2015

ex vivo DNA cloning

Adam B. Fisher
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Biological Engineering Commons, Biotechnology Commons, Molecular Biology Commons, and the Molecular, Cellular, and Tissue Engineering Commons

© The Author

Downloaded from https://scholarscompass.vcu.edu/etd/3962

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
ex vivo DNA Cloning
"Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning."
- Sir Winston Churchill, 1947

As I reach the conclusion of a graduate career that seems like an entire lifetime unto itself, there are numerous special people to recognize for making this experience not only possible but also successful. While not nearly adequate the best I can do is give my acknowledgement and thanks where it may be preserved and disseminated.

First I must thank my parents, who both worked full-time so that I should have the freedom to go college and pursue my dreams. From the start you were my inspiration to dedicate my life to that which I am passionate and it has meant everything to me. Thank you for always supporting and encouraging me at every step even when I made that difficult. None of this is possible without you.

To my sisters for always keeping me humble, thank you for taking this difficult task so seriously. You both never let me forget where I come from and this brings me incredible pride. Similarly my friends, many of which I have stayed close with since the start of grade school, have blessed me with guidance, perspective and an unfathomable loyalty.

The long, winding path to where I am today would’ve diverged often without the advice, inspiration and compassion of many teachers, coaches, professors and advisors. To the directors of the Integrative Life Sciences program, Dr. Robert Tombes and Dr. Bill Eggleston, thank you for accepting me and continually being an open resource along with the rest of the program’s staff and faculty. Thank you Dr. Paul Fawcett for teaching me the beautiful and useful art of programming and computation. I owe a large thanks to each of my committee members: Drs. Allison Johnson, Matthew Hartman, Michael Peters and B. Frank Gupton. Each member contributed beyond being active committee members: Dr. Johnson for being the model for bringing science to life in the classroom, Dr. Hartman for an incredible chemical biology course that taught me to see the science beyond the article, Dr. Peters for our collaborative discussions and Dr. Gupton for demonstrating how to be the captain and navigator of not only a lab, but a department.
My fellow labmates, all of whom I’m fortunate to call friends, thank you all for being there as peers, advisors – both professionally and personally – and collaborators. This includes the many incredible undergraduate researchers who have passed under my tutelage. Thank you for remaining patient with me and all your help. In particular, a big thanks is necessary to Zachary Canfield who was integral in doing many of the experiments. I have only the highest of hopes for your future, never settle for anything less. Most of all, I owe more than I can say to my peer and close friend, Dr. George McArthur IV. Whiteboards, 821 café, conferences, posters, papers and projects – we’ve done it all together. It has been an honor and privilege to work and grow alongside you. The future is here for us both and I can only hope that our future will be shared as much as possible. Thank you, George.

Dr. Fong, I owe much of this degree to your belief and continuing support. It is rare to find an advisor more dedicated to his students and their vision. You cultivated my passion for science and biology by allowing me to walk my own path without letting me feel as though I walked it alone. Moreover, daily you exemplify what it means to be a husband and father. I can only hope I am able to come close to balancing my own life so steadily. Thank you again for not only enabling me to be a great scientist, but also showing me how to be a great man. And thank you for always keeping the door open.

Lastly but most of all thank you, Tricia Herbert. Sometimes the universe places your future right in front of you and we in our limited sight are not able to grasp the beautiful significance until much later. The moment you walked into my first collegiate class and sat next to me, I had no idea what the universe had just laid in front of me. I am the luckiest man in the world to have been given these past five years with such a beautiful, kind and intelligent woman. Through two graduate programs; living apart, together or with our families; traveling back-and-forth between Richmond and Lynchburg or traveling around the world; through our successes and failures; health and sickness; I have never once not needed you by my side. Out of the many, many things I’ve learned throughout the past four years this is the most important. What the future holds, I have no idea. All I can do is hope that somehow I am blessed enough to end up an old man holding your hand thinking of how the universe could be so wonderfully serendipitous. I love you Tricia and cannot wait to share the rest of this adventure we call life together.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS .. iv

FIGURES AND TABLES ... vi

ABBREVIATIONS .. viii

ABSTRACT ... ix

Chapter 1. Introduction and Background .. 1
 1.1. DNA Assembly and Synthetic Biology 1
 1.2. The ex vivo approach ... 7
 1.3. Applications of Cell-Free Systems 8
 1.4. Double-strand Break Repair: Natural DNA Assembly 11
 1.5. The ex vivo Cloning approach .. 14

Chapter 2. ex vivo DNA ASSEMBLY .. 16
 2.1. Initial 2-way ex vivo DNA Assemblies 16
 2.2. Testing the Magnesium:ATP Ratio with 2-way Linear Assemblies 18
 2.3. Optimized Assemblies with Yeast and E. coli Lysates 21
 2.4. Conclusions and Discussion .. 24

Chapter 3. Optimization of ex vivo DNA Assembly 26
 3.1. Lysate Preparation .. 26
 3.2. Optimizing the ex vivo DNA assembly reaction 40

Chapter 4. Probing ex vivo DNA Assembly with Enzymatic Titrations .. 57
 4.1. Enzymatic Titrations ... 57
 4.2. RecA Titrations ... 62
 4.3. Strain Engineering (nuc4- and autolysis cassette) 65

Chapter 5. ex vivo PCR and ex vivo Cloning 70
 5.1. The pUN plasmid and ex vivo PCR 70
 5.2. ex vivo Cloning ... 79

Chapter 6. Conclusion and Future Directions 82

Chapter 7. Materials and Methods .. 89
FIGURES AND TABLES

Figure 1.1 DNA Assembly by a Chew-back, Anneal and Repair Mechanism . 5
Figure 2.1 The 2-way Circular Assembly .. 17
Figure 2.2 The 2-way Linear Assembly and Buffer Optimization 20
Figure 2.3 The 3-way Assembly and Colony Counts 21
Table 2.1. Effect of Detergents on Assembly and Transformation 24
Figure 3.1 Harvested Growth Stage on Assembly Efficiency 27
Figure 3.2 Rich (TB) versus Minimal (M9) media 30
Table 3.1 Characteristics of Protein Storage Methods 32
Figure 3.3 Glycerol negatively affects lysate activity 33
Figure 3.4 Detrimental effects of detergents on electroporation 39
Figure 3.5 Concentration of Lysate .. 45
Figure 3.6 Optimization of components of “Base” Buffer 47
Figure 3.7 Titrations of Divalent Metal Cations 50
Figure 3.8 Titrations of Magnesium and Manganese 52
Figure 3.9 Lane composition of Manganese to Magnesium Titration ... 53
Figure 3.10 Effect of Manganese on Two-way Circular Assembly 55
Table 4.1 Enzymes used in Titration ... 58
Figure 4.1 Titrations of Various DNA cloning Enzymes 59
Figure 4.2 Lane Composition of Enzymatic Titration 61
Figure 4.3 Titrations of RecA ... 63
Figure 4.4 Lane composition of RecA titration 64
Figure 4.5 Colony counts of exDA reactions containing RecA 65
Figure 4.6 ex vivo DNA Assembly with nuc4-.AR and Lambda RED 68
Figure 5.1 Expression of Pfu DNA Polymerase 76
Figure 5.2 Volumetric titrations of ex vivo PCR 77
Figure 5.3 ex vivo PCR of 2-way and 3-way Fragments 78
Figure 5.4 ex vivo Cloning ... 80
Table A.1 Summary of Assemblies .. 1
ABBREVIATIONS

BCP = Blue Chromogenic Protein (also, amilCP)
BSA = Bovine Serum Albumin
CDS = Protein Coding Sequence
CFS = Cell-Free System
CFU = Colony-Forming Unit
DHAP = dihydroxyacetone phosphate
Dra = Deinococcus radiodurans lysate
DSB = Double-stranded break
dsDNA = double-stranded DNA
Eco = Escherichia coli lysate
EE = Early exponential
IDT = Integrated DNA Technologies
ISO = isothermal DNA assembly (also, Gibson assembly)
LB = Luria-Bertani media
LE = Late exponential
M9 = M9 minimal media
MAGE = Multiplex Automated Genome Engineering
NHEJ = Non-homologous end joining
PCA = Polymerase Chain Assembly
PCR = Polymerase Chain Reaction
Pfu = Pyrococcus furiosus
pUN = Plasmid Unique Neutral
RBS = Ribosome Binding Site
Sce = Saccharomyces cerevisiae lysate
SOB = Super Optimal Broth media
SOC = Super Optimal Broth with Catabolite repression Media
SP = Stationary Phase
SSA = Single-strand annealing
ssDNA = single-stranded DNA
Tag = Thermus aquaticus
TAR = Transformation-associated recombination
TB = Terrific Broth media
UNS = Unique Neutral Site
Genetic engineering of microbes has developed rapidly along with our ability to synthesize DNA de novo. Yet, even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. While technological advances have resulted in powerful techniques for in vitro and in vivo assembly of DNA, each suffers inherent disadvantages. Here, an ex vivo DNA cloning suite using crude cellular lysates derived from E. coli is demonstrated to amplify and assemble DNA containing small sequence homologies. Further, the advantages of an ex vivo approach are leveraged to rapidly optimize several parameters of the ex vivo DNA assembly methodology testing lysates from different engineered strains of E. coli, with various buffer components and using titrations of purified cloning enzymes. Finally, in order to complete the cloning suite, a vector expressing the Pyrococcus furiosis (Pfu) DNA polymerase was designed, constructed and expressed in E. coli to create a ‘functionalized lysate’ capable of ex vivo PCR. Not only do we demonstrate ex vivo cloning methodology as a complete cloning package capable of replacing the expensive cloning reagents currently required by synthetic biologists, but also establish ex vivo as an overarching approach for conducting molecular biology.
Chapter 1. Introduction and Background

“What I cannot create, I do not understand”
- Richard Phillips Feynman, PhD

1.1. DNA Assembly and Synthetic Biology

Our capacity to (re)engineer living systems is linked to our ability to physically build specific DNA molecules that encode desired functionality and behavior. Thanks to major advances in DNA sequencing and DNA synthesis technologies, a renaissance in genetic engineering known as synthetic biology has sparked incredibly rapid progress in our ability to engineer life. Synthetic biology, metabolic engineering, systems biology and associated disciplines can be leveraged to not only access the estimated ∼100 million biological compounds present on our planet, but create sophisticated biological entities as molecular machines capable of replication, catalysis, sensing and computational response\(^1\). The programmable chemistry potentiated by recombinant DNA technologies can be harnessed to address societal needs such as food scarcity; renewable fuel sources; environmental remediation and protection; medicinal (and veterinary) diagnostics and therapeutics; or defense against bioterrorism\(^2\)\(^3\).

Due to difficulties stemming from the inherently ‘analog’ nature and complex interdependence of biochemical systems on top of the staggering permutations of even the smallest of genetic circuits,
synthetic biologists have focused on the characterization, standardization and modularity of biological parts. Yet, to achieve the overarching synthetic biology dream we must continue to optimize the design-build-test engineering loop until first principles of de novo genetic design are ascertained.

While the current bottleneck in the Synthetic biology engineering loop lies in the design portion of the loop (since most initial designs are not optimal and possibly not even functional), the only way to alleviate this design bottleneck is to continue to build and test many genetic designs. This is not just to identify adequate designs for the application at hand, but also to inform subsequent design efforts. The ensuing study not only presents an optimized DNA assembly methodology significantly less expensive and/or time-consuming than current methods, but also presents an overall approach to rapid phenotypic characterization, optimization and alternate route for laboratory molecular biology.

Although our ability to construct novel DNA has come a long way from Nirenberg’s initial synthesis of a nucleic acid homopolymer, it still proves most cost effective to purchase DNA in small fragments or single-stranded oligomers to assemble into larger, gene-length products. This is particularly true when combinatorial libraries are being constructed. Indeed, synthetic biologists often rely on construction and thorough characterization of libraries of modular genetic parts. For instance, characterization of promoter regions and ribosome binding sites (RBS) has generated successful part libraries
capable of tuning transcriptional and translational expression of downstream protein coding sequences6-8. Data collected from these experiments have even produced fairly robust models capable of rationally designing tunable parts, such as the RBS calculator9. Yet the interplay between DNA sequence and phenotype is full of nonlinear, epistatic and stochastic dynamics, minimizing the modularity and reliability of genetic parts. For example, combining a highly expressive promoter with a highly expressive RBS part may result in very low overall protein expression. To address these problems synthetic biologists must often rely on parts tested in a combinatorial manner. Beyond regulatory parts for modulating gene expression, encoding novel functions through protein engineering still remains an undertaking of brute force necessitating generation of extreme sequence diversity through directed evolution (requiring an appropriate screening approach), combinatorial domain-swapping or a synthetic metagenomics approach. In order to address the design bottleneck of the design-build-test loop, the build and test steps must be made extremely rapid.

Traditionally, recombinant DNA has been constructed using restriction cloning (i.e., cutting with an endonuclease and joining with a ligase) and DNA fragments isolated from natural sources by restriction digestion or polymerase chain reaction. In addition to restriction-ligation approaches, other site-specific recombination systems have been employed to assemble DNA fragments with great success10. However, genetic engineering has recently become more flexible with the use of
'sequence-independent' approaches that take advantage of the decreasing cost of DNA synthesis11-14. In a perfect world, synthesis of DNA would be so cheap that all DNA constructs could be synthesized in their entirety, sequence-verified and delivered to researchers for testing. However, current gene synthesis rates are highly limiting often costing several thousand dollars to synthesize full-length genes. Instead, most DNA is ordered in more cost-effective fragments (as of this writing, single-stranded oligomers are $0.35 per base up to 60 bases and $120 for a 750 base pair double-stranded fragment through Integrated DNA Technologies® [IDT]) and then assembled using overlapping homologous sequences on the ends of the oligomers in a 'sequence-independent' fashion. For example, polymerase chain assembly (PCA), a variation on the general polymerase chain reaction (PCR), uses partially overlapping 60bp single-stranded oligomers alternating strands of an entire gene sequence in equimolarity as a template. These oligos are pooled and allowed to anneal and extend into longer and longer double-stranded sequences until a complete double-stranded gene sequence is generated. These 'synthons' can be quickly inserted into a plasmid backbone by traditional sequence-specific or sequence-independent methods.
Figure 1.1 DNA Assembly by a Chew-back, Anneal and Repair Mechanism
Depicted are the steps employed by Gibson Isothermal assembly (ISO) and analogous putative steps for in vivo single-strand annealing predicted to be the active mechanism in ex vivo DNA assembly. In steps 1-3, an exonuclease (here 5’-to-3’) chews back (resects) the double-stranded ends to expose terminal homologies (colored blue), which can anneal to each other in step 4. If there has been excessive resection as depicted in steps 5-6, a DNA polymerase is used to repair the exposed gaps. Finally, a DNA ligase acts to seal the DNA backbone (7), to yield a fully sealed, accurate assembly/repair. The table describes the tripartite mixture of enzymes in the ISO formulation and some analogous naturally-occurring enzymes from yeast, E. coli and D. radiodurans.

When trying to assess the function of DNA sequences in the cell, it is of great utility to have sequence-independent cloning techniques that do not constrain design (e.g., scars from restriction sites).

Homologous recombination is the longest-tenured sequence-independent cloning method and the most widely utilized for integration onto the genome. Highly active homologous recombination systems native to Bacillus subtilis and S. cerevisiae make effective in vivo recombination systems, while in E. coli, the Lambda Red recombinase
genes can greatly increase the rates of homologous recombination15. In fact, \textit{S. cerevisiae} has been utilized to assemble and propagate entire bacterial genomes from very large overlapping fragments, through transformation-associated recombination (TAR)16. However, the assemblies must be designed to work with the organismal chassis and, unless the construct is to remain in the assembly host, must be designed to shuttle into the final host organism. The TAR cloning process can therefore take up to eight days to get a DNA construct into the terminal host. While monetarily inexpensive, these time expenses are often a disappointing attribute of \textit{in vivo} methodologies.

In contrast to \textit{in vivo} approaches, purified \textit{in vitro} systems offer user-control, efficiency and time savings, but are often expensive to purchase or difficult to establish in-house due to complications in protein purification. Once established there is no denying the potency of these systems. In 2008, a completely synthetic Mycoplasma genome was assembled from chemically synthesized double-stranded DNA (dsDNA) fragments (5-7 kilobase pairs each) using an \textit{in vitro} chew-back assembly method16. More recently, the mouse mitochondrial genome was reconstructed from overlapping synthetic single-stranded oligonucleotides (60 nucleotides each) using a three-enzyme \textit{in vitro} isothermal DNA assembly method (ISO assembly, also known as Gibson assembly)17. Currently the most popular and efficient sequence-independent cloning method, Gibson and colleagues discovered an optimized mixture of a phage 5’-to-3’ DNA exonuclease, DNA ligase, and heat-stable polymerase catalyzing highly efficient DNA end joining
As the current “gold-standard” for DNA assembly, Gibson assembly suffers from the disadvantages of most purified in vitro systems – it is highly expensive. Distributed as a master mixture from New England Biologicals® (through Synthetic Genomics®) each reaction costs $15 dollars. While very efficient and taking only an hour, if trying to assemble larger libraries of constructs this is not a cost-effective route.

1.2. The ex vivo approach

The terminology ‘ex vivo’ – Latin for “out of the living” – is a common term in organismal biology, where tissue or even full organs are isolated from an organism with minimal perturbation of its natural environment. This permits researchers more control over conditions and access to measurements not otherwise possible (or even ethical) in a living organism. In this manner, the “ex vivo” moniker describes an experiment combining the advantages of an in vivo approach and an in vitro approach.

While ex vivo experimentation is traditionally associated with organs and tissues, the approach has a storied history in microbiology and cellular biology. The first ex vivo reaction catalyzed by a microbial cell extract was performed by Eduard Buchner (1897) over 100 years ago, converting sugar to ethanol and carbon dioxide in a yeast extract, eventually winning the Nobel Prize in Chemistry (1907). Using lysate fractions derived through differential centrifugation, microsomes were discovered as catalysts of protein synthesis, leading
to the identification of mRNA as the template for protein synthesis by Nirenberg and Matthaei (1961) in their own extract-based reaction⁵. As history and technology progressed the microbiology and cellular biology systems derived from cellular extracts have become popularly referred to as ‘cell-free systems’ (CFS). However, ‘cell-free system’ is an umbrella term giving very little detail to the composition of the final system. For instance, cell-free systems for protein synthesis range from crude extract to systems reconstituted in vitro with entirely purified components. For this reason, we propose ex vivo be used to describe a CFS which is minimally altered from its’ in vivo origins by only very crude purification or manipulation (e.g., centrifugation of insoluble components).

1.3. Applications of Cell-Free Systems

Since their inception, CFSs have primarily been leveraged to probe the central processes of transcription and translation. Over the past ~25 years, building off work establishing coupled transcription-translation CFS¹⁸, modern CFS have evolved into robust systems capable of high-level protein production. Recent work with E. coli-based extracts have garnished yields exceeding 2 mg/mL protein at scales exceeding 100 liters¹⁹. Complex eukaryotic proteins containing high-levels of post-translational modifications can be produced in cell-free extracts from wheat-germ, rabbit reticulocytes and insect cells at high titers. This is important, since CFSs obviate the need to perform in vivo manipulations that can be difficult or impossible in some eukaryotic cell lines. Cell-free protein production is therefore
particularly attractive to industrial production of therapeutic peptides as they are commonly post-translationally modified, exist associated with the membrane or may exhibit toxicity (e.g. antimicrobial peptides).

For synthetic biology, CFSs have been cleverly employed to expedite the prototyping of genetic parts for gene expression. By monitoring the production of fluorescent proteins in a CFS the time investment and noise (i.e., plasmid copy number) associated with in vivo characterization is greatly reduced. Although not an absolute perfect measure of in vivo dynamics, a set of constitutive and inducible promoters tested in a CFS were shown to correlate well with measurements of in vivo gene expression and dose-response20.

Cell-free protein synthesis has benefited greatly from advances in mimicking intracellular conditions, activating integrated biological processes and controlling cell-free metabolism. Control over metabolism in CFSs has motivated the development of CFSs as platforms for the synthesis of metabolites. Although most of these higher-functioning CFSs require further purification of the pathway constituents from the lysate, in a truly excellent demonstration of an ex vivo system, Panke and colleagues optimized the catalysis of dihydroxyacetone phosphate (DHAP) from glucose21. The authors were able to reach concentrations far beyond those documented in vivo (12 mM DHAP) by deletion of two genes in the production strain combined with supplementation of butanol and rabbit muscle aldolase to the reaction. DHAP is an unstable product, but the exogenous addition of the
aldolase and butanol allowed conversion to a more stable form. This is a perfect example of the simplicity and flexibility of CFS optimization, not only by modification of the host chassis, but also by circumventing the membrane to directly supply new components (here the small-molecule butanol and a non-bacterial enzyme) impossible in the same in vivo system.

The constant struggle between the engineering objective to optimize product yield and the cell’s biological objective to optimize biomass production is remedied by an ex vivo approach. The functionalities of the cell remain intact, while removal of the cell encapsulation enables manipulation of the internal chemistries to activate, integrate and focus cellular resources towards a desired objective. Without compartmentalization there is the opportunity to greatly exaggerate substrate concentrations, remove product, and rapidly sample and monitor reaction conditions. In in vivo systems researchers and engineers must respect the constraints, time-scales and stochasticity inherent to life. On the other hand, purified in vitro systems provide exceptional flexibility and control, resulting in higher reaction efficiencies and better reproducibility. Yet, in vitro systems are low-throughput and orders of magnitude more expensive than their in vivo counterparts. This is clearly demonstrated in the production of cellulosic biofuels, where the primary cost-driver is the expense of purified enzymes for biomass pretreatment. For investigators, in vitro systems sacrifice cellular context necessary to make conclusive inferences about in vivo phenomena. A simple, yet
elegant compromise between in vivo and in vitro approaches, ex vivo systems enhance both engineering and investigatory freedom.

1.4. Double-strand Break Repair: Natural DNA Assembly

The end-to-end joining of free dsDNA fragments is a vitally important process for all cellular life in the repair of double-stranded DNA breakage. DNA double-stranded breaks (DSB) are ubiquitous across all kingdoms of life, occurring during normal housekeeping functions and in response to DNA damaging agents such as chemicals and irradiation24,25. Very simply, a DSB is a break in both strands of duplex DNA. A DSB is a particularly dangerous DNA lesion as these breaks can potentially disrupt gene expression, alter chromosome organization or provide substrates for single- or double-stranded exonucleases, catalyzing the deletion of genetic information. DSB are also notoriously difficult to repair. Where a single-stranded break can be easily repaired using the conserved information on the intact strand, generally DSB have no associated template at the free ends to guide repair. Due to these two reasons DSB repair is widely associated with the development of cancer and has, therefore, been the subject of extensive study26,27. There are two major mechanisms for DSB repair: end-joining and homologous recombination. The major distinction between the two being that the former requires no template to facilitate repair of the DSB. The presence of template DNA is, therefore, essential in the decision and mechanism of DSB repair pathways.
1.4.1. Homologous Recombination

Homologous recombination generally leads to high-fidelity repair, making it the most ubiquitous and dominating DSB repair pathway across organisms. However, unlike end-joining, homologous recombination’s requirements for a template means that a second copy of the region containing the DSB must exist in the cell. For most prokaryotes, this is not a problem as they often exist with multiple or, at least, partial copies of their genome. In eukaryotes, homologous recombination is reserved for the S and G₂ phases of the cell cycle when sister chromatids are present, acting as template for repair and meiotic crossing-over.

1.4.2. Non-homologous End-Joining

End-joining implies the linking of two free duplex DNA termini into a ligated product. Traditionally referred to as non-homologous end-joining (NHEJ), the relatively simple process relies on minor processing of DNA termini to prepare them for direct ligation in the absence of any required homologous template. While this means that repair can take place at any point during the cell cycle regardless of genome copy number, the fidelity of repair is relatively low. Errors are often propagated from loss-of-information during end processing (resection), explaining the relatively low occurrence in prokaryotes in comparison to homologous recombination. In higher eukaryotes, the error-prone nature of NHEJ has evolved into a highly coordinated system to generate sequence diversity in the differentiation of unique
B- and T-lymphocytes. More recent studies have revealed ‘alternate end-joining’ or ‘microhomology-mediated end-joining’ pathways utilizing repeat sequences at or near the terminus of DSBs, such as those that may occur in breaks near or within ribosomal operons of prokaryotes28,29.

1.4.3. Alternative End-Joining

Alternative end-joining pathways appear to exist in a grey-area between the extremes of NHEJ and homologous recombination relying on combinations of cellular machineries from both processes, distinguished by the degree of available homologous template. Outside of rare circumstances, like the ribosomal operon described above, a DSB is very unlikely to form with significant end homologies to guide non-templated repair. Nevertheless, an alternative DSB repair pathway known as single-strand annealing (SSA) exists to join DSB with significant homologies at their termini30. As in the homologous recombination process, SSA involves an extensive end-resection to expose single-strand overhangs31. Yet, in contrast to homologous recombination, these ends subsequently anneal to the newly exposed homologies on the cognate DSB for a final step of ligation (similar to NHEJ). SSA is a mechanistic analog to the Gibson ISO assembly method (Figure 1.1), following the same chew-back (resection), annealing, polymerization and ligation steps, but occurs (albeit infrequently) in completely wild-type microbes. Hopefully, by freeing and concentrating the enzymes necessary for SSA end joining of overlapping DNA fragments will take place. \textit{E. coli}, and \textit{S. cerevisiae} make good chassis not only
due to preliminary research suggesting they are capable of catalyzing end joining in an extract-based reaction, but their relatively easy culturing methods and availability to most labs\(^{13,32}\). \textit{D. radiodurans} makes another excellent chassis for \textsc{exDA}, as it is known to have some of the most active DNA repair systems, making it the world’s (current) most radioresistant organism\(^{33}\).

1.5. The \textsc{ex vivo} Cloning approach

In the ensuing study, we endeavored to demonstrate the facilities of the \textsc{ex vivo} approach to demonstrate and subsequently investigate and optimize DNA assembly. Using our own assays of assembly we tested lysates prepared from different organisms and strains, under varying growth conditions and with variable buffer/reaction conditions. Titrations of common cloning enzymes were employed to investigate the underlying enzymatic mechanisms of DNA assembly. Applying genome engineering techniques we endeavored to engineer a new strain of \textit{E. coli} lacking competing nucleases and capable of autolysis for \textsc{ex vivo} DNA assembly. We designed and constructed pUN (‘plasmid unique neutral’) a novel plasmid featuring a screenable blue chromogenic protein (BCP) insert and ‘unique neutral sites’ for facile cloning via \textsc{ex vivo} DNA assembly or other sequence-independent assembly methods. Lastly, using our new pUN plasmid we replaced the BCP insert with a cassette expressing a codon-optimized \textit{Pyrococcus furiosus} (Pfu) DNA polymerase gene. This plasmid yields a lysate with high levels of the thermostable DNA polymerase now ‘functionalized’ to perform a high-fidelity \textsc{ex vivo} PCR reaction. With \textsc{ex vivo} methods for both DNA
assembly and PCR we report the creation of the first all-encompassing ex vivo Cloning pipeline.
Chapter 2. ex vivo DNA ASSEMBLY

Author Contributions:
George H. McArthur and Adam B. Fisher designed the experiments, which were carried out in the laboratory of Stephen S. Fong. Adam B. Fisher performed the experiments with Zachary B. Canfield and Laura C. Hayward. George H. McArthur, Adam B. Fisher, and Stephen S. Fong interpreted the data and wrote the manuscript. All authors discussed results and commented on the manuscript.

2.1. Initial 2-way ex vivo DNA Assemblies

To assess the ability of select cellular lysates to join together dsDNA, we first designed two amplicons with appropriate overlapping ends (26 and 30 bp overlaps) to be assembled into a circular plasmid (Figure 1.1A)34. Correctly assembled plasmids endow E. coli transformants with selective resistance to the antibiotic chloramphenicol and also visually screenable expression of a blue chromogenic protein (BCP) native to the coral Acropora millepora (Figure 1.1B)35. Template plasmids housing the bcp coding sequence (pSB1C3-K592009) and the appropriate antibiotic resistance and replication origin (pSB1C3-J04450) produce white and red/pink colonies, respectively, providing a convenient way to track transformation efficiencies (Figure 1.1B).

In this initial experiment, we used lysates of S. cerevisiae, E. coli, and D. radiodurans (hereafter Sce, Eco, and Dra, respectively) and a simple buffer containing ATP and MgCl\textsubscript{2} to attempt ex vivo DNA assembly.
The two amplicons were incubated for 1 hour with each lysate. Samples of each reaction mixture were subsequently used to transform *E. coli* NEB10β.

![Diagram of plasmid assemblies](image)

Figure 2.1 The 2-way Circular Assembly
(A) 2-way assembly was demonstrated by joining a coding sequence for blue chromogenic protein (BCP; a 698 bp segment of pSB1C3-K592009 colored in dark blue) and the majority of pSB1C3-J04450 (a 2446 bp segment), thereby replacing the RFP coding sequence with BCP (pSB1C3-BCP). The pMB1 origin is colored in green and the chloramphenicol resistance gene is colored orange. (B) Correctly assembled plasmids allow transformants to express BCP (blue colonies) while colonies containing carryover template plasmids appear either red (pSB1C3-J04450) or white (pSB1C3-K592009).

Interestingly, Dra-incubated DNA did not produce transformants, although DNA incubated with Sce or Eco successfully transformed *E. coli*. Further analysis by agarose gel electrophoresis showed significant degradation of the individual amplicons, indicating that a highly active exonuclease system might have prevented the assembly of DNA by Dra (Appendix B Figure B.1). Even expected background transformants resulting from lingering circular PCR template were absent, suggesting that endonuclease activity is also high in Dra. Indeed, after further investigation we found a consensus DrdI site
(GAC-N₆-GTC) between 1475 and 1486 (GACGCTCAAGTC) in the replication origin of our plasmids.

2.2. Testing the Magnesium:ATP Ratio with 2-way Linear Assemblies

We then explored ways to improve the efficiency of ex vivo DNA assembly with Eco and Sce by varying the relative composition of ATP and MgCl₂ in our buffer, adding NAD to the buffer (to power NAD+-dependent processes such as ligation), modulating the temperature at which the reaction mixture was incubated, increasing the amount of cellular lysate in our reaction, and increasing the duration of incubation. To directly assess the efficacy of ex vivo DNA assembly and avoid variation associated with transformation, we chose to visualize formation of a linear product (Figure 2.2A) from a pair of overlapping amplicons (28 bp overlap) via agarose gel electrophoresis of the ex vivo assembly reaction prior to transformation (Figure 2.2B). In this manner, we were able to compare different reaction conditions on their ability to join two overlapping dsDNA into one linear product.

Buffers were made of 1 mM DTT, 1 mM NAD, and varying concentrations of ATP and Mg²⁺. A wide range of ATP:Mg²⁺ ratios were initially tested with 1-hour Eco reactions at 37°C: 1:5, 1:10, 1:20, 5:5, 5:10, 5:20, 10:5, 10:10, and 10:20 (mM:mM). Only three ATP:Mg²⁺ ratios were chosen for further reaction optimization: 10:5, 5:5, and 1:10 (mM:mM) (buffers 1-
3 in Figure 2.2B, respectively). Linear products resulting from assembly by Sce were not at all visible in the gel, although bands of small pieces of DNA indicate that there is some nuclease activity under most conditions tested. On the other hand, Eco appears to have significant activity at 30°C and 37°C even without the addition of buffer. Previous studies have noted that the nucleolytic behavior of the RecBCD complex of E. coli changes based upon the relative amount of ATP to free Mg$^{2+}$ in vitro37. We observed a similar trend in our lysates; the most efficient assembly reactions (for both 30°C and 37°C) were carried out under conditions of excess magnesium relative to ATP (Buffer 3 in Figure 2.2B), probably because ATP can chelate Mg$^{2+}$ with high affinity under physiological conditions38.
Figure 2.2 The 2-way Linear Assembly and Buffer Optimization

(A) Optimized ex vivo reaction conditions were identified by visualizing the joining of a 697 bp segment of pSB1C3-K592009 (BCP) and a 381 bp segment of pSB1C3-J04450 (Promoter) into a larger linear DNA molecule. (B) Reactions were run for 1 and 2 h (left and right in each gel, respectively), at three temperatures and four buffer compositions for each Eco and Sce. All buffers contained 1 mM NAD and 1 mM DTT. ATP and Mg2+ concentrations (mM:mM) varied as follows: (1) 10:5, (2) 5:5, (3) 1:10. The control lanes include a reaction with no supplemented buffer (−) and a negative control (“ctrl”) DNA-only lane (no buffer or lysate).

Each ex vivo reaction condition was tested for both 1- and 2-hour incubations. Initial experiments indicated that greater incubation times (3–6 hours) do not improve ex vivo assembly yields (data not shown). For all successful assemblies, 2-hour reactions appear to generate more linear product than 1-hour reactions. The temperatures selected for ex vivo reaction optimization reflect cell culture conditions (30°C for yeast and 37°C for E. coli) and the temperature used for ISO assembly reactions (50°C). The 50°C reactions are considered a negative control since we do not expect the cellular machinery in Eco or Sce to be thermostable, although transient activity may occur initially. Based on the results of these
experiments we selected a buffer composition of 1 mM ATP, 10 mM Mg^{2+}, 1 mM DTT, and 1 mM NAD+ (i.e., Buffer 3 in Figure 2.2B) incubated at 37°C for 2-hour as our optimized conditions for both Eco and Sce.

2.3. Optimized Assemblies with Yeast and E. coli Lysates

Under optimized reaction conditions, Eco and Sce were used again to perform the two-way dsDNA assembly. In addition, we designed three overlapping amplicons (30, 29, and 26 bp overlaps) to demonstrate a three-way assembly, which is not only more complex but also more useful for generating combinatorial libraries (Figure 2.3A). For each of these assembly tests, lysate-incubated DNA was allowed to react for 2-hours before transformation of E. coli. Control conditions of zero
incubation time and reactions with no lysate added were also run to ensure that the lysate was indeed facilitating DNA assembly and not otherwise affecting the transformation process.

Our results (Figure 2.3B and Figure 2.3C) clearly indicate that DNA is indeed being assembled ex vivo. For two- and three-way assemblies, both Eco and Sce, transformation efficiencies significantly increase when the DNA to be assembled is allowed to incubate with the lysate. Unexpectedly, the “no lysate” negative control revealed that for two- and three-way assemblies the overlapping amplicons can be joined together into a circular plasmid in vivo, suggesting that a significant fraction of the ex vivo assembly reactions – and also in vitro reactions (e.g., ISO assembly) – actually occur inside E. coli after transformation (i.e., transformation-associated recombination cloning in E. coli). Although Eco-mediated assembly produced many blue colonies for both two- and three-way assemblies (423 and 491 colonies, respectively), Eco-lysate appeared to be detrimental to the overall transformation efficiency as when transformation reactions were spiked with Eco-lysate (but not allowed to incubate with the DNA amplicons) the presence of colonies was greatly diminished (See, Table 2.1).

2.3.1. Effect of Detergents on Transformants

To test whether or not the detergent-based lysis buffer used to produce Eco was affecting the transformation process, we carried out the assembly reactions and transformations in the presence of the lysis buffer but without cellular lysate. As summarized in Table 2.1,
the bacterial lysis buffer inhibits transformation completely. Therefore, *Eco*-mediated assembly is likely much more efficient than we have observed and an alternative lysis method would probably increase overall transformation efficiency. The yeast lysis buffer does not appear to inhibit transformation of *E. coli*, which is not surprising because it is designed to lyse yeast cells. Interestingly, the number of colonies produced by DNA incubated with yeast lysis buffer was equivalent to the number of colonies produced by *Sce*-incubated DNA and that produced by the “no lysate” control. These data suggests that *Sce*-mediated DNA assembly was not observed but rather indicates that *in vivo* end joining in *E. coli* facilitates DNA assembly in this case. Interestingly, there would appear to be an increase in total colonies formed when the DNA is incubated with CelLytic Y. One might speculate that during incubation perhaps the buffer composition influences the DNA to adapt a more tightly supercoiled conformation as is seen in solutions with higher salt concentrations and is observed to greatly increase transformation efficiency. However, without further experimentation and knowledge of the proprietary CelLytic Y formula this remains purely speculative.
Table 2.1. Effect of Detergents on Assembly and Transformation

<table>
<thead>
<tr>
<th>Lysis Buffer</th>
<th>Reaction time</th>
<th># Colonies</th>
<th># Blue</th>
<th># Red</th>
<th># White</th>
</tr>
</thead>
<tbody>
<tr>
<td>CelLytic B</td>
<td>0 minutes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CelLytic B</td>
<td>120 minutes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CelLytic Y</td>
<td>0 minutes</td>
<td>42</td>
<td>41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CelLytic Y</td>
<td>120 minutes</td>
<td>150</td>
<td>140</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lysis Buffer</th>
<th>Reaction time</th>
<th># Colonies</th>
<th># Blue</th>
<th># Red</th>
<th># White</th>
</tr>
</thead>
<tbody>
<tr>
<td>CelLytic B</td>
<td>0 minutes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CelLytic B</td>
<td>120 minutes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CelLytic Y</td>
<td>0 minutes</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>CelLytic Y</td>
<td>120 minutes</td>
<td>27</td>
<td>18</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabulation of colony counts for transformations that were carried out in the presence of lysis buffer and the appropriate DNA but without cellular lysate. No transformants were seen when the DNA was incubated with the bacterial lysis buffer (CelLytic B), suggesting that this particular buffer somehow inhibits transformation. On the other hand, the yeast lysis buffer (CelLytic Y) showed no inhibition of transformation, which may not be surprising since the bacterial lysis buffer is designed to act on bacteria such as E. coli NEB10β. However, it is also clear from these results that Sce does not offer any advantage over the yeast lysis buffer for DNA assembly and, therefore, it can be deduced that the transformants resulting from Sce incubation are actually a result of in vivo DNA assembly in E. coli.

2.4. Conclusions and Discussion

Through a series of experiments investigating circular and linear DNA assembly, we found that: 1) lysate derived from E. coli NEB10β, a RecA-deficient strain, was able to efficiently assemble dsDNA, 2) a fraction of the assembly takes places inside E. coli NEB10β post-transformation by in vivo DNA assembly, and 3) lysates derived from D.
*radio*du*ran*s and *S. cerevisiae* were not able to join together dsDNA under the conditions we tested. In addition, it is worth noting that we attempted single-stranded DNA (ssDNA) assembly of synthetic 60-mer oligonucleotides (20 bp overlaps) that was accomplished by ISO assembly but was unsuccessful using our ex vivo approach (data not shown). Over the course of all of our experiments we found that the trends in efficiency of assembly held true across organisms independent of batch-to-batch variation.
Chapter 3. Optimization of ex vivo DNA Assembly

3.1. Lysate Preparation

Arguably, the most important step in any ex vivo investigation is the preparation of the lysate. Since this starting material may be used for many subsequent reactions and experiments it is critical to fully investigate the factors contributing to the suitability of resulting cell extracts prior to optimizing downstream reaction parameters. To investigate lysate preparation we tested the effects of varying media composition, harvesting at different points in the growth curve, the addition of cryopreservant (i.e., glycerol) and lysis method.

3.1.1. Harvest Phase

The typical growth curve of E. coli (and other prokaryotic bacteria) show an initial period of non-exponential growth (known as lag phase) in which the cells adjust their intracellular physiology in response to the change in extracellular conditions and the increase in available nutrients. This is followed by the exponential phase in which the cells reproduce at maximal capacity (given the external conditions) until the external environment becomes suboptimal (due to culture density, accumulation of waste/byproducts or depletion of nutrients). At this point the cells transition from exponential phase into a quiescent state known as stationary phase (SP). Reproduction is
halted and metabolism is severely slowed as the cell allocates
resources to only the very most essential processes until new
resources become available and the whole grow curve can restart.

Figure 3.1 Harvested Growth Stage on Assembly Efficiency

NEB10β was grown in TB and harvested at various points along the growth curve. Growth phase was judged by optical density at 600 nm, using absorbances of 0.4, 1.0 and >2.0 as markers of early exponential, late exponential and stationary phases, respectively. Lysates were prepared as previously reported using detergents and two-way assemblies performed. Fold difference represents the change in product band intensity of the sample as compared to the intensity of Stationary Phase product band. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel picture are shown in Figure B.2 and Figure B.3.

Initial experimentation with ex vivo DNA assembly grew the *E. coli* cultures to saturation for two reasons. First, this is very convenient for the researcher as the *E. coli* culture can be prepared as an overnight culture and grown to saturation by the next day without the
need to constantly monitor the progress of the culture. Second, during the later stationary phase of growth the cell and genome are bombarded by accumulated waste products (free radicals, high pH). The damage inflicted upon the cellular DNA may thereby cause the cell to produce DNA repair enzymes useful for DNA end joining. However, the highest levels of DNA replication occur during exponential phase and may in fact contain elevated concentrations of DNA repair enzymes useful to DNA assembly.

Based on previous observations of growth for NEB10β, we defined three different phases of growth, Early Exponential (EE), Late Exponential (LE) and Stationary phase (SP) represented by spectrophotometric measurements of optical density at 600 nm (OD600) of ~0.4, ~1.0 and >2.0, respectively. After harvesting the NEB10β grown to EE (OD600 = 0.46), LE (OD600 = 0.92) and SP (OD600 = 2.75) in previously detailed culturing conditions, lysates were prepared by resuspending in a 3:1 ratio of 2X CelLytic B (Sigma) detergent to pellet mass (e.g., 300 µL CelLytic for 100 mg of cell pellet), pelleting cell debris from lysis and diluting the soluble fraction 50% with glycerol.

The results of 2-way linear assemblies using these lysates displayed in Figure 3.1 shows an improvement in EE and LE harvesting over lysate prepared from SP. However, this improvement is very slight. Since harvesting in the latter stages of growth affords more biomass (and therefore lysate) and is convenient for the researcher we will continue to harvest in the stationary phases of growth.
3.1.2. Rich (TB) versus Minimal (M9)

Cellular physiology is inextricably linked to the extracellular environment. In a laboratory setting the extracellular environment is established by the physical (e.g., temperature and pressure) and chemical conditions of the growth medium. Under optimal conditions, *E. coli* will consume metabolites to increase biomass and replicate as quickly as possible. Conversely, under nutrient-limited or suboptimal conditions *E. coli* will reproduce at a more conservative rate as resources are reallocated to deal with environmental challenges. The rate of growth and extracellular conditions directly impact the production of enzymes involved in DNA reproduction and repair – including those putatively involved in the *ex vivo* DNA assembly process.
Figure 3.2 Rich (TB) versus Minimal (M9) media

Lysates prepared from cells grown in rich and minimal media also show minimal difference in assembly efficiency, although minimal media showed a slightly larger increase in efficiency. Here, late exponential cultures had to be used because cultures grown in M9 media had trouble exceeding optical densities of 2.0 used as the marker of stationary phase. Fold difference represents the change in product band intensity as compared to Stationary Phase. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.2 and Figure B.3.

Previously, we grew our E. coli cultures to stationary phase (SP) in Terrific Broth (TB), a rich media very similar to the standard Luria-Bertani (LB) media but containing increased amounts of tryptone and yeast extract, glycerol as an added carbon source and a phosphate-based buffer system. This rich media allows growth to a much higher saturation than typical media such as LB. While we have used other rich media (LB, SOB, SOC; Data not shown) to prepare active lysates, here the activity of lysates prepared in TB were compared to those
prepared in M9 minimal media with glucose. As its name implies, a minimal media contains only the minimum nutrients necessary for bacterial growth, usually salts providing essential elements (Magnesium, Sulfur, Phosphate, etc...), a carbon source (e.g., glucose, sucrose, succinate) and water. In a minimal media environment nothing is “supplemented” to the cell so that all the essential metabolic pathways are active.

Given that the NEB10β lysate appeared to have slight improvements in efficiency when harvested in LE and that when grown in M9 media NEB10β had trouble achieving cellular densities similar to that of our stationary phase cells grown in TB (OD600>2.0), we compared cells grown M9 to LE with cells grown in TB to LE. As in 3.1.1, the results of the 2-way linear assembly are interpreted as fold difference to lysates prepared in TB at SP. The lysates prepared in M9 media at LE show comparability with that of cells grown in TB to LE.
3.1.3. Lysate Storage

Table 3.1 Characteristics of Protein Storage Methods

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>4°C</th>
<th>50% Glycerol Solution at -20°C</th>
<th>Frozen at -20°C or -80°C</th>
<th>Lysophilized (usually at -20°C or -80°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Shelf Life</td>
<td>Days to several weeks</td>
<td>6 months to 2 years</td>
<td>Many years</td>
<td>Many years</td>
</tr>
<tr>
<td>Requires sterility or antimicrobial agent?</td>
<td>Yes</td>
<td>Usually</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Number of times sample may be removed from storage</td>
<td>Many</td>
<td>Many</td>
<td>Once</td>
<td>Once</td>
</tr>
</tbody>
</table>

Proteins are a highly heterogeneous class of biological macromolecules with activities that are extremely dependent upon both their chemical composition and tertiary structure. Some proteins are even dependent upon their association with one or more other peptides. As such, maintaining the stability and activity of proteins outside of their native context can be challenging. If certain conditions are not adhered proteins may lose activity as a result of aggregation, proteolysis/microbial contamination and exposure to suboptimal thermochemistry. While the optimal conditions for storage vary between proteins43, Table 3.1 highlights several general guidelines for protein storage and stability.
Figure 3.3 Glycerol negatively affects lysate activity

From the same NEB10β lysates prepared at various growth stages, aliquots were saved prior to glycerol dilution and instead diluted with water. These are compared with their glycerol counterparts and show a significant improvement in assembly efficiency. Fold difference represents the change in product band intensity of the non-glycerol sample as compared to its glycerol-containing counterpart. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.2 and Figure B.3.

For our purposes, once the soluble fraction of our crude lysate is isolated, we dilute with an equal volume of 100% glycerol and store the samples at -20°C. To evaluate the prudence of glycerol addition, Figure 3.3 shows the results of testing freshly prepared NEB10β lysates diluted with either an equal part glycerol or equal part water. Glycerol would appear to have a significant impact on assembly efficiency, decreasing the formation of linear product approximately four-fold.
While such a drastic effect on DNA end-joining might be attributed to enzymatic origins (reduction in exonuclease, polymerase or ligase activities), it is interesting to note that there does not seem to be a difference in the degradation bands formed with or without the presence of glycerol. This means that a roughly equivalent amount of substrate ends are formed by the action of exonucleases, but these compatible substrates are not incorporated into the final product band. Granted, it could be that while the total degradation is equivalent the exonuclease is functioning differently. For example, restriction enzymes are known to have reduced substrate specificity (so called, "star activity") for particular DNA sites in the presence of glycerol concentrations exceeding 5%\(^4\). It would appear that the glycerol might be interfering with the thermodynamics of base pairing between exposed homologous regions. This could make sense given that glycerol is able to decrease the hydration sphere around polynucleotides by competing with water to hydrogen bond with exposed base side groups and, perhaps for this reason, is used in electrophoretic buffers to help prevent DNA entanglement\(^4\). Indeed, prior investigation into ligases have shown that the electrostatic reduction of hydrogen bonding interactions experienced with increasing glycerol decrease the activity of the ligase but actually lead to an increase in the accuracy/specificity of the ends ligated together\(^4\). Although omitting the inclusion of glycerol is tempting due to it’s clear detrimental effect on lysate activity, it’s faculty as a cryopreservant provides convenience that – in our opinion – supersedes
this disadvantage. For instance, if glycerol was to be omitted from the lysate there are a few alternatives. Lysate could be aliquoted into tubes, frozen and only thawed immediately prior to use. However, this may be very wasteful as only 2 µL of lysate is needed per reaction so there is either a waste of freezer space as small aliquots are frozen in individual tubes or a waste of lysate as leftover thawed lysate is discarded. Lysates could also be freshly prepared before all assembly reactions; however, this is laborious and requires a culture of *E. coli* to be prepared ahead of time. For these reasons we have decided to continue to utilize glycerol as a cryopreservant agent and maximize the efficiency of lysis in order to have a very concentrated lysate. This way the lysate may be diluted prior to the reaction and thereby the final concentration of glycerol is diluted, as well.

3.1.4. Detergents versus Autolysis

In the previous section we noted that ultimately, it is desirable to have a concentrated lysate stock, which can be diluted prior to the assembly reaction. In the previous context it was in reference to reducing glycerol contamination, but concentrated protein samples are also more resistant to deactivation and loss due to interactions with the storage vessel. Generating a highly concentrated cell extract is predicated upon an efficient lysis method.

Our current approach relying upon a chemical detergent means of lysis is efficient, compatible with small sample volumes and requires no specialized equipment. The detergents are non-toxic, non-denaturing and available as 1X, 2X and 10X concentrated formulations, so an
increased concentration can be employed to make even more highly concentrated cell extracts. However, the detergents suffer from several major drawbacks including the expense of purchase, a lack of transparency to their proprietary formulation and most of all, extensive toxicity toward the fragile competent *E. coli* utilized for transformation (Table 2.1). To address this major dilemma, we decided to investigate alternative methods to lyse our *E. coli* cultures.

While a number of methods are commonly employed to lyse *E. coli* most are unsuitable. Thermochemical methods such as alkaline lysis and heat-lysis denature the necessary catalytic proteins and present conditions that may handicap downstream processes. On the other hand, physical methods of lysis using a bead basher, French press homogenizer or sonicator offer some of the highest lysis efficiencies with the greatest degree of flexibility in buffer composition, but may have minimum sample volumes, require vigilance to prevent denaturing of the sample and all require the purchase of specialized equipment.

In response to the pitfalls inherent in each of the previous lysis methods, Zymo Research™ has created autolytic strains of *E. coli*. These strains contain an ingenious genetic design drawing upon the lysogenic system of the *E. coli* λ bacteriophage. Briefly, during the lytic phase of the λ bacteriophage life cycle the bacteriophage expresses two proteins. One protein (protein ‘R’) is an endolysin/lysozyme capable of cleaving the peptidoglycan bounds found in the cell wall. The other protein is a holin (protein ‘S’) that – as its name implies – punches holes in the cell membrane. Not only
does this disrupt the osmotic balance maintained by the selective permeability of the cell membrane but also releases the endolysin ‘R’ protein into the extracellular space where it can act upon the cell wall. In the XJa design the autolysis cassette only contains the endolysin ‘R’ gene that is driven by the araB promoter from the arabinose degradation operon. By adding arabinose (at ~0.2%) to the growing culture, the endolysin is produced at high level within the intracellular milieu where it is prevent by the cell membrane from acting upon the cell wall. Once ready, the researcher can freeze and thaw the culture (resuspended in buffer of choice) in order to lyse the culture. During the freezing of the cell, intracellular water crystallization damages the cell membrane performing the functions typical of the holin and releasing the endolysin to degrade the cell wall and lyse the cell.

This autolysis cassette presents a unique approach to create a lysate in the buffer of choice, without expensive reagents or equipment and in a highly efficient fashion (Zymo reports lysis efficiencies >90% after one freeze-thaw cycle for the XJa strain)49. As such, we purchased the XJa strain that is derived from the ubiquitous cloning strain JM109. While this strain is genotypically different from NEB10\(\beta\), from a phenotypic perspective as it relates to DNA, they are very similar. Like most cloning strains, JM109 (XJa) and NEB10\(\beta\) have mutations in endA and recA disrupting their endoplasmic DNA-specific endonuclease and homologous-recombination functions, respectively50,51. The endA mutation is important for protecting the integrity of any
substrate DNA present in the lysate. In its natural context the in vivo secretion of EndA prevents the degradation of host episomal or genomic DNA, but once the membrane is lysed and removed in an ex vivo or in vitro context, any substrate DNA existing or subsequently added, assembled or circularized is an active substrate to be cleaved52,53. The recA mutation disrupts the cell’s ability to perform homologous recombination between repetitive sequences. This way episomal (plasmid) DNA is maintained as intended rather than recombined with themselves, other plasmids or the genome54,55. In addition they both have their restriction systems removed. Strain genotypes are displayed in Table A.2 with an explanation in Table A.3.

To test the XJa autolysis for DNA assembly, we performed the growth experiments used for NEB10β and found that XJa performed similarly in 2-way linear experiments to NEB10β (Figure B.2 and Figure B.3). Based on the results of the lysate negative controls from Table 2.1 the effects of autolysis lysates on electroporation were studied first.
Using two 3-way assemblies, one performed using a detergent-derived XJa lysate and one using an autolysis-derived XJa lysate, the resulting assemblies were transformed into in-house prepared chemicompetent and electrocompetent NEB10β. The results of these transformations, as well as transformations of pUC19 control DNA, are depicted in Figure 3.4. The first thing to note about this experiment is that the concentration of lysate in the transformation reactions is significantly lower than those performed in Table 2.1 previously and so detergent associated toxicity effects should be expected to be less pronounced in turn. Still, there is clearly a dramatic difference between electroporation efficiencies of lysates. Contrasting the

Figure 3.4 Detrimental effects of detergents on electroporation

3-way assemblies were performed using basic buffer and XJa autolysed or XJa detergent lysed and transformed into in-house prepared chemicompetent or electrocompetent NEB10β. (A) Colony forming units represent all colonies, regardless of color. (B) Fold improvement between colonies formed using electroporation versus chemical transformation. Error bars represent standard error of the mean for reactions performed in triplicate (N=3).
chemical transformations in Figure 3.4.A, the autolysis reaction appears to have been more efficient than the detergent reaction (either in actual assembly or detrimental effects on transformation) but the overall colony forming units (CFU) per femtomole appear to be comparable. However, when looking at the electroporation results there is a clear effect of detergents which is more succinctly stated in Figure 3.4.B as fold difference between chemical transformation and electroporation. It is also interesting that autolysis seems to have a more pronounced difference in electro- versus chemical transformation than that of the pUC19 positive control however, the pUC19 controls may underestimate the fold improvement of electroporation. Typical efficiencies reported by NEB for their commercially prepared NEB10β chemicompetent and electrocompetent cells would place the improvement at roughly ten-fold, matching the observed improvement seen for autolysis transformation.

3.2. Optimizing the ex vivo DNA assembly reaction

The ‘chew-back, anneal, repair’ end joining mechanism hypothesized to be the biochemical basis of the ex vivo reaction is an interestingly complex optimization problem. While exonuclease activity is imperative, overly active exonuclease activity can destroy the substrate DNA. Additionally, since dsDNA exonuclease activity cannot be constrained a competitive polymerization reaction must be introduced to ‘repair’ uncontrolled exonuclease activity, but not so much as to undo the requisite ‘chew-back’. Several parameters of the
ex vivo reaction were empirically investigated for their impact on this delicate balance.

3.2.1. Reaction Volumes and DNA Concentrations

In its original formulation, ex vivo DNA assembly was performed using 20 µL volumes with 20 ng/µL of the backbone (or larger BCP piece for linear assemblies) and a 6:1 molar ratio of insert fragments to backbone piece. While PCR and gel extraction easily generates enough substrate DNA for a couple reactions, each assembly reaction is consuming over a full microgram of DNA per reaction. Additionally—while able to distinguish background colonies by their red coloration, there was an exceptional amount of red colony formation for gel-purified substrates. To address these issues we made a concerted effort to not only reduce the DNA required for an ex vivo reaction and the amount of red background colonies.

First, the background was addressed by looking at our DNA preparation steps. The bands from our PCR reactions looked very strong and free of side-product formation yet somehow considerable template plasmid was co-purified with our backbone amplicon. Looking at our protocol for PCR we noted that for simplicity we had been adding 1 µL of pure plasmid mini-prep as template for a 50 µL reaction. Concentrations of our mini-preps usually range between 50-100 ng/µL for the high-copy plasmids used by ex vivo DNA assembly. Given that NEB protocols for Q5 DNA polymerase call for a maximum of 1 ng of plasmid template per 50 µL reaction we were adding 50 to over 100 fold excess template DNA necessary for PCR. In response, working dilutions of template plasmid
at 1 ng/µL were prepared and PCR performed in the same fashion. Resultant gels still showed very bright banding indicative of successful PCR and eluents from gel extractions contained equivalent concentrations of DNA. However, assemblies and subsequent showed a drastic decline in the number of red colonies (~0-2 colonies per plate).

Next, the concentration of DNA used in a typical reaction was decreased along with the total volume of each reaction. Instead of a 20 µL volume, 20 ng/µL backbone and a 6:1 insert to backbone molar ratio, reactions were performed in 10 µL volumes using 5 ng/µL backbone (50 ng per reaction) and a 1.2:1 (2-way assemblies) or a 2:1.2:1 (3-way assemblies) molar ratio. This increased the number of reactions capable of being performed per preparation of DNA fragments by 4-fold (50 versus 200 ng backbone per reaction).

3.2.2. Calculating Protein Concentration

By reducing the DNA substrates used in each reaction and increasing our lysate concentrations (lysis efficiencies), we found many of initial reactions degraded most or all of the substrate DNA. The reduced substrate and increased catalyst concentrations had tipped the delicate balance between chew-back and repair making it clear adjustments to the lysate concentration were needed. Unfortunately, quantifying the “concentration” of the catalysts for ex vivo DNA assembly poses a challenge. First, the cellular extract is a highly heterogeneous environment with many species capable of interfering with quantification. Second, even if the responsible catalysts were
capable of being specifically quantified their identities still remain largely unknown. Even so, measures of total protein concentration were employed as a proxy since the catalysts are almost certainly proteins.

The most common techniques for estimating the concentration of proteins are based on either a colorimetric reaction (e.g., Lowry56, Bradford57) or UV absorbance spectrophotometry (absorbance at 280 nm)58. Deciding on the most appropriate method depends upon multiple factors including the concentration of protein in the sample, the amino acid composition of the peptide and the presence of interfering substances in the sample or buffer. For the ex vivo extracts Bradford colorimetric assays were compared with simple spectrophotometric absorbances of 280 nm for aromatic rings of amino acid side chains (mainly tyrosine and tryptophan), 260 nm for nucleic acids and/or 205 nm for peptide bonds.

Standard curves were generated for Bradford colorimetric assays using either Bovine serum albumin or lysozyme, at a minimum of three different quantities (along with blanks) in either water, the CelLytic detergent or the lysis/storage buffer matching the lysate samples used in the assay. While the Bradford reaction is typically incompatible with detergents, we found that the diluted samples still generated an acceptable standard curve. However, the concentrations of the lysates predicted by the Bradford (as could be expected) was dependent upon the protein used to calibrate the standard curve, the time allowed for color development and even the spectrophotometer used. Additionally,
the assay requires the purchase of reagents and standards and a fairly
time-consuming, fickle protocol to measure samples and standards.

The difficulties posed by the Bradford assay prompted a simplified
approach to concentration estimation. Peptide bonds can be detected in
solution using absorbance at 205 nm59, but when tested with lysate the
assay was found to be overly sensitive, inviting error from extensive
dilutions. Protein content can also be estimated using absorbance at
280 nm targeting the aromatic side chains of amino acids such as
tryptophan and tyrosine. The challenge faced in a cellular extract
context is interference from nucleic acids that also absorb in the 280
nm spectra. To correct for the presence of nucleic acids in the lysate
absorbance at 260 nm was measured and a correction applied using the
equation of Warburg and Christian58. While Warburg-Christian method is
also susceptible to interference (e.g., NAD/NADP) it was found to be
rapid, requiring minimal sample manipulation and having high
reproducibility (for one sample diluted and measured in triplicate
standard error of the mean = 0.012 mg/mL).
Figure 3.5 Concentration of Lysate
Here XJa lysate prepared by autolysis was measured via spectrophotometry and adjusted by the method of Christian-Warburg. Product Band intensities are calculated relative to the BCP band of the negative control lane. Gel picture for 60 minutes is in Figure B.4 and 120 minutes is in Figure B.5.

Applying the Warburg-Christian method to quantify our lysates a 2-way linear assembly was performed using titrations of autolysis-derived XJa lysate. Samples were removed at 60 minutes and after a full 120 minutes, visualized and interpreted in Figure 3.5 as the intensity of the product band. While in the first 60 minutes there is a product band formation at all tested concentrations, the second 60 minutes distinctly contribute a large portion of the final bands. This could be evidence that most of the “repair” activities do in fact precede in the second half of the 120-minute reaction. However, at higher concentrations of lysate the product bands produced in the initial 60 minutes are consumed, likely by the additional exonucleases present in
the reaction. Looking at the results of the gel it would appear that the optimal final protein concentration of the autolysis lysates is between 10–50 µg/mL. Since our stocks of lysates produced via autolysis were measured at ~7–8 mg/mL, a 10X concentration could be reached by a 1/200 dilution of the lysate.

3.2.3. “Base” Buffer Optimization

In order to function many enzymes rely on the presence of cofactors and various energy sources. In section 2.2 the effects of Magnesium-to-ATP concentration were investigated and the results revealed an important relationship between the relative quantities of magnesium ions and available ATP. Beyond these two components of the reaction buffer, the other components were not varied but may illicit improvements in the overall reaction efficiency.

We tested the formulation of the ex vivo DNA assembly buffer with a few changes to more closely match buffer formulations optimal for purified *E. coli* enzymes, in particular for the *E. coli* DNA ligase (Eco Ligase). For all buffers tested the NAD+ was reduced to 50 µM (typically 26 µM for Eco Ligase) and Bovine Serum Albumin (BSA) at 50 µg/mL. Further the Magnesium and ATP levels were, once again, titrated between 4 mM Magnesium and 50 µM ATP.
The components of the base buffer were varied between their original values and values commonly used for the buffers of various molecular biology enzymatic reactions. Fold difference represents the change in product band intensity of the sample as compared to "+" sample of the same lysate type. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.6 and Figure B.7.

The NEB10β prepared by detergent lysis showed decreasing efficiencies with the decrease in NAD+ and addition of BSA when compared to the standard buffer. In contrast, the autolysis XJa showed a slight
increase in assembly efficiency with the addition of BSA and decrease in NAD+. In fact, XJa showed an increase in all tested conditions over the standard buffer. Unfortunately, without additional replicates it is unclear whether the observed trend is due to differences in the XJa autolysis lysate versus the NEB10β detergent lysate or a function of fluctuations in the standard lane.

3.2.4. Divalent Metals Titrations

Throughout biochemistry metal ions play an integral role as enzymatic cofactors. In fact, it has been estimated that metal ion cofactors are needed in nearly one-third of enzyme-catalyzed reactions. Most often these metals are coordinated within the active site of enzymes where they mediate redox (and sometimes non-redox) reactions by increasing the electrophilicity of the active site. Once a ligand is bound in the active site, the metal can act to remove electron density and cause polarization of reactive bonds in the ligand – usually C=O or P=O in nature.

As the most abundant divalent metal species in cellular contexts, magnesium is the most frequently utilized metal in active sites. As discussed previously, in physiologic environments magnesium forms stable chelates with molecules containing phosphate such as ATP, RNA, DNA and other nucleic acids. The tendency of magnesium to maintain elevated hydration states is the primary means by which it acts as a cofactor to bind and catalyze nucleic acid substrates.
Due to its poor spectroscopic and crystallographic properties, researchers have long employed other divalent metal analogues to study nucleic acid enzymology. While analogues such as zinc, calcium and most often manganese are acceptable for structural studies, these metals often display differing biochemistries to magnesium62. In fact, it is often observed that other transition metals, especially manganese, coordinate more tightly with active sites and thereby confer higher levels of activity. In other instances, the alternate metal can change the coordination geometry or structural conformation of the active site altering the substrate specificity, mode of action or completely inhibiting the protein.
Figure 3.7 Titrations of Divalent Metal Cations

This figure shows the titration of Zinc Chloride, Manganese Chloride and Calcium Chloride with Magnesium Chloride and without Magnesium Chloride. Fold difference represents the change in product band intensity of the sample as compared to “+” sample (10 mM Magnesium) of the same lysate type. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.8, Figure B.9 and Figure B.10. NEB10β is the average of duplicate experiments and error bars represent standard error of the mean (N=2).

Previously, we established that the ratio of Magnesium-to-ATP in the ex vivo DNA assembly buffer was crucial for efficient end joining, most likely as a consequence of ATP’s ability to chelate magnesium and the resulting effects on RecBCD activity. Although magnesium dominates as the native cofactor for nucleic acid-directed enzymes, we decided to test the effects of titrating zinc, manganese and calcium on the efficiency of end joining.

Using XJa (autolysis) and NEB10β (detergent) four formulations of each metal were tested with respect to magnesium (mM:mM): 1:10, 10:10, 1:0, 0:0.
The results of this 2-way linear titration depicted in Figure 3.7 are compared to a control reaction with the ex vivo DNA assembly “base” buffer. Just as in the “base” buffer optimization in 3.2.3 there are clearly differing trends seen for the NEB10β/detergent and the XJa/autolysis lysates—although there is also some agreement between the two, as well. Both lysates responded negatively to Zinc in the complete absence of magnesium, while both responded positively to the addition of manganese—even in the complete absence of magnesium. XJa actually shows an increase in efficiency across all tested conditions so long as 10 mM of magnesium was present. Perhaps more surprising is that for both manganese and calcium XJa showed equivalent or higher activity even in the absence of magnesium. On the other hand, outside of manganese NEB10β clearly did not tolerate the omission of magnesium. The extremely pronounced response to manganese by both lysates prompted further investigation into the supplementation of manganese to the standard ex vivo DNA assembly buffer.

3.2.5. Manganese

The strong activation of DNA assembly imparted by manganese in the titrations of the previous section (3.2.4) prompted a more detailed study of manganese. Using a similar titration approach between magnesium and manganese, 2-way linear assemblies were performed using NEB10β lysate. Again, Figure 3.8 shows a comparison of the titrated samples relative to the intensity of the product band formed by the basic ex vivo DNA assembly buffer containing 10 mM magnesium and 0 mM
manganese. In the experiment, total divalent species were held at 10-11 mM with the exception of the 0:2 and 0:6 magnesium:manganese (mM:mM) samples. In Figure 3.9, the results are displayed again, but showing the compositions of the lane by band (product band; BCP and Promoter substrate bands and; degradation band of lowest molecular weight) relative to the BCP band of the negative control lane (−).

![Figure 3.8 Titrations of Magnesium and Manganese](image)

Using NEB10β lysate and the 2WL assembly, magnesium and manganese levels were titrated against one another. The ratio labels indicate the concentration of magnesium chloride (mM) to manganese chloride (mM) with the 10:0 ratio representing the original buffer constitution (+). Fold difference represents the change in product band intensity of the sample as compared to “+” sample of the same lysate type. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel picture is shown in Figure B.11.
Figure 3.9 Lane composition of Manganese to Magnesium Titration

Chart shows the relative intensities of the product (Blue), BCP (Red) and Promoter (Green) substrate bands, as well as the low molecular weight band representing degradation products (Purple). Columns are displayed inverted to more closely represent the actual gel and the order in which the bands migrate. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.11.

The results of the 2-way assembly - albeit less pronounced - confirm the observed increase in assembly efficiencies previously observed in the metal titration experiment. The ratio of magnesium to manganese appeared to have minimal impact. In fact, even the 0:10 sample was able to catalyze assembly with at least equal efficiency to that of the positive control. Visualizing the lane compositions in Figure 3.9 provides more details into the possible mechanisms by which manganese may be enhancing assembly. For instance, the largest consumption of substrate DNA did not directly correlate with product formation as there was more remaining substrate DNA in the higher manganese ratio.
lanes containing the highest level of product. Further, both lanes containing 10 mM manganese (1:10 and 0:10) appear to have the most total DNA in the lane overall. This phenomenon is more than likely attributed to increased DNA polymerase activity in the presence of manganese. Indeed, the literature is ripe with evidence showing that in the presence of manganese DNA polymerases (including the *E. coli* PolA polymerase) experience a decrease in specificity of base incorporation as well as 3’-5’ proofreading functions. Such a decrease in specificity may increase the polymerase activities not only to gap-fill the product fragment, but also the chew-backed, partially degraded substrate bands thereby preserving them.
Figure 3.10 Effect of Manganese on Two-way Circular Assembly

Using XJa lysed with either CelLytic or using freeze-thaw autolysis, circular assemblies were performed in the original buffer (-Mn) or with the addition of 1 mM Manganese Chloride (10:1 ratio). Percentages represent Blue colonies to all colonies (blue and white). Error bars represent standard error of the mean for reactions performed in duplicate (N=2).

If the presence of the manganese is mutagenizing the recombined product then its addition - regardless of the improvements in apparent end joining - are undesirable for cloning. However, the 2-way linear assay has no way of revealing incorporated mutations. To reveal any increases in mutation rates as a result of manganese supplementation shows the results of 2-way circular assemblies with and without 1 mM manganese. The results still show an increase in total colonies formed across all lysates, but an increase in mutation rate is not immediately apparent. This does not necessarily mean there is not an increase in mutation rate from the addition of magnesium, because the number of white colonies falls outside the countable threshold (<30 CFU per plate) for XJa autolysis and NEB10β. For the XJa detergent
sample that did have a countable number of white colonies there was a decrease in percentage of correct colonies.
Chapter 4. Probing ex vivo DNA Assembly with Enzymatic Titrations

The absence of the cell membrane allowed rapid prototyping of buffer compositions, substrate and catalyst concentrations, and titrations of small molecules. To uncover biochemical mechanisms typically enzymes are purified and titrated together in an in vitro study or knocked-out/overexpressed in an in vivo study. Both of these approaches can be leveraged in ex vivo experimentation to uncover underlying phenomena of the larger system.

4.1. Enzymatic Titrations

Tapping into the wealth of commercially purified cloning enzymes already available through molecular biology suppliers, the underlying biochemistry of ex vivo DNA assembly was probed using enzymatic titrations. Building on the premise that the ex vivo DNA assembly reaction proceeds via a chew-back, anneal and repair pathway similar to Gibson assembly, we purchased available exonucleases, polymerases and ligases (as well as RecA, a homologous recombination protein) native to E. coli. Table 3.1 gives details about each enzyme used in the titration experiment.
Table 4.1 Enzymes used in Titration

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>E. coli gene</th>
<th>Function</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exonuclease III</td>
<td>xthA</td>
<td>3’ to 5’ dsDNA exonuclease</td>
<td>ssDNA and dNMP</td>
</tr>
<tr>
<td>RecJ<sub>f</sub></td>
<td>recJ</td>
<td>5’ to 3’ ssDNA exonuclease</td>
<td>dNMP</td>
</tr>
<tr>
<td>Exonuclease I</td>
<td>xonA/sbcB</td>
<td>3’ to 5’ ssDNA exonuclease</td>
<td>dNMP and dinucleotide</td>
</tr>
<tr>
<td>Exonuclease T</td>
<td>exoT</td>
<td>3’ to 5’ ssDNA and RNA exonuclease</td>
<td>dNMP</td>
</tr>
<tr>
<td>Exonuclease V (RecBCD)</td>
<td>recBCD</td>
<td>dsDNA processive endonuclease</td>
<td>short oligos</td>
</tr>
<tr>
<td>E. coli DNA Ligase</td>
<td>ligA</td>
<td>DNA ligase</td>
<td>phosphodiester bonded DNA</td>
</tr>
<tr>
<td>DNA PolI</td>
<td>polA</td>
<td>DNA polymerase</td>
<td>DNA polymer</td>
</tr>
<tr>
<td>RecA</td>
<td>recA</td>
<td>ssDNA binding protein</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The addition of exonucleases can help elucidate the possible overhangs generated from chew-back. For example, if homologous overhangs were generated as 5’ overhangs, it would be expected that supplementing RecJ_f would greatly decrease assembly efficiencies, as the homologous regions are substrates for degradation by RecJ. The three non-nucleases – E. coli Ligase, Polymerase I and RecA – are supplemented to see if they address a bottleneck or inefficiency.
Figure 4.1 Titrations of Various DNA cloning Enzymes

The results of titrations of various purified enzymes in XJa lysates are shown. The bar colors reflect concentration of enzyme with blue, red and green reflecting the concentrations lowest to highest. Red represents units necessary to catalyze the formation of 10 nmol of product in a 20 µL reaction - except for RecA which had no unit definition. Unit definitions are available in Table A.4. Units were added as follows: RecBCD (.05, .2, .4); PolI (.1, .4, 1); RecA (2, 8, 20 µg); Eco Ligase (.1, .4, 1); ExoI (.1, .4, .8); ExoII (1, 4, 10); ExoT (5, 20, 50); RecJ (30, 120, 300). Fold difference represents the change in product band intensity of the sample as compared to “+” sample (no enzyme). Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.12 and Figure B.13.

To determine relevant concentrations for each enzyme, the unit definitions provided by NEB were employed to calculate the number of units necessary to catalyze the formation of 10 nmol of product in a 20 µL reaction volume (5 ng/µL BCP is approximately 11 nmol). These values were used as a baseline to select three concentrations of each enzyme to test in conjunction with a 2-way linear assembly.
Results of the assembly shown in Figure 4.1 were unexpected for several reasons. The most glaring outcome is the stimulating effect of ExoI and ExoT on assembly. It was not expected that any of the exonucleases would improve assembly as this has not presented as a rate-limiting step and can be a substrate sink if homologous ends are consumed. Clearly, for the 3'→5' ssDNA exonucleases ExoI and ExoT (at low quantities) the homologous overhangs are not being consumed. This is made clearer by Figure 4.2, which shows the lane composition of the titration. By looking at the lane composition and status of the substrate DNA, the activities of the various enzymes become clearer. For instance, it is very clear that the lack of product formation in the dsDNA exonuclease lanes is a direct result of consuming the substrate DNA. In contrast, RecJ appears inefficient at assembly not because it is consuming the substrate DNA, but for some other reason. It is very possible that the homologous overhangs produced during the ex vivo DNA assembly are 5’ extensions. These extensions would be compatible substrates for degradation by RecJ resulting in a loss of the necessary homology and the creation of inert substrate DNA. However, it is also important to realize that these graphs are still numerical interpretations of the gel results. In the case of ExoT, without looking at the gel picture (Figure B.13) it would be nearly impossible to observe the decreasing resolution and molecular weight of the product band due to extensive degradation.
Figure 4.2 Lane Composition of Enzymatic Titration

Chart shows the relative intensities of the product (Blue), BCP (Red) and Promoter (Green) substrate bands, as well as the low molecular weight band representing degradation products (Purple). Columns are displayed inverted to more closely represent the actual gel and the order in which the bands migrate. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.12 and Figure B.13.

In the non-exonuclease category, improvements were observed using E. coli DNA ligase and RecA while addition of the DNA polymerase I inhibited assembly. Looking at the composition of the PolI lane the substrate fragments are maintained. The PolI protein has dual exonuclease activities: a 3'→5' proofreading activity typical of DNA polymerases and a 5'→3' exonuclease activity most likely used for nick translation. Similar to RecJ, the presence of substrate DNA and known 5'→3' activities suggests that PolI may be consuming the homology of the overhangs.
4.2. RecA Titrations

Improvements in end joining in the presence of RecA was surprising as previous investigation revealed that recA+ strains of *E. coli* are suboptimal for *ex vivo* DNA assembly. RecA is a highly multifunctional protein *in vivo*, acting as an ssDNA binding protein\(^\text{63}\), catalyzing strand exchange\(^\text{64}\) and even acting as a highly specific protease (of the LexA protein) to signal the host SOS response to DNA damage\(^\text{65,66}\). Mechanistically, RecA performs its DNA recombination functions by binding tightly to ssDNA in long nucleoprotein filaments. Once bound to a ssDNA substrate (and ATP) RecA’s secondary DNA binding site will bind to a dsDNA polymer and begin a “homology search” scanning across the dsDNA substrate for sequence matching the ssDNA. Once found, the RecA nucleoprotein filament can catalyze strand exchange and the formation of an intermediary triplex DNA\(^\text{64}\). Given the unique contradiction seen between *in vivo* produced RecA and *ex vivo* supplemented RecA further titration experiments were performed. Using the 2-way linear assembly, Figure 4.3 and Figure 4.4 show the results of RecA supplementation in a 20 µL reaction using XJa autolysis lysate.
Figure 4.3 Titrations of RecA

RecA protein was added to an XJa lysate in a 2-way linear assembly. Fold difference represents the change in product band intensity of the sample as compared to “+” sample (no enzyme). Band intensities are calculated relative to the BCP band of the negative control lane. Original gel picture is shown in Figure B.14.

The repeated RecA titration showed a similar trend to that observed in the initial titration as additional RecA facilitates end joining in the two-way linear assembly. Although, it would appear that at a certain point the concentration of RecA becomes saturating – possibly even reducing assembly efficiency (as in Figure 4.1). The normal function of RecA to recombine ssDNA with a dsDNA substrate is not the same single-strand annealing method proposed earlier, but is clearly aiding in assembly. Again, looking at the lane compositions in Figure 4.4 it would appear that RecA helps to protect the substrate DNA from degradation as the total band intensity of the RecA lanes exceed that of the positive control lane.
Figure 4.4 Lane composition of RecA titration
Chart shows the relative intensities of the product (Blue), BCP (Red) and Promoter (Green) substrate bands, as well as the low molecular weight band representing degradation products (Purple). Columns are displayed inverted to more closely represent the actual gel and the order in which the bands migrate. Band intensities are calculated relative to the BCP band of the negative control lane. Original gel pictures are shown in Figure B.12 and Figure B.13.

Finally, RecA was supplemented to 2-way circular assemblies, transformed and the resulting colony counts compiled into Figure 4.5. It would appear that there is another dynamic happening here – either during circularization or transformation – which decreases the efficiency of assembly for the circular assembly. Moreover, with “homology search” functions of RecA it was disappointing to find that RecA contributed nothing toward improving the mutation rate of assembly either.
Figure 4.5 Colony counts of exDA reactions containing RecA
Assemblies were performed using basic buffer or supplemented 200 ng RecA using autolysed XJa or XJa lysed with detergents. Percentages represent Blue colonies to all colonies (blue and white). Error bars represent standard error of the mean for reactions performed in duplicate (N=2).

4.3. Strain Engineering (nuc4- and autolysis cassette)

Just as previously purified enzymes can be supplemented to the ex vivo reaction to synthetically test the effects of increased protein concentration, the genetic background of the strain can be altered to knockout the expression of native enzymes. Strain engineering or ‘recombineering’ (short for recombination-mediated genetic engineering) uses transformed DNA with homology to the host genome in order to target and integrate changes into the chromosome. In E. coli this can be accomplished by the Lambda Red operon of bacteriophage
lambda. This three-protein operon encodes a 5′-to-3′ exonuclease (alpha), a single-strand annealing protein (beta) and a protein, which binds and inhibits RecBCD activity (gamma). For both the native bacteriophage’s linear dsDNA genome or transformed ds/ssDNA the Lambda Red system works by inhibiting RecBCD (preventing degradation of substrate DNA), converting the dsDNA to a fully single-stranded intermediate and annealing the subsequent ssDNA to homologous regions of the genome exposed as ssDNA during DNA replication. Genomic changes can be selected if the targeting DNA integrates a selectable marker cassette (i.e., antibiotic resistance), otherwise colonies must be plated and screened via a high-throughput genotyping method like allele-specific PCR.

Given the promising applications of genome engineering considerable effort has been invested in optimizing Lambda Red and other methodologies (e.g., homologous recombination, RecET, CRISPR-Cas). The Church group pioneered a Lambda Red recombineering method to make many changes across the genome in an automated fashion known as ‘Multiplex Automated Genome Engineering’ (MAGE) using a closed-loop device to grow/recover cells, induce Lambda Red from a heat-inducible operon on the E. coli genome, and transform a solution of editing oligonucleotides. In an effort to optimize MAGE this same group employed MAGE to knockout the most active E. coli ssDNA exonucleases (RecJ, ExoI, ExoVII and ExoX) creating a strain known as nuc4- (Genotype in Table A.2 and Table A.3), which they subsequently
deposited into the Addgene repository (Addgene bacterial strain #40803)80.

We acquired the nuc4- strain from Addgene in order to test its suitability as a strain for ex vivo DNA assembly with the underlying assumption being that these exonucleases may compete to degrade exposed homologies. Since this strain contained the Lambda Red system we decided to integrate the lysis cassette from the XJa strain to create an autolysis version of the nuc4-, which we dubbed nuc4-λR (for Genotype and description see Table A.2 and Table A.3; for oligo sequences see Table C.3).
Figure 4.6 ex vivo DNA Assembly with nuc4- .λR and Lambda RED
Assemblies were performed using original buffer, supplemented with 1 mM Manganese or 200 ng RecA using autolysed nuc4-, nuc4- with λRed or XJa. Percentages represent Blue colonies to all colonies (blue and white). Error bars represent standard error of the mean for reactions performed in duplicate (N=2).

Once isolated, the nuc4- .λR strain was used to create two lysates. One lysate was prepared by the same methods as XJa (-λRED), while the other was heat-shocked to induce production of the Lambda Red proteins (+λRED) as other studies have shown the Lambda RED system capable of facilitating DNA assembly13,81. The resulting lysates were used to perform 2-way assemblies with the standard buffer, with Manganese and with RecA (Figure 4.6). We were disappointed to find that our nuc4- .λR showed no improvement over the standard XJa reaction under any tested conditions with or without the inclusion of the Lambda RED system.
Unfortunately, it is impossible to infer the direct relationship between the genotypic changes in nuc4-·λR and their impact on DNA assembly due to the absence of proper control strains. To clarify, we saw in the enzyme titration (Figure 4.1) that ssDNA exonucleases can have strong stimulating or inhibitory impact on DNA assembly. nuc4-·λR has four ssDNA exonuclease knockout, including one shown to stimulate DNA assembly (ExoI) and one shown to inhibit it (RecJ) in the enzyme titration experiments. Moreover, the parental strain (E. coli MG1655) that nuc4-·λR is derived from does not have the mutations in endA and recA like the cloning strains used throughout this study. While MAGE oligonucleotides were purchased to disrupt endA and recA via Lambda RED recombineering (sequences in Table C.3), we were never able to identify clones containing the mutant alleles. Without progressive knockouts of the ssDNA exonucleases with background mutations in the recA and endA loci to use as controls it is impossible to make direct conclusions about the effect of each knockout as it pertains to DNA assembly.
Chapter 5. *ex vivo* PCR and *ex vivo* Cloning

5.1. The pUN plasmid and *ex vivo* PCR

Using lysates derived from completely “wild-type” strains it is possible to perform sophisticated *in vitro* reactions such as protein expression or DNA assembly. As demonstrated in the previous section, the background genotype of the *E. coli* can be easily manipulated using modern genome editing tools to investigate genotype-phenotype relationships or create strains with phenotypic enhancements (i.e., autolysis). In a similar but perhaps simpler manner, expressional plasmids can be constructed and transformed into existing strains to produce one or more proteins (or even mRNA). Plasmid-based expression allows rapid introduction into the various strain backgrounds without the challenges required to integrate cassettes into the genome. We refer to lysates containing an (over)expressed protein(s) as a ‘functionalized lysate’, as a novel function has been imparted to the lysate. The following chapter demonstrates a functionalized lysate containing the *Pyrococcus furiosus* (*Pfu*) DNA polymerase that has the newly imparted ability to perform PCR. This functionalized lysate is then applied to amplify the fragments for 2- and 3-way assemblies, which are subsequently assembled and transformed using our *ex vivo* DNA assembly approach.
5.1.1. Design and construction of the pUN plasmid

Many plasmids have been developed and are available through numerous for- and not-for-profit distributors. These plasmids usually have features associated with specialized purposes such as clonal amplification, protein expression, interspecies transfer or phage production. Traditionally features are included which facilitate cloning/DNA assembly such as multiple cloning sites, integrase sites (Gateway cloning) or counter-selectable markers.

Up to this point, ex vivo assembly and its assays employed the commonly used high-copy number Biobrick plasmids, pSB1C3 and pSB1K3 to conduct assembly assays. These plasmids are freely distributed under a creative commons license and are fully compatible with the ‘Biobrick Assembly™’ cloning methodology. However, we decided to design and develop our own vector useful for expression and cloning via ex vivo DNA assembly and other sequence-independent cloning methods.

The plasmid backbone was derived from the pJ251-GERC vector available in the Addgene repository (Addgene plasmid #47441). The backbone fragment (amplified by pGERC_BB-f/-r; see Table C.2) contains the Kanamycin resistance selectable marker and the low copy number p15a origin of replication (~5-10 copies per cell). The second-half, ‘insert’ portion was synthesized as two linear fragments by Integrated DNA Technologies (IDT) and contains all the designed cloning and expressional features. The ‘insert’ design draws heavily upon the “Unique Neutral Sites” (UNS) developed by Torella, et al. A UNS is a computationally derived 40 base pair site that meets several design
criteria including: approximately 50% GC-content without homopolymeric runs; Unfavorable intramolecular (hairpins) and intermolecular (bonding between different UNSs) interactions; absence of common restriction/cloning sites; absence of start codons, promoter-like sequences or sequence homology to the *E. coli* MG1655 genome. The authors reported 10 UNSs that were subsequently demonstrated to assemble multiple repeated sequences via Gibson assembly and even provided functional insulation of promoter sequences from genetic context. In our design, some of these UNSs are incorporated throughout the insert separating each of the following features (in order from 5’ to 3’): an upstream terminator; a T5 promoter and 5’ untranslated region with a ribozyme; a newly optimized BCP cassette driven by a strong constitutive promoter and synthetic ribosome-binding site (RBS) and; two strong downstream terminators (sequence available in C.2.6).

The design of the insert was such that the new BCP cassette can be replaced with a desired RBS and protein coding sequence (CDS) and be driven by the strong upstream T5 promoter. Since the original BCP insert causes a very strong (and quicker developing) blue pigmentation, assemblies can be screened for the presence of background colonies. Unfortunately, we have found that the upstream promoter does not transcribe through the downstream UNS site so currently a promoter needs to be included with expression assemblies.

However, it is from the UNS sites that our plasmid derives its namesake, pUN (for “plasmid unique neutral”). The embedded UNS sites play a critical role not just for simplifying assembly and insulating
parts as demonstrated by the original authors, but as ideal priming sites for PCR. For all the reasons the UNS sites make excellent termini for assembly reactions, these sites are also ideal primer sequences for amplification or as 5' embedded overhangs. Indeed, we designed and synthesized forward and reverse primers for each UNS site (sequences available in Table C.2) and have performed PCR from all incorporated UNS sites without any preliminary optimization or troubleshooting.

5.1.2. Construction of pUN-PrhaBAD-Pfu

In Addgene there are two DNA polymerase-expressing vectors available: pAKTaq (Addgene plasmid #25712) that expresses the *Thermus aquaticus* (*Taq*) DNA polymerase and pET16b.Pfu (Addgene plasmid #12509) that expresses the *Pfu* DNA polymerase. While we were able to successful express the *Taq* protein and use it to perform ex vivo PCR, *Taq* is a less than ideal cloning polymerase. *Taq* does not create flush termini (leaves one 3’ adenine residue overhang) and also lacks the proofreading activities typical of high-fidelity polymerases. On the other hand, *Pfu* has proofreading abilities and creates blunt-ended products ideal for cloning purposes, but the pET16b.Pfu construct is a nightmare for *E. coli* expression. The difficulty stems from the poor codon compatibility of the *Pfu* coding sequence with *E. coli* as the host. To circumvent the poor codon adaption a special strain of *E. coli* (BL21(DE3) Rosetta) is needed which hosts a vector overexpressing some of the less prevalent tRNAs along with the DE3 prophage (for T7 polymerase expression).
In the spirit of open-access ex vivo DNA assembly we decided it was prudent to have the coding sequence codon optimized and synthesized so that the Pfu gene can be expressed in any E. coli. To perform codon-optimization the COOL codon optimization tool (http://bioinfo.bti.a-star.edu.sg/COOL/) was employed to simultaneously maximize codon context and codon adaptability for E. coli85. With the Ribosome Binding Site Calculator tool a synthetic ribosome-binding site was designed based on the codon-optimized Pfu gene and an upstream wild-type rhamnose-inducible promoter (PrhaBAD)9,86. The resulting cassette plus the flanking UNS sequences was synthesized by IDT as two overlapping fragments of 1144 and 1483 base pairs and subsequently assembled along with the backbone using ex vivo DNA assembly. Of the approximately 200 white transformants, 24 colonies were lifted (along with two blue colony controls) and used as template in colony PCR. The PCR amplified from UNSX across the entirety of the Pfu cassette to UNS9, and of the 24 clones all 24 showed amplicons at the expected size (~2800 bp; Blue colonies were ~1500) although the bands were faint. Of these 24, 3 clones were miniprepped the next day and sent for sequencing (Eurofins MWG). Of these three, one clone was identified as completely correct and used for subsequent procedures (pUN-PrhaBAD-Pfu sequence available C.2.7).

5.1.3. Expression and Preparation of ex vivo PCR lysate

As the original plasmid was transformed into NEB10β (and XJa/autolysis strains are a rarity in labs), expression and lysis was performed in NEB10β for all subsequent steps. Expression was performed by
inoculating 24 mL of pre-warmed SOB media (in a 125 mL Erlenmeyer) with 200 µL of an overnight culture, allowing growth for approximately 2 hours, then adding filter sterilized 20% w/v rhamnose to a final concentration of 0.2% (~250 µL).

To assay the culture for the production of the Pfu DNA polymerase, aliquots were removed at 6, 9 and 24 hours post-induction and frozen until needed. The remainder of the culture was collected at 24 hours post-induction. These aliquots were lysed using CelLytic B, diluted and protein content quantified by Bradford assay. Each protein sample was prepared with 25 µg of total protein (along with a NEB10β negative control) and visualized using SDS-PAGE under denaturing conditions. In the resultant gel (Figure 5.1) there is clearly a strong band in all the sample lanes at roughly 90 kD that is absent in the negative control lanes. This size correlates with the predicted molecular weight of the Pfu DNA polymerase (90.11 kD). Interestingly, there appears to be little variation in the concentration of Pfu across the different harvesting times.
Figure 5.1 Expression of Pfu DNA Polymerase

Soluble lysate of NEB10β expressing Pfu was harvested at different time points and separated via denaturing SDS-PAGE. "C" is NEB10β without pUN plasmid, "L" is low-molecular weight ladder.

Given the encouraging results of the protein gel in Figure 5.1, the remaining pellets of the culture harvested at 24 hours were thawed and used to prepare lysates for ex vivo PCR. The lysis reaction was performed using CelLytic B in a 1.5:1 ratio and incubated at 30°C for 15 minutes and subsequently diluted with lysis buffer to a final volume-to-pellet mass ratio of 5:1. While most of the lysate was centrifuged to remove the cellular debris an aliquot was first removed which retained the total cellular extract. The soluble fraction and the total cellular extract were next incubated at 80°C for 30 minutes to kill any host proteins (such as nucleases). The lysates are given one last extended spin in the centrifuge to pellet any denatured insoluble host proteins and the supernatant aspirated and diluted by
half with 100% glycerol. As with the ex vivo DNA assembly lysates, these lysates are stored at -20°C and can be safely removed and replaced into the freezer many times.

Figure 5.2 Volumetric titrations of ex vivo PCR
Functionalized lysates of Pfu were titrated to amplify the BCP band used in 2-way linear assemblies. Bands to the right were prepared with total lysate in the heat-kill process. The values below the bands indicate µL of lysate used per 50 µL reaction; “C” represents negative control of purified BCP fragment.

5.1.4. ex vivo PCR

Equipped with lysates containing the Pfu DNA polymerase, initial PCR reactions amplifying the 2-way circular BCP fragment were formulated using volumetric titrations of the extracts in a standard 50 µL Pfu PCR reaction. These titrations shown in Figure 5.2 exhibit a very nice trend with a peak at 1-2 µL of cell extract per 50 µL PCR. Comparing the bands on the left (heat-killed soluble fraction only) to the bands on the right (heat-killed total extract) it would appear that including the total cellular extract in the heat-kill step of lysate preparation increases the yield of Pfu in the final extract. This may be due to additional lysis of cells surviving the detergent treatment or may occur by freeing Pfu trapped in the insoluble fraction of the
extract prior to centrifugation. Second, it is clear that using excessive extract (or too little) causes an observable decrease in PCR efficiency. It is therefore advisable to perform a small titration experiment each time new lysates are prepared. While a slightly inconvenient consumption of materials and time, the long-term savings from the ex vivo approach are more than worth the investment.

![Image of Figure 5.3 ex vivo PCR of 2-way and 3-way Fragments]

Figure 5.3 ex vivo PCR of 2-way and 3-way Fragments
Fragments for 2-way circular (2WC), 2-way linear (2WL) and 3-way circular (3W) were amplified using ex vivo PCR. In addition control PCRs were performed to detect the contribution of background genomic (BG 16S) and pUN-PrhaBAD-Pfu plasmid (pUN) DNA. The positive background (+ pUN) control had purified plasmid template added. There is a clear presence of background amplification and side amplification (see BCP lanes).

After constructing our Pfu-functionalized lysate and prototyping the ex vivo PCR reaction with volumetric titrations, ex vivo PCR was applied to generate the substrate DNA for 2-way linear, 2-way circular and 3-way circular assemblies. The analytical gels shown in Figure 5.3 demonstrate that Pfu-functionalized lysate was capable of synthesizing all the substrate DNA used in our assembly assays we decent efficiency. However, there is a fair amount of side-product formed in some of the reactions. The presence of high levels of contaminating host DNA may be the critical factor in the side-product formed. This is clearly evidenced by the strong amplicons formed in the background.
control lanes ("BG"). These lanes consisted of ex vivo PCR reactions using primers targeting the highly conserved 16S genomic loci ("16S") or the pUN-PrhaBAD-Pfu ("pUN") plasmid but without the addition of template. In the future the steps to remove host DNA contaminations would bolster ex vivo PCR fidelity. Fortunately, since the Pfu enzyme is thermostable, non-thermostable nucleases – such as DNase I or RecBCD – could be used during lysate preparation to destroy host DNA and then semi-selectively denature by a heat-kill before desired DNA substrates or products are introduced to the lysate.

5.2. ex vivo Cloning

Up to this point ex vivo DNA assembly has been demonstrated, investigated and optimized; tools such as clever assays for DNA assembly, self-lysing strains and a novel cloning plasmid were designed and developed; and the Pfu DNA polymerase was optimized, cloned and expressed to functionalize lysates with the ability to perform a high-fidelity polymerase chain reaction. Yet, the ultimate objective of the project was to merge these ex vivo tools and techniques into an encompassing ex vivo-based cloning suite. As with all cloning, this began with the generation and isolation of substrate DNA as the remainder of the 2-way and 3-way ex vivo PCRs from Figure 5.3 were purified by gel extraction. Subsequent ex vivo DNA assembly reactions were performed using our NEB10β detergent-based, XJa detergent-based and XJa autolysis-based lysates, with the basic ex vivo DNA assembly reaction buffer or with 1 mM Manganese supplemented. In-house formulated Gibson mastermix was used as a positive control.
and transformation of substrate DNA (‘TAR’) was used as a negative control for background assembly.

Figure 5.4 ex vivo Cloning
Substrate DNA amplified using ex vivo PCR was gel purified and used in ex vivo DNA reactions. 2 µL of the 10 µL reactions were transformed using in-house prepared chemicompetent NEB10β. Gibson lane represents a positive control using Gibson isothermal assembly formulated in-house. TAR is a negative control consisting of DNA fragments transformed directly into NEB10β without assembly reaction. Percentages represent Blue colonies to all colonies (blue and white). Error bars represent standard error of the mean for reactions performed in triplicate (N=3).

The most striking aspect of the ex vivo Cloning pipeline is the elevated mutagenic rate in comparison with assemblies using Q5 DNA polymerase (Figure 3.4). While the total (Blue and White) colony forming units per femtomole are very comparable, the percentage of white colonies-to-blue colonies changes by over 20% in some circumstances. Even the Gibson assembly control shows a greatly increased error rate over typical efficiency. As the only difference
between these two tests are the manner by which the substrate DNA was prepared, it is convincing that the mutations are introduced during the PCR amplification of the substrates. However, this may not be indicative of significantly lowered fidelity of Pfu in comparison with Q5 polymerase, as misamplification products were observed in the ex vivo PCR reaction (Figure 5.3). Since the primers encode all the homology necessary for faithful assembly efficiencies of joining correct amplicons versus misamplified products would be approximately equivalent. If indeed this is the case, a simple post-lysis digestion using a non-thermostable nuclease (e.g., DNase I) followed by the typical 80°C heat-treatment should alleviate the observed mutational rate of ex vivo Cloning.
Chapter 6. Conclusion and Future Directions

Responding to the needs of the synthetic biology community for inexpensive, rapid and efficient DNA manipulation we were able to uncover a unique approach to DNA assembly. Working on the observation that all of the enzymes used in prototypical in vitro manipulations of DNA are highly conserved, we incorporated an ex vivo approach to screen several candidate organisms for DNA assembly functions. To accomplish this we designed a very clever assay of DNA assembly.

Our circular assemblies provided a colorimetric output that allowed us to interpret the origins of each resulting transformant. In our initial pilot studies, we used two chloramphenicol plasmids in our two-way assembly and observed the growth of blue (correct), white (background) and red (colonies) – with many background colonies observable (Figure 1.1.B). While we realized that this would allow us to track transformation efficiencies by observing fluctuations in background, it was not until subsequent studies did we realize that if the donor plasmids were maintained on different antibiotics than the destination vector (like in the original 3-way assembly; see Figure 2.3), we could track mutational rates. Because our assemblies join the BCP coding sequence to the destination vector at a crucial junction for proper expression of the BCP protein (across Ribosome Binding Site and Start Codon), there is a low tolerance for error during end joining. Due to the low throughput of performing transformation to assess DNA assembly
(~28 hours) we also designed a linear assembly assessed by gel electrophoresis (~3 hours) that greatly expanded our investigative capacities.

We leveraged this linear assembly to optimize and investigate ex vivo DNA further. During our titration of the assembly reaction with divalent metals we found contradictory results between our autolysis strain and detergent lysed strain. This could be a function of the composition of the detergent, as it could very well contain the strong chelators EDTA or EGTA in order to improve lysis efficiency. The presence of these chelators would alter the apparent divalent cation ratios between detergent and autolysis treated extracts. However, there was good agreement between both strains that manganese had a stimulatory effect on end joining, which we confirmed in follow up titrations. Similarly, we investigated the biochemical origins of the ex vivo DNA assembly by titrating putative enzymes.

In E. coli, DSB repair, dominated by homologous recombination, relies on the RecBCD complex to expose ssDNA ends and load RecA, forming the nucleofilament that subsequently directs a homology search and strand invasion of dsDNA but this is different phenomena than directly joining two ends of DNA together directly. Previously, it was shown that recA− strains of E. coli join linear dsDNA with homologous overhangs in lysate more efficiently than their RecA-expressing counterparts. However, we observed an interesting dichotomy surrounding RecA. During our titrations using the linear assay, RecA showed consistent enhanced assembly properties, but when applied to
circular assemblies and transformations it showed a consistently negative effect. It could be that RecA plays a role preserving the ends of the linear DNA products, while the nucleases in recA- lysates are free to degrade the product (and substrate) DNAs. Either way, as recBCD- strains have also been reported to direct accurate DNA end joining, ex vivo assembly reactions may involve mechanisms independent of homologous recombination machinery, perhaps by an alternative end-joining pathway. We suspect that both ex vivo and in vivo DNA assembly is likely facilitated by multiple competing DNA repair mechanisms, but largely by RecBCD.

Exonuclease activity is required for DNA end resection, but is a balancing act. We saw with yeast very little exonuclease activity, which preserves the regions of homology, but may not expose complementary overhangs. Conversely, extreme exonuclease activities, like that of Deinococcus, may be resecting bi-directionally, deleting the necessary homologous regions. Again, knockouts of exonucleases implicated in deletion of exposed overhangs may greatly improve the efficiency of end joining. In our own titration experiments we saw this effect with the addition of dsDNA exonucleases (RecBCD and ExoIII). Certain ssDNA exonucleases also showed detrimental effects on assembly (DNA PolI and RecJ), but there was significant substrate DNA remaining in the lanes supporting the hypothesis that they possess the ability to recess homology arms. In the cell ssDNA activity is actually beneficial as a sort of check-and-balance to ensure the cell can abort non-productive recombination events. Previous studies have
shown ExoI and RecJ knockouts have elevated mutational rates due to the loss of this abortive activity. These hypotheses would be very convincing if the complete opposite effect weren’t observed in the exact same study. During the titration ExoI and – at its lowest levels – ExoT showed the ability to greatly enhance assembly, almost 8-fold in some circumstances. These both have opposite polarities to the inhibitory RecJ ssDNA exonuclease so there is clearly a preference for degrading the 3’ extensions, rather than the 5’ extensions. While we lacked the full library of strains needed to draw exquisite conclusions, the equivalency between nuc4-.λR and XJa highlights the complexity and redundancy of exonuclease activity and DNA repair pathways.

The final task at hand was to complete our ex vivo-based cloning pipeline. To do so we designed a new plasmid that incorporated features designed by the community (UNSs, riboJ), de novo designed parts (RBS, Codon-optimized gene) and the screenable BCP cassette from our own works. Using ex vivo assembly we recombined the plasmid backbone together with two larger synthetic fragments in a very effective manner. Based on 24 tested clones, all 24 contained the correct size inserts. Out of 3 sent for subsequent sequencing only one had no errors in the Pfu gene. This represents a clear win for ex vivo DNA assembly as a very practical cloning tool. The Pfu polymerase was at one time the highest-fidelity polymerase, though it has now been replaced by more engineered, more expensive polymerases like Q5. The assemblies showed a greatly elevated error rate based on an increased
white:blue colony ratio, but this might be corrected simply by removing the contaminating host DNA or performing PCR optimization (e.g., annealing temperature, buffer composition, etc...).

With the successful transformation of assembly reactions derived from both an optimized ex vivo DNA assembly and an ex vivo PCR, the project has successfully completed it’s ultimate objective of establishing an ex vivo cloning suite. Yet, given the outcomes of the experimentation it is easy to instead focus on perceived shortcomings of the project. There were many questions that remained unanswered, conflicting results and components not carried to ‘full completion’ (i.e., generation of all nuclease-knockouts, optimization of ex vivo PCR). Even more egregious for some is the lack of data backed by extensive replicates. While understandable, this is simply a function of the biological systems being studied, the objectives of the study and even the ex vivo approach to the study.

Biological systems are inherently noisy and complex, meaning establishing definitive causalities is a difficult task often not accomplished in even the very deepest of investigations. Further, the particular subcellular system being probed – DNA maintenance and repair – is conserved amongst every living organism25. Such conservation is indicative of the “do-or-die” nature of this pathway and is reflected in the degree of redundancy and orchestration. By using an approach like ex vivo that combines the throughput of an in vitro system with endogenous complexity of an in vivo system, investigations into these mechanisms can generate results that quickly
deviate the project from the original objective into a very large study all of it’s own.

Continued development of faster and cheaper DNA assembly and genetic characterization methods, such as the ex vivo DNA cloning pipeline described here, will further accessibility and success of DNA-based studies and applications. As mentioned in detail, there were a number of surprising findings throughout the study that could be pursued. The first is the interesting case of ExoI. ExoI could be purchased and titrated into lysates with many different host background genotypes to investigate its contribution towards recombination/end joining. Alternatively, modifications could be employed to try and modulate native degradation. For example, using primers with non-standard phosphodiester analogues – such as the phosphorothioate bond – could be employed to halt degradation. This could be very helpful in the linear assembly when the product is formed and subsequently degraded from exposed termini before visualization. Building off the success of the Pfu functionalized lysate, a multienzymatic functionalized lysate featuring a ligase, polymerase and exonuclease could be constructed as an ex vivo mimic of the tripartite Gibson assembly. Moreover, functionalized lysates hold the potential to address some problems unsuitable to living cultures. Biocontainment has become a major point of contention for the employ of genetically modified organisms, particularly in an environmental context. By substituting a functionalized lysate, the same systems can be applied as bioremediation treatment without the risk of spreading throughout the
environment, and without the tremendous costs associated with bulk enzyme purification. While ex vivo engineering and ex vivo molecular biology may not be the “silver bullet” to solve every societal problem, there are many academic and industrial opportunities addressable by ex vivo and synthetic biology.
Chapter 7. Materials and Methods

7.1. Reagents, DNA and Enzymes

All chemical reagents were purchased from Sigma-Aldrich. Divalent metals used in titration experiments were all complexed with chloride (i.e., MgCl$_2$, MnCl$_2$, CaCl$_2$, ZnCl$_2$) and formulated as 1 Molar Stock solutions. All enzymes used in the titration experiment were purchased from NEB, along with the Q5 polymerase used for PCR. All DNA synthesis of primers and synthetic fragments was performed by IDT. The plasmids used for 2-way and 3-way assembly experiments were obtained from the Registry of Standard Biological Parts. Sequences for all DNA used are provided in (DNA Sequences).

7.2. Generation of DNA Fragments for ex vivo DNA Assembly

The templates, primers and products used for the assembly assays are summarized in Appendix C.

7.2.1. PCR with Q5 DNA Polymerase

The DNA fragments used to demonstrate ex vivo DNA assembly were generated using standard PCR of parts of the following plasmids from the BioBricks registry: pSB1C3-J04450, pSB1C3-K592009, and pSB1K3-J04450. Primers used in this study (Table C.1) were generated using the j5 automated DNA assembly software$^{92-94}$. Amplicons were generated by 100 µL PCR reactions with Q5 polymerase (NEB) under standard reaction
conditions. These reactions were cycled at 98°C for 30 s; 98°C for 10 s, 50°C for 15 s, 72°C for 25 s (repeated for 25 cycles); 72°C for 2:00. Resultant PCRs were subsequently purified using agarose gel electrophoresis and extraction (Section 7.5).

7.2.2. ex vivo PCR with Pfu DNA polymerase

Pfu PCRs were formulated as follows (final concentration): 200 µM each dNTP, 1X Q5 reaction buffer (2 mM MgCl2), 500 µM each primer and ~2 ng template DNA per 50 µL reaction. These reactions were cycled differently for small fragments (<1 kb) and large fragments (>1 kb). For smaller pieces (i.e., BCP and Promoters): 95°C for 90 s; 95°C for 30 s, 55°C for 30 s, 73°C for 90 s (repeated for 28 cycles); 74°C for 3:00. For larger fragments (i.e., backbones, background controls): 95°C for 90 s; 95°C for 45 s, 55°C for 30 s, 73°C for 4 min (repeated for 30 cycles); 74°C for 6:00. Resultant PCRs were subsequently analyzed or purified using agarose gel (See, 7.5).

7.3. Preparation of Lysates

7.3.1. Initial Study

Cellular lysates were prepared from the following strains: E. coli NEB10β (NEB™ #C3019), S. cerevisiae BY4741 and D. radiodurans R1 (ATCC® 13939). E. coli was grown in Terrific Broth with glycerol (Sigma®) at 37°C with shaking at 250 rpm. D. radiodurans was grown in 123 TGY medium (5% Tryptone, 5% Yeast extract, 1% Glucose, 1% Potassium monophosphate) at 30°C and S. cerevisiae was grown with YPD media (Sigma™) at 30°C, both shaking at 250 rpm. The preparation of
the bacterial (E. coli and D. radiodurans) and the S. cerevisiae lysates varied slightly: bacterial cultures were pelleted once OD600nm = 6.00-6.50, while the yeast cultures were pelleted once OD600nm = 4.00-4.50. Volumes of 4-6 mL of culture were centrifuged at 13,200 rpm at 4°C for 2 min, washed with 1 mL of Milli-Q H2O, centrifuged again and the wet pellet massed. 2X CelLytic B Lysis Reagent (Sigma™) was added to the bacterial cell pellets at 3 μL/mg of cells. 1X CelLytic Y Lysis Reagent (Sigma™) was added to the yeast pellets in the same ratio. After the addition of the lysis reagents, the cells were incubated at 37°C for 10 min shaking at 300 rpm. The lysed cells were centrifuged at 13,200 rpm for 15 min and a 20 μL sample of the supernatant (lysate) was mixed with 20 μL of 100% glycerol to yield 40 μL aliquots. All lysate aliquots were stored at -20°C.

7.3.2. Optimized Methods

Cultures of E. coli were grown under similar conditions to those reported in 7.3.1, with the exception that the cultures were inoculated from starter cultures. For cultures using the autolysis cassette, the media was supplemented with 3 mM L-arabinose and 10 mM magnesium chloride from a 500X stock. Cultures were grown into saturation (OD600nm = 2.0-4.0 after about 18 hours growth) and then pelleted at 4200RPM at 4°C for 20 minutes. From this point on cells were kept on ice. Media was aspirated, making sure to remove as much as possible using a pipette tip and the pellets were massed (~75 milligrams per 5 mL) in pre-massed tubes. We found that tubes can vary
significantly and accuracy is best when each tube is massed initially. Cells were washed once with ice-cold 10% glycerol solution in order to prevent premature lysis in a hypotonic solution by the autolysis strains. For detergent lysis, cell pellets are resuspended in 1.5 volumes of CelLytic B 2X per milligram of pellet and incubated at 30°C with shaking for 15 minutes. The resulting lysate is then diluted with an additional 3.5 volumes of Lysis buffer (50 mM Tris-HCl, pH8; 0.2 mM EDTA; 2 mM DTT; 200 mM NaCl; 0.2% Triton X-100; 0.1 mM PMSF). Autolysis pellets are resuspended in 5 volumes of Lysis buffer and frozen at -80°C or in liquid nitrogen. Thawing the tube in a room temperature water bath lyses the autolysis strain. All lysates are then spun at the highest speed (20,000xg) for 20 minutes at 4°C. The resulting supernatant are very carefully aspirated into an equal volume of glycerol, mixed thoroughly (with pipette or vortex) and stored at -20°C.

7.3.3. ex vivo PCR Lysate

From an overnight culture, a SOB media (it is critical to use a medium without glucose) culture is inoculated (at a 10^-2 dilution) and cultured at 37°C rotating at 250 RPM for about 2 hours. At this point the L-Rhamnose inducer is added to 0.2% (from a filter sterilized 20% solution). After another 3-24 hours the culture can be harvested at 8000xg and washed with 10% glycerol. The culture is lysed in 1.5 volumes of CelLytic B 2X and diluted to 5 volumes using lysis buffer (see above). The entire lysate is then incubated at 75°C for 30 minutes, centrifuged at the highest speed (16,000xg) for 20 minutes at
4°C and the supernatant aspirated into an equal volume of glycerol, mixed thoroughly and stored at -20°C.

7.4. DNA Assembly Reactions

7.4.1. Initial Study

Buffers for assembly reactions were prepared from 100× stock solutions. Stock solutions were as follows: 100 mM NADβ, 100 mM ATP, 100 mM DTT, 1 M MgCl₂. Tris-HCl was added to the buffer to 500 mM from a 1 M stock solution. A typical assembly reaction would include 6 µL of cellular lysate, 2 µL of 10× buffer, 2 µL of nuclease-free water and 10 µL of a DNA master mix. DNA master mixes contained all fragments needed for assembly and were formulated with 20 ng/µL of the backbone and 6:1 molar ratio of insert fragments to the backbone.

7.4.2. Optimized and Supplemented Conditions

Buffers were also formulated from 100X stocks with the exception of the divalent cation titrations. For these experiments a “base” buffer with all components except for magnesium and water was formulated and then aliquoted, then these aliquots were fully constituted with the various cations and water to a 10X concentration. A typical assembly optimized assembly was formulated as follows: 1 µL of 10X Buffer, 5 µL of a 2X DNA Mastermix, 1 µL of 10X Lysate (at ~200 µg/mL) and 3 µL of nuclease-free water. The DNA master mixes were formulated with 5 ng/µL of the backbone fragment (BCP band for 2-way linear) and molar ratios of 1.2:1 and 2:1.2:1 for 2-way (BCP:BB) and 3-way (Promoter:BCP:BB),
respectively. These reactions were transferred immediately to the thermocycler and incubated at 37°C for 2 hours. Upon completion reactions were either used immediately for transformations or gel electrophoresis, or frozen at -20°C until used.

7.5. Agarose Gel Analyses and Extraction

7.5.1. Initial Study

Gel analysis was performed using 1.0–1.2% agarose-TAE gels containing GelRed (Biotium™) as the staining agent. All analytical gels were run at 100 V for 30–50 min and visualized with a Molecular Imager® Gel Doc™ XR+ Imaging System with Image Lab™ v4.0 software (Bio-Rad).

To purify PCR reactions, samples were run on 1.0% agarose-TAE gels stained with GelGreen (Biotium™). The gels were run at 100 V for 30 min and subsequently visualized under blue light excitation. The gels showed no side product formation and bands were excised and isolated using ZymoClean™ Gel DNA Recovery Kit (Zymo Research™).

7.5.2. Optimized Analytical Gels

In the optimized format, analytical gels for 2-way linear reactions were formulated at 1.8% agarose in TAE buffer. 3.5 µL of GelRed (Biotium™; 50,000X in Water) was added to the molten gel and once poured the gels were allowed to solidify for at least one hour. To each 10 µL assembly reaction, 3 µL of 5X Loading Dye was added and 5 µL loaded. For Ladders (NEB 100-bp, 1kb or 2-log Quick-load) 3.8 µL
were added to each lane. The gel was run at 180V for 1 minute, the run at 90V for 35 minutes.

7.5.3. Gel Analysis

To analyze the gel they were visualized with a Molecular Imager® Gel Doc™ XR+ Imaging System (Bio-Rad). Using Image Lab™ v4.0 software (Bio-Rad) the lanes and bands were identified. The lane profile was used to manually adjust bands with exceptional tailing or false peaks. Using the Relative Quantity analysis tool, the BCP band of the negative control is selected as the internal reference. Band information was exported into a Comma Separated Values file for subsequent analysis. Pictures of all gels not included in the main text are provided in (Appendix B Gel Pictures).

7.6. Transformations and Preparation of Competent Cells

7.6.1. Initial Study

Transformations were performed using chemically competent E. coli NEB10β (NEB) according to manufacturer’s recommendations. Briefly, 2 µL of reaction mixture (from ex vivo assemblies) or diluted DNA master mix (for in vivo assembly) were added to each transformation, these were incubated for 30 min on ice, heat shocked at 42°C, recovered in 950 µL SOC at 37°C for 60 min and 50 µL of culture was spread onto agar plates containing the appropriate antibiotic.
7.6.2. Optimized Competence and Transformation

To prepare chemicompetent *E. coli* for chemical transformation the “Ultracompetent” method of Inoue, et al was followed closely\(^5\). As there is not a refrigerated incubator available in our lab to culture at 18°C the cultures were incubated at room temperature (~21°C).

To perform transformations, we incubated 48 µL of cells with 2 µL of DNA sample on ice for 30 minutes. The cells were heat-shocked in a 42°C water bath for 45 seconds and immediately transferred and swirled in an ice-water bath for 90 seconds. 950 µL of room temperature SOC was added to the tube and it was moved to the 37°C incubator with shaking at 250 RPM for 1 hour. Transformants were serially-diluted into sterile PBS and 100 µL plated onto LB with the appropriate antibiotic.

To prepare electrocompetent cells, we followed the protocol “Transformation of *E. coli* by Electroporation” in the Molecular Cloning Manual 4\(^{th}\) ed. Electroporation reactions were carried out in a Bio-Rad Micropulser using the same volumes as used for chemical transformation above.

CFU per femtomole values were calculated by taking the raw counts of countable plates (30-300), multiplying by the dilution factor and dividing by the number of femtomoles of DNA transformed. Given the backbone of ex vivo assemblies as the limiting substrate at 5 ng/µL, 2 µL equates to approximately 6.6 femtomoles of 2-way and 7.3 femtomoles
2 µL of a 50 pg/µL solution of pUC19 equates to 0.06 femtomoles.

7.7. Lambda RED Recombineering

Genomic manipulations of the nuc4- strains were performed using the protocols laid out by Wang, et al. Summarizing, a single cycle of recombineering consisted of growing a culture of nuc4- in a 3 mL culture of LB + Ampicillin until OD600 = ~0.4, inducing lambda expression at 42°C for 15 minutes, washing 1 mL of the culture twice with ultrapure water, concentrating at ~50 µL and transforming 2 µL of a 10 µM solution of MAGE oligo(s)/λR cassette. In order to modify nuc4-, an already existing chloramphenicol cassette in the host genome was deactivated using the cat_fwd_stop oligo (see Appendix C) and the chloramphenicol mutant (nuc4-.Cm-) was isolated by replica plating. The λR autolysis cassette (including chloramphenicol resistance) was amplified out of XJa, gel extracted and transformed into nuc4-.Cm-. Unfortunately, there was so much homology between the chloramphenicol cassette in the λR autolysis cassette and the deactivated chloramphenicol loci that many, many false-positive chloramphenicol transformants were obtained (as confirmed by allele-specific PCR; Table C.3). Instead to identify the correct integrants, a screen approach utilizing Phenol Red Agar + 2% Arabinose was employed to identify colonies unable to utilize arabinose. A positive clone was isolated and the integration of the lysogen gene was confirmed by allele-specific genotyping and a lytic phenotype. Sequences of all oligos used for recombineering are provided in (Table C.3).
Chapter 8. References

Table A.1 Summary of Assemblies

2-way Circular (2WC)

<table>
<thead>
<tr>
<th>Part</th>
<th>Template</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP</td>
<td>pSB1C3-K592009</td>
<td>exda1</td>
<td>exda2</td>
<td>698</td>
</tr>
<tr>
<td>Backbone</td>
<td>pSB1K3-J04450</td>
<td>exda3</td>
<td>exda4</td>
<td>2446</td>
</tr>
</tbody>
</table>

2-way Linear (2WL)

<table>
<thead>
<tr>
<th>Part</th>
<th>Template</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoter</td>
<td>pSB1C3-J00450</td>
<td>exda22</td>
<td>exda23</td>
<td>381</td>
</tr>
<tr>
<td>BCP</td>
<td>pSB1C3-K592009</td>
<td>exda12</td>
<td>exda13</td>
<td>697</td>
</tr>
</tbody>
</table>

3-way Circular (3WC)

<table>
<thead>
<tr>
<th>Part</th>
<th>Template</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone</td>
<td>pSB1K3-J04450</td>
<td>exda3</td>
<td>exda19</td>
<td>2214</td>
</tr>
<tr>
<td>Promoter</td>
<td>pSB1C3-J00450</td>
<td>exda20</td>
<td>exda21</td>
<td>387</td>
</tr>
<tr>
<td>BCP</td>
<td>pSB1C3-K592009</td>
<td>exda12</td>
<td>exda2</td>
<td>696</td>
</tr>
</tbody>
</table>

Description of the DNA fragments used in each assembly assay. DNA sequences for primers, template plasmids and products of assemblies can be found in Appendix C.
<table>
<thead>
<tr>
<th>Strain</th>
<th>Parent</th>
<th>Synonymous</th>
<th>Growth (Celsius; Resistance)</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB10β</td>
<td>K-12</td>
<td>DH10Beta</td>
<td>37; Str</td>
<td>Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 galE15 el4- ϕ80dlacZΔM15 recA relA endA nupG rpsL (StrR) rph spoT1 Δ(mrr- hsdRMS-mcrBC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F' [traD36 proA+B+ lacIq Δ(lacZ)M15] Δ(lac-proAB) glnV44 (supE44) el4- (McrA-) thi gyrA96 (NalR) endA hsdRl7(rK- mK+) relA recA araB::λR, cat (CmR)</td>
</tr>
<tr>
<td>XJa</td>
<td>K-12</td>
<td>JM109</td>
<td>37; Cm</td>
<td>F- λ- ilvG- rfb-50 rph-1 ΔmutS::cat Δ(ybhB-bioAB)::[lacI857 N(cro-ea59)::tetR-bla] xonA- recJ- xseA- exoX-</td>
</tr>
<tr>
<td>nuc4-</td>
<td>EcNR2</td>
<td></td>
<td>32; Amp Cm</td>
<td>F- λ- ilvG- rfb-50 rph-1 ΔmutS::cat- Δ(ybhB-bioAB)::[lcI857 N(cro-ea59)::tetR-bla] xonA- recJ- xseA- exoX-</td>
</tr>
<tr>
<td>nuc4-.Cm-</td>
<td>nuc4-</td>
<td></td>
<td>32; Amp</td>
<td>F- λ- ilvG- rfb-50 rph-1 ΔmutS::cat- Δ(ybhB-bioAB)::[lcI857 N(cro-ea59)::tetR-bla] xonA- recJ- xseA- exoX- araB::λR, cat (CmR)</td>
</tr>
</tbody>
</table>

Genotypes of Strains used in the current study are presented above. Growth indicates temperatures used to culture strain and resistances available to strain. Relevant genotypes are indicated in bold and described below in Table A.3.
Table A.3 Description of Relevant Genotypes

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotypic Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>recA<sup>1</sup></td>
<td>Disables homologous recombination pathways for reduced occurrence of unwanted recombination in cloned DNA; cells UV sensitive</td>
</tr>
<tr>
<td>endA<sup>1</sup></td>
<td>For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I</td>
</tr>
<tr>
<td>rpsL</td>
<td>Mutation in ribosomal protein S12 conveying streptomycin resistance</td>
</tr>
<tr>
<td>ΔmutS::cat</td>
<td>Deletion of mutS used for mismatch repair for better Lambda Red recombination; Conveys Chloramphenicol Resistance</td>
</tr>
<tr>
<td>ΔmutS::cat-</td>
<td>Inactivation of Chloramphenicol cassette by insertion of stop codon</td>
</tr>
<tr>
<td>lcI857</td>
<td>Lambda RED operon of alpha, beta and gamma proteins induced by heat-shock; Cells must be cultured at lower temperatures; Conveys Ampicillin resistance</td>
</tr>
<tr>
<td>N(cro-ea59)::tetR-bla</td>
<td>Lambda phage endolysin inducible by arabinose; Disrupts arabinose metabolism; Conveys Chloramphenicol resistance</td>
</tr>
<tr>
<td>araB::λR, cat (CmR)</td>
<td>Inactivation of exonucleases (ExoI, RecJ, ExoVII, ExoX) by premature stop codon insertion</td>
</tr>
</tbody>
</table>

Descriptions of relevant genotypes found in Table A.2
Table A.4 Unit Definitions of Enzymes used in Titrations

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Concentration (U/µL)</th>
<th>Temperature (Celsius)</th>
<th>Time</th>
<th>Buffer</th>
<th>[Substrate]</th>
<th>[Product]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RecBCD</td>
<td>10</td>
<td>37</td>
<td>30 min</td>
<td>NEB 4</td>
<td>Linear dsDNA (no concentration)</td>
<td>10 nmol (acid-soluble nucleotides)</td>
</tr>
<tr>
<td>ExoI</td>
<td>20</td>
<td>37</td>
<td>30 min</td>
<td>1X ExoI</td>
<td>170 ng/µL (ssDNA)</td>
<td>10 nmol</td>
</tr>
<tr>
<td>ExoIII</td>
<td>100</td>
<td>37</td>
<td>30 min</td>
<td>NEB 1</td>
<td>.15 mM (sonicated dsDNA)</td>
<td>1 nmol</td>
</tr>
<tr>
<td>ExoT</td>
<td>5</td>
<td>25</td>
<td>30 min</td>
<td>NEB 4</td>
<td>1 nmol</td>
<td>.05 nmol (TCA soluble (polythymidine) nucleotides)</td>
</tr>
<tr>
<td>RecJf</td>
<td>30</td>
<td>37</td>
<td>30 min</td>
<td>NEB 2</td>
<td>30 ng/µL (sonicated ssDNA)</td>
<td>.05 nmol (TCA soluble nucleotides)</td>
</tr>
<tr>
<td>DNA PolI</td>
<td>10</td>
<td>37</td>
<td>30 min</td>
<td>NEB 2</td>
<td>70 ng/µL SalmonSperm DNA; 33 µM dNTPs</td>
<td>10nmol (dNTPs -> acid insoluble material)</td>
</tr>
<tr>
<td>Eco Ligase</td>
<td>10</td>
<td>16</td>
<td>30 min</td>
<td>Ligase Buffer</td>
<td>0.12 µM DNA termini (300 ng/µL)</td>
<td>.06 µM ligated ends</td>
</tr>
</tbody>
</table>

Unit definitions of enzymes supplied by NEB and used in titration experiments. For exonucleases, exonuclease activity is measured as formation of acid-soluble nucleotides. For DNA PolI polymerization activity is defined by formation of acid insoluble material from dNTPs. E. coli Ligase activity is measured by the formation of ligated ends from digested material. All reported unit definitions are for a 50 µL reaction volume.
Appendix B. Gel Pictures

Below are the original agarose gel pictures used in the analysis of ex vivo assembly. The higher molecular weight band (BCP band) in the control lane (“C”) was used as the relative reference for band intensities.

B.1.1 Time Course of *Deinococcus*, *Saccharomyces*, and *E. coli* lysates

![Gel Image](image)

Figure B.1 Dra, Sce and Eco Time Course
B.1.2 Lysate Preparation (Growth Phase, Media and Glycerol)

Figure B.2 Lysate Preparation (Gel 1)
Figure B.3 Lysate Preparation (Gel 2)
B.1.3 Concentration of Lysates

Figure B.4 Lysate Dilutions (60 minutes)

Figure B.5 Lysate Dilutions (120 minutes)
B.1.4 Buffer Optimization

Figure B.6 Buffer Optimization (NEB10β)
Figure B.7 Buffer Optimization (XJa Autolysis)
B.1.5 Buffer Titration

Figure B.8 Buffer Titration (NEB10β #1)
Figure B.9 Buffer Titration (NEB10β #2)
Figure B.10 Buffer Titration (XJa)
B.1.6 Manganese Titration

Figure B.11 Manganese Titration (NEB10β)
B.1.7 Enzymatic Titrations

Figure B.12 RecBCD, PolI, RecA, Eco Ligase Titration
Figure B.13 ssDNA Exonucleases Titration
B.1.8 RecA Titration

Figure B.14 RecA Titration (XJa Autolysis)
Appendix C. DNA Sequences

C.1 Primer Sequences

Table C.1 ex vivo Assembly Assay Primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>exda1</td>
<td>AGAGAAAGAGGAGAAAATGAGTGTGATCGCTAAACAAATGACCTACAAGG</td>
<td>50</td>
</tr>
<tr>
<td>exda2</td>
<td>ATTTGATGCTGCTGTTATAGGCGACCACAGGTGTTTGC</td>
<td>40</td>
</tr>
<tr>
<td>exda3</td>
<td>GGTCGCCTAATAACCAGGAGCTCAAAATAAAAACGAAAGGT</td>
<td>39</td>
</tr>
<tr>
<td>exda4</td>
<td>GCGATCACACTCATTTCTCTCTCTCTCTCTAGTATGTGTGA</td>
<td>41</td>
</tr>
<tr>
<td>exda12</td>
<td>AGGAGAAATACTAGATGATGATGATGATGCCAAACAAATGACCTACAAGG</td>
<td>48</td>
</tr>
<tr>
<td>exda13</td>
<td>GCCTGCTCTAGATATTATTAGGCGACCACAGGTGTGGA</td>
<td>41</td>
</tr>
<tr>
<td>exda14</td>
<td>GGTCGCCTAATAATAACTAGAGCCAGGCTCAAAATAAAAACG</td>
<td>40</td>
</tr>
<tr>
<td>exda19</td>
<td>TGTTTTCTTAGAGCTGATCCTTCAACTCAGCA</td>
<td>33</td>
</tr>
<tr>
<td>exda20</td>
<td>TGAGTTGAAGAGTACAGTCTCTAAAGAGAAACCATTATATCATGACATTAAACC</td>
<td>50</td>
</tr>
<tr>
<td>exda21</td>
<td>AGCGATCACACTCATCTGTATGTTCTCTCTCTCTCTCTCTCTAGTATGTG</td>
<td>45</td>
</tr>
<tr>
<td>exda22</td>
<td>TGAAGGATCAGTTCTAAGAGAAACCATTATATCATGACATTAAACC</td>
<td>45</td>
</tr>
<tr>
<td>exda23</td>
<td>GCGATCACACTCATCTCTAGTATTTCTCTCTCTCTCTCTAGTATGTG</td>
<td>44</td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence</td>
<td>Length</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>UNS1F</td>
<td>CATTACTCGCATCCATTCTCAG</td>
<td>22</td>
</tr>
<tr>
<td>UNS1R</td>
<td>GAGACGAGACGAGACGACG</td>
<td>18</td>
</tr>
<tr>
<td>UNS2F</td>
<td>GCTGGGAGTTTCGATAGACG</td>
<td>18</td>
</tr>
<tr>
<td>UNS2R</td>
<td>GCTTGGATTCTCGGTGTG</td>
<td>19</td>
</tr>
<tr>
<td>UNS3F</td>
<td>GCACTGAAGGCTCCTCAATC</td>
<td>19</td>
</tr>
<tr>
<td>UNS3R</td>
<td>CGACCTTGATGTTTCCGAGTG</td>
<td>20</td>
</tr>
<tr>
<td>UNS4F</td>
<td>CTGACCTCCTGCGACG</td>
<td>16</td>
</tr>
<tr>
<td>UNS4R</td>
<td>GACTTGGCTGTTGTCTTACT</td>
<td>21</td>
</tr>
<tr>
<td>UNS5F</td>
<td>GAGCCAACTCCCTTTACAAC</td>
<td>20</td>
</tr>
<tr>
<td>UNS5R</td>
<td>CTCTAAGCGACTTGAGG</td>
<td>21</td>
</tr>
<tr>
<td>UNS6F</td>
<td>CTCGTTGCTGCACCC</td>
<td>16</td>
</tr>
<tr>
<td>UNS6R</td>
<td>GTATGTGACGCTGATAGTATTCTTAG</td>
<td>25</td>
</tr>
<tr>
<td>UNS7F</td>
<td>CAAGACGCTGGCTCTGA</td>
<td>17</td>
</tr>
<tr>
<td>UNS7R</td>
<td>CGAGTAGTTCAGTAGCGGA</td>
<td>19</td>
</tr>
<tr>
<td>UNS8F</td>
<td>CCTCGTCTCAACCAAGC</td>
<td>18</td>
</tr>
<tr>
<td>UNS8R</td>
<td>CCAGGTGGTTGATGGGT</td>
<td>17</td>
</tr>
<tr>
<td>Oligonucleotide</td>
<td>Sequence</td>
<td>Length</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>UNS9F</td>
<td>GTTCCTTATCATCTGGGCAATC</td>
<td>22</td>
</tr>
<tr>
<td>UNS9R</td>
<td>CAGTGCCTTTGTGGGTC</td>
<td>17</td>
</tr>
<tr>
<td>UNSXF</td>
<td>CCAGGATACATAGATTACCAAC</td>
<td>24</td>
</tr>
<tr>
<td>UNSXR</td>
<td>GGTGGAAGGGCTCGG</td>
<td>15</td>
</tr>
<tr>
<td>pGERC-BB_F</td>
<td>TCGAGAAAGGACACGGT TA</td>
<td>18</td>
</tr>
<tr>
<td>pGERC-BB_R</td>
<td>AAAGCCTTTGTATGCTTTTT</td>
<td>20</td>
</tr>
<tr>
<td>Oligo Name</td>
<td>Sequence</td>
<td>Product Length</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| cat_fwd_stop | G*C*A*T*CGTAAGAACATTTTGA
 | GGCATTTCAGTCAGTTGCTCAATGA
 | ACCTATAACCAGACGCTCCGCTG
 | ATATTACGGGCCTTTTTAAA | NA | Introduces Stop Codon into cat gene of nuc4-recA.KO |
| recA.KO | C*A*A*A*TTGTTTCTCAATCTGGC
 | CCAGTGCTGCGCAACGCTcaCTa
 | TTaGTTTTTCGTAGAGCCATATT
 | ACTCCTGTCACTGCGGGA | NA | Introduces Stop Codon into recA gene |
| endA.KO | T*C*G*T*TTTAACACCGAGTAAGT
<pre><code> | GATGTAACGGTTATTTGCTATTGCT | GCTGaGTGGTACTGAGCAGACATT | TTCCGGCCCGGCGTTGGCC | NA | Introduces Stop Codon into endA gene |
</code></pre>
<p>| araB_lambdaR-f | CTTCGCCCGCAAAGCGTA | 2066 | Amplifies entire arabinose loci including endolysin and cat genes; Allele-specific PCR |
| araB_lambdaR-r | ACAGGTCGCTGAAAGCGGC | 2066 | Amplifies entire arabinose loci including endolysin and cat genes |</p>
<table>
<thead>
<tr>
<th>Nick Name</th>
<th>Primers</th>
<th>Length (bp)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asLambdaR-r</td>
<td>GGTCAGTTCGAGCATAAGGC</td>
<td>20</td>
<td>Targets LambdaR coding</td>
</tr>
<tr>
<td>endA.KO.v2_wt-f</td>
<td>CGTTATTTGTCTATTGCTGCGG</td>
<td>191</td>
<td>Allele-specific PCR of endA</td>
</tr>
<tr>
<td>endA.KO*_mut-f</td>
<td>CGTTATTTGTCTATTGCTGCTGA</td>
<td>191</td>
<td>Allele-specific PCR of endA</td>
</tr>
<tr>
<td>endA.KO*--r</td>
<td>GCACGATTGCAGATCAACAACG</td>
<td>191</td>
<td>Allele-specific PCR of endA</td>
</tr>
<tr>
<td>recA.KO.v2_wt-f</td>
<td>TGCCGCCAACGCTTT</td>
<td>474</td>
<td>Allele-specific PCR of recA</td>
</tr>
<tr>
<td>recA.KO.v2_mut-f</td>
<td>TGCCGCCAACGCTCA</td>
<td>474</td>
<td>Allele-specific PCR of recA</td>
</tr>
<tr>
<td>recA.KO.v3-r</td>
<td>GGTNTGAACGCGGATTTGTCA</td>
<td>474</td>
<td>Allele-specific PCR of recA</td>
</tr>
</tbody>
</table>
C.2 Plasmid Sequences

Below are Genbank formatted files of the various plasmids used throughout the study, complete with annotations.

C.2.1 pSB1C3-J00450 (RFP expression)

LOCUS pSB1C3-J00450 3139 bp ds-DNA circular 22-APR-2015

DEFINITION .

ACCESSION pSB1C3-J00450

VERSION pSB1C3-J00450

FEATURES Location/Qualifiers

terminator 3099..3139

/label="B0012"

terminator 3011..3139

/label="BBa_B0015"

rep_origin 261..875

/label="pMB1 rep origin"

terminator 1042..1147

/label="T0 terminator"

RBS 2279..2290
/label="B0010 Stem-loop"

terminator 3011..3090

/label="B0010"

primer_bind 156..176

/label="VR primer site"

primer_bind 1943..1962

/label="VF2 primer site"

promoter 2071..2270

/label="R0010"

terminator 22..93

/label="Eco His Term."

misc_feature 3042..3045

/label="B1010 Loop"

ORIGIN

1 tactagtagc ggccgctgca gtccggcaaa aaaggcaag gtgtcaccac cctgcccttt

61 ttcttttaaa ccgaaaagat tacttcgctg tatgcaggct tcctcgctca ctgactcgct

121 gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt

181 atccacagaa tcaggggata acgcagggaa gaacatgtga gcaaagggcc agcaaagggc
241 caggaaccgt aaaaagccg cggttgctggc gtttttccac aggctccgcc cccctgacga
301 gcacataaa aatcgacgct caagtcaagag ctggcgaac ccgacaggac tataaagata
361 ccaggctttt cccctggaa gctccctcgt gcgcgtctct cttccgacce tgcacgttac
421 cggataacctg tccgcctttc tcccttcggg aagcgtttgg gttcctcata gtcacgctg
ttc
481 tagtatctc agttcgggtt agttggtctg ctcgaagctg ggtggtgtgc acgaaccccc
c
541 cgttcagccc gacgcttcgc ccttatccgg gcgctctcct gttccgaccc tgccg
tttac
601 acacgaacctt cggcccacttg cgcagcccac tggtaacagg attagcagag caggtatgt
c
661 aggcgggtct acagagcttc tgaagtggggt gcctacactc ggcacacta gaagaacagt
c
721 atttggtatc tgcgtctctgc tcccttcggc aagcgtggcg ctttctcata gctcagctg
c
781 atccggcaca caaaccaccg ctggtgtagg ggctggttttt ggatcgcctctg caggtatc
c
841 gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca
c
901 gttggaacgaa aactcagttg aaggctggtt ggctagtttt tctaagcttc gcggatgatc
c
961 ctagatcctt ttataaaaa aatgaagttt taataatc anatatatat atgagtaaac
ttc
1021 tttggtctgc agctcgaggc ttgattttct gcacatatct aacatgcttggttt gcggcatcag
1081 cggttgctac aatccagat ggagttctga ggtcattact ggatctatca acaggagtcc
c
1141 aagcagagtc gataaaatat acgtcccgcc cctgcgacgtc atgcagtttt tttgtgtaatt
c
1201 cattaagcat tctgcgacca tggaaacca cacaaacggc atgatgaacc tgaatcgccca
c
1261 gcggcatcag caccttgtgc aatattttgc catggtgaa acgaccagggcga
agaagttgtc catatggcc acgttttaat caaaacttgt gaaactcacc cagggatttg
ctgagacgaa aaacatatgc tcaataaaaacc ctttagggaa ataggccagg ttttcaccgt
aacacgccac atctttgcgaa tatatgtgtat gaaactgccg gaaatcgtgctg tggtatccac
tccagagcggta gaaaaacc tgtcagttgtct catgaaacac ggtgtaacaa gggtgaacac
tatcccatat caccagctca ccgtttttca ttgccatacg aaatccggga tgacatttca
tcaggccgggc aagaatgtgta ataagggcgg gataaaacct tgtgcttatatttt ttctttacgg
tctttaaaaa ggcctgtaata tccagctgaa cgtctggttt ataggtcatat tggacacactg
tgaaaacgtt tcagtttgct catggaaaac ggtgtaacaa gggtgaacac
tccagagcga tcgaaaatgtg tctttacgat gcacattggga tatatactctg ccttctccatt
tcttttaaaaa ggccgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
tactgaaatgc ctcaaatggt tctttacgat gcacattggga tataatcctctt tggatcagct
ataggtatatttt ttctttacgg
tgcctaaaccc gcgtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
tccagctgaa cggtctggtt ataggtacat tggacacactg
tacgacctttg tgcatttcga cttaagagttt aatcttattt ccctttttcctt
gatttctgga attcgcggcc gctaattcgtt ttagtgcatttt attttctttat ttttctccatt
tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
ggcctgtaata tccagctgaa cggtctggtt ataggtacat tggacacactg
taatggagatga attctctcgtt ttagtgcatttt attttctttat ttttctccatt
2401 tcgtccgtac gaaggtaccc agacccgctaa actgaaagtt accaaaggtg gtccgctgcc
2461 gttcgctttg gacatctctt cccccgcaatt ccagttacggt tccaaagctt acgttaaaca
2521 ccggtcgac atccccggact acctgaaact gtcctttccc gaaaggtttca aatgggaacg
2581 tggattagac ttcgaagacg gttgetggtt gttacgctacc cccgcagtt ccagtacggt tccaaagctt acgttaaaca
2641 ggtgatgattc atctacaag tttaactgc gttgaacaaac ttcggcgccg acggtccgggt
2701 tatgcagaaaa aaaaacttgg gttggaagct ttccaggaga cgctagttacc ccggaagacgg
2761 tgctctggaa ggtgaaatca aaatgcgtct gaaactgaaac gacggtggac gactacgacgc
2821 tgaagtttaaa accaccctaca tggctaaaaa accgggctcctct gtcgaggttcg ccggcgctggg
tttatctgtt gtttgtcggt gaacgctctc tactagagtc acactggctc accttcgggt
3001 gactactagag ccagccatca aataaaacga aaggtcgact ccgaaagactg ggcctttcgt
3061 tttatctgtt gtttgtcggt gaacgctctc tactagagtc acactggctc accttcgggt
3121 gggcttttet gcgtttata

//
C.2.2 pSB1C3-K592009 (Contains BCP Coding Sequence)

LOCUS pSB1C3-K592009 2739 bp ds-DNA circular 27-JUN-2015

DEFINITION .

COMMENT ApEinfo:methylated:1

FEATURES Location/Qualifiers

misc_binding 670..690

/label="BioBrick suffix"

primer_bind 825..845

/label="VR primer site"

CDS 1..669

/label="amilCP"

terminator 691..762

/label="Eco His Term."

primer_bind 2700..2723

/label="SB-prep_2Ea primer site"

rep_origin 930..1544

/label="pMB1 rep origin"

primer_bind 2612..2631
/label="VF2 primer site"

primer_bind 2640..2666

/label="pSBamil_rev"

CDS 1829..2498

/label="CmR"

terminator 1711..1816

/label="T0 terminator"

misc_binding 2718..2739

/label="BioBrick prefix"

primer_bind 81..102

/label="pSBamil_for"

primer_bind 681..702

/label="SB-prep-3P-1 primer site"

ORIGIN

1 atgagtgta tgcctaaaca aatgacctac aagtttata tgtcaggcac ggtcaatgga
61 cactactttg aggtcgaagg cgatggaaaa ggtaagccct acgaggggga gcagacggta
121 aagctcactg tcaccaaggg cggacctctg ccatttgctt gggatatttt atcaccacag
181 tgtcagtacg gaagcatacc attcaccaag taccctgaag acatccctga ctatgtaaag

30
cagtcattcc cggaggccta tacatggag aggatcatga actttgaaga tgggtgcagtg
tgtactgtca gcaatgattc cagcatccaa ggcacgttgt tcatctacca tgtcaagttc
tctgttttga actttcctcc caatggacct gtcatgcaga agaagacaca gggcttggaa
ccaacactgt agcgtctctt tcgcagcagat ggaatgctgc taggaacaa ctttatggtc
tctggtttga actttcctcc caatggacct gtcatgcaga agaagacaca gggcttggaa
cctgccctttt tcttttaaac gcgaaagatt acttgcgttt atgcaggatt cctgctcac
tcgccttttt tcttttaaac gcgaaagatt acttgcgttt atgcaggatt cctgctcac
tgactcgtgg cgcgtctgggc tctggctggt gcggagcggc tcactatttg tgtgaattta aaa
atacgggtta tccacagaat cagggttaaa cgcaagaaa agcaagtcg aaaaaagcga
cacgacttac cagccttttc cccctggaaag ccctctctgc gctctctcgc tttcttctac
gccggtggtg cgcggtcctt ccctctggga agcgtcggtg ggaatgctgc taggaacaa ctttatggtc
tcgagttag aaggagcggc tgaactattt ggtgaattta aaactactta cagggcaag
tcgagttag aaggagcggc tgaactattt ggtgaattta aaactactta cagggcaag
ctgccctttt tcttttaaac cgaaaagatt acttgcgttt atgcaggatt cctgctcac
tcgccttttt tcttttaaac gcgaaagatt acttgcgttt atgcaggatt cctgctcac
32 gaggtatgta ggcggtgcta cagagttctt gaagtgggtg cctaaactac gctacactag
1321 aagaacagta tttggtatct gcgctcttgct gaagccagtt accttcggaa aaagagttgg
1381 tagctctttga tccggcaaac aaaccacgcg tggtagcggt gttttttttg tttgcaagca
1441 gcagattacg cgcaagaaaa aagagatcctga agagatctcct ttgatcttttt ctacgggggtc
tgacgtcag tgaacgagaa actcacgtata agggatatggt gctatgagatatc tataaaag
1501 gctttccacc tagatccttt taaaaatta ataaggtttt aatatcactaa aaggtatata
1561 tgaagtaaact tggctgaca gctcgaggct tggattcctca ccaataaaaa acgcggggcag
1621 gtcagttcaa aatccagatg gagaattgtg gtcattaactg gatctatatca
1681 ataatgctg tggctcag tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag
1741 gcaacgcggc ggcttaaca aatccagatg gagaattgtg gtcattaactg gatctatatca
1801 caggagtcgg cggacggcgt gatataaat ctcgcgggccc gtcggaactca tcgcagtaaact
1861 gttgtaatttc ataatagcatt ctgccgacag ggaagccatc acaacggccgagtcagttcaa
1921 gaatgcgccag cggcatcagc acctttgcgc ttgctgata atatagcccg atggtgagaa
1981 cgggggacgaa gaagttggtc atattggccaa cgtttaaact caataaacc cttagggaaa taggccaggt
2041 agggatgggc tgagacggaattatattct caataaacc cttagggaaa taggccaggt
2101 ttgctcgtgta aacgcgcaca tcttgcaaat atatgtgtga aaactgccgg aatatcctcgatgctgata
2161 ggtatccact ccaagcgtg aaagacgttt cagtttgtgc atggaaaccg tgtaacaag
2221 ggtgacacgt atcccatactc accagctcag cgtttttcat tgccatacga aatccggtgaggatgttgc
2281 gagcattcag cagggggcga agaatggtgaa aaaaagccc ataaaaactgtggttgtatattt
2341 ttcttcgccgctg ttttttaag gcgtaatat ccaagctgaac ggtcttggtta taggtacatt
2401 gagcaactga ctgaatgcc tcaaatgtt cttacgatg ccattgggat atatcaacgg
2461 tggatatcct agtgattttt ttctccattt tagcttcctt agctcctgaa aatctcgata
2521 actcaaaaaa tacgcgcggt agtgatctta tttcattatg gtgaaagttg gaacctctta
2581 cgtagccgat caactcaggt gccacctgac gtcttaagaa ccattattat catgacatta
2641 acctataaaa ataggcgtat cacgagcag aatctcagat aaaaaaaaaac cttgcttttc
2701 gctaaggatg atttctgaa ttgcggcgcg cttcctagag

//
C.2.3 pSB1K3-J00450 (RFP expression with Kanamycin Resistance)

LOCUS pSB1K3-J04450 3273 bp ds-DNA circular 21-APR-2015

DEFINITION .

FEATURES Location/Qualifiers

stem_loop 30..64

/label="Stem loop"

CDS 2431..3136

/label="E1010"

misc_feature 3240..3259

/label="B0012 Stem-loop"

primer_bind complement(157..176)

/label="Verification reverse (VR) primer binding site"

gene 2205..3273

/label="BBa_J04450"

misc_feature 1..21

/label="DNA: BioBrick suffix"

misc_feature 2183..2204
Biobrick Prefix Standard (RFC10)

terminator 3233..3273

misc_difference complement(1880..1880)

Silent Mut: G→C mutation to remove XhoI site

terminator 3145..3224

promoter 2205..2404

primer_bind 2067..2086

Verification forward (VF2) primer binding site

terminator 3145..3273

misc_feature 3248..3251

B0012 Loop

stem_loop 22..93

E. coli his operon terminator

misc_feature complement(2017..2060)
ORIGIN

1 tactagtgc ggccgctgca gtcggcgaaa aaagggcaag gtgtaaccac cctgcccttt
61 ttctttaaaa ccgaaagagat tacttcgctg tatgcaggtc tctctgcctca ctcgactcgct
121 gcgctcggtc gtctgctggt gcggagcgggt atcagctcac tcaaaagcgg agcagaggtt
181 atccacaga tcaggggata acgcagaaaa gaacatgta gcaaagggc agcagaggtt
241 caggaaccgt aaaaagggcgc gttgcgtggc gttttttcag aggcctgccc cccttgacga
301 gcataacaaa aatcgacgct caagtacgag gtggcgaaca cggacaggac tataagaga
361 cgagagtttt cccctgagaa gtcgcttcgct ggcgctcctgt ggcgctcgac cgcgctttac
421 cggttacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcagcgtg
481 taggtacttc aagctcgtgcc gtcgctcgcc gtcgctcgtgc ttctcagaac agcagaaaa
541 cggttcagccc gacgcgtggt gccgtatcctg taactatcgta ctgctacggt tggtaaccag tccactttctgaagcgtg
601 acacgactta tcgcaactgg cagcagcccg tgcacacetg ttagcagcag cgaggtatgt
661 aggggtgtgct acagagttct taagagtttg gcctacacta gctacagtga aagaggttga
721 atccaggtctg ctcgctctgc tgaagccagt taccttcgga aaaagatcc gtagctcttg
781 atccggcaca ccaaccaccc ctggtagcgga aaaggtgatg tggtaacagc acgagattac
841 gcggtgatcc aagaagatcc tttgatcttt tctacggtgct tgggtccctac
gtggaacgaa aactcagttt aagggatcttg gtcatgaga ttatcagatcagacggtgta
381 ctagatcctt ttaaataaag aatgaaattt taaaataaatc taaagtatat atgagtaaac
1021 ttggtctgac agctcaggtc ccgtaagtc agcgtaatgc tcggccagtg ttacaaccaaa
1081 ttaaccaatt ctgattagaa aaactcatcg agcatcaaat gaaactgcaaa tttattcata
1141 tcaggattat caataaccata tttttgaaag agccgtttctct gtaatgaagg agaaactca
1201 cggaggcagt tccataggat ggcaagatcc tcggctgttctgctgcgttccagcttca
1261 acatacatcc aacctattta tttccctcgc tacaaatata ggttatcaag tgagaaatca
1321 ccagtgatga cgactgaatcc cggtgagaat ggccaaagct tatacgcatc tttccagact
1381 tgtttcaagc gcacgacctt aagctcgtgta tccaaatcactcgcataac caaaccgtaa
1441 ttcattctgtt attgaccctg agcagacagga attacggtat cgcgtttaaa aggacaatta
1501 caaacaggaa tcgaatgcac ccgaccgcagg aaccagctgca gcgcatcaac aatatttcta
1561 cctgaatcag gatattcttc taatacttgg aatgctgttt tccggggtt tgcagtggcttga
1621 agataacatgc catcatcagg agtatctgata aatgctttga tggctggaag aggacataat
1681 tccgtaacggc gttttagtct aacacatcac ctcgtaacat catgggcaac gtcactctctg
1741 ccagtttca aacaaacttc ggggcacatcg ggcggcccctt aacatgata gattgtcgcga
1801 cctgattgccc gcgctccatt tttatatcata ataaaacctg atccatggtg
1861 gaatttaactgc ggccctggga gcaagacgttt tccggttaaa tattgcatc taaaccctt
1921 gtaactgttgcta atatatagc gacagtttt attgttcatgt atgatatatt tttataattttg
1981 gcgatgtaac atcagagatt ttagacacaca agctggtcatt agtaggtaaa tcgacttttt
2041 gctgagttga aggtcagct cgagtccac ctgacgtctta agaaaccatt attatcatga
2101 cattaaccta taaaaatagg cgtatcacga gccagaattt cagataaaaa aaatccttag
2161 ttcttgtcctaa tgaattcgc ggtctttctcagagctgctttc ccaacctgaa
2211 agcgcaacct gacaggtttc ccgactggaa ctcgactggaa
2281 ttcttgtcctaa tgaattcgc ggtctttctcagagctgctttc ccaacctgaa
2341 ctttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccggc
tctccccgcg cgttggccga ttc
2401 cacatacagccagagcagc caattaatgt gatctgcttc actcattagg ccccccagggc
2461 cgcgagttga aaggtcgctcc gtacgaaggt acccagaccg ctaaactgaa aagttacgaca
tatcaaagagacagataagttcg taaagttcg
2521 ggtggaaggtttaagttcg taaagttcg
tataagttcg
tataagttcg
2581 ggtggtccggtccgcttctcgtcca cccggaaggt
ttttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccggc
tctccccgcg cgttggccga ttc
2641 gctgagttga aggtcagct cgagtccac ctgacgtctta agaaaccatt attatcatga
2701 ttcttgtcctaa tgaattcgc ggtctttctcagagctgctttc ccaacctgaa
2761 tccgacgccgctcgcgc gatctgcttc actcattagg ccccccagggc
2821 cggccttcct acgctgaagt taaaaccacc tacatggcta aaaaaccggt tcagctgccg
tccgacgccgctcgcgc gatctgcttc actcattagg ccccccagggc
2881 ttctgtacttc acgctgaagt taaaaccacc tacatggcta aaaaaccggt tcagctgccg
tccgacgccgctcgcgc gatctgcttc actcattagg ccccccagggc
2941 ggtggtccggtccgcttctcgtcca cccggaaggt
ttttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccggc
tctccccgcg cgttggccga ttc
3001 ggtggtccggtccgcttctcgtcca cccggaaggt
ttttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccggc
tctccccgcg cgttggccga ttc
3061 ggtggtccggtccgcttctcgtcca cccggaaggt
ttttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccggc
3121 tgctagtgta gatcgctact agagccaggg atcaaataaa acgaaaggct cagtcgaag

3181 actgggcctt tcgtttttac tgggtggtgt cggctaacgc tctctactag agtcacactg

3241 gctcactttc ggggtgggct ttgctgtttt ata

//
C.2.4 Circular Assembly Product (in Kanamycin Backbone)

LOCUS pSB1K3-J04450 3273 bp ds-DNA circular 21-APR-2015

DEFINITION .

FEATURES Location/Qualifiers

 stem_loop 30..64
 /label="Stem loop"

 CDS 2431..3136
 /label="E1010"

 misc_feature 3240..3259
 /label="B0012 Stem-loop"

 primer_bind complement(157..176)
 /label="Verification reverse (VR) primer binding site"

 gene 2205..3273
 /label="BBa_J04450"

 misc_feature 1..21
 /label="DNA: BioBrick suffix"

 misc_feature 2183..2204
 /label="Biobrick Prefix Standard (RFC10)"
terminator 3233..3273
/label="B0012"

misc_difference complement(1880..1880)
/label="Silent Mut: G→C mutation to remove XhoI site"

terminator 3145..3224
/label="B0010"

promoter 2205..2404
/label="R0010"

primer_bind 2067..2086
/label="Verification forward (VF2) primer binding site"

terminator 3145..3273
/label="BBa_B0015"

misc_feature 3248..3251
/label="B0012 Loop"

stem_loop 22..93
/label="E. coli his operon terminator"

misc_feature complement(2017..2060)
/label="repeat region misc"
misc_feature 3156..3199
/label="B0010 Stem-loop"

RBS 2413..2424
/label="B0034"

misc_feature complement(261..875)
/label="rep (pMB1) misc"

misc_feature 3176..3179
/label="B1010 Loop"

misc_feature 276..276
/label="ORI misc"

stem_loop complement(2143..2146)
/label="end of terminator"

stem_loop complement(2156..2175)
/label="Stem loop"

misc_feature 1..21
/label="Biobrick Suffix (RFC10)"

CDS complement(1097..1912)
/label="Kanamycin resistance marker CDS"
ORIGIN

```
1  tactagtac gcggcgctgca gttccggcaaa aaagggcaag gttgcaccac cctgcccttt
61  ttcttttaaa ccgaaagat tacttcgcgt tatgcaggct tcctcgctca cttgacgctt
121  ggctccggtgcc gttccggctgc ggccagcgcgt atcagctcac tcaagggcgg taatacggtt
181  atccacagaa tcaggggata acgcagggaa gcaatgtgta gcaaagaagg gcaaaaaagcc
241  cagagacggtt aaaaaaggccg cttggttggt gtttttccac aggtctccgcc cccctgagga
301  gcattagagc gcaagttgag gttggttgag gacgttgctg ttcttcggtt
361  atcagctcac tcaagtcaggt gcctacgcct ctgctcgtga cggatcctcag tccgtttcag
421  tgcagcccc gacggcctcgc ctttactcgcctc gtttctcctc tttttttcttc gttccggctgc
481  ctttctcacc ttaatcgcgct gaagttgagt ccaatagttc aggctggttg agtctacagttctg
541  gtttcgctgc ccgggttggg ggggtgggtg ctttttggg ggcctggtg gtttctcctc
601  atccgtccgg tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ttggtctgac agctcgagtc ccgtaatgc tctgccagtg ttacaaccaa
1021
1081
ttaaccaatt ctgattagaa aacactcatcg agcatcaaat gaaactgcaaa tttattcata
1141
tcaggattat caataccata tttttgaaaa agccgtttctct gtaatgaagg agaaaaaaaaactca
1201
1261
caggagccagt tccataaggat ggcaagatcc tggtatcggt ctgcgattcc gactcgttca
1211
1271
1321
1381
ttttacagc ggcaacagct ccgctctgca tcaaaacatc tccaatcaac aacacgtta
1441
ttcatcgtgt attgcgcctg agcgagacga aatagccgat cgctgttaaa aggacaaatta
1501
caaaaagga tcgaatgcag cgggccccag aacactgcca gcgtcatcaac aatatatataa
1561
cctgaatcag gatattcttg taatactctgg aatgctgttt tccgccccat ccaggttggg
1621
1681
tccgdcagcc agttagtct gaccatctca tctgtaaacat cattgcaaac gctaccttcca
1741
1801
cctgattgc ccgacattact ggcagcccat ttatacccat ataatgtaagc ggttcatgta
1861
gaatattaata cgccgctgga gcaagacgta ttttgctgaa tatgctcatg attttcaaat
1921
gtattactgt ttataagc acatggtttt atggctcatg atgatatatt ttatccttttg
1981
gcaatgtaac atcagagatt ttggacacca acgtgttctt gttgaataaa tcaactttt
2041
gctgagttga aggatcgagtc gcagttcaca cttgagctctta agaaaccatt attatcatga
2101 cattaaccta taaaaatagg cgtatcacga ggcagaattt cagataaaaa aaatccttag
2161 ctttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaattc cgcgctggaa
2221 tctccccgca cgtggccgga tcattaatgt cagctggcac gacaggtttc ccgactggaa
2281 agccgggcatg gagcgcacag ccataaatgt gacagcagtc actcattagg cacccccaggc
2341 tttaacatttt atgtctccgg tctgtatgtt gtggaggaatt gtaggcggat aacaatttca
2401 cacatactag agaagagaga gaaataactag atggctcctct ccaagacgt tatcaagaaag
2461 ttcatgcgttt ctaaatgtcc gttgaaaggt tccgtaaccg gtcacagagtt cgaatcga
2521 ggtgaaggttg aaggtcgtcc gtcaggaaggt acccagaccg ctaaactgaa aagttacaa
2581 ggttggtcgcg tgcgtttcgc ttggacacac tgtcctccgg aggctggtaag caagttcaga
2641 gcttgagttta aacacccggc tcgctctccc cgtctacctga aaggtgctgtg atccggcaggt
2701 ttcaaatggg aacgtgttat gaaacctggaa gacggtgttg tggttaccgt taccagggac
2761 tcctccctgc aagacggtgta gctcatctac aagtttaaac tgggtctgat caacttcccg
2821 tccgaacggtc cggattgca gaaaaaaccc atgggagtgg aagcttccac cgaacgtatg
2881 tacccggaag acggtgctct gaaaggtgaa atcaaaatgc gttcgaact gaaagacggt
gtctacag acgcctgagt taaaaaccac tacatggcta aaaaaaccgg tcaagctgccc
2941 ggtgctacag acgcctgagt taaaaaccac tacatggcta aaaaaaccgg tcaagctgccc
3001 ggtgttaaca aacccgacat ccaactggac atcacctccc acaacggaag ctacaccatc
3061 gttgaacagt acgaacgctgc tgaaggtctg tcaaccaccc gtccttaata acgtgatag
3121 tgctagtgta gatcgctact agacccaggc atcaaataaa acgaaaggtc cagtcgaaag
3181 actgggcctt tcgttttatc tgtttgttgt cggtgaacgc tctctactag agtcacactg

3241 gctcaccttc gggggggcct ttctggtttt ata

//
C.2.5 2-way Linear Product

LOCUS 2-Way Linear Product 1050 bp ds-DNA linear 27-JUN-2015

DEFINITION .

FEATURES Location/Qualifiers

misc_feature 120..141

/label="Biobrick Prefix Standard (RFC10)"

misc_feature 1..13

/label="exda22 5'overhang"

misc_feature 1..381

/label="2WL-Promoter"

misc_feature 354..1049

/label="2WL-BCP"

misc_feature 354..381

/label="2WL-overlap"

promoter 142..341

/label="R0010"

primer_bind 448..469

48
/label="pSBamil_for"

stem_loop complement(80..83)

/label="end of terminator"

CDS 368..1036

/label="amilCP"

misc_feature 354..365

/label="exda12 5'overhang"

stem_loop complement(93..112)

/label="Stem loop"

misc_feature complement(371..381)

/label="exda23 5'overhang"

RBS 350..361

/label="B0034"

ORIGIN

1 TGAAGGATCA GCTTCTAAGA AACCATTATT ATCATGACAT TAACCtataa aaataggcggt

61 atcacgaggc agaatttcag ataaaaaaaa tccttagtt tcgcttaagga tgatttctgg

121 aattcgcggc cgcttctaga gcaatacgca aaccgcctct ccccgcgcgt tggccgattc

181 attaatgcag ctggcacgac aggtttcccg actggaaagc gggcagtgag cgcaacgcaa

49
241 ttaatgtgag ttagctcact cattaggcac cccaggttctt acacgtttaag cttcgggttc
301 gtatgtttgtg tggaaatttgg agcggaataac aatttcaCAC ATACTAGAGA AAGAGGGAGAA
361 ATACTAGATG AGTGTGATCG CTAAACAAAT GACCTACAAG Gtttatagtgc caggcacggt  
421 caatggacac tactttgagg tcgaaggcga tggaaaggt aagccttacg aggggagca  
481 gacggtaaaag ctcaactggta cttaaggcccag acctctgcca tttgctttggg atatatattatc  
541 accaccagtgt cagtacggaa gcatacatt cacaagtac cctgaagaca tcctgacta  
601 tgtaaagcag tcatttccgg agggcttacat atgggagagg atcatgaact ttgaagatgg  
661 tgcagttgtgc actgtcaagca atgattcctcag catccaggggc aactgttcttc tctaccatgt  
721 caagtctctct tgtttgagaac ttcctctcctct cggacctgtc atgcagagaaga agacacagg  
781 ctgggaaccc aacactgagc gtctctttggc acgagatgga atgctgtctag gaaacaactt  
841 tatggctctgt aagtaagag gagcggtcag atatttattgt gaattttaata ctactttgaa  
901 gcggcagaga cctgtgaaga tcactatgtt gaccgcaaac tggatgtaac  
961 caatcacaac aaggattaca ctccggttga gcaaggtgaa atttcatG CAGCCAAACC
1021 TGTGGTGCGCC TAATAATCT AGAGCCAGGC

//
C.2.6 pUN Plasmid

LOCUS T5-J23100-modBCP-GERC 4348 bp ds-DNA circular 10-FEB-2015

DEFINITION .

FEATURES Location/Qualifiers

  terminator complement(1813..1866)
  /label="putative terminator"

  misc_RNA 244..250
  /label="cleaved 5'UTR"

  promoter complement(3771..3799)
  /label="AmpR promoter"

  misc_feature 1275..1314
  /label="UNS9"

  promoter 383..417
  /label="J23100 (strong promoter)"

  terminator 3910..4067
  /label="rrnB terminator"

  misc_feature 2086..2915
/label="p15A origin"

terminator complement(4255..4295)

/label="Sal2 terminator"

misc_binding 2754..2765

/label="Bsp24I site"

misc_binding 1907..1912

/label=""

terminator 4182..4226

/label="RNAI terminator"

misc_feature 244..318

/label="Riboj"

primer_bind 119..158

/label="UNS7"

misc_feature complement(1125..1164)

/label="UNS5"

terminator complement(1441..1483)

/label="L17 terminator"

CDS complement(2920..3729)
/label="KanR"

terminator 1328..1381

/label="R2-17 terminator"

terminator 41..118

/label="B0055 Terminator (NCBI:AY643800)"

misc_feature 319..358

/label="UNS6"

enhancer 359..382

/label="Full UP Element"

misc_feature 204..243

/label="UNS4"

misc_feature 1..40

/label="UNSX"

promoter 159..203

/label="T5 promoter"

CDS 456..1124

/label="modified amilCP CDS"
1 ccaggataca tagattacca caactcggag cccttccacc aaggaatatt cagcaattttg
61 cccgtgcccag agaaagggccc acccgtaagag tgagccagt gatgtgatttg ctacgtaaca
121 agacgtggtc tctgacatatt ccgctactga actactcgTC ATAAAAATT TATTTGCTTT
181 GTGAGCGGAT AACAATTATA ATActgacct cctgccagca atagtaagac aacacgacaa
241 gtcagctgtc accggatgtg ctttcgggtc tgatgagttcg tgagggacag aacagatctct
301 acaaaaataatt ttttttaaCT GTTTGCCTGC CACCTAAGAA TACTCTAGG TCACATACGG
361 AAAATTTTTT TAAAAAATTT ACTTTTACGC TAGCTCAGTC CTAGTTATTA TGCTAGCTAC
421 ATCCAAATCGC CACTCAAATA AGGAGCACGT AAAACATGAG CTGTTATCGCT AAAAATAGA
481 CCTACAAAGGT TTATATGTCG GCCACGGTCA ATGGACACTA CTTTGGGTC GAAGCCGATG
541 GAAAAAGGTAA GGCCTACGAG GGGGACAGA CGGTAAGCTC CACTGTCACC AAGGGCGGAC
601 CTCTGCTATG TGCTTGGGAT ATTTTATCAC CACAGTGTCA GTACGGAAGC ATACCATTCA
661 CCAAGTGACC TGAAGACATC CCTGACTATG TAAAGCAGTC ATTCCCGGAG GGCTATACAT
721 GGGAGAAGGAT CATGAACTTT GAAGATGGTG CAGTGTGTAC TGTCAGCAAT GATTCCAGCA
781 TCCAAAGGCAA CTGGTTTTCAC TACCATGTCA AGTTCTCTGG TTTGAACCTTT CCTCCCAATG
841 GACCTGTCAT GCAGAAAGAG ACACAGGGCT GGGAAACCAA CACTGAGCGT CTCTTTCGAC
901 GAGATGGAAAT GCTGCTAGGA AACAACTTTA TGGTCTGTGA TTAGAAGAAGA GCAGGTCACT
961 ATTTGTGTGA ATTTAAAAACT ACTTACAGGA CAAAGAAGCC TGTGAAGATG CCAGGGTATC
1021 ACTATGTGGA CCGAAACTTG GATGTAACCA ATACAAACAA GGATTACACT TCAGTTGAGC
1081 AGTGTGAAT TTCCATTGCA CGCAAACCTG TGGTCGCCTA ATAATACTTAA CGGACTTGAG
1141 TGAGGTGGTA AAGGGAGTTG GCTCCTCGGT ACCAAATTCC AGAAAAAGGG CCTCCCGAAA
1201 GGGGGGCTTT TTTTCTTTTT TTGGCCGGAG ACCAGAAACA AAAAAAGGCC GCGTTAGCGG
1261 CCTTCAATAA TTGGGTTCCT TATCATCTGG CGAATCGGAC CCACAAGAGC ACTGtcgaga
1321 aggacacggt taatactagg cctgtctggct ggtaatcgcc agcagggcttt ttatatatttt
1381 ggagagggaa gctatgaaaa aactaacttt tgaattcctg ttcaccacac atcagctctg
1441 aagcaacgta aaaaaaccgc cccgcccgcgg ttttttttt aacgtagtat ccccaacattt
1501 ctacaatagc tggccttttaa taatcttaga aaatgaaggg aagttccttt tcttaattttg
1561 gataaggaac ttcttatagg agtcgaataa ggccacaca aaggttactc taaatgcata
1621 ataaatactg ataataacttt atagttttgtatatatgg tacatgtata
1681 attttgatat caaaaactga ttttcttttt ttttttcttt gcacatgtata
1741 ctttaacaaa ctgaaatat gttatatata cttatcata ccccataaata gatagttta
1801 attatatgggt tcccatcaac gaaaaagcag cgtatctttt ttaaagttcg cacagtttaa
1861 tccttatttta aggttaata attetcata atcaagcagc ggcagagct cccctttaata
1921 ttgccacaaa tgcctttttc ctaaactctt cccaaaaaaa aaccgccgga gcgggttttt
1981 tacgttattt ggcgaattaac gattactcgt tatcagaaacc gccggattg cctgccaattt
2041 cccccctc cccgcgtgcgc tgggtctttc ggggttggga cccccagccg cagggaggttt
2101 atacagtgttt gactatgtgag ggtgactctg aaggttcttc tgtgacagga
gaaaaaaggc tgcaccggtg cgtcagcaga atatgtgata caggatatat tccgcttcct
cgctcactga ctcgctacgc tcggtcgttc gactgcggcg agccgaatg gcttaagcag
gggccggaga tttcctggaa gatgccaagga agataatta cagggaagtg agagggcgcc
ggaaagcc gtttttccata ggtctcgccc ccttgacaag catcagaaaa tctgacgctc
aatcagtggt ggggaaacc cgacagact ataaagatac caggcgtttt cccctggccg
tccctcggtg cgctctctgt ttctctgctt tccgcttcct tccggttacc ggtgcttata
gccgcttttc tctcatttca cgctctacac tcagttccgg gtaggctagtt gcgtcacaagc
tggactgtat gcacgaacc cccgttcagt cgcaccgcct ggccttatcc ggttaactatc
gttggagtc caacccggaa agacatgcaa aagaccact ggcacgaccc actggaatt
gtttgagtc ccggcggtta aaggttggtg gctacgagaga
ttcgccaaa aaacgcccctg caaccgcgtt tttcgttttt cagagcaaga gattacgccg
agacaaaaac gatctcaaga agatcatctt attaagcttt tataaaaaact cattacgcact
caatgaaaaa tcataattnt tcatacaggg attaattttt ccatatattt gaaaaagccg
tttctgtaat gacggagaaa actccgcgg gcagttccat agattggcaag gatcttgata
tcggtctgcg atccgactc gtccacactc aataacacct attaattttc cctcgtaaa
tagttatgc attttttttc agactttgtaaacagcctagccgtcatctaa
3241 atcactcgca tcaaccaaac cgttttcat tcgtgattgc gcctgagcgc gcgcgaaatac
3301 gcgatcgctg tttaaaggac aattaccaac aggaatcgag tcgacccgac gcaggaacac
3361 tgccagcgca tcaacaatat ttttcacctga atcaggatat tcttttaata cctggaacgc
3421 tgttttttccg gggatcgccag tgggtgttaa ccatgcctca tcaggagtaa gcrggatctg
3481 cttgatggta ggaagtgccg taatattccgct cagccagtttg aattacaaac aggaatcgag
tgcaaccggc gcaggaacac
3541 aacatcattg gcacatagctc atttcgccatg ttccagaaac aactcttgcc gcataagggtt
3601 ccctataaa gctagcattc ttcctccatat ttaatcgcggc cttgcacggag cccggttatatat
3661 ccctctaaaa tccagtacaa tgcctggaatt taacgccgcccc cctccggatata
3721 tattattttattcttcttta ttccatattta ttgaaaccatt tataaggatttt agggtctcatttatcattatta ttgaaaccatt tataaggatttt agggtctcatttatcattatta ttgaaaccatt tataaggatttt agggtctcatttatcattatta ttgaaaccatt tataaggatttt agggtctcattatatcattatta ttgaaacg
4321 catccggca aagaagcatac aaggtttt

//
C.2.7 Pfu expression plasmid for ex vivo PCR

LOCUS pUN-rhaBp-Pfu 5887 bp ds-DNA  circular  27-JUN-2015

DEFINITION .

FEATURES Location/Qualifiers

-10_signal 280..285
/label="-10 region"

primer_bind 119..158
/label="UNS7"

RBS 302..335
/label="synRBS (60K TIR)"

terminator complement(2980..3022)
/label="L17 terminator"

CDS complement(4459..5268)
/label="KanR"

protein_bind 159..180
/label="CRP-cAMP binding site"

misc_binding 4293..4304
protein_bind 244..260

/promoter 159..301

/misc_feature complement(2664..2703)

/CDS 336..2663

/terminator 5721..5765

/protein_bind 189..210

/promoter complement(5310..5338)

/terminator 5449..5606

/misc_binding 3446..3451
misc_signal 264..269

/protein_bind 211..227

/termi

ator complement(3352..3405)

/label="putative terminator"

ORIGIN

1 ccaggataca tagattacca caactccgag cccctccacc aaggaatatt cagcaatttg

61 cccgtgccga agaaaggccc acccgtgaag gtgagccagt gagttgattg ctacgtaaca

121 agacgctggc tctgacattt ccgctactga actactcgcg gtgagcatca catcaccaca

181 attcagcaaa ttgtaacat catcagtttc atctttccct ggttgcaat ggcccatttt

241 cctgtcagta acgagaagct cgcgtatattc ggcgtttttt tgaactggttc taatgaaatt

301 cAATAAAAGCA AGCAAACACT ATAAGGAGTC CGCACATGAT CCTGGATGTC GATTACATCA

361 CCGAAAGAAGG CAAACCGGTG ATCCGTCTGT TCAAAAAAGA AAATGGTAAA TTCAAGATAG

421 AACACGATCG CACCTTTCGC CCTTATATTT ATGCACTGTT ACGCGATGAC AGCAAAATCG

481 AAGAAAGTCAA AAGAGTACCC GGGGAACGCC ACGGTAAAAT CGTGCGCATT GTTG

541 AAAAAGTGGA GAAAAAATTC CTGGGCAAGC CAATTACTGT CTGGGAGCTC TACCTGGAAAC
601 ATCCGCAGGA TGTGCCGACG ATTCGTGAAA AGGTGCGTGA GCATCCCGCG GTGGTGGATA
661 TTTTTGAATA TGACATTTCCG TTTGCCAAAC GGTATCTGAT TGATAAAAGGG CTGATCCCGA
721 TGGAAGGTTA AGAGGAACTG AAAATTCTGG CATTTGATAT CGAAACGCTG TATCACGAAG
781 GTGAGGAGTT CGGCAAAAGCC GCATCATCTCA TGATCAGCTA CGCTGATGAA AATGAAGCAA
841 AAGTAATTAC CTGGAAAAAC ATCGACCTGC CGTATGTCGA AGTTGTTTTC TCAGAGCGCG
901 AAATGATTTA ACGCCTTTTTA GGAGGTATTC GCGAAAAAGA CCCAGACATC ATTGTCACTT
961 ACAACGCTGA CAGTTTGGT CCCTCCGTACC TTGCAGAAGCG TGCAGAAAAA CTCGGCATTAT
1021 AACTGACCAT TGGTCCGTGAC GGCAGCGAGC CAAAAATGCA GCCTTATGGGC GATATGACCG
1081 CGTAAGGAAGT AAAAGGCGGT ATCCCATTTTG ACCTTTATCA TGTTATCACT CGCAGACATC
1141 ACCTGCCAAC ATACACCCCT GCAGCGGTTT ATGAAACGATT TTTCCGTAAG CCCAAGAAAA
1201 AAGTGTATGC CGATGAAAAT TCGCAAGCGT GGGATCCCGG GCACATCTG TAAACGTTGG
1261 CCAAATACAG CATGGAAGAT GCCAAAGCTA CTTACGAATT GGGAAAAGAG TTTTTGCCAA
1321 TGGAGATTCA GCTGAGCC GCTGGATTCA GCTGGTTGGTC AGCCGCTGTG GGATGTATCC CGTTCTTCGA
1381 CGGGTAACCT GGTGGAATGG TTTCTCTTGC GTAAGGCTTA TGAGCGTAAC GAAGTGGCGC
1441 CGAACAAACC TTCTGAAGAA GAGTATCAGC GCCGTTTGC CGAGAGTTAT ACCGGTGGTT
1501 TTGTGAAGAA ACCGGAATGG GAGATTATGG AAAACATTGT CTA TCTCGAC TTCCGCGCGC
1561 TGTATCCGTG TATTATTATC ACCCAAACCG TGTCACCGGA TACCCTGAAC CTCGAAGGCT
1621 GTAAAAATTA CGATATTGCC CCGCAAGTCCG GTCACAAATT TTGCAAGAT ATCCCCGGAT
641 TTATTCCTTC GCTGCTGGGG CATCTGCTGG AAGAGCGGCA AAAAATTAAA ACGAAAATGA
1681 AAGAAACACA AGATCCGATT GAGAAGATTT TGCTCGATTA TCGCCAGAAA GCAATAAAAAT
1741 TGCTGGCGGAA CAGCTTCTAC GGCTACTACG GTTATGCGAA AGCCCGCTGG TATTGTAAGG
1801 AGTGCAGCAG AAGTGCTCAG GCTCTGGGGCC GCAATATAT TGAACCTGGTA TGGAAAGAGC
1861 TGGAAAGAGA GTTTGGTTTTT AAAGTTCTTT ACATCGACAC CGATGGTCTG TACGCCACGA
1921 TTTCCGCGGG CGAAAGCGAA GAAATTAAGA AGAAAGCAGC TGAATTTGTC AAGTATATCA
1981 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2041 TTCCCGGCGG CGAAAGCGAA GAAATTAAGA AGAAAGCAGC TGAATTTGTC AAGTATATCA
2101 TTGGTCACCAG CAAAAGTTAT GCTGTGATTG AGCCAGAAGG GAAAGTCATT ACCCGCGGCT
2161 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2221 AAACCATCTT AAAACACGGC GACGTTGAGG AAGCCGTTGCG CATCTATGAA CAGATTACGC
2281 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2341 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2401 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2461 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2521 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2581 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2641 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2701 TTTTTAAAG TCTTTTACATCGACAC CGATGGTCTG TACGCCACGA
2761 GTCCGGGAGA CCAGAAACAA AAAAAAGCGG CGTTAGCGGC CTCTCAATAAT TGGGGTCCTT
2821 ATCATCTGGC GAATCGGACC CACAAGAGCA CTGtcgagaa ggacacggtt tatactaggc
2881 ctgctgggctg gtaatcgccca gcagggccttt ttatattttgg gagagggagag tcagaaaaaa
2941 actaactcttt ggaattcggc cttcaccaca tcagctctga aaggaagctgtaa aaaaaaccgc
3001 cccggccggt tttttttatac ccgtagtatc ccacacttct cttataatc gctcttaatt
3061 aatctgagaa aatgaagggg aatgtttagct aatagcctaa taataatcctgcttaacatctta
3121 gtcgaataag ggcgacacaa aaggtattct aatagcctaa taaatctga taacatctta
3181 tagtttgtat tatattttgt attatcgttg acactgtaa ttttgcctag aataagacact ctatatagga
3241 tttcccttta taattttctga gattttatct tttataacttct cttttacaac tagaatatttt
3301 gtatataacaa aatactcata aataagatagc aatagcttta aatataggtg gacgtcaatc
3361 aaaaaagcact atactttatt taaaagtgcgt tgggttcctt ctttttacatt ggttaaatct
3421 ttctcatata tcaagcaaaa tgacacgccc cctattaatat tctgacataat gccttttccc
3481 taaactcccc ccataaaaaa aacccgacgaa gcgggttttt actttacttg cagatttaacg
3541 attactcggg atcagagagcaccaggctgc cctgacgcttc cctactgctg cgcgtggtcct
3601 cggcgtttgac gctgcgggac ctcagcgtta gcggagtgtg agtactctat catgttgggac
3661 actgtgagg ggtgcagtag cgtgtcttcg atggcaggag aaaaaagtct gcaccacgtgac
3721 gtcagcgaata aaggtgataat ccgcttcctc gctctagac ctcgctagctt gacctgaatgttgggac
3781 cggcgtttgac actgcgggaca gcggaaaatgg cttacgaacg gggcgggagat ttcttggg
3841 atgccaggaa gatacttaac agggaagtga gagggcgcgc gcaagccggt ttttccatag
3901 gcctccgcgccc ctggacgaca atcagagaaat ctgacgtgtaat ctcagggggt gcgaaacccc
3961 gacaggacta taaagatacc aggcggttccc ccctggcggc tccctcgtgc gcctctcctgt
4021 tcttcgccttt cggtttacgg gttgtcattccc gctgttatgg ccgctttgtg ctcattccac
4081 gcctgacact cagttcgggg taggcagttc gtcctcaagct ggactgtatag cagcaaaaaa
4141 ccgttcatgc cgacggtgctg gccttatccg gtaactaagc tcttgagttcc aacccggaaa
4201 gacatgcaaa agcaccactg gcacgcgttcc ccctggcgagc tccctcgtgc gctctcctgt
4261 aagtcatgcg ccggttaagg cttaactgaa aggcattggt ttggtgactg cgcctcctca
4321 agccagttac ctgctttcgg agacgttggta gtcctgagaga cccctcctccag cgcctcctgc
4381 aagccggttt tttctttttt agacgcagag agttctgggtg gcctgagaga ccttcggaaa accgcctcgc
4441 gatcatctta tttaagttttt agaaaaactc atccagcagtc aataggaact gcacattttatt
4501 catatcagga ttatataactcatatattttg aaaaaagccgt ttctgtaatg aagggaaaaa
4561 ctcacccgagagcagttcata gatggccagatcctctgttgcgat tttttgtgctcaggtatg aaggagaaaa
4621 tccagagcctca atacatgata cctatccccc ctcgctaaaa ataaggttat caagtgagaa
4681 atcaccatga tgacgacat aggtggccat aatccgggtg aaggccggaa atgttatgca ttttttttca
4741 gactttgtca acaggcagcg cattacgctc gtcataaaaataccccgttccagcata ccaacgaccc
4801 gttattcatt cgtgattgcaagctcgacggag cggaaatacg cgattacggtgt taaaagggaca
4861 attacaacca ggaatcaggt gcaacgccggc caggaacact gcacgcgcat caacatatt
4921 ttcacctgaa tcaggatatt cttctaatac ctggaacgct gtttttccgg ggatcgcagt
4981 ggtgagtaac catgcatcat caggagtacg gataaaatgc ttgatggtcg gaagtggcat
5041 aaattcgcgtc agccagttta gtctgaccat etcatctgta acatcattgg caacgttacc
5101 tttgccatgt ttcagaaaca actctggcgc atcgggcttc ccatacaagc gatagattgt
5161 cgcacctgat tgcagccgacat tatkcgagc ccatattata ccataaatc cagcatccat
5221 gttggaattt aatcgcggcc tcgacgtttc cccggtaata tgggtcatat tcttcttttt
5281 tcaatattat tgaaggttta ttgtcctcag tgcgtgttaa caacgtgatca tatttggaatg
5341 tatatttagaa ataataacaa taggggtcag tggtaacaacc aattacaaa attctgaacat
5401 tatcgcgagc ccattttatac ctgaatatgg ctcataacac ccctgttttg cctggcggca
5461 gtagcgcggt ggtccccacct gaccccctgc cgaacccagc agttgaacgc cgtagcgccg
5521 atggtagtgtg gggacctccc catgcagagag tagggaactg ccagccatca aataaaaacga
5581 aaggctcagt cgaaagactg ggcctttcgc ccgggctaatt tagggggtgt cgcccttatt
5641 cgacactata gggaaatttc tatttcttag aaggtatatg aacatttggta ggggggtctg
5701 agcggcgccga aagggaaag atccggcataa aacaccaccg tttgtagcgg tgggggggtt
5761 gtttgatcag acaatttctg taacgcgtca caataagcgt aaaaaaccgc ggcaatgccac
5821 gttttttaa tgagaaattt tacctgctgt agccgccacc atccggcataa gaagcataca
5881 aggcttt

//