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Background:  Inverse-probability-of-treatment-weighted estimation (IPTW) of marginal 

structural models was proposed to adjust for time-varying confounders that are influenced by 

prior treatment use. It is unknown whether pharmacoepidemiologic studies that applied IPTW 

conformed to the recommendations proposed by methodological studies. In addition, no previous 

study has compared the performance of different analytic strategies adopted in IPTW analyses.  

Objectives: This project aims 1) to review the reporting practice of pharmacoepidemiologic 

studies that applied IPTW, 2) to compare the validity and precision of several approaches to 



 
 

 
 

constructing weight, 3) to use IPTW to estimate the effectiveness of glucosamine and 

chondroitin in treating osteoarthritis. 

Methods: We systematically retrieved pharmacoepidemiologic studies that were published in 

2012 and applied IPTW to estimate the effect of a time-varying treatment.  Under a variety of 

simulated scenarios, we assessed the performance of four analytic approaches what were 

commonly used in studies conducting IPTW analyses.  Finally, using data from Osteoarthritis 

Initiative, we applied IPTW to estimate the long-term effectiveness of glucosamine and 

chondroitin on treating knee osteoarthritis.  

Results:  The practice of reporting use of IPTW in pharmacoepidemiologic studies was 

suboptimal. The majority of reviewed studies did not report that the positivity assumption was 

assessed, and several studies used unstablized weights or did not report that the stabilized 

weights were used.  With data simulation, we found that intention-to-treat analyses 

underestimated the actual treatment effect when there was non-null treatment effect and 

treatment non-adherence.  This underestimation was linearly correlated with adherence levels.  

As-treated analyses that took into account the complex mechanism of treatment use generated 

approximately unbiased estimates without sacrificing the estimate precision when the treatment 

effect was non-null.  Finally, after adjustment for potential confounders with marginal structural 

models, we found no clinically meaningful benefits of glucosamine/chondroitin in relieving knee 

pain, stiffness and physical function or slowing joint space narrowing. 

Conclusions: It may be prudent to develop best practices of reporting the use of IPTW.  Studies 

performing intention-to-treat analyses should report the levels of adherence after treatment 

initiation, and studies performing as-treated analyses should take into the complex mechanism of 

treatment use in weight construction.
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Chapter 1: Background 
 

 

 

This dissertation was motivated by the desire to quantify the effect of glucosamine and 

chondroitin (Glu/Chon) on relieving knee symptoms and slowing joint structural progression 

among patients knee osteoarthritis (OA). When analyzing the relation between Glu/Chon and 

knee OA using data from Osteoarthritis Initiative, we were concerned that the data structure 

might involve time-varying confounders that were affected by previous use of Glu/Chon. To 

properly control for the confounding bias, we used inverse-probability-of-treatment-weighted 

(IPTW) estimation of marginal structural models (MSM) in the analysis stage. In this 

introduction chapter, we briefly discussed 1) the disease burden of OA and existing evidence 

regarding the efficacy of glucosamine and chondroitin in treating OA; 2) the causal diagram 

describing the relations between Glu/Chon use, study outcomes and potential confounders; and 

3) application of IPTW to control for confounding and assumptions underlying IPTW estimation.  

At the end of this chapter, the three specific aims of this dissertation were provided. 

 

Glucosamine/chondroitin and knee osteoarthritis 

 OA is the most common form of arthritis and nearly 27 million American adults have 

physician-diagnosed OA.1  OA typically affects weight-bearing joints such as hips, knees and 

spine, but can also occur in non-weight-bearing joints.2 The most common OA symptoms 

include joint pain and stiffness and reduced range of joint movement.2  Radiographic evidence of 
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OA includes progressive narrowing of joint space, formation of subchondral sclerosis and cysts 

and development of osteophytes.3 OA has detrimental effects on individuals’ physical function 

and quality of life.4,5  Because of its high prevalence and the frequent disability that accompanies 

disease in major joints such as the knee and hip, OA accounts for more difficulty with climbing 

stairs and walking than any other disease.6 

Currently, there are no curative remedies for OA and clinical guidelines recommend both 

pharmacological and non-pharmacological therapies to relieve symptoms.7 Glucosamine and 

chondroitin are two dietary supplements commonly used among OA patients in the United Sates. 

Lapane et al. found that among patients with radiographic knee OA, 31% and 28% reported 

frequent use of glucosamine and chondroitin, respectively.8  These supplements hold promise for 

treating OA because both are essential components of the proteoglycan in normal cartilage and 

thus may provide substrate or building blocks for the biosynthesis of proteoglycan.9, 10   

Despite the biologic plausibility, evidence regarding the efficacy of glucosamine and 

chondroitin in relieving OA symptoms and modifying structural progression is not established. A 

recently updated Cochrane review reported a moderate clinical treatment benefit for pain 

reduction in favor of glucosamine over placebo.11  However, this superiority of glucosamine was 

not consistently reported by all studies included in the review. When the analysis was restricted 

to studies with adequate allocation concealment or studies without connection to private 

industry, no superiority of glucosamine was found.11  Regarding the efficacy in slowing joint 

structural progression, two 3-year clinical trials, which were funded by one pharmaceutical 

company, reported significant beneficial effect from glucosamine,12,13 whereas another two 2-

year publicly-funded trials found that there were no substantial benefits from glucosamine (with 

or without chondroitin) in retarding joint space narrowing.14,15   
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Causal diagram and time-varying confounders 

We analyzed the effectiveness of Glu/Chon on treating OA using data from Osteoarthritis 

Initiative (OAI), which is a multi-center observational study aimed to identify risk factors for 

incidence and progression of knee OA.16 In our study, we included OAI participants with 

radiographic knee OA at baseline. Annual follow-up surveys and examinations were conducted 

to collect information on treatment use and changes in knee symptoms and joint structure. Our 

analyses used information for the first four years.  

Prior to modeling the effect of Glu/Chon on knee OA, we drew a causal diagram to help 

identify potential confounders as well as methods to control for confounding. Figure 1.1 depicts 

the hypothesized relationships between Glu/chon, study outcomes (including knee symptoms and 

structural progression), and potential time-varying confounders. Previously measured study 

outcomes and time-varying confounders may be simultaneously confounders and intermediate 

variables. For instance, when studying knee pain as the outcome (i.e., Outcomet in Figure 1.1), 

the pain severity measured at the previous visit (i.e., Outcomet-1) can be a potential confounder 

because 1) it correlates with pain score measured at current visit (i.e., Outcomet), and 2) patients 

with more severe pain are more likely to use Glu/Chon (i.e., Glu/Chont-1).8  Furthermore, if 

Glu/Chon is effective in relieving pain (which is the hypothesis tested in our study), the 

previously measured pain score (i.e., Outcomet-1) lies on the causal path from prior treatment use 

(i.e., Glu/Chont-2) and currently measured pain (i.e., Outcomet).   

If the causal structure in Figure 1.1 is true, standard regression models adjusting for 

previous pain severity will produce a biased estimate of the overall treatment effect.17 Standard 

regression models adjust for confounding through conditioning analyses on the potential 

confounders.17  Under the causal structure in Figure 1.1, conditioning analyses on Outcomet-1 can 
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eliminate its confounding bias to the relation between Glu/Chont-1 and Outcomet. However, 

conditioning analyses on Outcomet-1 also eliminates the indirect effect of Glu/Chont-2 on 

Outcomet that is mediated by Outcomet-1, and thus generates a biased estimate of the overall 

treatment effect of Glu/Chon on Outcomet.  

 

Marginal structural models 

To properly control for the bias by time-varying confounders that are affected by 

previous treatment, Robins et al. proposed the IPTW estimation of MSM.18,19 As the name 

indicates, IPTW reduces confounding through assigning a weight to each participant, which is 

proportional to the inverse of conditional probability of receiving his/her observed treatment 

given those time-varying confounders.19  In the resulting weighted pseudo-population, treated 

participants and untreated participants are balanced over those time-varying confounders.19 Since 

the analysis is not conditioned on the confounders, IPTW can properly estimate overall 

treatment. In this section, we illustrated how IPTW can adjust for confounding with a simplified 

example and briefly discussed the assumptions underlying this method.  

For illustrative purposes, we focused only on the relation between Glu/Chon and knee 

pain at one time point (shown in Figure 1.2).  For simplicity, we assumed that there was only one 

confounder, i.e., baseline pain severity. It’s likely that patients with more severe pain (i.e., Pain0 

in Figure 1.2) were more likely to use Glu/Chon (Glu/Chon0) and also more likely to report 

severe pain one year later (Pain1). For simplicity, we assumed that Pain0, Glu/Chon0 and Pain1 

were all binary variables, with value 1 indicating severe baseline pain, using Glu/Chon at 

baseline and reporting severe pain at Year 1, respectively.  

A simplified example with one-time-point treatment 
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We generated a hypothetical dataset including 100 OA participants. Distributions of the 

three variables are listed in Table 1.1. The first column describes the strata formed by levels of 

Pain0 and Glu/Chon0. The second column shows number of patients in each stratum. Pr(Pain1=1) 

is the probability of reporting severe pain at Year 1 and Pr(Glu/Chon0|Pain0) represents the 

conditional probability of receiving observed treatment (either 0 or 1) given Pain0.  

In this hypothetical sample, 60% of the patients had severe pain at baseline. 66.7% and 

50% took Glu/Chon among patients with severe and mild baseline pain, respectively. The 

probability of having severe pain at Year 1 was 40% among patients with severe baseline pain, 

and 20% among patients with mild baseline pain. Since there was no difference in the probability 

of having severe pain at Year 1 between those treated and untreated with Glu/Chon within the 

stratum of baseline pain severity, there was actually no treatment effect in this hypothetical 

example. However, if we calculated the crude association between Glu/Chon and Pain1, crude 

relative risk (RR) =(40×0.4+20×0.2)/60
(20×0.4+20×0.2)/40

=1.11, which was apparently biased.  

IPTW estimation can control for the confounding by Pain0 through assigning weights to 

patients. The first step of IPTW is to construct weight. For the hypothetical sample, weight was 

calculated as the inverse of conditional probability of receiving observed treatment given Pain0.  

For instance, among patients with Pain0=1, the possibility of receiving treatment is 66.7%, and 

possibility of not receiving treatment is 1-66.7%=33.3%. Thus the weight assigned to patients 

who had severe baseline pain and received treatment was 1/0.667=1.5, and weight for those not 

receiving treatment was 1/0.333=3. Accordingly, we calculated weights for patients with mild 

pain at baseline. We listed the weights for each stratum of patients in the fifth column in Table 

1.1. 

The relative risk in the weighted population was subsequently calculated as follows: 
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Weighted RR=(60×0.4+40×0.2)/100
(60×0.4+40×0.2)/100

=1.0, which was unbiased.  

IPTW estimation for the simplified situation depicted in Figure 1.2 can be generalized to 

situations involving time-varying treatment and confounders, for example, the causal structure in 

Figure 1.1. For studies with a time-varying treatment and confounders, weights are first 

constructed at each assessment (time) point, which  can be calculated as the unconditional 

probability of receiving observed treatment divided by conditional probability of receiving 

observed treatment given potential confounders.19  The final weight for each participant is the 

product of his/her weights constructed at all available time points. The inclusion of the 

numerator, i.e., unconditional probability of receiving observed treatment, is to improve the 

precision of the final estimate.19   

Time-varying treatment and confounders 

There are three conditions or assumptions, under which consistent causal effects can be 

identified from non-experimental data: exchangeability, positivity and consistency.20, 21   

Identifiability assumptions 

Exchangeability assumption is also known as the assumption of no unmeasured 

confounders.20,22 For longitudinal studies with time-varying exposures, exchangeability 

assumption holds when there are no unmeasured confounders for treatment use at each follow-up 

assessment, given the history of measured confounders and previous treatment.  Exchangeability 

assumption is untestable with observed data20 and is violated to some degree in almost all 

epidemiologic studies. Notwithstanding, if the investigators have adequate substantive 

knowledge with respect to the direction and magnitude of unmeasured confounding, sensitivity 

analysis can be conducted to test the robustness of IPTW estimates to unmeasured 

confounding.23  
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Positivity

The 

 assumption states that each possible treatment level occurs with some positive 

probability at every level of observed confounders in the study population.24,25  IPTW estimation 

is more sensitive to violations of positivity assumption than standard regression models.20,25  If 

the conditional probability of receiving a certain level of treatment is zero, the weight is 

undefined. Furthermore, when positivity is nearly-violated, e.g., a very small proportion of the 

study sample within one or more covariate strata are treated, the weights for these few 

participants become very large. The disproportionate reliance of the effect estimate on the 

experience of a few unusual individuals can result in substantial bias.25   

consistency

 

 condition requires that a study unambiguously define treatment and that 

counterfactual outcome for each level of treatment be well-defined.20,26,27 Many non-

experimental studies violated this condition when they tried to estimate the effect of an ill-

defined intervention by contrasting the outcome between two groups of participants who happen 

to differ with respect to some physiological measure (e.g., body mass index, low-density 

lipoprotein cholesterol).26,28 Studies violating consistency assumption will have difficulty in 

achieving the condition of exchangeability and may be of little help to advise public health 

intervention.26,28  Therefore, some investigators propose that studies should only estimate the 

causal effects of exposures that can be manipulated or be hypothetically assigned to a 

person.26,27,29 

Specific aims of the dissertation 

When applying IPTW to estimate the effect of Glu/Chon on treating OA, we fully 

realized the complexity of the process of performing IPTW analyses, as well as the importance 

of various assumptions underlying this method. Therefore, besides applying IPTW to address a 

real-world study question, we 1) systematically reviewed how recently published 
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pharmacoepidemiologic studies applied this method and reported findings, and 2) performed a 

simulation study to assess the impact of various assumptions made in weight construction on the 

validity and precision of IPTW estimates. We listed below the three specific aims of this 

dissertation.  

 

Study 1. To systematically review pharmacoepidemiologic studies published in 2012 that used 

IPTW estimation of MSM to estimate the effect from a time-varying treatment 

 

We extracted information about the type(s) of bias IPTW was used to address, how the 

identifiability assumptions were assessed, how the weights were constructed and outcome 

models specified, and whether substantially different results were derived from IPTW method 

and standard regression models. 

 

Study 2. To explore the impact of various assumptions made during weight construction on the 

validity and precision of IPTW estimates 

 

Using various simulated scenarios, we assessed the bias and precision of estimates derived from 

four approaches to constructing weights, including IPTW assuming intention-to-treat, IPTW 

assuming complex mechanism of treatment assignment, IPTW assuming simple mechanism of 

treatment assignment, and IPTW assuming invariant confounders.   

 

Study 3. To quantify the extent to which glucosamine and chondroitin relieves symptoms and 

slows structural progression among persons with radiographic knee osteoarthritis 



 
 

9 
 

 

Using IPTW, we examined the effectiveness of glucosamine and chondroitin in relieving knee 

symptoms and slowing structural progression among persons with radiographic knee 

osteoarthritis  
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Table 1.1. Hypothetical data corresponding to the causal diagram in Figure 1.2 

Stratum No. of 
patients Pr(Pain1=1) Pr(Glu/Chon0|Pain0)* Weight† Weighted 

No. ‡ 

No. of events 
in weighted 

sample 
Pain0=1, 

Glu/chon0=1 
40 40% 40/(40+20)=0.67 1/0.67 60 60×40% 

Pain0=1, 
Glu/chon0=0 

20 40% 20/(40+20)=0.33 1/0.33 60 60×40% 

Pain0=0, 
Glu/chon0=1 

20 20% 20/(20+20)=0.5 1/0.5 40 40×20% 

Pain0=0, 
Glu/chon0=0 

20 20% 20/(20+20)=0.5 1/0.5 40 40×20% 

* Pr(Glu/Chon0|Pain0) is the probability of receiving observed treatment conditional on baseline 
severity level 

† Weight=1/Pr(Glu/Chon0|Pain0) 
‡ Weighted No. = Weight × No. of patients 
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Figure 1.1. Hypothesized causal relationships between glucosamine/chondroitin treatment, study 
outcomes and potential time-varying confounders   

Glu/Chon denotes treatment with glucosamine/chondroitin and the subscript number denotes the 

follow-up time (year) when the information was measured.  

 

  

Glu/Chon 2 

Outcome2 &  
Time-varying 
confounders2 

  

Glu/Chon1 

Outcome1 
& Time-varying 

confounders1 

Year 1 Year 2 

Glu/Chon 3 

Outcome3 &  
Time-varying 
confounders3 

  
Year 3 

Glu/Chon 4 

Outcome4 &  
Time-varying 
confounders4 

  
Year 4 



 
 

12 
 

 

 

 

 

 

 

Figure 1.2. A causal diagram with one-time-point treatment  
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Chapter 2: Application of marginal structural models in pharmacoepidemiologic studies: A 

systematic review 
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Abstract 

Objectives  We systematically reviewed pharmacoepidemiologic studies published in 2012 that 

used inverse-probability-of-treatment-weighted (IPTW) estimation of marginal structural models 

(MSM) to estimate the effect from a time-varying treatment.  

Methods  Potential studies were retrieved through a citation search within Web of Science and a 

keyword search within PubMed.  Eligibility of retrieved studies was independently assessed by 

at least two reviewers.  One reviewer performed data extraction and a senior epidemiologist 

confirmed the extracted information for all eligible studies.  

Results  Twenty pharmacoepidemiologic studies were eligible for data extraction.  The majority 

of reviewed studies did not report whether the positivity assumption was checked.  Six studies 

performed intention-to-treat analyses, but none of them reported adherence levels after treatment 

initiation.  Eight studies chose an as-treated analytic strategy, but only one of them reported 

modeling the multiphase of treatment use.  Almost all studies performing as-treated analyses 

chose the most recent treatment status as the functional form of exposure in the outcome model.  

Nearly half of the studies reported that the IPTW estimate was substantially different from the 

estimate derived from a standard regression model.  

Conclusions  The use of IPTW method to control for time-varying confounding is increasing in 

medical literature.  However, reporting of the application of the technique is variable and 

suboptimal.  It may be prudent to develop best practices in reporting complex methods in 

epidemiologic research.   
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Introduction  

A time-varying confounder is a time-varying risk factor for the study outcome which 

brings about changes in the treatment use under study.30  In the presence of time-varying 

confounders that are influenced by previous treatment, standard regression models may produce 

biased estimate of the total treatment effect.19,31 To obtain unbiased estimate in this situation, 

Robins et al. proposed the inverse probability weighted (IPTW) estimation of marginal structural 

models (MSM).19,31  As the name indicates, IPTW estimation attempts to control for 

confounding through assigning each participant a weight.  The weight is proportional to the 

inverse probability of receiving observed treatment given the time-varying confounders and 

previous treatment history.  The weights are then used to create a pseudo-population, in which 

participants receiving treatment and those not receiving treatment are balanced over the time-

varying confounders but the relationship between treatment and outcome is not changed.19    

After publication of the seminal papers on MSM, methodological studies have provided 

detailed insights regarding the types of bias this method handles well,17,32 the assumptions under 

which consistent causal effects can be identified,23, 25, 26 and the appropriate ways of constructing 

weights and building outcome models.20, 33-35  IPTW estimation has been increasingly used in 

medical research, possibly due to the straightforward interpretation of the parameters derived 

from MSM.35  Indeed, from 2000 to October 2009 Suarez et al. noted a 15-fold increase in the 

number of studies using this approach.36   

Despite the increase in studies using IPTW, the extent to which these studies conform to 

the recommendations proposed by methodological studies remains unknown.  The purpose of 

this study was to systematically review pharmacoepidemiologic studies in which IPTW was used 

to estimate the effect from a time-varying treatment.  Based on information abstracted from these 
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studies, we hope to provide a broader context for scientists considering using this approach 

through discussing the scenarios under which IPTW method is preferred, appropriate procedures 

of conducting IPTW analyses and contents which are critical to report when using IPTW in 

medical literature.  

 

Methods 

 This study did not require ethics approval as no human subjects were involved. 

Selection of articles  

Our goal was to retrieve all pharmacoepidemiologic studies published in 2012 that used 

IPTW to estimate effect from a time-varying treatment.  To achieve this, we used two search 

strategies.  First, using the Web of Science database, we retrieved all published studies citing any 

one of the seminal papers on MSM.19,20,31,37  Second, in case we missed any relevant studies 

which did not cite these seminal papers, we also conducted a keyword search within PubMed.  

To improve the methodological rigor of our search strategy, we worked with a research librarian 

and developed the following keyword search algorithm: (marginal structural model*) OR 

(“marginal structural Cox model”) OR (“inverse probability” AND ("weight" OR "weighted" OR 

"weights" OR "weighting")) OR (inverse weight*).  The following types of studies or 

publications were excluded from the review: (1) methodological or simulation studies, (2) 

studies assessing effect from a point-treatment, i.e., a treatment that was assumed invariant in the 

study period; (3) non-pharmacoepidemiologic studies, i.e., studies not focusing on 

pharmaceuticals, biologics, or medical devices as primary exposure; (4) letters, meeting 

abstracts, review articles, and editorials. 
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We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines for this review.38  After excluding duplicate records, titles and abstracts of 

the remaining articles were assigned to two independent reviewers.  Studies with titles and 

abstracts judged relevant by at least one reviewer underwent full-text review.  Any discrepancy 

in eligibility judgment was resolved through discussion between the reviewers.  One reviewer 

(SY) performed data extraction and a senior epidemiologist (KLL) confirmed the extracted 

information for all eligible studies.  

 

Information abstraction 

The following sections provide a brief description and rationale of each element of IPTW 

method we chose to include in our data collection process.  In particular, we extracted 

information about the type(s) of bias IPTW was used to address, how the identifiability 

assumptions were assessed, how the weights were constructed and outcome models specified, 

and whether substantially different results were derived from IPTW method and standard 

regression models.  

 

Type of bias  

As illustrated by Hernán et al.,17 compared to standard regression models, MSM has the 

advantages of eliminating bias from two sources when estimating the effect from a time-varying 

treatment.  First, through applying inverse-probability-of-treatment weighting, IPTW can control 

for the time-varying confounding while avoiding two types of bias that may arise in analyses 

with standard regression models.17  The first type of bias occurs when the time-varying 

confounder is simultaneously a confounder and intermediate variable.  Conditioning analysis on 
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such a variable (as performed in standard regression models) will block the indirect effect from 

previous treatment on study outcome that is mediated by this variable.19  Another type of bias 

(called collider-stratification bias39 or selection bias17) occurs in standard regression models 

when the time-varying confounder is a common effect (i.e., a collider) of previous treatment and 

an unmeasured risk factor for the study outcome.  Conditioning analysis on this time-varying 

confounder induces a non-causal relationship between previous treatment and the unmeasured 

risk factor, which introduces bias in the effect estimate of previous treatment use.17 

Second, through applying inverse-probability-of-censoring weighting, MSM can control 

for selection bias from informative censoring.17,32  Our review focused on the use of inverse-

probability-weighting for handling selection bias from artificially censoring participants with 

treatment noncompliance, e.g., discontinuing the treatment under study or switching to an 

ineligible treatment.32  Bias may be introduced when this artificial censoring depends on 

treatment history and also risk factors for the study outcome.40  Under certain conditions 

(discussed below), IPTW can eliminate this bias by simulating a pseudo-population, in which all 

participants complete the follow-up but the effect of treatment on study outcome is the same as 

in the unweighted study population.41   

 

Identifiability assumptions 

There are three conditions or assumptions, under which consistent causal effects can be 

identified from non-experimental data: no uncontrolled confounding, consistency and 

positivity.20, 21  Consistency is the assumption that an individual’s potential (or counterfactual) 

outcome under the observed treatment is precisely the observed outcome.27  Because consistency 
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is often considered a reasonable assumption when estimating effects from medical treatments26, 

we did not extract information on this assumption. 

When there are confounders (time-invariant or time-varying) that are not measured or 

measured with error, the IPTW estimates will be biased by uncontrolled confounding. We looked 

for information about whether studies qualitatively discussed the susceptibility of their findings 

to uncontrolled confounding and whether they performed sensitivity analyses to test the 

robustness of their results when substantial uncontrolled confounding was suspected.   

The positivity assumption states that each treatment level occurs with some positive 

probability at every level of observed confounders in the study population.24,25  For example, this 

assumption is violated when all (or almost all) patients with a specific contraindication (which is 

also a risk factor for the study outcome) are untreated with the medication under study.  Among 

patients with the contraindication, the probability of receiving treatment will be zero (or close to 

zero), and the inverse probability will be inestimable (or a very large number).  The 

disproportionate reliance on the experience of a few unusual individuals (i.e., treated patients 

with the contraindication) in the weighted population can result in imprecise and biased effect 

estimate.25  Thus, we extracted information about (1) whether studies reported that the positivity 

assumption was checked, (2) how the positivity assumption was evaluated, and (3) how 

violations of the assumption were handled (if detected).  

 

Constructing weights  

The validity of IPTW estimates depends on correct construction of weights.19, 21 There 

are two types of weights--unstabilized and stabilized.  The unstablized weight is calculated as the 

inverse of conditional probability of receiving observed treatment given the history of time-
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varying confounders and previous treatment history (called weight denominator).19  The 

stabilized weight can be calculated as the product of the conditional probability of receiving 

observed treatment given baseline confounders and previous treatment history (called weight 

numerator) and the unstabilized weight.  The stabilized weight is generally recommended 

because it can yield estimates with greater precision compared to the unstabilized weight.19  The 

conditional probability of receiving observed treatment (for weight numerator and denominator) 

is often estimated with a regression model (i.e., treatment model).   

When non-compliance after treatment initiation is low, an observational intention-to-treat 

(ITT) analysis with IPTW has been recommended.19, 20, 37  Specifically, this strategy assumes that 

once a participant initiates treatment, the participant will remain on treatment for the remainder 

of the study period.  This assumption simplifies the process of estimating the probability of 

receiving observed treatment history, because only one model is needed to estimate the 

probability of treatment onset.42  In addition to ITT analyses, analogous to data analysis of a 

clinical trial, a non-experimental study can perform per-protocol and as-treated analyses using 

IPTW.40  In a per-protocol analysis, a comparison is made only among those who adhere to the 

treatment under study and patients are censored when they deviate from the initial treatment.  In 

an as-treated analysis, individuals are classified according to the treatment they receive during 

the follow-up rather than the treatment they initiate, and patients who stop or switch the 

treatment are also included in the analysis.   

We extracted information about the analytic strategy each study adopted, and how they 

specified the treatment models for the weight numerator and denominator.  For studies not 

assuming ITT, we assessed whether or not the authors modeled the multiphase of treatment use 

(e.g., treatment initiation, continuation, etc.) and how this was done.   



 
 

21 
 

 

Outcome model building 

After weights are constructed, a weighted regression model (i.e., outcome model) is 

typically fit to estimate the effect of treatment on the outcome.20  All the variables included in the 

treatment model for the weight numerator should also be included in the outcome model, 

because they are not balanced between treated and untreated participants in the weighted 

population and thus can still bias the estimate.20  Substantive expertise should drive the selection 

of the functional form of exposure in the outcome model.42,43  For instance, under the assumption 

of a linear relationship between treatment duration and study outcome, studies can specify 

exposure as the total duration of previous treatment use, and the estimate then quantifies the 

effect from each additional time unit (e.g., one month) of treatment;19,40 studies performing ITT 

analyses can also specify exposure with an indicator for treatment initiation (yes or no) to 

estimate the average effect of initiating treatment in the follow-up period.40   In this review, we 

assessed what covariates were included in the outcome model and how they specified the 

functional form of exposure. 

 

Discrepancy between IPTW estimates and standard regression estimates 

The review by Suarez et al. reported that more than half of the studies using IPTW 

method yielded an estimate substantially different from that produced by standard regression 

models.36  However, the review did not provide information about how studies discussed reasons 

for such discrepancy.  In this review, we assessed whether studies found a substantial difference 

in estimates between the two methods and further extracted information about how studies 
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explained the discrepancy when it was noted.  We considered a difference “substantial” if the 

difference was more than 20% of the IPTW estimate.36  

 

Results 

Figure 2.1 depicts the process of identifying studies eligible for the review.  We retrieved 

164 and 137 studies from citation search in Web of Science and keyword search in PubMed, 

respectively.  After excluding duplicate studies (n=66), methodological or simulation studies 

(n=92), review studies (n=9), studies not focusing on a health-related outcome (n=12) or not 

using IPTW (n=7), studies assessing effect from a point-treatment (n=66), and non-

pharmacoepidemiologic studies (n=26), we had 23 pharmacoepidemiologic studies which 

applied IPTW to estimate effect from a time-varying treatment.  Among these 23 studies, three 

used IPTW to evaluate effects from dynamic treatment regimens.44-46  Considering that weight 

construction for estimating effects from dynamic regimens is different from that for static 

regimens,47 we excluded these studies from the review.  Data extraction was performed on the 

remaining 20 studies.48-67 

Table 2.1 shows a brief description of the study design, primary exposure and outcome 

and potential time-varying confounders.  Three studies compared treatments that were 

randomized to participants.48,58,64  However, they performed analyses as if data were collected 

from a non-experimental design, so we included them in the review.  Half of the 20 studies 

assessed benefits or risks from antiretroviral therapy among HIV-infected patients51,53,56,57,59,63,67 

or risk of HIV transmission from contraceptive use;54,60,62 five studies focused on treatment or 

prevention of cardiovascular diseases;48-50,52,64 two studies assessed treatments for chronic kidney 

disease;55,61 and there was one study assessing the effect of treatment for a protein metabolism 
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disorder,65 schizophrenia,66 and breast cancer,58 respectively.  The primary outcome of most 

studies was mortality (n=7) or first occurrence of a pre-specified event (n=12), and one study 

considered a repeated-measure outcome.67  With the exception of two studies,52,58 all reviewed 

studies provided information on the time-varying confounders.  

In Table 2.2, the type of bias IPTW addressed and details regarding the assumptions of 

positivity and no uncontrolled confounding are described for each study.  Eleven studies used 

IPTW owing to concerns that standard regression models might eliminate indirect effects 

mediated by time-varying confounders, five studies used IPTW to deal with bias from the 

artificial censoring of noncompliance, and five studies did not provide further details other than 

stating that IPTW was used because of “concerns of time-varying confounding”.  The majority 

of studies did not report whether the positivity assumption was checked.  Four studies truncated 

weights and one study trimmed weights to alleviate the impact of potential positivity violation.  

Most studies discussed qualitatively the susceptibility of their findings to uncontrolled 

confounding, but none reported performing formal sensitivity analyses to assess robustness of 

the results to uncontrolled confounding.   

Table 2.3 includes information on the construction of weights and specification of 

outcome models.  Six studies performed ITT analyses, three performed per-protocol analyses and 

eight performed as-treated analyses.  None of the studies assuming ITT reported adherence levels 

after treatment initiation. The three “per-protocol” studies censored patients when they 

discontinued the treatment under study, and estimated the probability of treatment continuation 

(i.e., being uncensored) separately from treatment initiation.  One of the eight “as-treated” 

studies modeled current treatment use stratified by previous treatment status.   
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One study did not use stabilized weights, four did not report whether stabilized weights 

were used, and eight reported using stabilized weights but did not describe how it was done.  The 

remaining studies reported stabilizing weights with unconditional probability of receiving 

observed treatment, or conditional probability given baseline covariates and previous treatment 

or given baseline covariates only.  For the weight denominator, twelve studies estimated the 

conditional probability given baseline covariates, time-varying confounders and previous 

treatment, three did this given baseline covariates and time-varying confounders and two 

adjusted for baseline covariates plus “follow-up period” or baseline covariates only. Four studies 

selected variables in the treatment model for weight denominator based on a statistical criterion.  

Two studies included covariates with statistically significant associations with the study outcome 

and subsequent treatment use.  One study included factors significantly associated with the study 

outcome only.  One study used a stepwise procedure to select the treatment model which 

maximized Akaike information criterion.   

Regarding the functional form of exposure in the outcome model, studies performing ITT 

and per-protocol analyses included an indicator of treatment initiation and the initial treatment 

status, respectively.  Almost all studies performing as-treated analyses included only the most 

recent treatment status in the outcome model.    

Table 2.4 shows crude estimates, and estimates from IPTW and standard regression 

models for the associations between primary study exposure and outcome listed in Table 2.1.  

The last column contains information about whether the IPTW estimate was substantially 

different from the standard regression estimate for any association assessed in the study, as well 

as how the study explained any noted discrepancies. Fourteen studies reported results from both 

methods and a substantial difference was found in six studies. Among studies reporting a 
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substantial difference, three did not discuss reasons for the discrepancy, two considered IPTW 

method correctly estimated the indirect effects from previous treatments, and one considered 

IPTW method controlled for “confounding by indication”. 

We summarized the review results of the 20 studies in Table 2.5. 

 

Discussion 

Our review supports the notion that studies using IPTW to deal with time-varying 

confounding continue to diffuse in the medical literature.  In 2012, 49 studies used IPTW to 

estimate the effect from a time-varying exposure on a health-related outcome.  After reviewing 

20 pharmacoepidemiologic studies, we found that the majority lacked sufficient details to 

evaluate the appropriateness of the application of the method.  Most studies did not report that 

the positivity assumption was checked, and more than half did not report the type of weights 

(stabilized or unstabilized) applied or how the weights were stabilized.  Furthermore, we found 

that more studies performed as-treated analyses than ITT analyses, but few of these studies 

considered the multiphase of treatment use in the process of weight construction and almost all 

chose the most recent treatment status as the functional form of exposure in the outcome model.  

Assessment of positivity assumption.  Surprisingly, the majority of reviewed studies did 

not report whether they checked the positivity assumption.  The IPTW method is more sensitive 

to positivity violations than standard regression models.20,25  Studies using simulated68 and 

empirical69 data have demonstrated that positivity violations could result in substantial bias and 

imprecision in IPTW estimates.  Estimated stabilized weights with the mean far from one or with 

very extreme values can be indicative of non-positivity.20  Thus, a thorough examination of the 

weight distribution is essential for checking the positivity assumption.20,36  However, a “well-
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behaved” weight distribution (i.e., with mean close to one and moderate range) is not sufficient 

to ensure the absence of positivity violations.25,70  Thus, Cole et al. recommended assessing the 

robustness of IPTW estimates with weights truncated at certain percentiles (e.g., 99th, 95th and 

90th) as sensitivity analyses.20     

Assessment of uncontrolled confounding.  Although it was difficult to judge the adequacy 

of control for confounding in the reviewed studies without knowledge in the specific datasets and 

subject areas, we did find that some studies reported adjusting for “follow-up period” as the only 

time-varying confounder or adjusting for only baseline covariates.  If time-varying disease risk 

factors that cause changes in treatment use are not correctly measured and appropriately adjusted 

for, the IPTW estimates will be biased. When substantial uncontrolled confounding is suspected, 

sensitivity analyses have been recommended to assess the robustness of the IPTW estimates.23,71  

To perform such sensitivity analyses, investigators need to specify a plausible function form 

which quantifies the direction and magnitude of uncontrolled confounding.23,71   

ITT analyses.  When non-adherence after treatment initiation is minimal, an ITT analysis 

may be preferred to as-treated analysis in terms of simplifying the weight construction and 

controlling for confounding.42,44,47  The ITT assumption simplifies the process of constructing 

weights, in that the treatment models only need to estimate the probability of treatment initiation.  

More importantly, for studies performing ITT analyses, the assumption of no uncontrolled 

confounding is satisfied as long as confounders for treatment onset are correctly measured and 

specified in the treatment model for weight denominator.  This assumption may be viable for 

many pharmacoepidemiologic studies using healthcare database, because “information used by 

physicians to make a decision to initiate treatment is often captured in the database”.44  However, 

the ITT estimate merely measures the effect of treatment initiation instead of effect from actual 
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treatment.41  High levels of non-adherence after treatment initiation may drive the ITT estimate 

away from the true treatment effect.42,72  For this reason, studies performing ITT analyses should 

report adherence measures for each treatment arm so that findings can be interpreted under 

appropriate consideration of the observed adherence patterns.73   

As-treated analyses. Instead of estimating the effect of treatment initiation, we found that 

more studies performed as-treated analyses.  Validity of “as-treated” estimates relies on the 

extent to which the study correctly models the relationships between confounders and the 

multiphase of treatment use.42  Because it is very likely that the influence of time-varying 

confounders on initiating a treatment is different from their impact on continuing or resuming the 

treatment, separate models for different treatment regimens are often needed for adequate control 

for confounding.  However, when information on time-varying confounders that predict 

treatment changes after initiation is not well-recorded in the data sources or when the number of 

participants following each specific regimen is small, a correct estimation of the multiphase of 

treatment use will be difficult, if not impossible.42,44,47  In sum, when choosing between an ITT 

and an as-treated analytic strategy, investigators need to take into account adherence levels after 

treatment initiation and availability of information on the time-varying confounders that predict 

treatment changes during the study period.  

Weight construction.  Stabilized weights can generate estimates with greater precision 

than unstabilized weights and thus are recommended in data analyses.37  However, we still found 

that four studies did not report whether they used stabilized weights and one study used 

unstablized weights.  It’s unknown to us why unstabilized weights were chosen.  Regarding 

variable selection for treatment model in the weight denominator, we found that most studies 

chose covariates based on substantive knowledge, while four studies used some statistical 
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criterion to select covariates significantly associated with treatment use and/or study outcome.  A 

simulation study by Lefebvre et al. found that the performance of IPTW method could be 

improved when the confounders and risk factors of outcome were included in the treatment 

model, whereas including pure predictors of treatment use (i.e., not confounders) led to biased 

and highly variable estimates, particularly in the context of small samples.33  These findings are 

consistent with the recommendation for variable selection for building propensity scores.74  

Therefore, an advisable strategy in building treatment model for weight denominator may be to 

include variables considered to be direct risk factors for the outcome.  

Functional form of exposure in outcome models.  Almost all studies performing as-

treated analyses included only the most recent treatment status in the outcome model.  Most of 

these studies chose IPTW method instead of standard regression models owing to the concerns 

that standard models would eliminate the indirect effect from previous treatments mediated by 

the time-varying confounders.  This may imply that these studies were interested in estimating 

the effects from both recent and previous treatments.  However, when treatment use is 

intermittent, including only the most recent exposure status in the outcome model will not 

correctly capture the effect from previous treatments.  Furthermore, when the weights are 

stabilized with previous treatment history but only the indicator of most recent treatment use is 

included in the outcome model, the estimate may also be a biased one for the recent treatment 

effect, because the status of previous treatment is not balanced between recently treated and un-

treated patients and thus may bias the estimate.75  Finally, if only the most recent treatment effect 

is biologically plausible and is the focus of the study, standard regression models adjusting for 

time-varying confounders and previous treatment history can also produce unbiased estimate,37,70 
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even though there is disagreement regarding the difference in precision between estimates 

derived from IPTW and standard regression models.76,77   

Discrepancy in estimates from IPTW and standard regression models.  Similar to the 

previous review,36 we found nearly half of the studies, which provided estimates from both 

methods, reported that IPTW estimates were substantially different from the standard regression 

estimates adjusted for time-varying confounders.  Unfortunately, half of the studies reporting a 

substantial difference did not discuss reasons for the discrepancy.  As mentioned in the section 

Type of bias, the discrepancy can be attributed to the correct estimation of total treatment effect 

or avoidance of collider-stratification bias by the IPTW method, especially if the direction of 

discrepancy is consistent with the hypothesized relationships between exposure, outcome and 

time-varying confounders.  In addition, the difference can be due to control for selection bias 

from informative censoring if censoring weights are incorporated in IPTW analyses.  

Non-uniform treatment effects.  Several studies also noticed that substantial discrepancy 

in estimates could arise in the presence of covariates (or a summary of covariates like propensity 

score) which strongly predict treatment use and are also strong effect modifiers.69,78,79   

Compared to the standard regression models, the IPTW method gives much more weights to the 

covariate strata within which treatment status is almost completely determined by the 

covariates.80,81  If the effect sizes in these strata differ dramatically from other strata, the IPTW 

estimates will be substantially different from the standard regression estimates.81  The non-

uniform treatment effects across the covariates (or the propensity score) can be due to violation 

of positivity,69 unmeasured confounding78 or true effect-measure modification.  When 

unmeasured confounding or positivity violation is the cause of non-uniformity, the IPTW 

estimate will be biased and weight truncation or propensity score trimming should be applied to 
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ameliorate the impact.69,78  In summary, when substantially different estimates are derived from 

IPTW and standard regression models, investigators should take into account these alternative 

explanations before being assured that IPTW method generates unbiased estimates.   

Our review has some limitations.  First, we included only pharmacoepidemiologic studies 

published in 2012.  The findings may not be representative of all publications using IPTW to 

deal with time-varying confounding.  Second, the reporting practices of published studies may be 

influenced by journals’ requirements.  Authors are reporting their findings given strict word 

limitations and as such may have limited space to provide details on these facets of the 

application of the method.  Nevertheless, with complex methods such as IPTW, such reporting is 

necessary to evaluate the extent to which the method has been appropriately applied. 

In summary, the use of IPTW estimation is increasing in the medical literature.  Given 

the variable and suboptimal reporting of the application of the technique, it may be prudent to 

develop best practices in reporting complex methods in epidemiologic research and for journal 

editors to consider adopting such reporting guidelines.   
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Table 2.1. General description of pharmacoepidemiologic studies published in 2012 and eligible 
for the systematic review.   

Reference Study 
design 

Exposure & Outcome & Time-varying 
confounders 

Cook et al.48 
 

Randomized 
controlled 

trial 

Aspirin vs. no-
treatment 

CVD or CVD-
related 

mortality 

CVD risk factors, 
intermediate CVD 

events 
Desai et al. 49 Cohort Candesartan vs. 

losartan 
Mortality Hospitalization 

Gerhard et al. 50 Cohort Aggressive vs. 
conventional 

antihypertensive 
therapies 

CVD or 
mortality 

Blood pressure 

Gsponer et al. 51 Cohort Switching to second-
line ART vs. first-

line ART 

Mortality CD4 cell count 

Haukka et al. 52 Cohort Statins vs. no-
treatment 

Mortality Not reported † 

HCV working 
group of 
COHERE 53 

Cohort Hepatitis C treatment 
vs. no-treatment 

Mortality CD4 cell count, HIV 
RNA level, platelet 

counts, alanine 
aminotransferase 

levels 
Heffron et al. 54 Cohort Hormonal 

contraceptive vs. no-
treatment 

HIV infection Pregnancy, 
unprotected sex 

Hernández et al. 
55 

Cohort ACEI/ARB vs. no-
treatment 

Graft failure Smoking,  
concurrent 

medication use 
HIV-CAUSAL 
Collaboration 56 

Cohort Nevirapine vs. 
efavirenz 

Mortality CD4 cell count, HIV 
RNA level, AIDS 

HIV-CAUSAL 
Collaboration 57 

Cohort ART vs. no-
treatment 

Tuberculosis CD4 cell count, HIV 
RNA level, AIDS 

Jin et al. 58 Randomized 
controlled 

trial 

Letrozole vs. no-
treatment 

Cancer 
recurrence 

Not reported * 

Kalayjian et al. 
59 

Cohort Tenofovir+ ritonavir-
boosted protease 

inhibitor vs. 
efavirenz/nevaripine 

Chronic 
kidney disease 

CD4 cell count, viral 
load 

McCoy et al. 60 Cohort Injectable hormonal 
contraceptive vs. no-

treatment 

HIV infection Sexual behavioral 
risk, condom use, 

sexually 
transmitted 
infections 
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Miller et al. 61 Cohort Low dose vs. high 
dose paricalcital 

Mortality Parathyroid 
hormone, 

phosphorus, calcium 
Morrison et al. 
62 

Cohort Oral contraceptive 
vs. non-hormonal use 

HIV infection Sexual behavioral 
risk, condom use, 
genital symptoms 

Scherzer et al. 63 Cohort Tenofovir vs. no-
treatment 

Proteinuria CD4 cell count, viral 
load, lipids, diabetes, 

hypertension 

Shinozaki et al. 
64  

Randomized 
controlled 

trial 

Atorvastatin vs. no-
treatment 

CVD Lipid profiles, 
HbA1c, blood 
pressure, BMI 

Terrier et al. 65 Cohort Corticosteroid + 
rituximab vs. 

corticosteroid alone 

Renal and 
immunological 

response 

Vasculitis 
manifestations 

Tiihonen et al. 
66 

Cohort Benzodiazepine vs. 
no-treatment  

Mortality Concurrent 
medication use 

Young et al. 67 Cohort Tenofovir + 
ritonavir-boosted 

lopinavir vs. 
renofovir+efavirenz  

 

eGFR HIV-infection, 
diabetes, 

hypertension, 
hepatitis B or C 
infection, eGFR, 
CD4 cell count, 

virological failure 
ACEI: angiotensin-converting enzyme inhibitors; ARB: angiotensin II receptor blockers; ART: 
antiretroviral therapy; CVD: cardiovascular diseases; eGFR, estimated glomerular filtration rate. 
& Only the primary study exposure and outcome were reported in this table. “No-treatment” 
means not using the treatment under study.  
† This study did not describe any specific substantial time-varying confounders for which 
adjustment was needed.  
* This study used inverse probability of censoring weighting to deal with treatment crossover. 
Probability of treatment crossover was estimated based on baseline characteristics. Time-varying 
confounders were not mentioned. 
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Table 2.2 Type of potential bias and examination of identifiability assumptions  

Reference Type of potential 
bias addressed 

Positivity assessed Weight truncated 
or trimmed 

Uncontrolled 
confounding 

discussed 
Cook et al.48 
 

Bias from 
blocking 

mediated effect 

Mean: 1.01 
Median  

(Inter Quartile 
Range):  

1.00 (0.97-1.01) 

Weight truncation 
at 0.01th and 

99.99th 
percentiles 

Yes 

Desai et al. 49 Bias from 
blocking 

mediated effect; 
Selection bias 

owing to artificial 
censoring 

Mean  
(Standard Deviation):  

1.00 (0.06) 

Not reported Yes 

Gerhard et al. 50 Bias from 
blocking 

mediated effect 

Not reported Not reported Yes 

Gsponer et al. 51 Bias from 
blocking 

mediated effect 

Not reported Not reported Yes 

Haukka et al. 52 No details 
provided† 

Not reported Not reported Yes 

HCV working 
group of COHERE 
53 

Bias from 
blocking 

mediated effect 

Not reported Not reported Yes 

Heffron et al. 54 No details 
provided† 

Mean (range): 
1.07 (0.82-1.34) 

Weight truncation 
at 1st and 99th 

percentiles 

Yes 

Hernández et al. 55 Bias from 
blocking 

mediated effect 

Not reported Not reported Yes 

HIV-CAUSAL 
Collaboration 56 

Selection bias 
owing to artificial 

censoring 

Not reported Weight truncation 
at 99th percentile  

Yes 

HIV-CAUSAL 
Collaboration 57 

Bias from 
blocking 

mediated effect 

Mean: 1.04 Weight truncation 
at 10 

Yes 

Jin et al. 58 Selection bias 
owing to artificial 

censoring 

Not reported Not reported No 

Kalayjian et al. 59 Selection bias 
owing to artificial 

censoring 

Not reported Not reported Yes 

McCoy et al. 60 Bias from Not reported Not reported Yes 
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blocking 
mediated effect 

Miller et al. 61 Bias from 
blocking 

mediated effect 

Not reported Weight Trimming 
at 10 

Yes 

Morrison et al. 62 No details 
provided† 

Not reported Not reported Yes 

Scherzer et al. 63 Bias from 
blocking 

mediated effect 

Not reported Not reported Yes 

Shinozaki et al. 64  Bias from 
blocking 

mediated effect 

Not reported Not reported Yes 

Terrier et al. 65 No details 
provided† 

Not reported Not reported No 

Tiihonen et al. 66 No details 
provided† 

Not reported Not reported Yes 

Young et al. 67 Selection bias 
owing to artificial 

censoring 

Not reported Not reported No 

† If studies reported “using IPTW to control for time-varying confounding” without further 
specification of relationships between treatment, time-varying confounders and outcomes.   
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Table 2.3. Specification of treatment models and outcome models   

Reference Analytic strategy* 
Adherence level 

Multiphase of 
treatment use 

modeled 

Variables in 
weight numerator 

/ Stabilized 

Variables in weight 
denominator/ 

Covariates selection 

Covariates 
in outcome 

model   

Functional 
form of 

exposure 
Cook et al.48 
 

As-treated 
73% stayed on 
initial treatment 

Yes. 
Current use 
modeled by 

status of 
previous use 

Baseline 
confounders, 

previous 
treatment 

Baseline confounders, 
time-varying 
confounders,   

previous treatment 

Baseline 
confounders 

Most recent 
exposure 

Desai et al. 49 As-treated  
 Not reported 

No Baseline 
confounders,  

previous 
treatment 

Baseline confounders, 
time-varying 
confounders,   

previous treatment 

Baseline 
confounders 

Not reported 

Gerhard et al. 50 Intention to treat 
 Not reported 

Not applicable Not reported /Yes Baseline confounders, 
time-varying 
confounders,   

previous treatment 

Not reported Indicator of 
treatment 
initiation 

Gsponer et al. 51 Intention to treat 
 Not reported 

Not applicable Not reported /Yes Baseline confounders, 
time-varying 
confounders,   

previous treatment /  
Stepwise selection 
based on Akaike 

information criterion 

Baseline 
confounders 

Indicator of 
treatment 

“initiation”†;  
Time to 

treatment 
“initiation”† 

Haukka et al. 52 As-treated   
Treatment use 

covered 73% of 
study period 

No Baseline 
confounders 

Baseline confounders, 
follow-up time  

Not reported Most recent 
exposure 

HCV working 
group of 
COHERE 53 

Intention to treat 
 Not reported 

Not applicable Not reported /Yes Baseline confounders, 
time-varying 
confounders,  

previous treatment 

Not reported Indicator of 
treatment 
initiation 
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Heffron et al. 54 As-treated  
52.0% stayed on 

treatment  

No Not reported /Yes Baseline confounders, 
time-varying 
confounders   

 

Baseline 
confounders 

Most recent 
exposure 

Hernández et al. 
55 

As-treated  
>85% stayed on 

treatment  

No Not reported / 
Not reported 

Baseline confounders, 
time-varying 

confounders  / 
Variables significantly 

associated with 
outcome 

Not reported Most recent 
exposure? 

HIV-CAUSAL 
Collaboration 56 

Intention to treat 
 Not reported 

Not applicable None/No Baseline confounders, 
time-varying 
confounders,  

previous treatment 

Baseline 
confounders 

Initial 
treatment 

HIV-CAUSAL 
Collaboration 57 

Intention to treat 
 Not reported 

Not applicable Not reported / 
Yes 

Baseline confounders, 
time-varying 
confounders, 

previous treatment 

Baseline 
confounders 

Indicator of 
treatment 
initiation; 

Cumulative 
exposure 

Jin et al. 58 Per-protocol 
31% stayed on 
initial treatment 

Yes. 
Treatment 

initiation and 
“treatment 

crossover” was 
considered 
separately 

Not reported / 
Not reported 

Baseline confounders, 
previous Treatment / 

Variables significantly 
associated with 

outcome and treatment 
crossover 

Not reported Initial 
treatment 

 

Kalayjian et al. 
59 

Per-protocol 
64% stayed on 
initial treatment 

 
 

Yes. 
Treatment 

initiation and 
discontinuation 

modeled 
separately 

Not reported / 
Not reported 

Baseline confounders, 
time-varying 
confounders, 

previous treatment 

Not reported Initial 
treatment 
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McCoy et al. 60 As-treated  
51.6% stayed on 

treatment  

No Unconditional 
probability of 

receiving 
observed 
treatment 

Baseline confounders, 
time-varying 
confounders,   

previous treatment  

Not reported Most recent 
exposure 

Miller et al. 61 As-treated 
 Not reported 

No Not reported / 
Yes 

Baseline confounders, 
time-varying 
confounders,  

previous treatment 

Not reported Most recent 
exposure? 

Morrison et al. 62 As-treated  
64.4% stayed on 

treatment  

No Not reported / 
Yes 

Baseline confounders, 
time-varying 
confounders / 

Covariates 
significantly 

associated with 
outcome and treatment 
use and also predicted 
by past treatment use 

Baseline 
confounders 

Most recent 
exposure 

Scherzer et al. 63 Not reported Not reported  Not reported / 
Yes 

Not reported  Baseline 
confounders 

Cumulative 
exposure; 

“Ever 
exposure” 

Shinozaki et al. 
64  

Intention to treat 
 Not reported 

Not applicable Baseline 
confounders 

Baseline confounders, 
time-varying 
confounders,   

previous treatment 

Baseline 
confounders 

Indicator of 
treatment 
initiation 

Terrier et al. 65 Not reported Not reported Baseline 
confounders 

Not reported Not reported Most recent 
exposure 

Tiihonen et al. 66 Not reported Not reported Not reported/  
Not reported  

Not reported Not reported Not reported 

Young et al. 67 Per-protocol 
Not reported 

 

Yes. 
Treatment 

initiation and 

Unconditional 
probability of 

receiving 

Baseline confounders, 
time-varying 
confounders, 

None Initial 
treatment 
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 discontinuation 
modeled 

separately 

observed 
treatment 

previous treatment 

* If the study stated that “modeling the probability of receiving observed treatment at each time visit”, we assumed that the study was 
not making the assumption of intention-to-treat.  
† “Initiation” refers to switching to the second-line therapy after treatment failure with first-line therapy.  
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Table 2.4. Primary exposure-outcome association† and discrepancy in IPTW estimates and 
standard regression estimates   

Reference Crude Hazard Ratio 
(95% Confidence 

Interval) 

IPTW Hazard 
Ratio* (95% 
Confidence 

Interval) 

Standard 
regression 

Hazard Ratio* 
(95% Confidence 

Interval) 

Discrepancy 
found  

Reason 
discussed 

Cook et al.48 
 

1.00 (0.89-1.14) 0.93 (0.81-1.07) 0.96 (0.84-1.09) Yes  
Correction of 

blocked 
mediated effect 

Desai et al. 49 Adjusted for 
baseline covariates: 

0.89 (0.7-1.06) 

0.79 (0.42-1.50) Not reported Not applicable 

Gerhard et al. 50 Adjusted for 
baseline covariates: 

0.96 (0.87-1.07) 

0.81 (0.71-0.92) Not reported Not applicable 

Gsponer et al. 51 0.52 (0.20-1.35) 0.25 (0.09-0.72) Not reported Not applicable 
Haukka et al. 52 NR 0.42 (0.37-0.47) 0.39 (0.37-0.40) No 
HCV working 
group of 
COHERE 53 

0.50 (0.35, 0.71) 0.72 (0.43-1.21) Not reported Not applicable 

Heffron et al. 54 1.73 (0.95-3.15) 1.84 (0.98-3.47) 1.98 (1.06-3.68) No 
Hernández et al. 
55 

0.77 (0.49-1.21) 0.82 (0.52-1.32) 0.80 (0.51-1.26) No 

HIV-CAUSAL 
Collaboration 56 

1.46 (1.21-1.76) 1.59 (1.27-1.98) 1.38 (1.13-1.68) Yes  
Not reported 

HIV-CAUSAL 
Collaboration 57 

Adjusted for 
baseline covariates: 

0.81 (0.67-0.97) 

0.56 (0.44-0.72) 1.03 (0.86-1.24) Yes  
Not reported 

Jin et al. 58 0.68 (0.56-0.83) 0.52 (0.45-0.61) 0.58 (0.47-0.72) Not reported as 
such  

Kalayjian et al. 59 Not reported 3.35 (1.40-8.02) 1.34 (0.75-2.40) Yes  
Not reported 

McCoy et al. 60 1.32 (1.00-1.74) 1.34 (0.75-2.37) 1.37 (1.01-1.85) No 
Miller et al. 61 Not reported 1.26 (1.19-1.35) 1.07 (1.01-1.14) Yes 

Confounding by 
indication 

Morrison et al. 62 0.89 (0.55-1.44) 0.84 (0.51-1.39) 0.88 (0.49-1.30) No 

Scherzer et al. 63 Adjusted for 
baseline covariates: 

1.30 (1.22-1.37)  

1.24 (1.17-1.32) 1.34 (1.25-1.45) No 
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Shinozaki et al. 64  Adjusted for 
baseline covariates: 

0.65 (0.30-1.40) 

0.48 (0.19-1.16) 0.75 (0.34-1.63) Yes  
Correction of 

blocked 
mediated effect 

Terrier et al. 65 Not reported 3.7 (1.3-10.6) Not reported Not applicable 

Tiihonen et al. 66 1.61 (1.06-2.45)  1.80 (1.02-3.20) 1.91 (1.13-3.22) No 
Young et al. 67 Beta coefficient of 

exposure term from 
linear model: 

-4.6 (-8.6 to -0.5)  

Beta coefficient 
of exposure 

term from linear 
model: 

-2.6 (-7.3 to 2.2)  

Not reported Not applicable 

† Primary exposure and outcome are listed in Table 2.1.   
* Adjusted for potential time-varying confounders. 
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Table 2.5.  A summary of review results of the 20 pharmacoepidemiologic studies applying 
IPTW method in 2012   

Elements of IPTW method  No. of studies 
(percent#) 

Types of bias IPTW was used to address  
Blocking mediated effects by time-varying confounders 11 (55) 
Collider-stratification bias 0  
Selection bias due to artificial censoring 5 (25) 

Assessment of identifiability assumptions  
Discussed qualitatively uncontrolled confounding 17 (85) 
Performed sensitivity analyses of uncontrolled confounding 0  
Reported the weight distribution 4 (20) 
Reported truncating or trimming extreme weights 5 (25) 

Analytic strategy  
Intention-to-treat analysis 6 (30) 
Per-protocol analysis 3 (15) 
As-treated analysis 8 (40) 

Weight construction  
Reported use of stabilized weights 15 (75) 
Described how weights were stabilized 7 (47†) 
Described covariates in the treatment model for weight 

denominator 
17 (85) 

Modeled the multiphase of treatment use  1 (12.5&) 
Functional form of exposure in outcome models  

Indicator of treatment initiation or initial treatment use 9 (100^) 
Most recent treatment use 7 (100*) 

Discrepancy in estimates between IPTW and standard regression    
Discussed reasons for the substantial discrepancy 3 (50§) 

# The denominator is 20 unless indicated otherwise.  
† The denominator is 15 studies which reported using stabilized weights. 
& The denominator is 8 studies performing as-treated analyses. 
^ The denominator is 9 studies performing intention-to-treat or per-protocol analyses.  One study 
performing intention-to-treat analyses also specified cumulative exposure as an alternative.  
* The denominator is 7 studies performing as-treated analyses which provided information on the 
functional form of exposure.  
§ The denominator is 6 studies reporting substantial difference. 
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Figure 2.1. Identification of pharmacoepidemiolgoical studies using IPTW to deal with time-
varying confounding in 2012   
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Chapter 3: The choice of analytic strategies in inverse-probability-of-treatment-weighted 

analysis: A simulation study   
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Abstract 

Objectives  To explore the impact of several assumptions made during weight construction on 

the validity and precision of estimates derived from inverse-probability-of-treatment-weighted 

analysis (IPTW). In particular, we compared the performance of 1) IPTW assuming intention-to-

treat; 2) IPTW assuming complex mechanism of treatment assignment; 3) IPTW assuming 

simple mechanism of treatment assignment; and 4) IPTW assuming invariant confounders.  

Methods  We simulated data assuming a non-experimental design and aimed to quantify the 

effect of  statin on lowering low-density lipoprotein cholesterol (LDL-C). Overall, 324 scenarios 

were simulated with parameter values varied on effect size, sample size, adherence level, 

probability of treatment initiation, and associations between LDL and treatment initiation and 

continuation. Effect estimates were derived from four IPTW approaches, and bias and precision 

of the estimates were evaluated.  

Results  IPTW estimates assuming intention-to-treat were biased towards to the null when there 

was non-null treatment effect and non-adherence after treatment initiation. For each one percent 

decrease in treatment adherence experienced by the sample, the bias in the average treatment 

effect increased by one percent. Compared to analyses assuming a simple mechanism of 

treatment assignment or invariant confounders, IPTW analyses that took into account the 

complex mechanism of treatment assignment generated unbiased estimates without sacrificing 

precision. 

Conclusions  Bias in IPTW estimate that assumes an intention-to-treat depends on the level of 

adherence after treatment initiation.  Studies performing ITT analyses should report adherence 

measures after treatment initiation so that findings can be interpreted under appropriate 

consideration of the observed adherence patterns. Studies attempting to estimate the actual effect 
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of a time-varying treatment need to take into account the complex mechanism of treatment 

assignment in weight construction.  
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Introduction 

Inverse probability of treatment weighted (IPTW) estimation of marginal structural 

models (MSM) has been increasingly used to adjust for time-varying confounding in 

pharmacoepidemiologic studies.82 Unlike conventional methods, IPTW reduces confounding 

through assigning a weight to each participant, which is proportional to the inverse of conditional 

probability of receiving the observed treatment given confounders.17,19 In the presence of time-

varying confounders that are influenced by previous treatment, IPTW can adjust for the 

confounding without blocking the mediated effect or introducing selection bias.17,19  

The validity of IPTW method relies on the correct estimation of the conditional 

probability of receiving observed treatment.19, 21 Many studies applying IPTW have made an 

observational intent-to-treat assumption.82  Specifically, this means that once treatment is 

initiated, patients are assumed to stay on that treatment for the remaining study period.42 The 

advantages to invoking this assumption are that doing so simplifies the weight construction 

process and the assumption of no uncontrolled confounding.42,44,82  However, for almost all 

studies assessing effect of a medication on a health-related outcome, the intention-to-treat 

assumption is violated to some degree.83 In routine clinical practice in the United States, around 

one third to one half of the patients do not take medications as prescribed by their doctors.84 

When non-adherence is substantial, ITT analyses may estimate the effect of initiating a 

treatment, rather than the actual treatment effect.85  

Our previous review reported that many studies using IPTW chose an as-treated analytic 

strategy,82 i.e., they categorized patients according to the treatment actually received by patients 

during the study period.40,85 Different from ITT analyses, as-treated analyses attempted to 

estimate the effect from actual treatment.85 To correctly estimate the actual effect from a time-
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varying treatment, investigators need to take into account the complex mechanism of treatment 

assignment in the process of weight construction.42 For instance, several applications of IPTW 

have demonstrated that the relationships of confounders to initiating the treatment under study 

were different from continuing the treatment.48,86  However, our review found that few studies 

performing as-treated analyses actually considered the complex mechanism of treatment 

assignment during weight construction.82  

To our knowledge, no previous study has evaluated the impact of adopting different 

analytic strategies on the validity and precision of the IPTW estimates. The objectives of this 

study were to (1) compare the performance of several commonly-used analytic approaches to 

constructing weights and (2) explore the impact of several study characteristics, e.g., adherence 

level, prevalence of treatment use and magnitude of confounding, on the performance of 

different analytic approaches.  

Methods 

We generated data assuming a non-experimental design and attempted to answer a 

hypothetical study question: “What is the effect of 12-week treatment with statin on lowering 

low-density lipoprotein cholesterol (LDL-C)?” We chose this question because the efficacy of 

statin on lowering LDL-C has been established87, 88 and patterns of statin use among the 

population were extensively studied.89,90,91,92,93 These studies provided the parameters to generate 

data close to reality, so the simulation results could be applied to real-world situations.94  

Data generation 

Data were generated based on the casual diagram shown in Figure 3.1. In this diagram, 

LDL denotes levels of LDL-C, A indicates use of statin, and the subscripts 0, 1, 2 respectively 

represent baseline, 6 weeks and 12 weeks after baseline. The hypothetical study population 
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included 1,000 patients who were newly-diagnosed with hypercholesterolemia and failed to 

control LDL-C through therapeutic lifestyle changes.  

At t0, LDL0 was simulated from a normal distribution, with mean 130 mg/dL and 

standard deviation 35 mg/dL.95,96,97 For simplicity, we assumed the probability of initiating 

treatment at t0, i.e., mean of A0, only depended on levels of LDL0. Specifically, we simulated A0 

from a binomial distribution with its mean generated from the following formula: 

logit(Pr(A0=1|LDL0))=α0+log(ORLDL-Initiation)×LDL_Level0                    (1) 

where LDL_Level0 was 0 if LDL0 was less than 160 mg/dL, 1 if LDL0 was between 160 and 190 

mg/dL, and 2 if LDL0 was ≥190 mg/dL.87 ORLDL-Initiation was set at 1.5 based on the literature that 

higher LDL levels were associated with greater probability of initiating statin treatment.90,98 α0 

was set at 0.3146, so that 60% of the study participants initiated treatment at t0.89 

At t1, LDL was on average reduced by 30% from LDL0 among those who initiated 

treatment at t0, and remained unchanged among those who did not.88,99  A random error was 

added to LDL1 so that its standard deviation was around 40 mg/dL. Statin use A1 was generated 

separately for those who did not initiate treatment at t0 (i.e., A0=0) and those who did (i.e., 

A0=1).  Among those with A0=0, A1 was generated in the same way as A0 using formula (1) 

expect that A1 was determined by levels of LDL1 instead of LDL0. For those with A0=1, we 

assumed the probability of continuing treatment at t1 (defined as adherence level in our study) 

depended on the reduction in LDL from t0 to t1. Specifically, among those with A0=1, A1 was 

simulated from a binomial distribution with its mean generated from the following formula: 

logit(Pr(A1=1| A0=1, LDL0, LDL1))=γ0+ log(ORLDL-Continuation)×LDL_Red          (2) 

where LDL_Red was 0 if reduction in LDL was less than 30% of LDL0, and 1 if the reduction 

was greater than 30% of LDL0. Reduction by 30% of LDL0 was the average change in LDL from 
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t0 to t1 among those with A0=1, so LDL_Red was actually a dummy variable with value 1 

indicating an above-average reduction in LDL. ORLDL-Continuation was set at 1.5, so that patients 

with above-average reduction in LDL had 50% higher odds of continuing statin treatment 

compared to those with below-average reduction.92,93 γ0 was set at 0.6528, so that 70% of those 

with A0=1 continued treatment at t1.91,92  

At t2, we assumed that among patients who initiated treatment at t1 (i.e., with A0=0 and 

A1=1), LDL on average decreased by 30% from LDL1, which was the same effect size we 

specified for treatment initiation at t0 on LDL1; among patients continuing treatment at t1 (i.e., 

with A0=1 and A1=1), LDL on average decreased by 14.3% from LDL1, which corresponded to a 

total decrease of 40% from LDL0 after 12-week of treatment88,99; among those discontinuing 

treatment at t1 (i.e., with A0=1 and A1=0), LDL on average increased by 42.9% from LDL1, i.e., 

rebounded to the baseline LDL level.100,101 A random variation was added to LDL2 so that its 

standard deviation was around 45 mg/dL. Based on these specifications, the true effect size of 

12-week treatment with statin was 130 mg/dL×(-40%), i.e., -52 mg/dL. 

To assess the performance of different analytic approaches under various scenarios, 

besides the basic-case scenario described above, we also generated alternative scenarios with 

parameter values varied on the probability of treatment initiation, ORLDL-Initiation, ORLDL-Continuation, 

adherence level, effect size and sample size. As shown in Table 3.1, in alternative scenarios, we 

generated data with 10% of the patients starting treatment at t0 and t1, ORLDL-Initiation or ORLDL-

Continuation equal to 3, adherence level equal to 50%, 60%, 80%, 90% or 100%, effect size equal to 

0 or -26, and sample size equal to 200 or 20,000. 

 

Analytic approaches  
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We analyzed the simulated data using IPTW based on four different approaches to 

constructing the weight: 1) IPTW assuming intention-to-treat (ITT-IPTW); 2) IPTW assuming 

complex mechanism of treatment assignment (Complex-IPTW); 3) IPTW assuming simple 

mechanism of treatment assignment (Simple-IPTW); and 4) IPTW assuming invariant 

confounders (Invar-IPTW). For the Complex-IPTW, Simple-IPTW, and Invar-IPTW approaches, 

we conducted as-treated analyses.40  Complex-IPTW acknowledged that the impact of 

confounders on initiating a treatment was different from their impact on continuing the 

treatment, whereas Simple-IPTW assumed that confounders had same impact on initiating and 

continuing the treatment. Invar-IPTW assumed that time-varying confounders remained 

unchanged during the follow-up period. Our review did find some studies performing Invar-

IPTW analyses, perhaps because they did not collect the time-varying information on potential 

confounders.82 

The weight construction process of the methods is described in Table 3.2. In analyses 

with all four methods, patient-specific weights were first estimated separately at t0 and t1, which 

were the unconditional probability of receiving observed treatment divided by the conditional 

probability of receiving observed treatment given confounders.19, 20, 37 A patient’s final weight 

was the product of his/her weights at t0 and t1.19, 20, 37 In addition, we assumed all methods 

correctly recognized the mechanism of treatment initiation at t0 (i.e., Pr(A0|LDL_Level0)), and 

thus shared the same process of weight construction at t0. The differences among methods were 

in the way of estimating probability of treatment use at t1. ITT-IPTW, Complex-IPTW and 

Simple-IPTW correctly modeled the probability of treatment initiation at t1 among patients with 

A0=0, i.e., Pr(A1=a1| LDL_Level1), but they differed in estimating the conditional probability of 

continuing treatment at t1 among patients with A0=1. ITT-IPTW assumed that the probability of 
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continuing treatment was 1, and thus the weight was 1 at t1; Complex-IPTW assumed that 

treatment continuation depended on reduction in LDL, which was consistent with the true data 

generation process; Simple-IPTW assumed that, same as treatment initiation, treatment 

continuation depended on levels of LDL. As for Invar-IPTW, it deviated even further from the 

true data degeneration process than Simple-IPTW because it used LDL0 to predict treatment 

initiation and continuation at t1.   

Probability of receiving treatment given LDL was estimated with logistic regression 

models. For instance, the conditional probability of initiating treatment at t1 given levels of LDL1 

was estimated using the following logistic model among patients with A0=0: 

logit(A1=1| LDL_Level1, A0=0)=η0+ η1× LDL_Level1                             (3) 

For those with A1=0, the probability of receiving observed treatment was 1 minus the predicted 

probability derived from model (3).  

After weights were constructed, the second step in each approach was to fit a weighted 

structural model to estimate the effect of statin on LDL2. Except using different weights in 

different approaches, we used the same linear structural model in all four methods as follows:  

LDL2= β0+ β1×A11+ β2×A01+ β3×A10+ ε                                                (4) 

where A11 indicates statin use at both t0 and t1, A10 and A01 respectively indicates statin use only 

at t0 and t1. Because ITT-IPTW assumed that no patients discontinued the treatment once they 

initiated it, A11 represents treatment initiation at t0, A01 represents treatment initiation at t1 and 

A10 is always 0 in ITT-IPTW analyses. The primary parameter of interest in this study is β1, 

which estimates the difference between LDL after the study population was treated with statin 

for 12 weeks and LDL when none of the population was treated with statin.19   
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Under each scenario, we simulated 2,000 datasets, and with each dataset we performed 

analyses with the four approaches described above. Each analytic method generated 2,000 

estimates under every scenario. We evaluated the validity of different methods using percentage 

bias, which was calculated as the difference between the average of 2,000 estimates and the true 

effect size, divided by the true effect size.94 To compare the precision of estimates derived from 

different methods, we calculated the standard deviation of the 2,000 estimates under each 

scenario.94  

Assessment of model performance 

 

Results 

Overall, 324 scenarios were simulated with parameter values varying on effect size (3 

options), sample size (3 options), adherence level (6 options), probability of treatment initiation 

(2 options), and associations between LDL and treatment initiation and continuation (3 options).  

Performance of the four analytic approaches under various scenarios is shown in Tables 3.3 and 

3.4. In these tables, we show results for scenarios with β, n, Pr(A0=1), ORLDL-Continuation and 

ORLDL-Initiation set at the basis-case values, as well as scenarios in which we changed one 

parameter at a time while keeping all others at their basic values. To fully illustrate the impact of 

non-adherence on the performance of different approaches, we reported results for scenarios with 

all 6 adherence levels.  

Table 3.3 shows the simulated bias in estimates from the four analytic approaches. When 

there was no treatment effect, the ITT-IPTW estimates were close to the true effect size 

regardless of adherence levels. When the true effect was non-null and the adherence level was 

less than 100%, ITT-IPTW estimates were biased towards the null.  Bias in ITT-IPTW estimates 
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was not influenced by probability of treatment initiation, levels of confounding, sample size or 

effect size (results for scenarios with an effect size of -26 were not shown but similar to those 

with an effect size of -52). Instead, the extent of bias in ITT-IPTW estimates was linearly 

correlated with levels of non-adherence: one percent increase in non-adherence was associated 

with approximately one percent increase in the bias in ITT-IPTW estimates.   

Complex-IPTW estimates were close to the true effect regardless of effect size or choices 

of other parameter values. When the sample size was 200 or ORLDL-Initiation was 3, Complex-

IPTW estimates were biased upward for less than 2%. Under all other scenarios shown in Table 

3.3, IPTW estimates were biased less than 0.5%. Simple-IPTW estimates were biased 

downwards under all scenarios except several scenarios with a sample size of 200 or ORLDL-

Initiation of 3. This downward bias became more apparent when ORLDL-Continuation was 3 or as the 

level of non-adherence increased. Invar-IPTW estimates were biased upward for most scenarios 

shown in Table 3.3.  This upward bias became stronger when ORLDL-Initiation was 3, but became 

less so when ORLDL-Continuation was 3 or the level of non-adherence increased.  

The empirical standard errors of estimates derived from the four approaches are shown in 

Table 3.4. Under scenarios with no treatment effect, standard errors of ITT-IPTW estimates 

increased when only 10% of the population initiated treatment, or ORLDL-Continuation was 3 (data 

not shown), but did not depend on levels of adherence. When the treatment effect was non-null, 

standard errors of ITT-IPTW estimates increased along with the levels of non-adherence, and 

this relationship was also observed for estimates derived from other three approaches.   

Compared to ITT-IPTW estimates, Complex-IPTW estimates had larger standard errors 

when there was no treatment effect, but smaller standard errors when the treatment effect was 

non-null. Compared to Complex-IPTW estimates, Simple-IPTW estimates had slightly larger 
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standard errors under all scenarios except those with no treatment effects, and Invar-IPTW 

estimates had slightly larger standard errors under all scenarios except those with a sample size 

of 200 or ORLDL-Initiation of 3.  

 

Discussion 

Under the realistically constructed scenarios in this study, we demonstrated that ITT-

IPTW estimates were biased towards to the null when there was non-null treatment effect and 

non-adherence after treatment initiation. Interestingly, the extent of bias in ITT estimates 

appeared solely depending on the level of non-adherence. One percent decrease in adherence 

level among the study sample was associated with one percent increase in the bias in ITT 

estimates.  IPTW analyses that ignored the complex mechanism or the time-varying nature of 

confounders were biased. IPTW analyses that took into account the complex mechanism of 

treatment assignment generated approximately unbiased estimates without sacrificing precision.  

IPTW assuming a simple mechanism of treatment assignment failed to correctly model 

the relationship between LDL and treatment continuation. As such, the negative confounding 

bias could not be fully-controlled in the weighted population. As expected, this uncontrolled 

confounding bias became more apparent when the impact of LDL on treatment continuation 

became stronger (i.e., ORLDL-Continuation=3). Similarly, the weight construction process in IPTW 

assuming invariant confounders did not correctly model the relationships of LDL to both 

treatment initiation and continuation. As such, the uncontrolled confounding biased the 

estimates. As the impact of LDL on treatment initiation increased, a positive bias became more 

dominant, and as the impact of LDL on treatment continuation increased, a negative bias became 

more dominant. 
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Conventional wisdom suggested that IPTW considering the complex mechanisms of 

treatment would generate estimates that were more valid but less precise than either ITT or 

Simple-IPTW approaches.42 However, we found that estimates derived from a method using 

IPTW with the complex mechanisms of treatment actually had smaller standard errors than ITT-

IPTW estimates when the treatment effect was non-null. The standard error of an IPTW estimate 

probably depends on the variation of the constructed weights,20 and variance of study exposure 

and mean squared error of the outcome model (if it is a linear regression model).102 Because the 

additional incorporation of the probability of treatment continuation in the weight construction 

process in Complex-IPTW analyses, weights in Complex-IPTW had a larger variance than those 

in ITT-IPTW analyses. This explains the finding that under scenarios with no treatment effect, 

the Complex-IPTW estimates had larger standard errors than ITT-IPTW estimates. However, 

when there was non-null treatment effect, standard errors of the ITT-IPTW estimate were 

probably inflated by the increased mean squared error due to the misspecification of study 

exposure in the outcome model.102  

It is well-known that ITT estimates are unbiased when there is no treatment effect but 

biased towards the null when the effect is non-null.85 However, to our knowledge, this was the 

first study that explored the relationship of the extent of bias in ITT-IPTW estimates in relation 

to levels of non-adherence and patterns of confounding. Under the causal structure assessed in 

our study, after the analyses appropriately controlled for confounding for treatment initiation, for 

each one percent decrease in treatment adherence experienced by the sample, the bias in the 

average treatment effect increased by one percent. This finding has important implications for 

future studies performing ITT-IPTW analyses. First, the bias in ITT-IPTW estimates is non-

trivial even if the adherence level is high. For instance, when the adherence level was as high as 
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90%, the ITT estimates underestimated the treatment effect by ~10%. This underestimation may 

be especially problematic for drug safety studies, because the ITT analysis may miss the harmful 

medication effects.85  Second, given the dependence of ITT estimates on adherence levels, we 

recommend that studies performing ITT analyses should report adherence measures after 

treatment initiation.  If provided, findings can be interpreted under appropriate consideration of 

the observed adherence patterns.73 Our previous review found that few studies performing ITT-

IPTW analyses actually did this.82  

Our study demonstrated the necessity of taking into account the different relationships 

between confounders and different treatment regimens in the process of weigh construction. 

Besides the realistic relationships between LDL-C and statin initiation and continuation 

illustrated in this simulation, the phenomenon of complex treatment assignment was also noted 

by other studies.48,86 For instance, when using IPTW to estimate the effect of aspirin on 

preventing cardiovascular disease, Cook et al. found that, potential confounders such as 

occurrence of angina and transient ischemic attacks were negatively associated with continuing 

treatment with aspirin, but positively correlated with starting aspirin.48 To correctly perform 

Complex-IPTW analyses, substantive knowledge regarding the relationships between potential 

confounders and different treatment regimens (e.g., initiation, continuation, and resumption, etc) 

should guide the specification of treatment models during weight construction. Furthermore, the 

findings that IPTW estimates with time invariant confounders were biased due to uncontrolled 

confounding emphasized the importance of collecting information on time-varying factors that 

predict the study outcomes and also bring about changes in treatment use.85   

To our knowledge, this was the first study that explored the impact of various 

assumptions made in weight construction on the validity and precision of IPTW estimates. 
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Besides simulating data that mimicked a real-world situation, we generated a total 324 scenarios 

that varied in parameter values for a range of study characteristics.  However, several limitations 

must be considered. First, we simulated scenarios with treatment use varying only at two time 

points. A real-world longitudinal study will likely involve more time points.  If so, it is likely that 

treatment assignment mechanisms become more complex than what we simulated. The extent to 

which our findings would be generalizable to more complex scenarios remains unknown. 

Second, we simulated a continuous variable as the study outcome. Whether or not our findings 

extend to different types of outcomes such time-to-event outcomes or categorical outcomes 

needs to be explored.  

In conclusion, under a range of simulated scenarios, we demonstrated that IPTW 

estimates assuming intention-to-treat were biased towards the null when there was non-null 

treatment effect and the adherence after treatment initiation was not 100%. This bias was linearly 

correlated with non-adherence levels. Studies attempting to estimate the actual effect of a time-

varying treatment on a continuous outcome variable should take into account the complex 

mechanism of treatment assignment in the process of weight construction.  
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Table 3.1. Parameter values used for data generation  

Parameter Meaning Basic-case 
scenario 

Alternative 
scenarios 

Pr(A0=1) Probability of starting statin treatment at 
baseline or time 1  

60% 89 10% 

ORLDL-Initiation Odds ratio of starting statin treatment 
comparing a higher level LDL to a lower 
level LDL 

1.5 90 3 

Pr(A1=1|A0=1) Probability of continuing statin treatment at 
time 1 among those on treatment at baseline, 
i.e., adherence level 

70% 91,92 50%, 60%, 80% 
90%, 100% 

ORLDL-Continuation Odds ratio of continuing statin treatment 
comparing above-average reduction in LDL 
to below-average reduction 

1.5 92,93   3 

β Effect size 52 87,88 0, 26 
n Sample size 1000 200, 20000 
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Table 3.2. Approaches of constructing weights   

Modeling approach Weight construction 

ITT-IPTW: Marginal structural models 

assuming intention-to-treat 

At t0: w0=Pr(A0=a0)/Pr(A0=a0| LDL_Level0) 

At t1: If A0=0, w1= Pr(A1=a1)/Pr(A1=a1|LDL_Level1);  

         If A0=1, w1=1 

Final weight: wfinal= w0× w1 

Complex-IPTW: Marginal structural 

models assuming complex mechanism of 

treatment assignment  

 

At t0: w0=Pr(A0=a0)/Pr(A0=a0| LDL_Level0) 

At t1: If A0=0, w1
*= Pr(A1=a1)/Pr(A1=a1| LDL_Level1); 

         If A0=1, w1
*= Pr(A1=a1)/Pr(A1=a1| LDL_Red) 

Final weight: wfinal
*= w0× w1

* 

Simple-IPTW: Marginal structural models 

assuming simple mechanism of treatment 

assignment 

At t0: w0=Pr(A0=a0)/Pr(A0=a0| LDL_Level0) 

At t1: If A0=0, w1
**= Pr(A1=a1)/Pr(A1=a1| LDL_Level1); 

         If A0=1, w1
**= Pr(A1=a1)/Pr(A1=a1| LDL_Level1) 

Final weight: wfinal
**= w0×w1

** 

Invar-IPTW: Marginal structural models 

assuming invariant confounders 

At t0: w0=Pr(A0=a0)/Pr(A0=a0| LDL_Level0) 

At t1: If A0=0, w1
***= Pr(A1=a1)/Pr(A1=a1| LDL_Level0); 

         If A0=1, w1
***= Pr(A1=a1)/Pr(A1=a1| LDL_Level0) 

Final weight: wfinal
***= w0× w1

*** 

Pr(At=at): unconditional probability of receiving observed treatment at time t.  

LDL_Levelt was 0 if LDLt was <160, 1 if 160 ≤ LDLt ≤190, and 2 if LDLt was ≥190. 

LDL_Red was 0 if LDL0-LDL1 was ≤ 30% of LDL0, and 1 if LDL0-LDL1 was greater than 30% of LDL0. 

Bold texts highlight the differences in weight construction among approaches.  
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Table 3.3. Simulated bias in four analytic approaches with marginal structural models under various scenarios   

β Pr(A0=1
) 

ORLDL

-Initiation 
ORLDL-

Continuation n 
Pr(A1=1
|A0=1) 

(%) 

 
ITT-IPTW   Complex-

IPTW* 
 

Simple-
IPTW*   Invar-

IPTW* 

 
 

Bias 
(%)    

 

Bias 
(%) 

 

 
 

Bia
s 

(%) 
  

 
 

Bias 
(%) 

0 60% 1.5 1.5 1000 100 0.1 --          0 60% 1.5 1.5 1000 90 0.1 --  0.1 -- 
 

0 --  1.8 -- 
0 60% 1.5 1.5 1000 80 0.1 --  0.1 -- 

 
-0.2 --  1.4 -- 

0 60% 1.5 1.5 1000 70 0.1 --  0.1 -- 
 

-0.4 --  1.0 -- 
0 60% 1.5 1.5 1000 60 0.1 --  0.1 -- 

 
-0.6 --  0.7 -- 

0 60% 1.5 1.5 1000 50 0.1 --  0.2 -- 
 

-0.7 --  0.3 -- 
-52 60% 1.5 1.5 1000 100 -51.9 -0.2          -52 60% 1.5 1.5 1000 90 -46.5 -10.6  -51.9 -0.2 

 
-52.2 0.3  -50.2 -3.5 

-52 60% 1.5 1.5 1000 80 -41.2 -20.8  -51.9 -0.2 
 

-52.5 0.9  -50.5 -2.9 
-52 60% 1.5 1.5 1000 70 -35.9 -31  -51.9 -0.2 

 
-52.8 1.5  -50.8 -2.3 

-52 60% 1.5 1.5 1000 60 -30.6 -41.2  -51.9 -0.2 
 

-53.0 2.0  -51.1 -1.7 
-52 60% 1.5 1.5 1000 50 -25.4 -51.2  -51.9 -0.3 

 
-53.3 2.5  -51.4 -1.1 

-52 10% 1.5 1.5 1000 100 -52 -0.1          -52 10% 1.5 1.5 1000 90 -46.6 -10.5  -52 0 
 

-52.3 0.6  -51.9 -0.1 
-52 10% 1.5 1.5 1000 80 -41.2 -20.7  -52 -0.1 

 
-52.6 1.1  -52.2 0.4 

-52 10% 1.5 1.5 1000 70 -35.9 -31  -52 0 
 

-52.9 1.7  -52.5 1.0 
-52 10% 1.5 1.5 1000 60 -30.6 -41.2  -52 -0.1 

 
-53.2 2.3  -52.8 1.5 

-52 10% 1.5 1.5 1000 50 -25.4 -51.2  -51.9 -0.1 
 

-53.5 3.0  -53.1 2.1 
-52 60% 3 1.5 1000 100 -51.3 -1.3          -52 60% 3 1.5 1000 90 -45.9 -11.7  -51.3 -1.3 

 
-51.6 -0.8  -46.5 -10.5 

-52 60% 3 1.5 1000 80 -40.6 -22  -51.3 -1.3 
 

-51.9 -0.2  -46.8 -9.9 
-52 60% 3 1.5 1000 70 -35.3 -32.2  -51.3 -1.3 

 
-52.2 0.4  -47.2 -9.3 

-52 60% 3 1.5 1000 60 -30 -42.3  -51.3 -1.3 
 

-52.5 0.9  -47.5 -8.7 
-52 60% 3 1.5 1000 50 -24.8 -52.3  -51.3 -1.3 

 
-52.7 1.4  -47.8 -8.1 

-52 60% 1.5 3 1000 100 -51.9 -0.2          -52 60% 1.5 3 1000 90 -46.2 -11.1  -51.9 -0.2 
 

-52.6 1.2  -50.7 -2.6 
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-52 60% 1.5 3 1000 80 -40.7 -21.8  -51.9 -0.2 
 

-53.3 2.6  -51.5 -1.0 
-52 60% 1.5 3 1000 70 -35.2 -32.4  -51.9 -0.2 

 
-54.1 4.0  -52.3 0.6 

-52 60% 1.5 3 1000 60 -29.8 -42.7  -51.9 -0.2 
 

-54.9 5.5  -53.1 2.2 
-52 60% 1.5 3 1000 50 -24.5 -52.8  -51.9 -0.3 

 
-55.6 6.9  -53.9 3.7 

-52 60% 1.5 1.5 200 100 -51.2 -1.5          -52 60% 1.5 1.5 200 90 -45.9 -11.8  -51.2 -1.5 
 

-51.5 -1.0  -49.5 -4.8 
-52 60% 1.5 1.5 200 80 -40.5 -22.1  -51.2 -1.5 

 
-51.8 -0.3  -49.8 -4.2 

-52 60% 1.5 1.5 200 70 -35.2 -32.3  -51.2 -1.5 
 

-52.2 0.4  -50.1 -3.6 
-52 60% 1.5 1.5 200 60 -29.9 -42.5  -51.2 -1.5 

 
-52.5 0.9  -50.4 -3.0 

-52 60% 1.5 1.5 200 50 -24.7 -52.4  -51.1 -1.7 
 

-52.8 1.5  -50.7 -2.5 
-52 60% 1.5 1.5 20,000 100 -52 0          -52 60% 1.5 1.5 20,000 90 -46.6 -10.4  -52 0 

 
-52.3 0.5  -50.3 -3.3 

-52 60% 1.5 1.5 20,000 80 -41.3 -20.6  -52 0 
 

-52.5 1.0  -50.6 -2.7 
-52 60% 1.5 1.5 20,000 70 -36 -30.9  -52 0 

 
-52.8 1.6  -50.9 -2.1 

-52 60% 1.5 1.5 20,000 60 -30.7 -41  -52 0 
 

-53.1 2.1  -51.2 -1.5 
-52 60% 1.5 1.5 20,000 50 -25.5 -51  -52 0 

 
-53.4 2.6  -51.5 -0.9 

β


 is the mean of effect estimates from 2,000 trials. 
Bias (%)=[ ( ) / 100%] / 2000β β β− ×∑


. 

* Estimates from Complex-IPTW, Simple-IPTW and Invar-IPTW were same as ITT-IPTW estimates in scenarios with 100% 
adherence. 
-- When the true effect size was zero, the percentage of bias could not be calculated.  
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Table 3.4. Simulated standard errors of estimates from four analytic approaches of marginal 
structural models under various scenarios   

β Pr(A0=1
) 

ORLDL-

Initiation 
ORLDL-

Continuation 
n Pr(A1=1| 

A0=1) 
(%) 

ITT-
IPTW 

Complex-
IPTW* 

Simple-
IPTW* 

Invar-
IPTW* 

0 60% 1.5 1.5 1000 100 3.10    
0 60% 1.5 1.5 1000 90 3.10 3.15 3.12 3.25 
0 60% 1.5 1.5 1000 80 3.10 3.22 3.17 3.30 
0 60% 1.5 1.5 1000 70 3.10 3.29 3.22 3.37 
0 60% 1.5 1.5 1000 60 3.10 3.37 3.28 3.47 
0 60% 1.5 1.5 1000 50 3.10 3.49 3.38 3.60 

-52 60% 1.5 1.5 1000 100 2.97    
-52 60% 1.5 1.5 1000 90 3.05 2.99 2.99 3.09 
-52 60% 1.5 1.5 1000 80 3.13 3.03 3.04 3.13 
-52 60% 1.5 1.5 1000 70 3.22 3.08 3.09 3.18 
-52 60% 1.5 1.5 1000 60 3.26 3.12 3.15 3.24 
-52 60% 1.5 1.5 1000 50 3.27 3.18 3.23 3.34 
-52 10% 1.5 1.5 1000 100 3.25    
-52 10% 1.5 1.5 1000 90 3.89 3.40 3.41 3.38 
-52 10% 1.5 1.5 1000 80 4.32 3.55 3.60 3.56 
-52 10% 1.5 1.5 1000 70 4.59 3.84 3.92 3.84 
-52 10% 1.5 1.5 1000 60 4.75 4.06 4.21 4.11 
-52 10% 1.5 1.5 1000 50 4.89 4.41 4.60 4.46 
-52 60% 3 1.5 1000 100 6.36    
-52 60% 3 1.5 1000 90 6.38 6.38 6.39 4.68 
-52 60% 3 1.5 1000 80 6.39 6.41 6.41 4.71 
-52 60% 3 1.5 1000 70 6.44 6.43 6.44 4.75 
-52 60% 3 1.5 1000 60 6.48 6.45 6.46 4.80 
-52 60% 3 1.5 1000 50 6.47 6.47 6.49 4.87 
-52 60% 1.5 3 1000 100 2.96    
-52 60% 1.5 3 1000 90 3.06 2.98 2.99 3.09 
-52 60% 1.5 3 1000 80 3.17 3.03 3.04 3.14 
-52 60% 1.5 3 1000 70 3.23 3.07 3.08 3.18 
-52 60% 1.5 3 1000 60 3.27 3.12 3.14 3.25 
-52 60% 1.5 3 1000 50 3.30 3.22 3.23 3.35 
-52 60% 1.5 1.5 200 100 7.54    
-52 60% 1.5 1.5 200 90 7.78 7.58 7.59 7.48 
-52 60% 1.5 1.5 200 80 7.92 7.69 7.71 7.57 
-52 60% 1.5 1.5 200 70 8.05 7.78 7.78 7.65 
-52 60% 1.5 1.5 200 60 8.09 7.85 7.88 7.77 
-52 60% 1.5 1.5 200 50 8.13 8.03 8.11 7.96 
-52 60% 1.5 1.5 20,000 100 0.67    
-52 60% 1.5 1.5 20,000 90 0.69 0.67 0.67 0.71 
-52 60% 1.5 1.5 20,000 80 0.71 0.68 0.68 0.71 
-52 60% 1.5 1.5 20,000 70 0.72 0.69 0.69 0.72 
-52 60% 1.5 1.5 20,000 60 0.73 0.70 0.71 0.74 
-52 60% 1.5 1.5 20,000 50 0.74 0.72 0.72 0.75 

Standard error is the standard deviation of the estimates from 2,000 trials. 
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*Standard errors of estimates from Complex-IPTW, Simple-IPTW and Invar-IPTW were same 
as those of ITT-IPTW estimates in scenarios with 100% adherence. 
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Figure 3.1. The causal diagram guiding data generation.  

LDL denotes levels of low-density lipoprotein cholesterol, A indicates use of statin medication, 

and the subscripts 0, 1, 2 represent baseline, 6 weeks and 12 weeks after baseline, respectively.  
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Chapter 4: Long-term effects of glucosamine and chondroitin on treating knee 

osteoarthritis: An analysis with marginal structural models  
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Abstract 

Objectives:  The purpose of this study was to estimate the long-term effectiveness of 

glucosamine and chondroitin in relieving knee symptoms and slowing disease progression 

among patients with knee osteoarthritis (OA). 

Methods:  The 4-year follow-up data from Osteoarthritis Initiative were analyzed. We used a 

“new-user” design, for which only participants who were not using glucosamine/chondroitin at 

baseline were included in analyses (n=1,625). Cumulative exposure was calculated as the 

number of visits when participants reported use of glucosamine/chondroitin.  Knee symptoms 

were measured with WOMAC Pain, Stiffness and Physical Function, and structural progression 

of OA was measured with joint space width (JSW). Sociodemographic characteristics and 

indices of disease severity were considered as potential confounders. To take into account that 

the indices of disease severity may be simultaneously confounders and intermediate variables, 

we used marginal structural models to estimate the long-term treatment effects.  

Results: During the study period, 18% of the participants initiated treatment with 

glucosamine/chondroitin and 4% reported use at all assessments. After adjustment for potential 

confounders with marginal structural models, we found no clinically significant differences 

between users at all assessments and never-users of glucosamine/chondroitin in WOMAC Pain: 

0.68 (95% CI: -0.16 to 1.53); WOMAC Stiffness: 0.41 (95% CI: 0 to 0.82); WOMAC Function: 

1.28 (95% CI: -1.23 to 3.79); or JSW: 0.11 (95% CI: -0.21 to 0.44). 

Conclusions: Long-term use of glucosamine/chondroitin did not appear to relieve symptoms or 

modify disease progression among radiographically confirmed patients with OA. Our findings 

are consistent with the results from recent long-term clinical trials.  
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Introduction 

Osteoarthritis (OA) is the most common type of arthritis and a leading cause of pain and 

physical disability in older adults.1  Although currently no effective remedies for OA exist, 

clinical guidelines recommend both pharmacological and non-pharmacological therapies to 

relieve symptoms.103  In the United States, glucosamine and chondroitin are two dietary 

supplements that are commonly used among patients with OA.8  Both glucosamine and 

chondroitin are essential components of the proteoglycans in normal cartilage and were 

purported to provide substrate for the biosynthesis of proteoglycans.104  In vitro and animal 

studies suggest that glucosamine and chondroitin simulate the synthesis of proteoglycans and 

inhibit the synthesis of proteolytic enzymes that lead to the premature breakdown of 

cartilage.105,106 

Despite the biologic plausibility, evidence regarding the efficacy of glucosamine and 

chondroitin in relieving OA symptoms and modifying structural progression is not established. 

Several meta-analyses which pooled results from existent randomized clinical trials that assessed 

symptomatic benefits reported substantial heterogeneity in findings across studies.11, 107-109 

Differences in study quality, preparation of the interventions, industry involvement and study 

size may have explained the observed heterogeneity.11, 107-109  Large-scale trials with high quality 

and little connection to industry often reported a much smaller effect size of symptoms relief 

than earlier small industry-funded studies.107,108 Regarding the efficacy of glucosamine and 

chondroitin in modifying disease progression, several meta-analyses reported small to moderate 

effect sizes and studies with longer intervention periods demonstrated a stronger effect of 

glucosamine on slowing joint space narrowing than studies with a shorter treatment period.110,111 
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The purpose of this study was to quantify the effectiveness of glucosamine and 

chondroitin in relieving OA symptoms and modifying structural progression.  This study is 

warranted for several reasons.  First, in the United States, glucosamine and chondroitin are 

almost always sold in a combination pill.112  Despite the extensive research on single treatment 

with glucosamine or chondroitin, studies of the combined treatment are sparse.113  Second, to our 

knowledge, the longest studies were three-year trials conducted more than a decade ago in 

Europe and supported by one pharmaceutical company.12,13  The Osteoarthritis Initiative (OAI) 

provides a unique opportunity to examine the long-term effectiveness of glucosamine and 

chondroitin on treating OA, because it administered comprehensive measurements on treatment 

use and changes in knee symptoms and joint structure for up to four years.16  Third, efficacy 

evidence of a treatment derived from clinical trials is often limited in generalizability because 

they often use strict study protocols and highly selected patients and are typically conducted at 

large medical centers.114 Non-experimental studies, on the other hand, can provide clinicians and 

patients with a more realistic expectation for treatment benefits in real-world environments.114  

We are aware of one non-experimental study which assessed the impact of glucosamine and 

chondroitin on slowing structural progression.115  Our study used different designs and analytic 

methods and extended their work by assessing both symptoms relief and reduction in structural 

progression.  

 

Methods 

The Institutional Review Boards of the University of Massachusetts Medical School and 

the Memorial Hospital of Rhode Island approved this study. 
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This study used publicly available data from the OAI (

Data source and study sample   

http://oai.epi-ucsf.org/).  From 

2004 to 2006, four study sites (i.e., Baltimore, MD; Columbus, OH; Pittsburgh, PA; and 

Pawtucket, RI) enrolled 4,796 residents who had established or were at high risk for developing 

knee OA.16  The detailed OAI protocol can be found elsewhere.16  Follow-up information for up 

to four years was used (the dataset version numbers are 0.2.2, 1.2.1, 3.2.1, 5.2.1, and 6.2.2). 

Inclusion/exclusion criteria are shown in Figure 4.1. We included OAI participants with 

radiographic knee OA at enrollment, i.e., those with a Kellgren-Lawrence (K-L) grade of 2 or 

greater in at least one knee (n=2,539).   

To improve study validity, we used a “new-user” design,116 for which only participants 

not reporting use of glucosamine or chondroitin at baseline were included in analyses (n=1,731).  

From this group, we then identified two samples: 1) for analysis of symptoms and 2) for the 

analysis of structural changes. For the analysis of symptoms, we also excluded participants with 

missing data on key confounders at baseline (n=44) and those missing exposure or outcome data 

at year 1 of the study (n=62). When analyzing structural progression, we excluded persons with 

following characteristics: 1) end-stage OA (i.e., K-L grade 4) or primary joint space narrowing in 

the lateral tibiofemoral compartment at baseline (n=150); 2) missing measures of joint space 

width (JSW) or JSW measures with a poor alignment of the tibial plateau at baseline (n=169); or 

3) missing key confounders at baseline (n=37) or exposure or outcome at year 1 (n=262).  The 

remaining 1,625 participants with 4,264 person-visits contributed to the analyses of symptoms, 

and 1,113 participants with 2,367 person-visits were included in analyses of structural changes.  

 

Exposure definition  

http://oai.epi-ucsf.org/�
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Use of glucosamine and chondroitin was defined based on self-reported information.  At 

baseline and annual follow-up visits, participants were asked “During the past 6 months, did you 

use the following health supplements for joint pain or arthritis?” with separate questions for 

glucosamine and chondroitin sulfate use.  We considered a participant taking glucosamine or 

chondroitin if he/she reported using it for at least 4 days per week, and not taking the supplement 

if they reported not using it or using it for less than 4 days per week. Throughout the study 

period, ~90% of the participants taking either one of the supplements were taking both 

concurrently. So at each visit we defined use of glucosamine/chondroitin as taking either of these 

supplements.  To estimate the long-term treatment effects, we calculated the cumulative 

exposure by summing the number of visits when participants reported using 

glucosamine/chondroitin.  

 

If both knees had radiographic OA, we used measurements from the knee with more 

severe pain at baseline.  OA symptoms and function were assessed annually with Western 

Ontario and McMaster Universities Arthritis Index (WOMAC) (the Likert version 3.1).  

WOMAC measures three separate domains: Pain (5 items), Stiffness (2 items), and Physical 

Function (17 items).117  Each scale item uses a range of 5 Likert responses, ranging from 

‘0=none’ to ‘4=extreme’.  Responses to items in each domain were summed to produce subscale 

score, which ranges from 0~20 for Pain, 0~8 for Stiffness and 0~68 for Physical Function.  

Larger WOMAC scores represent worse symptoms or knee-related function.   

Assessment of OA symptoms 

 

Assessment of JSW 
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If both knees had radiographic OA, we used measures from the knee with narrower space 

width in the medial tibiofemural joint at baseline.  Joint structural progression was measured 

with changes in medial JSW during follow-up from baseline.  All participants at baseline and 

annual visits had bilateral standing knee x-rays obtained in posterior anterior projection with 

knees flexed to 20-30 degrees and feet internally rotated 10 degrees.16  Longitudinal 

measurements of JSW from serial knee x-rays were conducted through a customized software 

tool, which automatically delineated the margin of the femoral condyle and the tibial plateau.118  

Multiple JSWs were measured at fixed locations along the joint.  An anatomical coordinate 

system, which extended from the medial end (x=0) to the lateral end (x=1) in the joint space, was 

defined to facilitate an objective determination of measurement location.  We chose the JSW 

measure at x=0.25 (in the medial compartment) because it was demonstrated to have best 

responsiveness to changes.119   

At each assessment of JSW, the distance from tibial plateau to tibial rim closest to 

femoral condyle was measured to indicate knee positioning.120  To take into account the potential 

error in JSW measurement due to poor knee positioning at a single visit or inconsistent 

positioning between visits, we did not use the JSW measures (i.e., considered them missing) if 

the plateau to rim distance was larger than 6.5 mm or change in this distance between visits was 

greater than 2 mm.120  Among the 431 persons who were excluded at baseline (n=169) and year 1 

(n=262) due to not having a valid measure of exposure or JSW (shown in Figure 4.1), 355 (82%) 

were excluded due to a poor or inconsistent knee positioning at JSW measurement.  An 

additional 181 persons had inconsistent knee positioning for ≥1 assessment at year 2 to year 4.  

The probability of having a potentially erroneous JSW measure at following assessments was 

comparable among users (10.7%) and non-users (11.4%) of glucosamine/chondroitin. 
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The following variables were considered potential confounders: sociodemographics, 

clinical characteristics of OA, indices of general health status, body mass index (BMI), and use 

of treatments other than glucosamine/chondroitin. Our previous work has shown that use of 

glucosamine and chondroitin was more prevalent among older adults, women, non-Hispanic 

Whites, individuals with higher education or higher income.8  Income was defined as personal 

family income for the last year, including all sources such as wages, salaries, social security and 

retirement benefits.   

Measurement of potential confounders  

OAI administered comprehensive measurements on participants’ clinical characteristics, 

including knee alignment,121 symptom-related multi-joint OA,122 K-L grade,122 and history of 

having a knee injury or surgery.123  Knee alignment was measured with goniometer, and varus or 

valgus deformity was recorded if malalignment was found.  We considered symptom-related 

multi-joint OA present if participants had OA symptoms in at least two joints other than knee.124  

Information was also collected on history of having a knee injury that limited ability to walk for 

at least two days, and history of having knee surgery including arthroscopy, ligament repair or 

meniscectomy.   

The 12-item Short-Form Health Survey (SF-12) provided an assessment of general health 

status.125  Answers to the 12 questions were combined to generate Physical and Mental 

Component Summary scores, which range from 0 to 100, with higher scores indicating better 

health status.  BMI has been reported as a risk factor for OA progression due to its potential local 

biomechanical effect and systemic metabolic effect.126  We calculated BMI from measured 
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height and weight [weight (kg)/height (m2)].  Participants with a BMI less than 25 were defined 

as having normal weight, 25 and less than 30 as overweight, and 30 and over obese.  

Trained interviewers obtained information about use of other arthritis treatments, 

including conventional medications and complementary and alternative medicine (CAM). At 

each visit, separate dummy variables were generated to indicate use of acetaminophen, non-

steroidal anti-inflammatory agents (NSAIDs) and opioids in the past 30 days.  Use of 

acetaminophen and NSAIDs included use of prescriptions and/or over-the-counter medications.  

Use of CAM, which was surveyed at baseline and year 2, covered therapies commonly used in 

the United States, including alternative medical systems, mind-body interventions, manipulation 

and body-based methods, energy therapies and biologically based therapies.127   

Sociodemographics and history of a knee surgery were considered invariant and all other 

potential confounders were considered time-varying during the study period.  For participants 

missing information on the time-varying variables, we imputed missing values with the last 

observation carried forward.128   

 

We first described baseline sociodemographic and clinical characteristics of study 

participants by status of glucosamine/chondroitin use at year 1.  When estimating the long-term 

effects of glucosamine/chondroitin use, we chose marginal structural models (MSMs) as the 

primary analytic method because we hypothesized that the data structure involved time-varying 

confounders that were influenced by previous treatments.19  Figure 4.2 depicts the hypothesized 

relationships between glucosamine/chondroitin use, study outcomes, and potential time-varying 

confounders.  Previously measured study outcomes and time-varying confounders may be 

Statistical analyses 
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simultaneously confounders and intermediate variables.  For instance, when studying WOMAC 

Pain as the outcome, the Pain score measured at the previous visit can be a potential confounder 

because it correlates with Pain score measured at current visit and patients with more severe pain 

are more likely to use glucosamine/chondroitin.8  Furthermore, if glucosamine/chondroitin is 

effective in relieving pain (which is a hypothesis tested in our study), the previously measured 

Pain score lies on the causal path from prior treatment use and currently measured WOMAC 

Pain.  If so, standard regression models adjusting for previous pain severity will produce biased 

estimates of the long-term treatment effects.17  

MSMs rely on inverse probability weighting to adjust for time-varying confounding.19  

At each visit, we estimated the conditional probability of receiving observed treatment with 

glucosamine/chondroitin given baseline characteristics and time-varying confounders (including 

WOMAC subscale, K-L grade, SF-12 subscales, BMI, knee alignment, prior incidence of knee 

injury, use of analgesics and CAMs) that were measured at the same visit as use of 

glucosamine/chondroitin. For each specific WOMAC outcome, we adjusted for only the same 

previously-measured subscale as potential confounder. When analyzing JSW, we adjusted for 

previously measured WOMAC Pain because we found it a stronger correlate with treatment use 

than Stiffness and Physical Function.8   

The inverse of the conditional probability was stabilized with the conditional probability 

of receiving observed treatment given baseline covariates.  Conditional probabilities in 

numerator and denominator were estimated with logistic regression models (i.e., treatment 

models).19  To take into account that associations of confounders to treatment initiation may be 

different from their associations to treatment continuation, we fit treatment models stratified by 

previous treatment status.42  Specifically, the treatment models estimated the probability of 
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initiating treatment among those not using treatment at previous visit and the probability of 

continuing the treatment among those reporting use at previous visit.   

Patients were excluded from analyses at the first occurrence of loss-to-follow-up, 

undergoing total knee replacement, or missing information on glucosamine/chondroitin use or 

outcome, whichever came first.  To address the potential bias from informative dropout, we 

incorporated inverse-probability-of-censoring weighting in analyses.19  At each visit from year 2 

to year 4, “censoring” status was categorized as follows: 1) not censored; 2) censored due to 

illness/death/total knee replacement; 3) censored due to refusal to participate/loss of 

contact/missing exposure or outcome. Censoring weights were calculated in the same way as 

treatment weights, except that multinomial logistic models were used to estimate the probability 

of having observed censoring status and that current treatment use was added in the censoring 

models.19  The final weights were the products of visit-specific treatment weights and censoring 

weights.19  To ameliorate the impact of potential positivity violations, we truncated the final 

weights at the 99th percentile.20 

After weights were constructed, weighted linear models (i.e., outcome models) were fit to 

estimate the relationships between cumulative exposure to glucosamine/chondroitin up to 

previous visit and changes in WOMAC scores and JSW measured at current visit.19  In addition 

to the cumulative treatment use, baseline variables were also included in these outcome 

models.19  We fit the outcome models using the GENMOD procedure in SAS (with an 

“independent” correlation structure and using “robust” standard errors).37  Under the assumptions 

of no unmeasured confounding and correct specifications of the treatment and outcome models, 

the MSM estimates represent the causal effects of using glucosamine/chondroitin for 1, 2 and 3 

years on WOMACs and JSW among the study population.19  Previous validation studies 129-133 
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suggest the minimal clinically-important improvement ranged from -4.6 to -1.2 for WOMAC 

Pain, -1.5 to -0.5 to for WOMAC Stiffness, -9.9 to -4.1 to for WOMAC Physical Function, and 

0.2 to 0.5 mm for JSW.    

We also compared the MSM estimates with the estimates derived from analyses with 

generalized estimating equations (GEE).  In GEE analyses, we adjusted for baseline and time-

varying confounders in the model and chose the working correlation structure that maximized 

the quasi-likelihood information criterion.134  We hypothesized that, if there is treatment effect 

that is mediated by the time-varying confounders, GEE estimates would be smaller in magnitude 

than the MSM estimates because GEE analyses cannot correctly estimate such mediated effect.19   

 

Results 

Table 4.1 shows the baseline characteristics of the 1,625 participants included in analyses 

of WOMACs by status of glucosamine/chondroitin use at year 1.  Overall, 43.6% were aged ≥65 

years, 58.0% were women, 72.9% were non-Hispanic White and 37.8% had K-L grade 3 or 4. 

Ten percent of non-users at baseline initiated glucosamine/chondroitin at year 1.  Compared to 

non-initiators of glucosamine/chondroitin at year 1, initiators tended to be younger, have higher 

education attainment and higher income, and were more likely to use other CAM and have a 

BMI ≥25 kg/m2 and valgus deformity at baseline. Similar trends were found in the study sample 

for the JSW analyses.  

Characteristics of study sample 

 

Predictors of glucosamine/chondroitin use 
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Around 18% of participants initiated glucosamine/chondroitin during the study period. 

Among these initiators, 22.8% reported treatment use at all assessments (other than baseline) and 

38.4% discontinued the treatment at a later assessment. Table 4.2 shows the correlates of 

initiating and continuing glucosamine/chondroitin treatment.  Older adults were less likely to 

initiate treatment, but more likely to stay on treatment once they initiated it.  Longitudinally, 

participants were less likely to initiate treatment (comparing year 3 and year 2 with year 1), but 

more likely to continue the treatment (comparing year 3 with year 2).  Being overweight, having 

K-L grade 3/4 and using NSAIDs were correlates of treatment initiation, while use of other CAM 

methods and acetaminophen was associated with both initiating and continuing treatment.  

When analyzing WOMAC Pain as outcome, the mean of final weights was 1.00, and the 

maximum value was 5.92 and 99th percentile was 1.83. Final weights for analyses of Stiffness 

and Function had similar distributions. The final weights for analyzing JSW had a mean of 0.99 

and ranged from 0.13 to 4.92.   

 

As shown in the top section in Table 4.3, after adjustment for potential confounders with 

MSMs, compared to participants who never reported previous use of glucosamine/chondroitin, 

those reporting use for three, two and one assessments had on average 0.68 points increase (95% 

CI: -0.16 to 1.53), 0.12 points decrease (95% CI: -0.71 to 0.48) and 0.28 points increase (95% 

CI: -0.08 to 0.65) in WOMAC Pain, respectively.  In terms of WOMAC Stiffness and Function, 

the average differences in changes from baseline between participants using the treatment at all 

assessments and never-users were 0.41 (95% CI: 0 to 0.82) and 1.28 (95% CI: -1.23 to 3.79), 

respectively.  The bottom section in Table 4.3 shows the estimates of treatment effects on JSW.  

Effects of glucosamine/chondroitin on treating knee OA 



 
 

78 
 

After adjustment for confounders with MSMs, compared to never-users, those who reported 

previous use for three, two and one assessments had on average 0.11mm wider (95% CI: -0.21 to 

0.44), 0.14mm wider (95% CI: -0.07 to 0.35) and 0.03mm narrower (95% CI: -0.16 to 0.10) in 

medial JSW, respectively.   

 

Discussion 

Following a large sample of participants with knee OA who were “naïve” to treatment 

with glucosamine/chondroitin, we found that around 18% initiated the treatment and 4% reported 

use at all assessments during the study period. Age, BMI levels, K-L grade and use of other 

treatments were important correlates of initiating and/or continuing glucosamine/chondroitin 

treatment.  After adjustment for potential confounders with MSMs, we found that treatment with 

glucosamine/chondroitin for three years did not appear to bring about relief in symptoms or 

retardation of disease progression.  Analyses with GEE yielded similar results as the MSM 

analyses.   

Our data relating to symptomatic effects are consistent with recent systematic 

reviews11,107 on single treatment with glucosamine or chondroitin and with independent long-

term clinical trials on combination treatment with both supplements.135,136  The recently updated 

Cochrane review concluded that clinical trials with adequate allocation concealment did not 

demonstrate a superiority of glucosamine over placebo for pain or physical function.11 Likewise, 

a recent meta-analysis found that large-scale clinical trials using an intention-to-treat analysis 

reported minimal or nonexistent symptomatic benefits from chondroitin compared to placebo.107  

Moreover, as far as we know, there are two published long-terms trials, i.e., the 

Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT) 135 and the Long-term Evaluation 
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of Glucosamine Sulfate (LEGS) study,136 which assessed the efficacy of combination treatment 

with both supplements in treating knee OA.  Both studies found that combination treatment did 

not confer symptomatic benefits compared to treatment with either supplement or with 

placebo.135,136  Our data join a growing body of evidence suggesting that 

glucosamine/chondroitin has no impact on relieving OA symptoms. 

With respect to the effect of glucosamine/chondroitin on structural progression, our 

findings are consistent with some,14 but not all of the literature.115,136  The GAIT study reported a 

difference of 0.028mm in joint space narrowing between the combination treatment group and 

the placebo group and concluded no benefits of modifying disease progression from combination 

treatment.14  On the contrary, the LEGS study found that the difference in joint space narrowing 

was 0.10mm after two-year follow-up, which was in favor of the combination treatment and was 

marginally statistically significant (p=0.046).  This absolute reduction in joint space narrowing 

was comparable to that found in our study.  Considering that the smallest detectable change in 

JSW measures was 0.2 mm,132 this reduction may be trivial.  

Moreover, we are aware of another non-experimental study by Martel-Pelletier et al., 

which was based on OAI participants and assessed use of glucosamine/chondroitin on slowing 

OA progression.115  Using a different study design and analytic approaches, our study confirms 

their finding that combination use of glucosamine and chondroitin does not have an impact on 

slowing joint space narrowing. However, their study reported that glucosamine and chondroitin 

reduced loss of cartilage volume in some subregions of the tibiofemoral joint assessed with 

MRI.115  We interpret this conclusion cautiously.  Over 60 comparisons were conducted to 

compare cartilage volume loss in different subregions of the knee joint between users and non-

users of glucosamine/chondroitin, but no adjustments for multiple comparisons were made. Once 
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Bonferroni corrections were applied,137 none of the comparisons would have been statistically 

significant.  

Our study has some merits that are worth mentioning.  First, we used a new-user design 

by excluding participants using glucosamine/chondroitin at baseline. A new-user design is 

considered a gold standard in pharmacoepidemiologic studies due to the well-recognized 

advantages of studying initiators of treatments.73  In particular, a new user design can avoid the 

selection of prevalent users who are responsive to the treatment and thus prevent overestimating 

the treatment benefits.73,116 In addition, a new-user design can avoid bias from adjusting for 

confounders that may be affected by previous treatments in prevalent users.73,116 Second, we 

used MSMs to estimate causal effects by adjusting for time-varying confounders which may also 

be intermediate variables and by controlling for bias from potential informative dropout.17,19  

GEE models generally produce associative effects and may estimate causal effects under very 

stringent assumptions, including the assumption that time-varying confounders are not 

influenced by prior treatments.17,19  GEE adjusts for time-varying confounders through 

conditioning analysis on these covariates and thus eliminates any indirect effect from prior 

treatments that are mediated by the time-varying confounders.17,19  Unlike GEE, MSM adjusts 

for time-varying confounders through assigning weights to participants and thus is capable of 

estimating overall treatment effects, if they exist.17,19  

Notwithstanding, our findings must be considered with limitations in mind.  First, there 

may be misclassification in use of glucosamine/chondroitin. Treatment use was assessed 

annually, and it is likely that participants were on and off the treatment during the intervals of 

assessments.  If this misclassification was non-differential, we would have underestimated the 

treatment effects.  Moreover, we do not have information on treatment dosage or the extent of 
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purity of the supplements.  The supplements evaluated in our study were likely over-the-counter 

products, which have been reported to be different from those tested in clinical trials in terms of 

quality, strength, and composition.138  Finally, despite that OAI administered comprehensive 

measurement on the disease severity that might affect patients in seeking treatment and that these 

indices were adjusted to deal with the potential confounding by indication, we could not rule out 

the possibility that our findings may still be biased by unmeasured confounding. 

In summary, long-term use of glucosamine/chondroitin as dietary supplements did not 

appear to relieve symptoms or modifying disease progression among radiographically confirmed 

OA patients. Our findings are consistent with the results from recent long-term clinical trials and 

support the latest guidelines for OA treatment which recommend against using the nutritional 

supplements of glucosamine and chondroitin.103 
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Table 4.1. Baseline characteristics by use of glucosamine/chondroitin at year one among persons 
with radiographic knee OA (n=1,625)   

Characteristics Glucosamine/ 
chondroitin 

initiators (n=165) 

Non-initiators of 
glucosamine/ 
chondroitin 
(n=1,460) 

Total 

Age (years) Percentage 
  <65 60.0 56.0 56.4 
  65-74 32.7 31.6 31.7 
  ≥75 7.3 12.4 11.9 
Women 57.0 58.1 58.0 
Ethnicity/Race    
  Non-Hispanic White 72.1 73.0 72.9 
  Non-Hispanic Black 23.0 24.1 24.0 
  Other 4.9 3.0 3.1 
Education    
  High school or less 19.4 20.8 20.6 
  Some college 20.6 27.0 26.3 
  College graduate  17.0 20.8 20.4 
  Graduate school  43.0 31.4 32.6 
Income ($)    
  <25,000 17.6 17.5 17.5 
  25,000 - 50,000 23.0 29.5 28.9 
  >50,000 59.4 53.0 53.7 
KL grade 3 or 4  37.6 37.8 37.8 
Symptom-related multi-joint OA 49.1 49.4 49.4 
Use of non-steroidal anti-
inflammatory agents 

42.4 35.4 36.1 

Use of acetaminophen 12.1 13.9 13.7 
Use of opioids 6.1 6.1 6.1 
Use of complementary and 
alternative medicine 

35.8 24.4 25.5 

History of knee injury 37.0 37.7 37.6 
History of knee surgery 73.3 70.8 29.0 
Body Mass Index (kg/m2)    
  <25  8.5 15.7 15.0 
  25 - <30  42.4 37.5 38.0 
  ≥30  49.1 46.8 47.0 
Knee alignment    
  Normal 24.9 26.5 26.3 
  Varus 24.2 28.0 27.6 
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  Valgus 50.9 45.5 46.0 
  Mean (Standard Deviation) 
WOMAC Pain 4.2 (3.9) 3.8 (4.1) 3.9 (4.1) 
WOMAC Stiffness 2.2 (1.8) 2 (1.8) 2 (1.8) 
WOMAC Physical Function 12 (11.8) 12 (13) 12 (12.9) 
SF-12 Physical Component Score 48.1 (8.8) 47.6 (9.6) 47.7 (9.5) 
SF-12 Mental Component Score 54.6 (7.9) 53.3 (8.5) 53.4 (8.4) 
Medial joint space width (mm)* 5.2 (1.3) 5.2 (1.2) 5.2 (1.2) 
*Based on information on 1,113 participants included in JSW analyses, among which 107 
reported initiating glucosamine/chondroitin at year 1.  
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Table 4.2. Correlates* of glucosamine/chondroitin use in the three-year follow-up period among 
persons with radiographic knee OA    

Correlates of treatment use Adjusted odds ratios§ 
(95% CI) of 

"initiating" treatment 

Adjusted odds ratios§ 
(95% CI) of 

"continuing" treatment 
Baseline characteristics   
  Age: 75 vs <65 years 0.63 (0.40-0.99) 2.31 (0.69-7.74) 
  Age: 65-74 vs <65 years 0.71 (0.53-0.95) 2.27 (1.17-4.40) 
  Women vs men 0.89 (0.68-1.17) 0.65 (0.33-1.27) 
  Black vs White 0.74 (0.53-1.03) 0.67 (0.34-1.32) 
  Other race vs White 1.02 (0.53-1.97) 0.28 (0.08-1.02) 
  Graduate education vs High school 1.60 (1.07-2.38) 1.39 (0.59-3.26) 
  College graduate vs High school 1.21 (0.78-1.86) 0.57 (0.21-1.53) 
  Some college vs High school 0.91 (0.61-1.36) 1.05 (0.43-2.59) 
  Income ($): >50 k vs <25k 0.99 (0.65-1.51) 1.60 (0.66-3.92) 
  Income ($): 25-50k vs <25k 0.93 (0.62-1.41) 0.79 (0.33-1.89) 
  History of knee surgery 0.78 (0.58-1.05) 0.42 (0.22-0.83) 
Time-varying confounders 
(concurrent)   
  Year 3  (vs Year 1) 

0.44 (0.32-0.60) 
(vs Year 2) 

1.71 (1.01-2.88) 
  Year 2  (vs Year 1) 

0.51 (0.39-0.69) 
-- 

  Obese vs Normal weight 1.20 (0.82-1.76) 0.85 (0.37-1.93) 
  Overweight vs Normal weight 1.49 (1.02-2.16) 1.21 (0.55-2.69) 
  Alignment: Valgus vs Normal 1.02 (0.74-1.40) 0.58 (0.27-1.25) 
  Alignment: Varus vs Normal 0.86 (0.61-1.21) 0.70 (0.31-1.59) 
  K-L: 3/4 vs 2 1.37 (1.06-1.78) 1.07 (0.59-1.93) 
  Multi-joint osteoarthritis 1.15 (0.89-1.50) 0.94 (0.53-1.67) 
  History of knee injury  0.99 (0.76-1.30) 1.69 (0.92-3.10) 
  Use of non-steroidal anti-
inflammatory agents 

1.46 (1.12-1.90) 1.06 (0.57-1.94) 

  Use of acetaminophen 1.45 (1.00-2.11) 1.42 (0.58-3.50) 
  Use of opioids 0.67 (0.40-1.13) 0.61 (0.21-1.75) 
  Use of complementary/alternative 
medicine 

2.20 (1.69-2.89) 2.90 (1.64-5.12) 

  WOMAC Pain # 1.13 (0.98-1.32) 1.23 (0.86-1.75) 
  SF-12 Physical Component Score # 1.20 (1.02-1.41) 1.32 (0.94-1.84) 
  SF-12 Mental Component Score # 1.15 (1.00-1.32) 0.99 (0.75-1.30) 

* Correlates in this table were included in treatment models when analyzing WOMAC Pain as 
the outcome.  
§ Adjusted for other variables in this table.    
# Odds ratios are per one standard deviation changes in WOMAC Pain or SF-12 subscales.   
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Table 4.3. Estimated effects of glucosamine/chondroitin on treating OA among persons with 
radiographic knee OA, beta coefficients (95% CI)*   

Models Cumulative exposure to glucosamine/chondroitin# 
3 2 1 

WOMAC Pain (Minimally important improvement: -4.6 to -1.2) 
GEE: Crude § 0.86 (0.10 to 1.61) 0.14 (-0.33 to 0.60) 0 (-0.36 to 0.37) 
GEE: Full-adjusted § 0.81 (0.16 to 1.45) 0.07 (-0.30 to 0.45) 0.20 (-0.04 to 0.44) 
MSM with truncated 
weights  

0.68 (-0.16 to 1.53) -0.12 (-0.71 to 0.48) 0.28 (-0.08 to 0.65) 

WOMAC Stiffness (Minimally important improvement: -1.5 to -0.5) 
GEE: Crude §  0.48 (0.08 to 0.89) 0.09 (-0.17 to 0.34) 0.14 (-0.04 to 0.31) 
GEE: Full-adjusted § 0.41 (0.04 to 0.79) 0.13 (-0.08 to 0.34) 0.17 (0.05 to 0.30) 
MSM with truncated 
weights 

0.41 (0 to 0.82) 0.10 (-0.18 to 0.37) 0.25 (0.06 to 0.43) 

WOMAC Function (Minimally important improvement: -9.9 to -4.1) 
GEE: Crude § 2.56 (0.64 to 4.48) 1.23 (-0.17 to 2.64) -0.06 (-1.15 to 1.02) 
GEE: Full-adjusted § 1.74 (0.03 to 3.46) 0.94 (-0.19 to 2.07) 0.31 (-0.41 to 1.03) 
MSM with truncated 
weights 

1.28 (-1.23 to 3.79) 0.24 (-1.45 to 1.94) 0.66 (-0.50 to 1.82) 

Joint space width (Minimally important improvement: 0.2 to 0.5) 
GEE: Crude § -0.35 (-0.58 to -0.12) -0.25 (-0.45 to -0.06) -0.12 (-0.23 to -0.01) 
GEE: Full-adjusted § 0.05 (-0.13 to 0.22) 0.04 (-0.08 to 0.15) -0.03 (-0.09 to 0.03) 
MSM with truncated 
weights 

0.11 (-0.21 to 0.44) 0.14 (-0.07 to 0.35) -0.03 (-0.16 to 0.10) 

* The reference group includes persons never using glucosamine/chondroitin up to “previous 
visit”.   
§ Generalized estimating equations (GEE) analyses assumed an unstructured correlation matrix. 
The full-adjusted GEE estimates adjusted for baseline characteristics and time-varying 
confounders that were measured at the same visit as glucosamine/chondroitin use.  
# Analyses of WOMAC outcomes and JSW were based on 1,625 persons (4,264 person-visits) 
and 1,113 persons (2,367 person-visits), respectively.  
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Figure 4.1. Flow-chart of identifying study samples.   

Glu/Chon: glucosamine/chondroitin; JSN: joint space narrowing.  
*295 persons were further censored at visits from year 2 to year 4 because the JSW measures were missing or invalid due to poor knee 
positioning.  
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Figure 4.2. Hypothesized causal relationships between glucosamine/chondroitin treatment, study outcomes and potential time-varying 
confounders.   

Glu/Chon denotes treatment with glucosamine/chondroitin and the subscript number denotes the follow-up time (year) when the 
information was measured.  
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