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Figure IV.2: Morphine 
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Figure IV.3: Ketoprofen 
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Figure IV.4: Bupropion 
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Figure IV.5: THC 

 
 



106 

 

Figure IV.6:  Gabapentin 
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Figure IV.7: Mechanical Allodynia 
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Chapter V: Discussion 

Pain-related depression of behavior. Chapter II studies were conducted to test the 

hypothesis that depression of behavior in rats caused by IP acid as an acute visceral noxious 

stimulus is mediated by depression of mesolimbic dopamine release in nucleus accumbens.  In 

agreement with previous studies (Kwilasz et al, 2012; Negus et al, 2010b; Negus et al, 2012; 

Pereira Do Carmo et al, 2009), data presented in Chapter II showed that IP administration of 

dilute lactic acid served as a noxious stimulus to produce an analgesic-reversible depression of 

ICSS. This study extended previous findings by using a higher intensity noxious stimulus (5.6% 

vs. 1.8% lactic acid, see below), and despite use of this higher intensity stimulus, both ketoprofen 

and morphine retained efficacy to block acid-induced depression of ICSS.  These results also 

agree with previous studies showing pain-related and analgesic-reversible depression of other 

behaviors including feeding (Kwilasz et al, 2012; Stevenson et al, 2006), locomotion (Cobos et 

al, 2012; Stevenson et al, 2009), burrowing (Andrews et al, 2012), and positively reinforced 

operant responding (Martin et al, 2004).   

Pain-related depression of mesolimbic DA release. As shown in Chapter II, acid-

induced depression of ICSS was accompanied by acid-induced depression of NAc DA levels.  In 

this regard, effects of the acid noxious stimulus were similar to effects of the kappa agonist 

U69593, and as will be discussed further below, that similarity provided one rationale for the 

hypothesis that acid effects were mediated by activation of the endogenous dynorphin/KOR 

system.  Before addressing that issue, though, it is relevant first to consider the relationship 

between the time course and potency of neurochemical and behavioral effects produced by IP 

acid and U69593.  First, regarding time course, both acid and U69593 produced an initial period 

of declining DA levels followed by a later period of relatively sustained but reduced DA levels.  
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genes that are implicated in depressive behavior but that would be expected to be minimally 

sensitive to KOR blockade [e.g., BDNF; see (Berton et al, 2006)].   

 

Expression of chronic pain-depressed behavior and the role of endogenous kappa 

opioid system activation in rats. 

Chapter II evaluated expression and mechanisms of behavioral depression produced by an 

acute pain stimulus.  However, clinically relevant depression of behavior by pain is usually 

associated with more chronic inflammatory or neuropathic pain states.  Accordingly, Chapter III 

evaluated the hypothesis that inflammatory and neuropathic challenges thought to produce 

sustained or chronic pain would also produce sustained depression of behavior.  In doing so, a 

comparison of CFA and formalin were made, and a variety of dependent measures (physiological 

and operant) were evaluated. 

CFA-and formalin effects on paw width, mechanical allodynia and body weight.  

The CFA and formalin effects reported in Chapter III agree with previous studies in rats that 

examined the time course of paw swelling and/or mechanical sensitivity after intraplantar CFA 

(Stein et al., 1988; Chaplan et al., 1994; Grace et al., 2014) or formalin (Fu et al., 2001; Fu et al., 

2000; Grace et al., 2014).  For example, (Fu et al., 2001) demonstrated that a 5% formalin 

injection into the hindpaw of rats produced both mechanical and thermal allodynia for up to four 

weeks following administration. Similarly, (Grace et al., 2014) found that bilateral injection of 

either CFA or formalin into the hindpaw resulted in mechanical allodynia that lasted up to seven 

days.  Transient weight loss in CFA-treated rats, but not formalin-treated rats, is also consistent 

with previous studies.  For example, 100µl CFA administered to the tail-base in rats produced a 

magnitude and time course of weight loss similar to that reported here (Rofe et al., 1990), 



114 

 

whereas rats gained weight normally for six weeks after unilateral intraplantar injection of 50 µl 

5% formalin (Vierck et al., 2008).       

Differential effects of CFA and formalin on ICSS.  Although CFA and formalin 

produced similar effects on mechanical allodynia as a measure of pain-stimulated behavior, they 

produced distinct effects on depression of ICSS as a measure of pain-depressed behavior.  The 

greater and more sustained efficacy of formalin to depress ICSS may be related to its induction 

of necrosis in the paw, neuropathy of primary afferents, and/or microglial activation at the level 

of the spinal cord (Winter and McCarson, 2005; Lin et al., 2007; Berta et al., 2014), and we are 

actively investigating the role of these formalin effects in formalin-induced depression of ICSS. 

However, regardless of mechanism, these results extend the range of pain-related stimuli that 

have been found to depress brain reward function as assessed with ICSS in rats, and further 

identify bilateral intraplantar formalin as the stimulus producing the most sustained depression of 

ICSS so far reported.  For example, previous studies have shown transient (1-2 hr) pain-related 

and analgesic-reversible depression of ICSS by IP injection of dilute acid (Do Carmo et al., 

2009; Negus, 2013), and ICSS was also depressed for up to three hours by intraplantar CFA 

(present study) and for up to two days by paw incision (Ewan and Martin, 2014).  In contrast, 

effects of bilateral intraplantar formalin in the present study lasted for at least 14 days. Moreover, 

the poor efficacy of unilateral intraplantar formalin to alter ICSS in this study agrees with the 

finding that a unilateral spinal nerve ligation-model of neuropathy also failed to alter ICSS at any 

time (Ewan and Martin, 2014).   

The present evaluation of CFA and formalin effects on ICSS also warrant comparison to 

CFA and formalin effects on some other metrics of pain-related behavioral depression and/or 

negative affective states.  For example, unilateral treatment in rats with intraplantar CFA doses 
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similar to that used here depressed diurnal exploratory activity for four weeks (Larsen and Arnt, 

1985) and burrowing for 10 days (Andrews et al., 2012); however, pain-related changes in facial 

expression or place conditioning were apparent for only one day (Sotocinal et al., 2011; Okun et 

al., 2011), and neither nocturnal locomotor activity nor wheel running were significantly affected 

at any time (Larsen and Arnt, 1985; Grace et al., 2014).  Bilateral CFA injection, such as that 

used in the present study, did depress both nocturnal locomotor activity (for four weeks) and 

wheel running (for two days) in rats, and studies in mice have also reported a requirement for 

bilateral CFA treatment to produce transient depression of wheel running (Cobos et al., 2012).  

Taken together, these results indicate that CFA has different efficacies and time courses to 

produce different pain-related behaviors, and ICSS in rats is relatively resistant to CFA effects.  

Fewer studies have examined effects of formalin in procedures of pain-related behavioral 

depression and/or negative affective states.  Perhaps of greatest relevance to the present study, 

bilateral intraplantar formalin produced avoidance for six weeks of noxious thermal stimuli in an 

operant-escape procedure (Vierck et al., 2008).   Intraplantar formalin has also been shown to 

produce pain-related changes in facial expression and place conditioning (Langford et al., 2010;  

Johansen et al., 2001; Xiao et al., 2013), but these effects were evaluated only for the first hour 

after formalin administration, and more sustained formalin effects on these procedures have not 

been examined.  Lastly, in contrast to formalin effects on ICSS, bilateral intraplantar formalin 

administration had no effect on wheel running in rats (Grace et al., 2014).  This distinction is 

notable, because the failure of bilateral intraplantar formalin to alter either body weight (present 

study) or wheel running (Grace et al., 2014) provides evidence to suggest that ICSS depression 

by formalin could not be attributed to general behavioral impairment.  
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 Morphine reversal of formalin-induced depression of ICSS. The failure of morphine 

to significantly alter ICSS in rats after intraplantar saline treatment is consistent with previous 

studies showing little or no effect of these morphine doses on ICSS in opioid-naïve rats (Do 

Carmo et al., 2009; Negus et al., 2010b; Altarifi et al., 2012).  However, these same morphine 

doses significantly reversed formalin-induced depression of ICSS, consistent with previous 

studies showing that morphine also blocks acute depression of ICSS by IP acid (Do Carmo et al., 

2009; Negus et al., 2010a).  Moreover, the high potency of morphine to block formalin-induced 

depression of ICSS (effective at 0.32 mg/kg) is similar to the high potency of morphine to block 

acid-induced depression of ICSS (Do Carmo et al., 2009).  Reversal of formalin-induced 

depression of ICSS by the opioid analgesic morphine provides one source of evidence to suggest 

that this formalin effect may be related to sustained pain.    

In the present study, high morphine doses not only reversed formalin-induced depression 

of ICSS but also increased ICSS above original baseline levels.  Mechanisms responsible for this 

morphine effect are not currently known; however, the emergence of rate-increasing effects 

produced by these morphine doses after formalin treatment is similar to the emergence or 

enhancement of rate-increasing effects produced by regimens of prior morphine exposure 

(Altarifi and Negus, 2011).  Formalin treatment has been reported to promote endogenous opioid 

release (Kuraishi et al., 1984; Bourgoin et al., 1990; Zangen et al., 1998), and this raises the 

possibility that endogenous opioid release stimulated by formalin treatment had the effect of 

sensitizing rats to rate-increasing effects of subsequent treatment with the exogenous opioid 

morphine. 

NorBNI failed to reverse formalin-induced depression of ICSS.  Administration of the 

endogenous kappa agonist dynorphin or of exogenous kappa agonists like salvinorin A is 
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sufficient to decrease mesolimbic DA release and to depress ICSS in rodents (Yokoo et al., 1994; 

Carlezon, 2005; Todtenkopf et al., 2004; Negus et al., 2010b).  In addition, previous studies have 

shown that some non-pain stressors can increase central biomarkers for kappa opioid function 

and produce depression-like behaviors that can be blocked by kappa antagonists (Mague et al., 

2003; Chartoff et al., 2009; Bruchas et al., 2010; Van’t Veer and Carlezon, 2013).  These 

findings have suggested the possibility that activation of endogenous kappa opioid systems might 

also mediate pain-related depression of ICSS.  Accordingly, the present study tested the 

hypothesis that CFA and/or formalin might activate endogenous kappa opioid signaling and 

produce kappa antagonist-reversible depression of ICSS.  However, the present results do not 

support this hypothesis for four reasons.  First, neither CFA nor formalin significantly increased 

central PDYN or KOR mRNA levels.  Second, although this analysis may have failed to detect 

small but real changes in kappa biomarkers (a Type II error), there was no pattern for either a 

trend toward increased biomarker levels or a difference in CFA and formalin effects on 

biomarkers consistent with the difference in their effects on ICSS.  Third, CFA- and formalin-

induced changes in PDYN never approached the nearly two-fold increase in PDYN produced in 

rats exposed to the stress of a forced swim test (Chartoff et al., 2009).  Finally, the formalin-

induced decrease in ICSS was not blocked by the kappa antagonist norBNI, suggesting that any 

modest effects that formalin might have had on kappa biomarkers were not sufficient to produce 

a kappa receptor-mediated decrease in ICSS. 

The failure of norBNI, to reverse formalin-induced depression of ICSS suggested that 

non-kappa mechanisms were responsible for formalin-induced depression of ICSS. In effort to 

follow-up on these results, we subsequently characterized the pharmacological modulation of 

formalin-depressed by ICSS by drugs from different pharmacological classes to test possible 
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alternative mechanisms in Chapter IV. Endpoints in these studies consisted of classically used 

pain-stimulated (or reflex-withdrawal) dependent measures (e.g. threshold mechanical 

stimulation with von Frey filaments required to elicit paw withdrawal) in addition to pain-

depressed operant responding following acute and repeated administrations of each drug.   

Formalin-induced mechanical allodynia and depression of ICSS.  The effects of 

formalin on the production of mechanical allodynia, or hypersensitivity to a normally non-

noxious stimulus, were evaluated in this study, and the results obtained were consistent with 

previous studies employing a formalin dose of a sufficient intensity (Leitl et al., 2014; Fu et al., 

2000). Here, a dose of 5% formalin was sufficient to produce a hypersensitivity that remained 

present for at least 14 days. To further characterize the effects of formalin induced allodynia, we 

tested a range of prototypical and experimental analgesics. Pain-depressed operant responding of 

ICSS behavior appears to be sensitive to modulation by some noxious stimuli, but not all 

purported noxious stimuli or sub-chronic stimuli (Leitl et al., 2014a). In these studies, we used 

intraplantar formalin to decrease operant response rates; previous studies from our lab have 

shown formalin produced decreases in behavior that were reversed by doses of the mu opioid 

analgesic morphine at doses that did not alter control responding (Leitl et al., 2014a).    

Morphine effects.  Morphine is a clinically effective analgesic and agonist at mu opioid 

receptors. Morphine dose-dependently reversed both formalin-stimulated mechanical allodynia 

and formalin-induced depression of ICSS 7 days following formalin administration. This agrees 

with Chapter III results showing that morphine is capable of acutely reversing formalin-induced 

depression of ICSS on day 7 (Leitl et al., 2014a), and Chapter IV results extend on this finding 

by showing that morphine retained its effectiveness to block formalin-induced depression of 

ICSS during repeated morphine treatment. The effectiveness of the analgesic morphine to block 
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both formalin-stimulated mechanical allodynia and formalin-induced depression of ICSS is 

consistent with the interpretation that depression of ICSS by formalin is related to pain. 

Interestingly, doses of morphine (1.0 mg/kg) that were effective in reversing formalin-induced 

pain measures did not alter ICSS responding in control rats (intraplantar saline) to an appreciable 

(or statistically significant) degree. These results suggest formalin-treated rats may be more 

sensitive to mu opioid analgesic morphine than rats that are not in a purported pain-state. 

Moreover, the sustained effectiveness of morphine to reverse formalin-induced depression of 

ICSS during repeated morphine treatment is consistent with other evidence to suggest that 

morphine antinociception is resistant to tolerance in assays of pain-depressed behavior (Altarifi 

and Negus, 2015) and may also agree with evidence for sustained analgesic effectiveness of 

morphine in many clinical contexts (Harden et al., 2010; Morgan and Christie, 2011).  

Ketoprofen effects.  Ketoprofen is an NSAID, and NSAIDs are a class of analgesics that 

are defined by an ability to inhibit prostaglandin synthesis by blocking the COX enzymes 

necessary to produce prostaglandins (McQuay, 2007). NSAIDs, including ketoprofen, have four 

main pharmacological effects: anti-inflammatory, analgesic, antipyretic, and anti-thrombotic. 

Ketoprofen has previously been shown to block ICSS depression following acute delivery of IP 

acid (Leitl et al., 2014b), but was not sufficient to block ICSS depression following delivery of a 

sustained noxious stimulus. The failure of ketoprofen to block formalin-induced depression of 

ICSS or mechanical allodynia suggests that formalin is producing sustained depression of ICSS 

and mechanical allodynia through an inflammation-independent mechanism such as neuropathy; 

this is further corroborated in by weak efficacy of NSAIDs in the treatment of chronic 

neuropathic pain states in human clinical studies (De Leon-Casasola, 2013; Fornasari, 2012). In 
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sum, neuropathy, but not inflammation, appears to be the driving force behind formalin-induced 

depression of ICSS. 

Bupropion effects.   Bupropion is a DA/NE uptake inhibitor used clinically as an 

antidepressant (Semenchuk et al., 2001). Bupropion has also been shown to block acid-induced 

depression of ICSS (Rosenberg et al., 2013). In Chapter II, we showed induction of a pain-state 

resulted in a hypodopaminergic state in the NAc, and it has previously been shown that 

bupropion increases DA levels in the NAc (Sidhpura et al., 2007). The effectiveness of 

bupropion to also reverse formalin-induced depression of ICSS suggests that sustained formalin-

induced depression of ICSS may also involve a hypodopaminergic state.  Moreover, as with 

morphine, bupropion retained effectiveness during repeated administration, suggesting that 

tolerance does not develop to the antinociceptive effects of bupropion in this procedure. 

Bupropion was also able to dose-dependently reverse mechanical allodynia in addition to dose-

dependently reversing formalin-induced depression of ICSS 7 days following formalin 

administration. This study expands upon previous study showing that bupropion blocks a pain-

stimulated behavior (i.e. stretching) elicited by an acute, visceral noxious stimulus (lactic acid) 

(Rosenberg et al., 2013). These results are also in agreement with evidence demonstrating 

bupropion (and some other monoamine uptake inhibitors) have clinical efficacy to treat 

neuropathic pain (Finnerup et al., 2015; Semenchuk et al., 2001).  Interestingly doses of 

bupropion (3.2-10 mg/kg) that were effective in reversing formalin-induced pain measures did 

not alter ICSS responding in control rats (intraplantar saline) to an appreciable (or statistically 

significant) degree. These results suggest formalin-treated rats are more sensitive to the analgesic 

effects of the DA/NE inhibitor bupropion than rats that are not in a purported pain-state. 
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THC effects.  THC and other natural cannabinoids stem from the marijuana plant 

(Cannabis sativa), and THC itself is an agonist at cannabinoid 1 and cannabinoid 2 receptors 

(Axelrod and Felder, 1998). THC and other cannabinoid receptor agonists have been studied 

extensively with the intent of characterizing their potential therapeutic properties. Although the 

marijuana plant itself is widely used by humans, and although THC and other cannabinoids often 

appear analgesic in preclinical studies, there is poor evidence supporting its use in the clinic due 

to poor efficacy and high incidence of adverse effects (Beaulieu & Ware, 2007; Finnerup et al., 

2015; FASAM et al., 2005). In the studies conducted for this dissertation, THC was able to dose-

dependently reverse mechanical allodynia, a finding that agrees with previous studies that 

evaluated effects of THC on mechanical allodynia elicited by neuropathic manipulations 

(Brownjohn and Ashton, 2012)(Craft et al., 2013).  However, THC doses that blocked 

mechanical allodynia also decreased control (intraplantar saline) ICSS. Additionally, THC (1.0-

3.2 mg/kg) exacerbated formalin-induced depression of ICSS on day 7. Following repeated 

treatment of THC (1.0 mg/kg on Day 8-13), re-determination of the dose-response function did 

not reveal tolerance to the rate decreasing effects of THC on formalin-depressed ICSS, and 

formalin-induced depression of ICSS was exacerbated again on day 14, albeit at a slightly higher 

dose (3.2 mg/kg) than day 7. The apparent efficacy of THC on mechanical allodynia should be 

viewed with caution and in parallel with its inability to reverse pain-related depression of a 

positively reinforced operant procedure.  In particular, the similar potencies of THC to reduce 

mechanical allodynia, reduce control ICSS, and exacerbate formalin-induced depression of ICSS 

suggests that THC effects on mechanical allodynia reflect motor impairment rather than 

analgesia.  Furthermore, these results are in agreement with clinical data that suggests THC is 

generally not recommend as a first-line therapy in human patients based on a high number 
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needed to treat relative to the number of adverse events that are observed clinically (Finnerup et 

al., 2015).  

Gabapentin effects.  Gabapentin is used clinically as an anticonvulsant, and although its 

precise mechanism(s) of action remain a topic of research, it is generally thought binding to the 

alpha(2)delta subunit of voltage-gated calcium channels contributes to antinociceptive properties 

(Urban, 2005). Similar to THC, gabapentin was able to dose-dependently reverse mechanical 

allodynia while decreasing control (intraplantar saline) ICSS. Additionally, gabapentin 

exacerbated, or further reduced formalin-induced depression of ICSS on day 6. Following 

repeated treatment of gabapentin (32 mg/kg on Day 8-13), and re-determination of the dose-

response function, it did not reveal tolerance to the rate decreasing effects of gabapentin on 

formalin-depressed ICSS. The apparent efficacy of gabapentin to alleviate mechanical allodynia 

should also be viewed with caution and in parallel with its inability to reverse formalin-induced 

depression of ICSS.  These results also offer a counterpoint to clinical use of gabapentin for pain 

treatment.   Although gabapentin is commonly recommended as a first-line therapy in humans 

suffering from chronic and/or neuropathic pain, it shows efficacy in only a small subset of 

patients, but is reasonably safe and tolerable, thus recommended prior to opiates despite inferior 

clinical efficacy to opioids and other drugs (Finnerup et al., 2015; Chang et al., 2014).   

 

Conclusions   

Pain-related depression of ICSS.  In the clinical setting, functional impairment and 

behavioral depression are common manifestations of pain, and efforts have been made to not 

only capture these behaviors but also monitor their responsivity to pharmacological modulation 
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(Cleeland and Ryan, 1994; Melzack, 1975; Turk et al., 2003; Melzack, 1987). Procedures used in 

this dissertation extend evaluation of pain-related functional impairment and behavioral 

depression from clinical to preclinical studies.  We have evaluated effects of numerous putative 

pain manipulations on ICSS in rats. ICSS was most reliably depressed by IP lactic acid as an 

acute and transient inflammatory stimulus and by intraplantar formalin as a more sustained 

neuropathic stimulus. ICSS was also transiently decreased by intraplantar CFA, and by a paw-

incision model of post-surgical pain (Ewan and Martin, 2014).  In general, though, pain-related 

depression of ICSS was weaker and more transient with these manipulations than pain-related 

stimulation of other behaviors such as mechanical allodynia.  Moreover, other putative pain 

models that produce signs of pain-stimulated behavior have failed to alter ICSS.  For example, 

spinal nerve ligation is a surgical method for modeling neuropathy, and it produced mechanical 

allodynia but failed to depress ICSS (Ewan and Martin, 2011; Ewan and Martin, 2014), and 

preliminary studies for this dissertation found that intra-articular administration of CFA into the 

knee joint (a model for arthritis pain) also produced mechanical allodynia without depressing 

ICSS.  Finally, studies using other behaviors such as wheel-running in mice or rats have also 

found that pain-related depression of behavior is less sensitive than pain-stimulated behaviors 

(e.g. mechanical allodynia) to inflammatory or neuropathic manipulations (Grace et al., 2014; 

Cobos et al., 2012).  Taken together, these results suggest that commonly used preclinical pain 

manipulations often produce weaker and/or more transient signs of pain-depressed behavior than 

pain-stimulated behavior.  

Role of decreased DA signaling in pain-related depression of ICSS. Microdialysis 

studies performed in this series of research experiments support a relationship between pain-

related depression of behavior and pain-related depression of DA after IP lactic acid (Leitl et al., 
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2014b).  We did not investigate DA levels after intraplantar formalin, but effectiveness of the 

DA/NE uptake inhibitor bupropion to alleviate both acute IP lactic acid-induced depression of 

ICSS and sustained intraplantar formalin-induced depression of ICSS suggests that both acute 

and chronic pain-related depression of ICSS may involve a hypodopaminergic state, in 

agreement with other evidence for a relationship between pain and reduced mesolimbic DA 

signaling (Coffeen et al., 2010; Taylor et al., 2015). 

Role of dynorphin and KORs as mechanism for pain-related depression of DA.  

Mesolimbic DA neurons express kappa receptors, and activation of those receptors either by 

endogenous dynorphin or by exogenous kappa agonists like U69593 can depress both ICSS and 

mesolimbic DA release (Leitl et al., 2014b; Carlezon et al., 2006).  Moreover, previous studies 

have suggested that activation of this endogenous dynorphin/kappa receptor system by some 

non-pain stressors can produce signs of behavioral depression (Chartoff et al., 2009; Borsook et 

al., 2007; Knoll and Carlezon, 2010).  However, data reported in this dissertation do not support 

a role for the dynorphin/kappa receptor system in acute or chronic pain-related depression of 

ICSS; furthermore no purported pain stimuli examined in these studies reliably altered 

biomarkers for dynorphin or kappa receptors, and the kappa antagonist was ineffective to block 

pain-related depression of DA release or ICSS (Leitl et al., 2014b; Leitl et al., 2014a). 

Predictive validity of preclinical models of pain-depressed ICSS. In general, these 

studies demonstrate good concordance with clinical data for NSAIDs, which are effective for 

inflammatory but not neuropathic pain, and for opioids and monoamine uptake inhibitors with a 

DA-ergic component, which are effective for both inflammatory and neuropathic pain (Leitl et 

al., 2014b; Miller et al., 2015; Leitl et al., 2014a; Finnerup et al., 2015; McQuay, 2007; Sarzi-

Puttini et al., 2010). However, these procedures were not sensitive to THC and gabapentin, and 
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this preclinical result is consistent with clinical evidence that these drugs are not effective for the 

treatment of inflammatory pain and have weak if any effectiveness to treat neuropathic pain 

(Beaulieu and Ware, 2007; Lynch and Campbell, 2011; Ware et al., 2010; Chang et al., 2014; 

Finnerup et al., 2015). 

 

Future directions 

Studies conducted here support a role for decreased mesolimbic DA signaling in pain-

related depression of behavior; however, the mechanisms that mediate decreases in DA signaling 

by noxious stimuli remain to be determined.  Although activation of endogenous kappa opioid 

systems have emerged as one mechanism whereby some stressors can reduce DA signaling and 

produce behavioral depression, evidence collected for this dissertation do not support a role for 

kappa mechanisms in mediating pain-related behavioral depression.  Accordingly, it will be 

necessary to search for other possible mechanisms.  One possibility is that formalin-induced 

depression of ICSS is mediated through glial activation following induction of a neuropathic 

pain state. Toll-like receptors (TLRs) are commonly known for their expression on immune 

cells, and for their role in initiating immune responses in the presence of pathogens (Watkins et 

al., 2009). Increasing evidence suggests glial cells and/or macrophages, as well as primary 

sensory neurons, are involved in pain sensation. Moreover, formalin-induced neuropathy has 

been shown to result in an increase in glial activation in the spinal cord.  This glial activation and 

presence of macrophages in response to nerve injury may be partially or fully responsible for 

sustained pain-related depression of behavior and mechanical hypersensitivity (Ji et al., 2013). 

Glial inhibitors, including minocycline and ibudalast (AV411) exist, are currently being 

evaluated, and have shown promising results for the potential treatment of neuropathic pain 
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(Ellis et al., 2014; Berta et al., 2014; Ledeboer et al., 2006).  Studies are underway to evaluate 

effectiveness of ibudilast in rats to block both formalin-induced glial activation in spinal cord 

and formalin-induced depression of ICSS.
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