








Figure V.5

Superimposed positions of MCAT analogs in the putative binding site of hDAT (A), and
hSERT (B). Unfavorable interactions of hDAT S149 with para substituents (shown for
4-OCH3 MCAT; C) are not seen in hSERT due to the smaller side chain of A169 (again,
shown for 4-OCHz MCAT; D). The Connolly surface (grey density in C and D) represents

the channels in both transporters. Image from Sakloth et al, 2014.
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Implications of Chapter IV: In vivo Selectivity of para-substituted MCAT
analogs

The study described in Chapter IV investigated abuse-related in vivo
neurochemical effects produced by MCAT and five para-substituted analogues.
There were three main findings. First, across a 1.0 log range of doses, all MCAT
analogs increased extracellular levels of DA and/or 5-HT in rat NAc, albeit with
different potencies. Second, in vivo selectivity to elevate DA vs. 5-HT levels to 250%
of baseline (ED250) varied across compounds, with MCAT as the most DA-selective
and 4-OCHsz MCAT as the most 5-HT-selective. Third, in vivo DA vs. 5-HT selectivity
correlated with in vitro selectivity for DAT vs. SERT in a rat-brain synaptosome
preparation (R=0.95, P<0.01), and with in vivo facilitation of intracranial self-
stimulation in rats (R=0.89, P=0.02). Together, these results suggest that in vivo
selectivity of para-substituted MCAT analogs to elevate extracellular DA vs. 5-HT
levels in NAc may be a key neurochemical determinant of abuse-related behavioral
effects.

The results from Chapter IV confirm and extend previous results showing
differences in neurochemical selectivity of various monoamine releasers, including
the DA-selective releasers amphetamine and MCAT and the 5-HT-selective releaser
fenfluramine. Similar to results with amphetamine in this study, early microdialysis
studies in male Sprague-Dawley rats reported amphetamine-induced increases in
accumbal DA release by a factor of 10 (~1000% increase) at a dose of 1 mg/kg, s.c.
(Di Chiara and Imperato, 1988). Results presented here are also consistent with a

previous study investigating effects of MCAT on striatal extracellular DA
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concentrations in male Sprague-Dawley rats, in which administration of 1 mg/kg,
s.c. increased DA levels to 419% of control values (Gygi et al., 1997). Furthermore,
the present results agree with a prior study that investigated concurrent changes in
DA and 5-HT levels in the NAc of male Sprague-Dawley rats and showed that
administration of 1 mg/kg, i.p. fenfluramine produced significant increases in 5-HT
levels to ~300% of baseline without producing any significant changes in
extracellular DA concentrations (Baumann et al., 2000).

Results from the present study also agree with previous research showing
mixed neurochemical effects (i.e. non-selective increases in extracellular levels of
both DA and 5-HT) with compounds like 4-CHz MCAT. One previous study, which
investigated neurochemical effects of 10 mg/kg, s.c. 4-CH3 MCAT in the NAc shell of
male Wistar rats, reported increases in DA and 5-HT levels to approximately 22-fold
and 9-fold of control levels, respectively (Wright et al., 2012). Similarly, another
study showed that administration of 1 mg/kg, i.v. 4-CH3 MCAT in male Sprague-
Dawley rats produced peak increases in accumbal DA levels to 2.9-fold above
baseline and in 5-HT levels to 11.1-fold above baseline (Baumann et al.,, 2012).
Microdialysis studies have also been conducted on the de-carbonylated,
amphetamine analog of 4-F MCAT (i.e. 4-fluoroamphetamine, PAL-303; Baumann et
al, 2011). Results from this study show that iwv. injection of 3 mg/kg 4-
fluoroamphetamine produces similar increases in NAc DA and 5-HT levels, to
~1200% and 1400% of baseline, respectively. These data suggest that 4-
fluoroamphetamine non-selectively increases DA and 5-HT concentrations in NAc,

similar to our present results for the N-methyl, beta-ketone analog 4-F MCAT.
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The present study extends these previous results by including 4-OCHz MCAT
and three halogenated MCAT analogs, 4-F MCAT, 4-Cl MCAT and 4-Br MCAT. Like 4-
CHz MCAT, these para-substituted MCAT analogs function as non-selective
monoamine releasers. 4-F MCAT and 4-Cl MCAT had similar potencies for increasing
DA and 5-HT levels to 250% of baseline, in addition to having similar DA/5-HT
selectivities. Consistent with these results, previous studies with halogenated
amphetamine analogs showed that para-fluoroamphetamine had greater DAT
selectivity and more robust, amphetamine-like behavioral effects than para-
chloroamphetamine (Marona-Lewicka et al., 1995; Baumann et al, 2011). 4-Br
MCAT, the other halogenated MCAT analog, exhibited similar potency to increase 5-
HT, but was less potent at increasing NAc DA levels and thus had reduced DA/5-HT
selectivity when compared to its 4-F and 4-Cl counterparts. Of all tested compounds,
4-0CH3z MCAT was the least potent analog to increase accumbal DA and 5-HT levels,
and it had the lowest selectivity for DA/5-HT.

As described in Chapter III, QSAR analysis was used to explore molecular
mechanisms contributing to monoamine releaser abuse potential by evaluating
structural determinants of selectivity for in vitro monoamine release via DAT-vs.-
SERT, and of abuse-related ICSS effects (Bonano et al., 2014a; Sakloth et al., 2014).
Results of QSAR analysis suggested that steric characteristics of the para substituent
play a critical role in determining in vitro selectivity for DAT-vs.-SERT, and that in
vitro DAT-vs.-SERT selectivity is a key determinant of abuse-related ICSS effects.

Results presented in Chapter IV extend on these findings by also demonstrating a
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significant correlation between in vivo DA/5-HT selectivity and ICSS facilitation
(R=0.89, P=0.02).

Although the correlation between in vivo DA/5-HT selectivity and ICSS
facilitation provides support for the conclusion that DA is a neurochemical driver of
abuse potential and that 5-HT is an abuse-limiting neurotransmitter, it does not
entirely explain the mechanism by which para-substituted MCAT analogs are
producing abuse-related effects. While our results, taken together, suggest that
selectivity to increase DA vs. 5-HT levels is one of the most important determinants
of a compound’s abuse potential, rather than a compound’s capacity to increase
concentrations of either neurotransmitter individually, the results do not provide
direct answers to questions like “how much DA release is “enough” to produce
abuse?” or “how much 5-HT release is sufficient to hinder DA’s abuse-related effects
and prevent a compound from having abuse potential?”

Altogether, the results from the microdialysis studies presented in Chapter IV
provide evidence for a key role of relative DA/5-HT selectivity in determining the
abuse potential of para-substituted MCAT analogs. Compounds with higher
selectivity to increase accumbal DA maintain higher rates of abuse-related ICSS,
while compounds with higher selectivity to increase 5-HT exhibit a reduction in
their capacity to facilitate low rates of ICSS as well as a concomitant depression of

high ICSS rates.
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Drawing Conclusions

Structural features of drug molecules are critical to determining
pharmacological activity. In this dissertation, we explored QSARs for para-
substituted MCAT analogs, but other aspects of the MCAT scaffold are certainly
important and also play a role in the neurochemical and behavioral effects produced
by synthetic cathinones. While we focused on differential pharmacological effects
based on structural variations of the para substituent on the phenyl ring of the
MCAT scaffold (based on the notable differences in preliminary behavioral studies
of MCAT and mephedrone), other substituents on the MCAT backbone can also be
manipulated and would almost certainly influence pharmacological profiles.

An example of structural manipulations at sites other than the para position
on the benzene ring (see Figure V.6 below) that yield differential effects on synthetic
cathinone pharmacology is described in a recently published manuscript by
Baumann et al. (2015), in which two analogs of mephedrone (4-methyl-N-
methylcathinone) with extensions to the N-alkyl chain were investigated. These
compounds, 4-methyl-N-ethylcathinone (4-MEC) and 4-methyl-N-pyrrolidino-
propiophenone (4-MePPP), were studied to determine effects of each drug at
monoamine transporters and to compare these effects with those produced by the
parent compound mephedrone. In contrast to mephedrone, which functions as a
monoamine transporter substrate (i.e. releaser) at both DAT and SERT, 4-MEC
displayed unique activity by acting as an uptake blocker at DAT but as a substrate at
SERT. This finding suggests that subtle extension of the N-alkyl chain of cathinones,

from methyl to ethyl, is sufficient to convert activity at DAT from release
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(mephedrone) to uptake inhibition (4-MEC). However, this minor change in N-alkyl
chain length was not sufficient to alter release activity at SERT, as mephedrone and
4-MEC displayed similar potency (ECso ~100nM) to evoke release at SERT.
Interestingly, 4-MePPP did not function as a substrate at either DAT or SERT but
rather as a selective DAT blocker with little activity at SERT. Thus, further extension
of the alkyl chain to form a pyrrolidine ring converted the compound from a non-
selective monoamine releaser/uptake inhibitor to a DAT-selective blocker. The
molecular pharmacology of 4-MePPP closely resembles that of other
pyrrolidinophenone compounds like pyrovalerone and MDPV, which function as
potent blockers at DAT and NET with little action at SERT (Meltzer et al., 2006;
Baumann et al.,, 2013; Cameron et al., 2013b; Kolanos et al.,, 2013; Marusich et al.,,

2014).
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Figure V.6
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R; indicates the site of the para substituent, which was manipulated in these
dissertation studies. R; indicates the site of the alkyl amine chain. At the para position
on the benzene ring (R1), increased steric volume reduces potency for DAT-mediated
release, increases potency for SERT-mediated release, reduces DAT-vs.-SERT
selectivity, and reduces abuse-related behavioral effects. For the alkyl amine (Rz), the
addition of substituents can convert compounds from monoamine transporter
substrates to inhibitors, and as the length of the chain increases, potency for DAT
uptake inhibition increases, potency for SERT uptake inhibition decreases, and DAT-

vs.-SERT selectivity increases.

Limitations

Although the main conclusion from this dissertation is that para-substituted
MCAT analogs yield abuse-related behavioral effects by producing effects on
monoaminergic systems, specifically by increasing selectivity for DAT-vs.-SERT in
the mesolimbic pathway, drug effects on other systems may also exert an important

influence on behavioral outcomes following drug administration. Three ways in
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which this series of MCAT analogs may influence abuse-related behavior other than
by exerting effects on DAT and SERT, which manifest as increases in extracellular
levels of NAc DA and 5-HT, include: 1) acting on brain regions other than the
mesolimbic DA pathway; 2) acting at monoamine transporters other than DAT and
SERT; and 3) binding and directly activating other pre- and/or post-synaptic
receptors. First, monoaminergic neurotransmitter systems project diffusely
throughout the brain, and involvement of brain regions other than VTA-NAc may
play an important role in producing abuse-related behaviors. For example, studies
have found roles for non-dopaminergic mechanisms of the supramammilary,
rostromedial tegmental, and midbrain raphe nuclei in reward, including GABAergic
and glutamatergic mechanisms (Ikemoto, 2010; Ikemoto 2005; Miliaressis et al.
1975). Second, drug effects on abuse-related behavior may also be influenced by
drug activity at other monoamine transporters (i.e. NET). Various studies have
demonstrated that MCAT and its analogs function as monoamine releasers that
promote release of NE as well as DA (Kalix and Glennon, 1986; Wagner et al. 1982;
Nielsen and Schechter 1985; Cozzi et al. 1999, 2013), suggesting a role for
noradrenergic neurotransmission in the rewarding effects produced by these
compounds. Lastly, drug effects on other receptor targets may influence behavioral
endpoints by directly activating receptors located both pre- and post-synaptically.
For example, one recent study investigating monoamine transporter and receptor
interaction profiles of a series of amphetamine and cathinone derivatives
demonstrated affinity of some compounds for the 5-HT:a receptor (Rickli et al.

2015). Other studies have shown that 5-HT acts on 5-HT:a receptors located in
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midbrain to increase firing of DA neurons in the VTA (Pessia et al. 1994; Prisco et al.
1994); thus, direct activation of 5-HTza receptors by test drugs may play a role in

producing abuse-related behaviors.

Future Directions

QSAR analysis is a useful tool, not only for predicting the pharmacological
effects of novel compounds, but also for generating molecular models to better
understand the mechanisms underlying drug effects. Future QSAR studies exploring
other molecular aspects of the MCAT scaffold, such as the impact of terminal N-
substitutions or ortho- and meta- substitutions on the benzene ring, would be
helpful in understanding precisely how the structure of cathinone analogs
influences molecular function at monoamine transporters, thereby driving or
limiting abuse potential. Additionally, as the library of structural MCAT analogs
continues to grow and the understanding of neuropharmacological effects improves,
more accurate models of drug interaction with human DAT and SERT proteins will

be developed.
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