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SILDENAFIL AND CELECOXIB INTERACT TO KILL BREAST CANCER CELLS 

By Brittany Binion, MS 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

Virginia Commonwealth University, 2014 

Major Director: Paul Dent, Ph.D. Department of Biochemistry 

 Breast cancer is the second most commonly diagnosed cancer among American women 

and is responsible for the second highest number of cancer-related deaths. Targeted therapeutic 

agents sildenafil, a phosphodiesterase type 5 inhibitor, and celecoxib, a cyclooxygenase-2 

inhibitor, have been used individually in conjunction with other chemotherapeutic agents to 

enhance cell killing in a variety of cancers. Sildenafil when combined with traditional 

chemotherapeutic drugs, such as the taxanes and anthracyclines, or celecoxib combined with 

traditional hormone therapies have been used to increase cytotoxicity and cell killing. The data 

presented here demonstrates that the novel combination of sildenafil and celecoxib work together 

to enhance cell killing in both receptor positive and triple negative breast cancer through the 

induction of autophagy, ER stress, as well as both intrinsic and extrinsic apoptosis.
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Introduction 

Breast Cancer 

 Over 200,000 new cases of invasive breast cancer are diagnosed in the United States each 

year, and approximately 40,000 of the patients diagnosed will die from the disease.
1
 From 2001 

to 2010, the incidence of breast cancer in the United States remained level among women, and 

the mortality rate decreased by 2.0% per year
2
. It has been suggested that at least half of the 

reduction in breast cancer mortality that was observed over the last thirty years is attributable to 

the widespread use of adjuvant therapy.
3
  It is common to classify the disease based upon nodal 

status, tumor grade and size, as well as other prognostic factors such as hormone receptor 

status.
4,5

 These designations are useful, particularly the expression of receptors present in the 

cancer, as they are used to determine potentially effective treatments.  

 The breast cell lines utilized in experiments in this manuscript were ductal carcinomas, 

with differing receptor expression patterns, indicated in table 1. The BT 474 cell line is 

characterized mostly by the overexpression of human epidermal growth factor receptor 2 

(HER2), as it retains functional estrogen receptors (ER) and progesterone receptors (PR).
6,7

 

However, the BT 549 cell line is referred to as triple negative breast cancer (TNBC), as it does 

not express any of the three major receptors used in breast cancer diagnosis.
8
 The absence of ER 

and PR expression has been shown to be associated with early disease recurrence and poor 

survival, and 15% of breast cancers diagnosed worldwide are designated as TNBC .
1, 9, 10, 11, 12 
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Table 1: Cell line receptor expression. A table listing the characteristic receptor expression 

status of the cell lines used in this study. For expression levels, (-) signifies absent, (+) indicates 

expression, (++) signifies overexpression. 

Cell line ER PR HER2 

BT 474 + + ++ 

BT 549 - - - 

 

Conventional Treatment 

 The conventional treatment course for patients with breast cancer typically involve 

surgical removal and a neo-adjuvant (pre-surgery) or more commonly an adjuvant (post-surgery) 

therapy. These adjuvant therapies can include radiation, chemotherapeutics such as 

anthracyclines and taxanes, hormone therapy, targeted therapy, or a combination of treatments.  

 TNBC is highly aggressive, and is responsible for a disproportionate number of 

metastatic disease cases and breast cancer deaths.
13,14,15

  It is typically treated with a combination 

of cytotoxic chemotherapy agents, including the anthracyclines and taxanes.
16

 Commonly there 

is residual disease after treatment of early breast cancer, and these patients have a high risk of 

relapse, with a sharp decrease in survival in the first 3 to 5 years after treatment.
13, 17, 18, 19

  

Conventional treatments for relapsed patients are limited, particularly because standard 

chemotherapeutic regimens containing anthracyclines and taxanes have already been given in the 

adjuvant and neoadjuvant settings, opening up the potential for resistance to drugs already 

administered.
20

  

 Typically, conventional chemotherapy does not have the ability to discriminate between 

normal rapidly dividing cells and cancer cells and has low therapeutic efficacy. In contrast, 
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targeted therapies have specific molecular targets in tumor cells, which act with higher 

specificity and induce less overall toxicity.
21

 Due to these aspects of targeted therapies, they 

represent a more promising approach based on the molecular understanding of tumorigenesis, 

which may potentially replace conventional cytotoxic chemotherapy in the future. The largest 

obstacle in targeted therapies comes from the potential for crosstalk between cellular survival 

pathways, commonly resulting in the activation of alternative pathways,  ultimately leading to 

drug resistance. Therefore, it is becoming more evident that targeted therapeutics used in 

combination may provide a more rational strategy to increase the efficacy of drug treatments in 

cancer patients. 

Hormone and Targeted Therapies 

 Both the ER and the PR play important roles in the physiology of the reproductive tract, 

and have effects on the normal growth of the breast as well as the progression of breast cancer.
22, 

23
 The ER is a hormone-regulated nuclear transcription factor that can induce the expression of a 

number of genes, including that of the PR.
24

 Upon ligand activation, ER binds to estrogen 

response elements on target genes and regulates the transcription of these specific genes, 

including that of the PR.
25

 Due to the complex nature of co-regulatory proteins and extra nuclear 

actions involved in ER signaling, there is a requirement for tight regulation of these factors, with 

dysregulation being implicated in the progression of cancer attributed to the importance of ER in 

growth and survival pathways.
23 

For hormone receptor positive patients, therapeutic strategies 

are commonly directed at inhibiting the actions of ER using selective ER modulators (SERMs), 

targeting ER for degradation with selective ER downregulators (SERDs), or withdrawing 

estrogen via surgical methods (oophorectomy) or medically by aromatase inhibitors in post-

menopausal women.
26
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 Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase gene that 

is amplified and causes overexpression of protein in 20-30% of metastatic breast cancer.
27

 This 

amplification and overexpression is associated with reduced time to progression of the disease as 

well as a reduction in overall survival in breast cancer patients.
28

 The HER2 gene does not need 

to be mutated for oncogenic function, simply the amplification of wild-type HER2 is sufficient to 

produce the oncogenic effects.  

 In HER2 overexpressing cells, excess expression can lead to spontaneous and constitutive 

ligand-independent dimerization, which activates the cytoplasmic kinase region of the 

receptor.
29, 30, 31 

This kinase activation can stimulate autophosphorylation of tyrosine residues 

within the cytoplasmic domain of the receptors and initiate downstream signaling, primarily 

though the AKT and MAPK pathways, ultimately leading to increased proliferation, protein 

synthesis and cell survival.
27

 The PI3K/AKT signaling pathway is a major effector of HER2 

activity; PI3K blockade suppressed tumor growth in multiple models of HER2-overexpressing 

breast cancers.
32, 33

 MAPK signaling appears to contribute to progression of HER2-positive 

breast cancer, with hyper activation of MAPK signaling and resistance to the ER modulator 

tamoxifen seen in HER2 and ER-positive cells.
31 

 Post-surgery, adjuvant treatments for HER2-positive breast cancer patients typically 

involves long-term treatment with trastuzumab (Herceptin), a monoclonal antibody that attaches 

to HER2 receptors on breast cancer cells and blocks them from receiving growth signals. This 

blockade can slow or even stop cancer growth. In the event that the cancer metastasizes, a 

tyrosine kinase inhibitor called lapatinib is used to inhibit receptor signal processes by binding to 

the ATP-binding pocket of the HER2 protein kinase domain.
35

 This prevents 

autophosphorylation and subsequent activation of downstream signaling mechanisms.  
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 Taken together, most common therapies are geared towards directly blocking or 

eliminating receptor activation. However, there is evidence of crosstalk between ER, PR and 

growth factor receptor signaling pathways, especially the epidermal growth factor receptor 

(EGFR) family, as one of the mechanisms for resistance to endocrine therapy in breast cancer.
36, 

37, 38
 Bidirectional crosstalk between ER and growth factor pathways, particularly HER2, result 

in a positive feedback cycle of survival and cell proliferative stimuli.
38

 This indicates that the 

current methods of blocking receptor signaling are no longer as effective, as resistances are 

becoming more commonplace. Drug resistance is also of particular concern for TNBC patients as 

therapies are quite limited for patients experiencing cases of metastasis. This is largely due to a 

lack of targeted therapies available as well as the prevalence for acquired resistance against 

chemotherapies previously administered. 

Sildenafil 

 Phosphodiesterases (PDEs) are a family of enzymes which catalyze the hydrolysis of the 

cyclic nucleotides to their corresponding 5-monophosphate counterparts, leading to a decrease in 

levels of the cyclic nucleotides.
39

 Sildenafil (Viagra) is an oral PDE inhibitor specific to isoform 

5 (PDE5), with selectivity for cyclic guanosine monophosphate (cGMP).
40, 41

 Nitric oxide (NO) 

stimulates the enzyme guanylate cyclase to convert guanosine triphosphate (GTP) to cGMP, with 

high levels of cGMP being responsible for the relaxation of smooth muscle.
42

 Thus, sildenafil 

enhances the actions of the endogenous NO-cGMP pathway, by mediating the elevation of 

cGMP levels due to inhibiting its degradation by PDE5.
43, 44

 Due to the localization of PDE5 in 

the corpus cavernosum, sildenafil is successfully used in the treatment of erectile dysfunction.  



 
 

6  
 

 It has been demonstrated that hypoxia-induced inhibition of intracellular NO-cGMP 

signaling can lead to a more malignant phenotype in cancer cells, including chemoresistance and 

evasion of immune detection.
45, 46

 PDE-specific inhibition decreased hypoxia-mediated chemo 

resistance, confirming the potential clinical utilization of enhancing NO-cGMP signaling to 

chemo sensitizes cancer cells.
45,46, 47 

Thus, PDE5 inhibitors may be used as an anticancer therapy, 

due to their essential role in regulating cGMP, which as a second messenger causes a reduction 

in cell growth as well as the induction of apoptosis.
48, 49, 50 

  It has also been demonstrated that when paired with standard of care chemotherapy 

treatments, such as doxorubicin, sildenafil mediates a cardio protective effect through the NO-

cGMP pathway involving the enhanced expression of nitric oxide synthase (NOS).
51

 This 

protective effect offsets one of the biggest concerns with doxorubicin treatment as well as 

enhancing doxorubicin induced cell death through apoptosis, particularly the extrinsic pathway 

through death receptors.
51, 52

 

 Sildenafil is generally administered as a single 50 milligram (mg) dose per day as needed, 

and can be adjusted up to 100 mg or down to 25 mg. It is well tolerated by patients, with the 

occurrence of mild side effects such as headache, flushing, dyspepsia, nasal congestion, urinary 

tract infection, abnormal vision, diarrhea, dizziness, and rash. 
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Figure 1: Chemical structure of sildenafil
72 

Celecoxib 

 Celecoxib (Celebrex) was the first specific inhibitor of cyclooxygenase-2 (Cox-2) 

approved by the US Food and Drug Administration (FDA) in December of 1998 to treat patients 

with rheumatoid arthritis and osteoarthritis.
53

 The purpose of Celecoxib was to produce a non-

steroidal anti-inflammatory drug (NSAID) that had little to no effects on the gastrointestinal 

system or the kidneys, which are commonly negatively affected by NSAIDS.  

 Patients taking celecoxib have an initial recommended dosage of 200mg daily for 

osteoarthritis and 400 mg daily for rheumatoid arthritis.
54

 Common side effects are relatively 

mild, and include abdominal pain, diarrhea, dyspepsia, flatulence, dizziness, upper respiratory 

tract infection and rash, with a potential for increased cardiovascular risks.
55

  

 The COX enzymes catalyze the synthesis of prostaglandins (PGs) from arachidonic acid, 

which are important messengers involved in the process of inflammation.
56

 There are two 
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isoforms of COX, with COX-1 being expressed in most tissues and producing PGs that are 

responsible for the control of normal physiological functions such as the maintenance of gastric 

mucosa.
56

 Thus the gastric side effects caused by traditional NSAIDs that non-selectively inhibit 

both isoforms of COX are likely through the inhibition of COX-1, which mediates 

gastroprotective PGs.  In contrast, COX-2 is not found in most normal tissues and is induced by 

inflammatory stimuli, which leads to enhanced synthesis of PGs in neoplastic and inflamed 

tissues.
56

 The selectivity of COX inhibitors arises from a single substitution in the NSAID 

binding site, which produces a void volume to the side of the central active-site channel; 

compounds that bind in this additional space inhibit COX-2 selectively.
57 

 It was noted that long term use of NSAIDs appeared to reduce the risk of developing 

cancer.
56, 58

 COX2 is commonly observed to be upregulated in cancer, including breast, and 

administration of celecoxib caused a greater suppression of the incidence of malignant breast 

tumors when compared to the administration of traditional NSAIDs.
59, 60

 It was indicated that the 

increase in tumorigenic potential by COX2 overexpression was associated with a resistance to 

apoptosis through the overproduction of PGs, and celecoxib was therefore inducing apoptosis.
61

  



 
 

9  
 

 

Figure 2: Chemical structure of celecoxib.
73 

Apoptosis: Intrinsic and Extrinsic Pathways 

 Apoptosis is a form of programmed cell death that is intimately involved in the 

development and homeostasis of normal tissues.
62

 Most notably, apoptosis is characterized by 

morphological changes that take place, such as cell shrinkage, membrane blebbing, nucleus 

fragmentation, chromatin condensation and DNA degradation.
63, 64, 65

 Within the designation of 

apoptosis there are two distinct pathways: the extrinsic, or death receptor pathway, and the 

intrinsic, or mitochondrial pathway (figure 3). It is suggested that these two pathways are 

connected, and have the ability influence each other.
63

 Both the intrinsic and extrinsic pathways 

ultimately converge on the activation of specific intracellular proteases, known as the caspase 

family, that are responsible for cleaving proteins adjacent to aspartate residues. These proteases 

are commonly categorized as initiators or executioners and are synthesized as inactive zymogens 

that become activated through cleavage by their upstream modulators.
63, 66

 Caspase 3 is the most 
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important executioner, as it is the link between the two pathways; it is activated by any of the 

initiator caspases (8, 9 and 10). Executioner caspases (3, 6 and 7) cleave and affect a multitude of 

substrates, including cytoskeletal and nuclear proteins, as well as activating other proteases and 

endonucleases involved in protein degradation and DNA fragmentation.
63,66

  

 The intrinsic pathway is strictly regulated by the B-cell lymphoma-2 (Bcl-2) family of 

proteins.
63, 66

 This family contains three different classes of proteins: the anti-apoptotic group I, 

the pro-apoptotic group II, and group III proteins that are responsible for binding and regulating 

the activity of anti-apoptotic group II proteins. The group I family members such as Bcl-2, B-cell 

lymphoma-extra large (Bcl-xL) and myeloid cell leukemia-1 (Mcl-1) bind directly to and inhibit 

pro-apoptiotic group II family members, that include Bcl-2-associated X protein (Bax) and Bcl-2 

homologous antagonist/killer (Bak). The group III family members that include p53 unregulated 

modulator of apoptosis (Puma), NADPH oxidase activator (Noxa), BH3 interacting domain 

death agonist (BID) and Bcl-2 interacting mediator of cell death (BIM) all interact with the 

group II pro-apoptotic members as well, however they induce the insertion of the group II 

proteins into the mitochondrial membrane.
63, 66, 67

 Recently studies have demonstrated that the 

tumor suppressor p53 may be implicated in the synthesis of Puma and Noxa, providing a link 

between DNA damage and apoptotic cell death.
68, 69

 

 Various stimuli, including viral infection, DNA damage and the absence of particular 

growth factors such as hormones and cytokines lead to the activation of the intrinsic pathway. 

Upon exposure to these stimuli, Bax and Bak are inserted in to the mitochondrial outer 

membrane, leading to membrane permeabilization via the formation of pores. The formation of 

these pores leads to the release of cytochrome-c and other various pro-apoptotic proteins that 

include caspase-activated deoxyribonuclease (CAD), apoptosis-inducing factor (AIF) and 
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endonuclease G, from the inter-membrane space in the mitochondria to the cytosol.
63, 66

 Once in 

the cytosol, cytochrome-c binds to apoptotic protease-activating factor-1 (Apaf-1), which then 

binds pro-caspase 9 to form a complex called the apoptosome that includes multiple Apaf-1 and 

procaspase 9 molecules.
70

 The binding event induces a conformational change and leads to the 

activation of caspase 9, that goes on to proteolytically activate the executioner caspase 3.
63, 66

 

Once activated, caspase 3 goes on to activate caspase 6 as well as CAD through cleavage of its 

inhibitor (ICAD).
70

 CAD, with AIF and endonuclease G, translocates to the nucleus where they 

all contribute to DNA fragmentation.
63, 65, 66

 

 Binding of ligands from the tumor necrosis factor (TNF) family to death receptors leads 

to the activation of the extrinsic pathway. These TNF family receptors consist of a cysteine-rich 

extracellular domain for ligand binding and a cytoplasmic domain of 80 amino acids, termed the 

death domain (DD), which is involved in transducing the signal into the cell.
63, 65, 67

  

 The best characterized member of this receptor family is the Fas receptor, also called 

cluster of differentiation 96 (CD95). CD95 is a 45 kDa trans-membrane protein that upon 

binding with its ligand, FasL, induces a conformational change allowing for the recruitment of an 

adaptor protein called Fas-associated death domain (FADD). FADD itself contains another key 

motif, the death-effector domain (DED) that binds complementary DED domains on initiator 

caspases 8 and 10.
63, 65, 67

 This entire intracellular complex is titled the death-inducing signaling 

complex (DISC) and its formation leads to the auto-proteolytic cleavage and activation of 

caspases 8 and 10.The activation of these initiatior caspases then causes the activation of the 

executioner caspases 3 and 7, that are responsible for the induction of the apoptotic response.
63,65, 

67 
 This pathway can be inhibited by FLICE-inhibitory proteins (FLIP), which bind to the DISC 

and inhibit the activation of caspase 8.
65,67 

 The extrinsic pathway may also cause the release of 
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cytochrome-c and the induction of the intrinsic pathway through activation of BID, which serves 

as a substrate for caspase 8. Upon the activation of the DISC, truncated BID (tBID) translocates 

to the mitochondria and induces the release of apoptotic proteins from the inter membrane space 

into the cytosol.
63, 65, 71 
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Figure 3: The intrinsic and extrinsic apoptotic pathways.
74

 The intrinsic pathway is 

controlled by the Bcl-2 family of proteins that induce the release of cytochrome-c from the inter-

membrane space of mitochondria in to the cytosol. Cytochrome-c causes Apaf-1 to bind and 

activate initiator caspase 9. Cleaved caspase 9 then activates executioner caspase 3. The extrinsic 

pathway is initiated by binding of TNFs to TNFRs that recruit adaptor proteins that can bind and 

activate initiator caspases 8 and 10. These initiator caspases in turn activate caspases 3 and 7. 

Caspase 8 also activates BID, which can translocate to the mitochondria and induce the release 

of cytochrome-c.  
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Autophagy 

 Autophagy is another mechanism that is tasked with maintaining cellular homeostasis, 

and this happens through the regular recycling and turnover of cytoplasmic components. This 

process is a multifunctional pathway associated with not only the removal of damaged 

organelles, but as a method of programmed cell death and various physiological and pathological 

processes that include: normal development, aging, cancer, and neurodegenerative diseases.
75, 76, 

77, 78, 79 
 Where apoptosis is an irreversible form of cell death, autophagy can lead to either cell 

death or, paradoxically, it can allow cells to escape death and therefore can be considered a 

protective mechanism at times.
80 

 An organelle called the lysosome contains hydrolytic enzymes that give it the ability to 

degrade cellular components and whole organelles.
75

 The process of getting these cellular 

components to the lysosome is collectively referred to as autophagy. There are three distinct 

categories of autophagy: microautophagy, chaperone-mediated autophagy and macroautophagy. 

Microautophagy involves the direct engulfment of cytoplasmic components by the lysosome 

through an invagination of the lysosomal membrane.
75, 76, 81

 Cytoplasmic proteins that are to be 

degraded may contain specific motifs that are recognized by lysosomal receptors, leading to 

chaperone-mediated autophagy.
75, 75, 81

 Macroautophagy, henceforth referred to simply as 

autophagy (figure 4), is the main method of turnover for cytoplasmic components, such as long-

lived macromolecules and organelles. The process of autophagy begins with sequestration of 

cytoplasm into the isolation membrane, that goes on to become a double-membrane vesicle 

called the autophagosome. The autophagosome fuses with the lysosome and at this point the 

inner membrane of the autophagosome and its contents are degraded by the hydrolases present 

within the lysosome.
82,83
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 To elucidate the molecular mechanisms that underlie the process of autophagy, 

mutagenesis-based genetic screens have been performed in yeast. These studies have revealed a 

host of genes not only in yeast, but in mammals that are responsible for the regulation of the 

autophagic response, termed autophagy-related genes (ATG).
75, 76

 It has been observed that 

autophagy is a highly conserved evolutionary process and there are many homologues with 

similar functionality in the mammalian system.
75, 76

  

 Three different signaling complexes and pathways are integral to the development of an 

autophagic response: including the mammalian target of rapamycin (mTOR) signaling pathway, 

the ATG1 complex and the class III phosphoinositide 3-kinase (PI3KC3) complex. mTOR is a 

serine/threonine kinase that is responsible for sensing changes in nutrient conditions to control 

multiple cellular processes. In respect to autophagy, mTOR is responsible for causing changes in 

the phosphorylation of ATG13. Under nutrient-rich conditions, mTOR activation causes 

hyperphosphorylation of ATG13, preventing its association with the mammalian orthologue of 

ATG1 known as ULK1 (Unc51-like kinase 1).
75, 77

 However, under starvation conditions 

mTOR’s inhibitory affects are inhibited, causing hypophosphorylation of ATG13, leading it to 

interact with ULK1. Activated ULK1 is recruited by ATG14L to directly phosphorylate Beclin-1 

(ATG 6) and induce activation of the PI3KC3 complex. The PI3Ks represent a family of 

enzymes that are implicated in an array of diverse cellular processes, such as intracellular 

trafficking, proliferation and assembly of cytoskeletal elements.
84

 Activated PI3KC 

phosphorylates phosphoatidylinositol (PI) to produce phosphatidylinositol 3-phosphate (PI3P) 

that serves as an anchor for PI3P-binding proteins, such as ATG18 to bind and form 

phagophores.
85

 Studies show that there are two different PI3KC complexes: complex one is 

involved in the formation of phagophores and includes PI3KC, p150, Beclin-1 and ATG14L 
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while complex two contributes to the maturation of the autophagosome and contains UVRAG 

(ultraviolet radiation resistance-associated gene) in place of ATG14L.
86, 75, 76 

 Phagophores, also known as isolation membranes, are crescent-shaped membranes that 

are extended to form double-membrane autophagosomes through a process that requires two 

ubiquitin-like (UBL) conjugation systems. These systems function similarly to the ubiquitylation 

process involved in protein degradation, and requires three enzymes: ubiquitin-activating 

enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiquitin-protein ligase enzyme (E3) 

(Marino, Mizushima). In the first UBL system ATG12 is activated by an E1-like enzyme ATG7, 

and forms a thioester intermediate before being transferred to ATG10, an E2-like enzyme. The 

last step involves covalently linking ATG5 and ATG12, and this conjugate non-covalently 

interacts with ATG16L to form the final complex. This complex dissociates from the membrane 

when autophagosome formation is completed.
75, 87

 

 The second UBL system involves the modification and incorporation of microtubule-

associated protein 1 Light Chain 3 (LC3) into the autophagosome membrane. The C-terminal 

region of LC3 is cleaved by ATG4 to form LC3-I and the E1-like enzyme ATG7 activates it. 

Upon activation, LC3-I is transferred to ATG3, an E2-like enzyme, and finally covalently bound 

to phosphatidylethanolamine (PE) to form the lipid-protein conjugate LC3-II. Upon formation, 

autophagosomes are fused with lyosomes to complete the protein degradation process.
75, 87

 

 As well as having the major role of recycling macromolecules and organelles during 

times of nutrient deprivation, autophagy can also take part in the degradation of misfolded 

proteins. This process is mediated by the adaptor molecule p62, which has domains that bind to 

both the ubiquitin moiety on poly-ubiquitinated misfolded proteins, as well as the LC3 on the 

autophagosome membrane. Lysosomal degradation of autophagosomes results in a decrease in 
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p62 levels, which makes p62 another  suitable marker for tracking autophagy in mammalian 

cells.
88 

 Autophagy can induce two opposing responses in cancer cells: protection leading to cell 

survival and cytotoxicity resulting in cell death. Although toxic effects of autophagy had been 

proposed to be accompanied by apoptosis, it has been demonstrated that knockdown of the anti-

apoptotic protein Bcl-2 induced caspase-independent autophagic cell death, by increasing the 

expression of Beclin1.
89

 This study ultimately suggested that autophagy can directly induce cell 

death without activating apoptotic pathways.  

 It has been documented that there is a link between autophagy and the unfolded protein 

response (UPR). Both processes are closely related as some of the signaling routes activated 

during the ER stress response are involved in stimulating autophagy.
90 

There is indication that 

the phosphorylation of eukaryotic initiation factor α (eIF2α) in the UPR is linked to the induction 

of autophagy.  
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Figure 4: An overview of the autophagic pathway.
91

 Upon release of inhibitory effects by 

mTOR, ULK1 is activated and causes the phosphorylation of Beclin1, which activates the 

PI3KC3 in complex I and induces autophagy. Autophagosome formation requires the two UBL 

conjugation systems. UBL system 1 produces ATG5-ATG12-ATG16 conjugates that attach the 

isolation membranes and facilitate membrane nucleation. UBL system 2 modifies LC3 and 

incorporates the final product, LC3-II into the autophagosome membrane. The final step in this 

process is the fusion of the lysososmes with the autophagosomes, which leads to complete 

degradation of autophagosome contents.  
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Endoplasmic Reticulum Stress 

 Proteins that are targeted for the secretory pathway are folded in the lumen of the 

endoplasmic reticulum (ER) by chaperones before being transported to the golgi apparatus for 

final modification and secretion. If there is an interruption in this process, there is an 

accumulation of unfolded proteins in the lumen of the ER that causes stress on the system and is 

the trigger for the unfolded protein response (UPR) illustrated in figure 5. The UPR is a series of 

actions that collectively reduce the rate of protein synthesis and activates transcription factors 

that enhance the function of the ER.
92, 93

 There are three transmembrane proteins in the 

membrane of the ER that sense the accumulation of misfolded proteins and trigger the UPR: 

PKR-like eukaryotic initiation factor 2α kinase (PERK), inositol requiring enzyme 1 (IRE1) and 

activating transcription factor 6 (ATF6). This sensory mechanism is mediated by the chaperone 

protein glucose regulated protein of 78 kDa (GRP78), also known as binding immunoglobulin 

protein (BiP), present in the lumen of the ER. Under normal conditions, GRP78 is bound to the 

luminal domains of PERK, IRE1 and ATF6, effectively inhibiting their function. When ER stress 

occurs, GRP78 is released to bind to the unfolded protein, leading to the activation of the three 

stress sensors. Upon activation, ATF6 is proteolytically cleaved and directly translocated into the 

nucleus to induce the expression of genes required for the UPR. However, activation of PERK 

and IRE1 is associated with the dimerization and subsequent autophosphorylation of specific 

residues on their cytoplasmic kinase domains.
92, 93

 Activated IRE1 induces the formation of the 

transcription activator spliced X-box binding protein (XBP1) through splicing of the XBP1 

messenger RNA whereas PERK phosphorylates the α subunit of eukaryotic initiation factor 2 

(eIF2α). Normally, GTP-bound eIF2α binds to methionyl-transfer RNA and enhances 

recognition of the start codon and is released from ribosomal machinery when GTP is 
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hydrolyzed. Phosphorylation of the α subunit of eIF2 inhibits the exchange of GDP and GTP; 

thus, reducing protein synthesis. Furthermore, activated PERK translationally controls the 

expression of activating transcription factor 4 (ATF4) that induces the expression of variable 

UPR-related genes involved in amino acid metabolism, regulation of oxidative stress and 

apoptosis.
93

 

 To prevent aggregation of misfolded proteins in the lumen of the ER during ER stress, 

XBP1 and ATF6 increase expression of proteins that facilitate ER-associated degredation 

(ERAD). ERAD is accomplished by retrotranslocation of misfolded proteins into the cytosol 

followed by ubiquitination and proteasomal degredation. ER stress can also induce autophagy as 

an alternate route for protein degredation.
92

 As previously stated, this process is regulated by 

p62, which has the proper domains to bind the ubiquitin moiety of the misfolded proteins as well 

as the LC3 on the autophagosomes.
88

  

 Severe ER stress can also induce apoptosis by increase the expression of the group III 

Bcl-2 family of proteins including Puma, Noxa, BIM and BID which induce the insertion of 

proapoptotic proteins Bax and Bak in the mitochondrial membrane, and consequently results in 

the release of cytochrome c.
92

 It has also been suggested that ER stress-induced apoptosis occurs 

through cleavage of caspase 4, a member of caspase 1 subfamily that localizes to the ER 

membrane.
94 
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Figure 5: The mechanism of the unfolded protein response.
74

 Upon accumulation of unfolded 

proteins in the lumen of the ER, the chaperone GRP78 (BiP) is released from the luminal 

domains of PERK, ATF6 and IRE1. These activated transmembrane proteins then trigger a 

cascade of events that collectively result in expression of UPR-related genes. Severe ER stress 

can also induce apoptosis through cleavage of ER membrane-bound caspase 4 and inducing 

caspase 9.  
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Materials and Methods 

Materials 

 For cell culture, RPMI 1640, penicillin/streptomycin, trypsin-EDTA and phosphate-

buffered saline solution (PBS) were all purchased from GIBCO (Invitrogen Life Technologies, 

Waltham, MA), and the fetal bovine serum was from HyClone Laboratories, Inc. (Thermo 

Scientific HyClone, South Logan, UT). Trypan blue solution and dimethyl sulfoxide (DMSO) 

were both obtained from Sigma Chemical (St. Louis, MO).  The drugs Sildenafil and Celecoxib, 

as well as the inhibitor  

 Recombinant adenoviruses to express constitutively activated c-FLIP-s and Bcl-xL, as 

well as dominant negative (DN) caspase 9 and DN AKT were purchased from Vector Biolabs 

(Philadelphia, PA). The DNp38 adenovirus was purchased from Cell Biolabs, Inc. (San Diego, 

CA). Validated siRNA were all purchased from QIAGEN (Valencia, CA). The opti-MEM 

reduced serum medium and the lipofectamine 2000 transfection reagent used for transfections 

was purchased from GIBCO (Invitrogen Life Technologies, Waltham, MA).  

 Antibodies were all purchased from either Cell Signaling Technologies (Worchester, 

MA) or Santa Cruz Biotechnology (Santa Cruz, CA) and were diluted 1:1000 in Odyssey infared 

imaging system blocking buffer obtained from LI-COR Biosciences (Lincoln, NE). anti-FasL, 

anti-CD95, anti- eIF2α, anti-Bcl-xL and anti-GAPDH were all purchased from Santa Cruz 

Biotechnology. The anti-ATG5, anti-Beclin 1, anti-ATF4, anti-ATF6, anti-CHOP, anti-caspase 

9, anti-FLIP, and anti-p38 (MAPK) were all purchased from Cell Signaling Technologies. 

Secondary antibodies used were IRDye 680LT Goat anti-rabbit IgG and IRDye 800CW Goat 

anti-mouse IgG, both purchased from LI-COR Biosciences (Lincoln, NE). 
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Methods 

Cell Culture 

 BT-474 and BT-549 ductal carcinoma cells were acquired from ATCC (Manassas, VA) 

and cultured in RPMI 1640. The medium was supplemented with 10% (v/v) FBS and 100 µg/mL 

(1% v/v) penicillin/streptomycin. Cells were maintained in an incubator with 5% CO2 at 37ºC. 

Drug Treatments 

 Plated cells are given a 24 hour period to establish before being treated with indicated 

concentrations of Sildenafil and/or Celecoxib. Both drugs were taken from stock solutions and 

diluted in DMSO to reach the desired concentrations. In all treatments, the maximal 

concentration of solvent did not exceed 0.02% (v/v).  

Western Blot Analysis 

 Cells were plated in 60 x 15 mm dishes and treated with the desired concentration of each 

drug for 24 hour. After incubation, cells were lysed and scraped using whole-cell lysis buffer 

(0.5 M Tris-HCL, ph 6.8 2% (v/v) SDS, 10% (v/v) glycerol, 1% (v/v) β-mercaptoethanol, 0.02% 

(v/v) bromophenol blue). Collected samples were boiled for 10 minutes followed by loading onto 

8-12% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). Proteins were 

electrophretically separated and transferred onto 0.45 µm PVDF membrane using the Bio-Rad 

Trans-Blot Turbo system. Membranes were blocked in Odyssey infared imaging system blocking 

buffer obtained from LI-COR Biosciences (Lincoln, NE) for an hour. Primary antibody exposure 

took place overnight at 4ºC. After washing with TBST, membranes were incubated in the correct 

corresponding secondary antibody for a minimum of 1 hour at room temperature. Membranes 

were then washed again with TBST before being visualized using the Odyssey Infared Imager 

(LI-COR Biosciences, Lincoln, NE). 
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Infection with Adenovirus 

 Cells were plated in 12-well plates and left to establish for 24 hours. Media was removed 

and replaced with 1 mL of 5% (v/v) RPMI. Recombinant adenoviruses for caBcl-xL, dnCasp9, 

C-FLIP, dnp38, dnAKT and empty vector were added at a multiplicity of infection (MOI) of 50. 

Cells were incubated for 24 hours before changing the medium to 10% (v/v) RMPI, followed by 

the addition of the indicated concentrations of each drug for 24 hours before being subjected to 

trypan blue exclusion assay.  

Plasmid and siRNA Transfections 

 Cells were plated in 12-well plates and left to establish for 24 hours. Media was removed 

and replaced with 800 µL of 5% (v/v) RPMI. For transfections, 1 µg of plasmid or 1 µL of 

siRNA was added to 100 µL of OPTIMEM per transfection and allowed to incubate for 5 

minutes at room temperature. Concurrently, 1 µL of lipofectamine in 100 µL of OPTIMEM per 

transfection was also incubated for 5 minutes at room temperature. Both solutions were then 

combined and allowed to incubate for 20 minutes at room temperature. After incubation, 200 µL 

of the solution was added to the cells, bringing the total volume per well to 1 mL. The plates 

were incubated for 24 hours before changing the medium to 10% (v/v) RPMI, followed by the 

addition of indicated concentrations of each drug for 24 hours before being subjected to trypan 

blue exclusion assay.   

 Plasmids and siRNA included the scrambled control (SCR), FASL, FADD, ATG5, 

Beclin1, ATF4, ATF6, CHOP, eIF2α, dnPERK, and caAKT. 
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Trypan Blue Exclusion Assay 

 The media and any unattached cells from each well of a 12-well plate were transferred to 

a 15 mL conical tube. Attached cells were collected via trypsinization with trypsin/EDTA for 2 

minutes at 37ºC. After centrifugation at 1,000 rpm for 5 minutes, most of the supernatant was 

removed, leaving approximately 50 µL to which 50 µL of trypan blue was added. The pellet was 

resuspended in the mixture and counted using a hemocytometer and a light microscope. Cell 

death was determined as a percentage of dead cells from the total number of cells counted. 

Fluorescence Cell Viability Assay 

 Cells were plated at a density of 1x10
4
 cells per well on a 96-well plate. After 24 hours 

they were drug treated and incubated for an additional 24 hours. A working solution of 2 µM 

calcein AM and 4 µM Ethidium homodimer-1 were added to the wells and the plate was 

centrifuged at 1,000 rpm for 5 minutes. The plate was then visualized using the Hermes WiScan 

(IDEA Bio-Medical LTD Atlanta, GA) to quantify cell death and for imaging. 

Colony Formation Assay 

 Varying numbers of cells were plated on 12-well plates, between 5x10
2 

and 4x10
3
, and 

the next day were drug treated with the specified concentration of drugs. The media was then 

changed after an additional 24 hours, in which the cells were left to grow. Once the control plate 

produces visible, distinct colonies, the media is carefully removed from the wells and is gently 

washed with 3 mL of PBS. The PBS is carefully aspirated, and 3 mL of methanol is added to 

each well for 10 minutes to fix the cells. The methanol is removed, and the plates are again 

washed with 3 mL of PBS. Crystal violet stain is then added for a minimum of 30 minutes. The 

stain is removed and the plates are washed with water and left overnight to dry. Upon drying, the 

colonies were counted. 
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Data Analysis 

 The effects of the various treatments were analyzed using one-way analysis of variance 

and a two-tailed Student’s t-test. Results with a P value of <0.05 were considered statistically 

significant. 
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Results 

 The drugs sildenafil (referred to as sil) and celecoxib (referred to as cel) have been 

previously used in the context of anticancer therapies. They have been utilized separately, each 

to enhance the killing capacity of standard of care treatments already in wide use. Initial 

experiments of this study were performed to demonstrate the toxicity of the combination of 2 µM 

sildenafil with 10µM celecoxib in both BT 474 and BT 549 cells lines after twenty-four hours of 

drug exposure. In each experiment the control group (referred to as vehicle or veh) is treated 

with DMSO and serves as a measure of solvent effects for comparison, as the drugs were 

dissolved in DMSO for delivery. 

 The cytotoxic effects of the drugs singularly and in combination were determined by 

using the trypan blue exclusion assay, which is considered a measure of cell viability. As seen in 

figure 6, sildenafil alone caused a minimal increase in cell death when compared to the vehicle, 

yet celecoxib caused an increase in cell death as a singular agent from the vehicle at an average 

of 8% to an average of 12% in both cell lines. There was a significant increase in cell death 

(P<0.05 compared to vehicle) in the drug combinations of both cell lines, with an even larger 

response witnessed in the BT 474 cells at about 22% cell death in comparison to the response 

seen in the BT 474 cells at 18%.  

 It was observed that there was an increase in blebbing and cell debris in treated cells 

when compared to control cells, present in both cell lines during their assessments of cell 

viability using trypan blue. To better visualize the physical characteristics of cell death, 

morphological changes induced by the drugs were characterized by utilizing the fluorescence cell 

viability assay. In the BT 474 cells shown in figure 7 and the BT 549 cells in figure 8, there was 

an increase in cell death across the treatments, as indicated by the increase in red stained cells. 
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Also of note was the decrease in total cells visualized upon treatment, suggesting a potential 

cytostatic effect. The combination of 2µM sildenafil and 10 µM celecoxib in the BT 474 cells in 

7D illustrated cell elongation and large amounts of cell fragmentation. The BT 549 cells in figure 

8D did not illustrate as much cell fragmentation, in agreement with the decreased percentage of 

cell death upon comparison with the combination treated BT 474 cells.  

 For an assessment of a longer term response to the sildenafil and celecoxib combination, 

a colony assay was performed to determine long term cell survival following twenty-four hours 

of drug treatment. Colony formation illustrates the ability of the cells to survive for a period of 

time following exposure to the drugs, with cells that survive the treatment continuing to grow 

and produce colonies. As seen in figures 9 and 10, both BT 474 and BT 549 cells responded to 

treatment in a similar fashion, with a decrease in cell survival upon increasing concentrations of 

both sildenafil and celecoxib, as single agents and in combination. The BT 474 cells illustrated 

greater toxicity to both sildenafil and celecoxib overall in comparison to the BT 549 cells; cell 

death increased from 24% or 12%  with 2 µM sildenafil to 40% or 32%  with 10 µM celecoxib, 

and the combination of the two caused an even further increase in death to 47% and 36%, 

respectively. Taken together with the previous cell death assays performed, this combination of 2 

µM sildenafil and 10 µM celecoxib induced a significantly (* P<0.05 compared to vehicle) 

increased amount of cell death, working more effectively together than as independent agents. 

  

 

 

A 



 
 

29  
 

 

B 

 

 

Figure 6: Assessment of cell viability in BT 474 and BT 549 cells treated with sildenafil and 

celecoxib. Cells were treated with DMSO, sildenafil (2µM), celecoxib (10µM) or combination 

for 24 hours and then subjected to trypan blue exclusion assay to determine cell viability.  

* P<0.05 compared to vehicle. 
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Figure 7: Sildenafil and celecoxib cell death visualization in BT 474 cells. BT 474 cells were 

treated with DMSO (panel A), sildenafil (2µM, panel B), celecoxib (10µM, panel C) or 

combination (panel D). After 24 hours they were visualized using the fluorescence cell viability 

assay protocol. Green is indicative of live cells (calcein), while red indicates dead cells 

(ethidium).  
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Figure 8: Sildenafil and celecoxib cell death visualization in BT 549 cells. BT 549 cells were 

treated with control DMSO (panel A), sildenafil (2µM, panel B), celecoxib (10µM, panel C) or 

combination (panel D). After 24 hours they were visualized using the fluorescence cell viability 

assay protocol. Green is indicative of live cells (calcein), while red indicates dead cells 

(ethidium). 
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Figure 9: Colony formation assay in BT 474 cells. Cells were treated with indicated µM 

concentrations of sildenafil or celecoxib once for a twenty-four hour period and allowed to grow 

colonies for seven days before fixing and staining with crystal violet to asses cell survival.          

* P<0.05 compared to vehicle. ** P<0.05 comparison between celecoxib at 10 µM and the 

combination of 2µM sildenafil and 10 µM celecoxib. 
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Figure 10: Colony formation assay in BT 549 cells. Cells were treated with indicated µM 

concentrations of sildenafil or celecoxib once for twenty-four hours and allowed to grow 

colonies for a week before fixing and staining with crystal violet to asses cell survival.  

* P<0.05 compared to vehicle. ** P<0.05 comparison between celecoxib at 10 µM and the 

combination of 2µM sildenafil and 10 µM celecoxib. 
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Mechanistic Determination of Induced Cell Death 

 To investigate the mechanism of action of cell death seen in the combination of 2 µM 

sildenafil and 10 µM celecoxib, the expression of various proteins involved in the three major 

cell death pathways previously mentioned were modulated to assess their involvement in the 

sildenafil and celecoxib-mediated cell death observed in both BT 474 and BT 549 cell lines. 

 For the determination of the possible invovement of apoptosis, some key components of 

both the intrinsic and extrinsic pathways were modulated. For intrinsic apoptosis, cells were 

infected with adenoviruses carrying an empty vector (CMV) or constructs designed to either up-

regulate Bcl-xL (caBcl-xL) through consititutive activation  or downregulate caspase 9 via 

dominant negative mutation (dn Casp9). Cells were infected and then treated with 2µM sildenafil 

and/or 10 µM celecoxib for twenty-four hours before they were subjected to trypan blue exlusion 

assay to assess cell death. Both cell lines demonstrated a decrease in cell death upon infection of 

both intrinsic mediators as seen in figures 11 and 12. The control in both the BT 474 and BT 549 

cells illustrated an average of 21% cell death in the combination, while both cell lines produced 

an average of 15% cell death in the combination in both caBcl-xL and dnCasp9.  

 Involvement of the extrinsic aspect of apoptosis was assessed by siRNA mediated 

downregulation of FasL and CD95, with a scrambled nonspecific siRNA as control (siSCR), as 

well as viral up-regulation of FLIP (c-FLIP). Cells were infected or transfected and then treated 

with 2µM sildenafil and/or 10 µM celecoxib for twenty-four hours before they were subjected to 

trypan blue exlusion assay to assess cell death. As seen in figures 11, 12 the increase in FLIP 

expression caused a decrease in cell death from an average of 21% in the control to 15% in both 

BT 474 and BT 549 cells. As illustrated in figure 13, the knockdown of both FasL and CD95 
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resulted in decreased cell death. The combination treatment in the siSCR transfected BT 474 

cells had cell death averaged at 27% while cell death was measured to be 23% in the BT 549 

cells, and both produced significant decreases (* P<0.05 compared to vehicle) in the 

combination treatments after the knockdown of both FasL (21% and 19%, respectively) and 

CD95 (both 15%).  

 Cell death through autophagic response was explored by using siRNA downregulation of 

ATG5 and Beclin1. Cells were transfected with the SCR control, ATG5 or Beclin1 and then 

treated with 2µM sildenafil and/or 10 µM celecoxib for twenty-four hours before they were 

subjected to trypan blue exlusion assay to assess cell death. As illustrated in figure 14, 

downregulation of ATG5 and Beclin1 decreased cell killing in both BT 474 and BT 549 cells. 

The cell death in the siSCR transfected cells upon treatment with the combination was 24% in 

both cell lines, yet illustrated slightly different decreases in cell death. There was an overall 

decrease in death seen with both ATG5 and Beclin1 knockdown, yet the BT 474 cells produced 

17% and 19% changes, respectively, while treatment of the BT 549 cells gave 21% and 17% cell 

killing in ATG5 and Beclin1 knockdowns.  

 For assessing the involvement of the ER stress response,  ATF4, ATF6, CHOP and eIF2α 

were all downregulated through siRNA-mediated knockdown. Cells were transfected and then 

treated with 2µM sildenafil and/or 10 µM celecoxib for twenty-four hours before they were 

subjected to trypan blue exlusion assay to assess cell death. In both BT 474 and BT 549 cell 

lines, all transfections showed an overall decrease in cell death, as illustrated in figures 15 and 

16. The siSCR transfected cells in both cell lines had an average of 20% cell death, with the 

combination treatment in every siRNA-mediated knockdown producing a combination cell death 

at an average of 15%. Another protein implicated in the ER stress response, p38 MAPK, was 



 
 

36  
 

investigated through viral infection of the dominant negative mutation of p38 MAPK 

(dnp38).This protein is an upstream regulator of CHOP, and was illustrated to have caused a 

decrease in cell death, as demonstrated in figures 11 and 12.The CMV infected cells for both BT 

474 and BT 549 cell lines upon treatment with the combination had on average 21% cell death, 

and the combination treatment in both cell lines upon knockdown of p38 MAPK produced an 

average of 15% cell death. 

The AKT signaling pathway is implicated in cell proliferation, growth and survival, as 

well as regulating apoptosis. Using either plasmid or viral infection, AKT was downregulated 

using the dominant negative mutation, and upregulated by mutating it to be constitutively active. 

Cells were infected or transfected and then treated with 2µM sildenafil and/or 10 µM celecoxib 

for twenty-four hours before they were subjected to trypan blue exlusion assay to assess cell 

death. Increasing the expression of AKT caused a protective effect and downregulating it caused 

an increase in cell death as seen in figure 17. The control combination treatment in both cell lines 

produced cell death of about 18%, with caAKT causing a decrease in death to about 15% and 

dnAKT increasing cell death to an average of 27% in both BT 549 and BT 474 cell lines.  

All experiments performed illustrated the same characteristic response profile that was 

observed in figure 6. It was observed that 2µM sildenafil is seen to have a marginal increase in 

cell death that was not significantly different from control, celecoxib as a single agent causes a 

significant increase in cell death, with the combination of 2µM sildenafil and 10 µM celecoxib 

producing the highest amount of cell death in all experiments, comparatively. 
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Figure 11: Viral regulation of Bcl-xL, caspase 9, C-FLIP and p38 downregulated drug 

combination-mediated toxicity in BT 474 cells. Cells were first infected with their respective 

virus and then treated with vehicle, 2µM sildenafil, 10 µM celecoxib, or combination. Cell 

viability was determined by trypan blue exclusion assay 24 hours after treatment. *P <.005 less 

than corresponding value of CMV cells. 
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Figure 12: Viral regulation of Bcl-xL, caspase 9, C-FLIP and p38 downregulated drug 

combination-mediated toxicity in BT 549 cells. Cells were first infected with their respective 

virus and then treated with vehicle, 2µM sildenafil, 10 µM celecoxib, or combination. Cell 

viability was determined by trypan blue exclusion assay 24 hours after treatment. *P <.005 less 

than corresponding value of CMV cells. 
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Figure 13: Knockdown of FasL and CD95 reduced drug combination-mediated toxicity. 

Cells were first transfected with either siFasL or siCD95 and then treated with vehicle, 2µM 

sildenafil, 10 µM celecoxib, or combination. Cell viability was determined by trypan blue 

exclusion assay 24 hours after treatment, in (A) BT 474 and (B) BT 549 cells. *P <.005 less than 

corresponding value of siSCR cells. 
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Figure 14: Knockdown of ATG5 and Beclin1 reduced drug combination-mediated toxicity. 

Cells were first transfected with siATG5 or siBeclin 1and then treated with vehicle, 2µM 

sildenafil, 10 µM celecoxib, or combination. Cell viability was determined by trypan blue 

exclusion assay 24 hours after treatment, in (A) BT 474 and (B) BT 549 cells. *P <.005 less than 

corresponding value of siSCR cells. 
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Figure 15: Knockdown of ATF4 and ATF6 reduced drug combination-mediated toxicity. 

Cells were first transfected with either siATF4 or siATF6 and then treated with vehicle, 2µM 

sildenafil, 10 µM celecoxib, or combination. Cell viability was determined by trypan blue 

exclusion assay 24 hours after treatment, in (A) BT 474 and (B) BT 549 cells. *P <.005 less than 

corresponding value of siSCR cells. 
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Figure 16: Knockdown of CHOP and eIF2α reduced drug combination-mediated toxicity. 

Cells were first transfected with either siCHOP or sieIF2α and then treated with vehicle, 2µM 

sildenafil, 10 µM celecoxib, or combination. Cell viability was determined by trypan blue 

exclusion assay 24 hours after treatment, in (A) BT 474 and (B) BT 549 cells. *P <.005 less than 

corresponding value of siSCR cells. 
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Figure 17: Modulation of AKT casused changes in levels of cell death. Cells were first 

infected or transfected and then treated with vehicle, 2µM sildenafil, 10 µM celecoxib, or 

combination. Cell viability was determined by trypan blue exclusion assay 24 hours after 

treatment, in (A) BT 474 and (B) BT 549 cells. *P <.005 less than corresponding value of siSCR 

cells. 
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Discussion 

 Targeted therapies common in treating breast cancer have been generally focused on 

hormone and growth receptor pathways, due to the changes in regulation of the receptor 

pathways in different types of breast cancers. However, it has been demonstrated that it is 

common for resistances to these treatments to form, thus alternative treatment options are 

necessary. 

 Doxorubicin, like many chemotherapeutic agents causes cardiotoxic effects, and upon 

supplementation with 10 µM of sildenafil there appeared to be attenuation of this severe side 

effect.
51

 However, upon further investigation sildenafil was shown to enhance cell death by 

apoptosis through caspase 9 activity in prostate cancer when paired with doxorubicin treatment.
51

 

It was later demonstrated that sildenafil facilitates cytotoxic chemotherapy killing dependent on 

the activation of apoptosis through the extrinsic pathway via death receptors in pediatric CNS 

tumors.
52

  

 The tumorigenic potential of COX-2 overexpression has frequently been associated with 

a resistance to apoptosis, due to the upregulation of AKT signaling.
95

 It was believed that 

celecoxib treatment can inhibit AKT signaling, and thus increase apoptosis through its inhibitory 

effects on COX2.
61, 96, 97, 98, 99, 100,101 

 However, a drug called OSU-03012 was developed using 

celecoxib as the chemical backbone, yet lacking COX-2 inhibitory activity.
100

  Cell death upon 

treatment with OSU was found to be linked to the AKT pathway, with OSU supressing 

phosphorylation of AKT.
100

 Yet other studies have shown that the toxicity produced by OSU was 

not closely correlated with the suppression of AKT signaling, indicating other methods of killing 

may be involved.
102

 It was later elucidated that both autophagy and ER stress played a role in 

OSU lethality, with knockdown of ATG5 and Beclin1 suppressing cell killing as well as the 
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supression of BiP, that causes a PERK-dependent autophagic response.
103, 104

 This demonstrated 

that celecoxib may be killing through apoptosis via the AKT pathway since it is indicated both in 

cells treated with celecoxib as well as OSU, yet also regulating autophagy and ER stress in a 

COX-independent manner. 

 Further studies demonstrated  that the intrinsic pathway is involved in cell death upon 

treatment with celecoxib.
105

 It has been observed that there is a decrease in expression of 

antiapoptotic proteins such as Bcl-2 and Bcl-xL, and expression of the proapoptotic protein Bad 

increases upon treatment, causing the release of cytochrome c from the mitochondria and 

inducing caspases 3, 8, and 9.
105, 106, 107, 108

The extrinsic pathway was noted to be activated as 

well, through FasL and CD95signaling  in celecoxib treated cervical carcinoma cells.
109, 110, 111

 

Celecoxib treatment also increases ceramide levels in mammary tumor cells, and increases in 

ceramide levels are associated with the induction of apotosis.
112, 113, 114, 115

 It has been shown that 

ceramide is important for the generation of receptor clusters, including CD95 clustering, and it 

constitutes an important prerequisite for receptor signaling.
116 

  Results of the studies performed in this manuscript indicated that 2 µM sildenafil and 10 

µM celecoxib worked better in combination than individually to promote cell killing in both BT 

474 and BT 549 breast cancer cell lines, with a higher toxicity illustrated in BT 474 cells (figures 

6-10). Through various modulations of key players in cell death pathways, it is suggested that the 

extrinsic, receptor-mediated pathway of apoptosis may be the major effector of cell death in this 

drug combination. The downregulation of FasL and CD95 in figure 13 illustrates the production 

of a larger protective effect from cell death when compared to other knockdowns. The over-

expression of FLIP, an inhibitor that blocks the activation of caspase 8, also shows a protective 
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effect (figure 11), further indicating the role of the extrinsic apoptotic pathway in cell death via 

the combination of 2 µM sildenafil and 10 µM celecoxib. 

 There was a less pronounced change in cell death present through the changes in 

autophagy and ER stress, yet the downregulation of proteins involved in these pathways 

suggested that they too are playing a role in cell death mediated by the drug combination of 

sildenafil and celecoxib. The decrease in cell death seen after knockdown of ATG5 and Beclin1 

in figure 14 coincides with the literature produced on OSU, as well as the results on the induction 

of ER stress. While PERK itself was not used in these experiments, the protective effects of 

siRNA-mediated knockdown of eIF2α, a down stream target of PERK, and ATF4 (figures 15 

and 16) which is acted on by eIF2α may implicate a dependence on PERK signaling in the ER 

stress response as well as the induction of ATF6 and p38 MAPK to act on CHOP. Modulation of 

AKT signaling also followed what is expected of celecoxib treatment, in that further reduction in 

AKT signaling through dominant negative downregulation increased cell death, while increasing 

its activation decreased cell killing. 

 It is commonly seen in the literature that these drugs are used at non-clinically relevant 

doses, such as 10µM sildenafil and 50 µM celecoxib.
51, 60, 100

 The concentrations used in these 

experiments are within the clinically acheiveable range, and still induced cell death. This was 

further verified by unpublished data that has since been produced in the lab, when 2µM silenafil 

and 10µM celecoxib was used in vivo and the combination was successful in slowing the 

progresssion of tumor growth in athymic nude mice. Our lab has also recently produced results 

that indicated the combination of 2µM sildenafil and 10 µM celecoxib is capable of killing in a 

number of other cancers, including brain and colon. Ceramide assays have also been performed, 
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and results indicate that ceramide levels do indeed increase with celecoxib treatment as expected, 

and the effect is even further enhanced when sildenafil is added to the treatment in combination. 

 Taken together, the results presented in this manuscript agree with the literature on the 

potential mechanisms of cell death induced by celecoxib, and indicates that the addition of 2 µM 

sildenafil upon treatment with 10 µM celecoxib enhances toxicity through the induction of ER 

stress, autophagy, and both apoptotic pathways, with a larger emphasis on the extrinsic pathway. 

It is a novel combination with a multi-pronged approach  to the treatment of breast cancer 

specifically, with implications for future work in multiple types of cancer. 
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