocal planes as examples of puncta analysis along membranes of 
FBMN-FBMN contacts of (A,B) wild type embryos and (C,D) pk1bfh122/fh122 embryos at 24hpf, 
during FBMN migration. Arrows indicate membranes along which puncta were counted. (E,F) 
Quantification of Scrib puncta by (E) mean counted puncta and by (F) normalization by length 
of the membrane along which the puncta were counted. * p < 0.0001, Student’s t-test, error bars 
signify SEM. Scale bars = 2000nm. !!!!
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!!!!
Supplementary Materials !!!!

!!
Table S1: Core PCP genes in vertebrates. Genes that are present in Ensembl database as of 
Spring 2013. Zebrafish possess paralogous genes, designated �a��and �b��due to partial tetraploidy. 
Adapted from review Tissir, F. & Goffinet A., 2013.  !!!!!!

Mammal Chick Xenopus tropicalis Zebrafish

CELSR1 + + celsr1a, celsr1b

CELSR2 - + +

CELSR3 + + +

FZD3 + + fzd3a, fzd3b

FZD6 + + +

VANGL1 + + +

VANGL2 + + +

DVL1 + + dvl1a, dvl1b

DVL2 - + +

DVL3 + + +

PRICKLE1 + + prk1a, prk1b

PRICKLE2 + + +

PRICKLE3 - + +

PRICKLE4 - + -
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Figure S1: PCP model. (A) Core polarity proteins asymmetrically localize in the apical zone of 
Drosophila wing epithelium, translated to the placement of distal actin-based hair (represented 
by the purple triangle). Proximal is left, distal is right (adapted and modified from Vladar et al., 
2009). (B) Model of non-canonical Wnt/PCP signaling and the proteins involved. 
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 !
Figure S2: Commissural neurons of the zebrafish spinal cord. Neurons of the zebrafish spinal 
cord that cross the midline, divided by neurotransmitter classes: glutamatergic, glycinergic. Note 
the distinguishing phenotypes between the CoPAs and CoSAs. Adapted from McLean et al., 
2007; compiled from Bernhardt et al., 1990; Kuwada et al., 1990a; Kuwada et al., 1990b; Hale et 
al., 2001; Higashijima et al., 2004.e !!!!!
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Figure S3: Model of protein structure of Scribble. Scribble begins with 16 leucine rich repeats 
and is followed by four PDZ domains. The antibody for zebrafish Scribble was against the C-
Terminus, with the region injected into mice signified by the red marker. !!!!!!!!!!!!!!!!!!!
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