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 In many clinical studies, continuous variables such as age, blood pressure and 

cholesterol are measured and analyzed. Often clinicians prefer to categorize these 

continuous variables into different groups, such as low and high risk groups. The goal of 

this work is to find the cutpoint of a continuous variable where the transition occurs from 

low to high risk group. Different methods have been published in literature to find such a 

cutpoint. We extended the methods of Contal and O’Quigley (1999) which was based on 
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the log-rank test and the methods of Klein and Wu (2004) which was based on the Score 

test to find the cutpoint of a continuous covariate. Since the log-rank test is a 

nonparametric method and the Score test is a parametric method, we are interested to see if 

an extension of the parametric procedure performs better when the distribution of a 

population is known. We have developed a method that uses the parametric score residuals 

to find the cutpoint. The performance of the proposed method will be compared with the 

existing methods developed by Contal and O’Quigley and Klein and Wu by estimating the 

bias and mean square error of the estimated cutpoints for different scenarios in simulated 

data. 
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CHAPTER 1:  INTRODUCTION 
 

1.1 Introduction 

 In Survival analysis or time-to-event data analysis, different covariates are 

measured and analyzed in order to predict the time until the occurrence of an event of 

interest. In the medical research, the event of interest can be death of a patient, failure of an 

organ or remission of a disease. In engineering, the event can be failure of a mechanical 

engine or reduction on the performance of a device, and, in the meteorology, the event of 

interest can be onset of snowfall or rain.  

Often in medical research, clinicians wish to categorize a continuous covariate into 

two different groups such as low and high risk. Although categorizing into more than two 

groups can occasionally be of interest for some variables, for example, blood pressure, 

cholesterol or Body-Mass-Index, the stated goal of the proposed methodology is to 

categorize the continuous variable into two groups.  

The term “cutpoint” refers to the point that bifurcates the continuous covariate. 

There are different methods published in the literature regarding the estimation of a 

cutpoint, but none are recognized as a standard method. Some of the published methods 

determine a cutpoint by maximizing a test statistic. The different types of test statistics 

used in the published literature include the chi-square test statistic, two-sample test 

statistic, linear rank statistic (Log-rank or Wilcoxon) and score statistic. Most of these test 
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statistics are based on the non-parametric methods or semi-parametric methods. In 2004, 

Klein and Wu extended the non-parametric method of Contal and O’Quigley (1999) to 

both semi-parametric and parametric method. The ultimate goal of the work presented in 

the following chapters is to find a method that has similar or better performance than the 

methods developed by Contal and O’Quigley (1999) and Klein and Wu (2004). 

 In addition to the output oriented methods mentioned above, some graphical and 

descriptive methods are also available in the literature. Some of these graphical methods 

are based on residuals to determine a cutpoint. Since residuals are based on the 

difference(s) between observed and expected number of deaths, any obvious large 

difference(s) or pattern between observed and expected number of deaths can indicate the 

possibility of a cutpoint. Martingale residuals are one of the most popularly used residuals 

to determine the functional relationship between survival outcome and a continuous 

covariate. 

 Other commonly used residuals are Cox-Snell residuals, the Score residuals and the 

Schoenfeld residuals. The Martingale and Cox-Snell residuals are similar and are based on 

the differences in observed number of deaths vs expected number of deaths at each event 

time. The Score residuals and Schoenfeld residuals are based on the difference between the 

observed value of a covariate and the expected value of a covariate at each event time. 

 

1.2 Prospectus 

 In Chapter 2, an overview of survival analysis will be presented. This chapter gives 

a short introduction on time-to-event data, censoring, survival functions, hazard functions, 
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and density functions. Chapter 2 also covers Kaplan-Meier survival curve estimation, Log-

rank and Wilcoxon rank-statistics to test the equality of survival curves for two or more 

groups, the Cox Proportional hazard model, parametric models and the Accelerated Failure 

Time model.  In Chapter 3, a literature review of the existing methods will be presented. In 

this chapter, methods developed by Miller and Siegmund (1982), Lausen and Schumacher 

(1992, 1996), Contal and O’Quigley (1999) and Klein and Wu (2004) will be described 

briefly. Chapter 4 presents the proposed method of finding a cutpoint. The first part of 

Chapter 4 provides the mathematical definition of the research question and the second 

part describes a method to compute the test statistics and determine a cutpoint. Chapter 5 

presents a method to simulate data for different scenarios and application of the methods to 

the simulated data. The performance of the proposed method will be compared with the 

existing methods by computing bias, mean square error and 95
th

 percentile of the estimated 

cutpoint. Chapter 6 provides the application and result of the proposed method and existing 

methods to a real world dataset. Finally, Chapter 7 provides the conclusion and the future 

direction of the research. An appendix containing the results for individual tables for 

simulated data and SAS codes used for the cutpoint computation and the simulations is 

provided. 
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CHAPTER 2: BACKGROUND  

 

2.1 Time-to-Event Data 

 In survival analysis, the response variable is typically defined as time to an event 

of interest. In biological or medical research, examples of an event of interest include 

death of a subject, failure of an organ or the remission of a disease. An important feature 

of survival data is that the response variable, time to the event of interest, is positive and, 

in general, the event of interest occurs toward the end of the study. In the case that the 

event was not observed by the end of the study the data are said to be right censored, 

which results in a right skewed or positively skewed distribution. Hence, the normal 

distribution assumption is not suitable for the outcomes in survival analysis. Thus, an 

important and unique feature of survival analysis is that it incorporates the information on 

censoring, which cannot be taken into account in simple linear regression or logistic 

regression.  

 

2.2 Censoring 

 A subject is said to be censored if (i) they did not experience the event of interest 

by the end of the study (ii) they dropped out or were lost to follow up during the study 

period or (iii) experienced an event that prevented them from experiencing the event of 

interest (for example: if we are interested in the death of a patient from a lung cancer but 
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a patient died due to heart attack during the study). The last example of censoring is also 

called the competing risk. Three different types of censoring are: (i) Right censoring (ii) 

Left censoring and (iii) Interval censoring.  

 

2.2.1 Right Censoring 

 Let iT  denotes the event time of the i
th

 individual in the study and let iC  be the 

censoring time of that subject. If iT  is less than iC  then exact lifetime of the individual 

will be observed and that individual will be known to have an event but if iT  is greater than 

iC  then the lifetime of that individual will be unobserved and is called the right censored 

observation. The right censored data can be represented by a pair of random variables 

   , ,  where, min , ,i i i i i iX X T C X  is also called the observed event time. The failure 

indicator variable i  is denoted by: 

1 if 

0 if 

i i

i

i i

T C

T C



 



 

For example, if a study is observing the death from a lung cancer patients receiving 

chemotherapy, but some patients were still alive by the end of study, the patients who were 

still alive at the end of the study are said to be right censored individuals. The work 

presented in the following chapters will be focused on right censored data. 
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2.2.2 Left Censoring 

 Let a random variable iT  denotes the event time of the i
th

 subject in the study and 

let iC  be the censoring time of that subject. If iT  is less than iC , then the event has already 

occurred for the individual before that person was observed at time iC , but the exact event 

time is unknown. The data from this study can be represented by pairs of random 

variable  ,i iX  , where  max , ,i i i iX T C X is also called observed event time. The 

failure indicators i  are denoted as: 

1 if

0 if

i i

i

i i

C T

C T



 



 

This type of study is called the left censoring. For example, suppose a study is teaching 

some learning skills to children and if some children enrolled in the study already had 

learned the skills, in this case the individuals who had learned the skills before the 

enrollment are called left censored individuals. Note that the work in the following 

chapters will not consider left censoring. 

 

2.2.3 Interval Censoring 

 In interval censoring, the event of interest occurs within some interval of time. For 

example, in a study of leukemia, some healthy participants with family history of leukemia 

were recruited and follow up was scheduled after 6 month. During the first 6 month follow 

up some previously healthy participants were found to develop the leukemia. In such cases, 

the investigator does not know the exact date of onset but knows that it occurred during the 



7 

 

previous 6 month period. Note that the work in the following chapters will not be focused 

on interval censoring. 

 

2.3 The Mathematical Model for Survival Analysis 

 Let T represent a non-negative random variable representing the failure time of an 

individual from a homogeneous population. Associated with T is ( )f t , the probability 

density function (p.d.f.) of T and ( )F t  the cumulative distribution function of a random 

variable T . We know that 
0

( ) Pr( ) ( ) .

t

F t T t f u du     We will define the survival 

function, ( )S t , as the probability that the survival time is greater than or equal to t . That is, 

( ) Pr( ) ( ) 1 ( ).
t

S t T t f u du F t



      Note that since ( )f t  is a p.d.f., we know that 

(0) 1.S   

Another important function is the hazard function, ( ).h t  The hazard function 

represents the probability that an individual dies at time ,t  conditional upon survival to that 

point. Therefore the hazard function represents the instantaneous death rate for an 

individual surviving to time .t  If T  is a continuous random variable, the hazard function 

can be written as: 

0 0

Pr( / ) Pr( and
( ) lim lim

Pr( ) tt t

t T t t T t t T t T t
h t

t T t   

          
    

     
 

0 0

Pr( [ , ] ( ) ( )
lim lim

Pr( ) ( )t t

T t t t F t t F t

T t t S t t   

        
    

     
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 

 

 0

( ) ( ) 1
lim

t

f tF t t F t

t S t S t 

  
  

 
 

Thus we see that  
 

 
 

  log
.

S tf t
h t h t

S t t


  


 The cumulative hazard function 

( )H t  can be defined as follows: 

  

     

0
0 0

0 0

log ( )
( ) ( ) log

log log 0 log( ( ))

log( ( )) ( ) ( ) exp ( ) (2.3.1)

t t
t

t t

S u
H t h u du du S u

u

S t S S t

S t h u du S t h u du


    



     

 
     

 

 

 

 

 Since survival time and hazard function are related with equation in (2.3.1), we can 

calculate the hazard function and convert it to survival function or vice versa. 

 

2.4 Non Parametric Methods 

 Time-to-event for subjects in a study can be analyzed using non-parametric 

methods, semi-parametric methods or parametric methods. Non-parametric methods can be 

an important alternative to parametric and semi-parametric method, when the distribution 

of survival times is unknown.  

 

2.4.1 Estimating the Survivor Function using Non Parametric Methods 

Previously it was stated that: 

( ) Pr( ) ( ) 1 ( ) (2.4.1)
t

S t T t f u du F t



      
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If T is a continuous random variable, then the survival function in equation (2.4.1) is 

defined as the probability of surviving for time t  or greater than time t . If no individual is 

censored, the empirical survivor function may be written as: 

#of individuals with survival timesˆ( )
#of individuals in thedata set

t
S t


  

In other words, the empirical survival function is the ratio of the total number of 

individuals alive at time t  to the total number of individuals in the study. The empirical 

survival function ˆ( )S t  is equal to one at the beginning of the study when all individuals are 

alive and is zero when the last observation experienced the event. It should be noted that 

the survival function is a step function, which decreases immediately after each observed 

failure time. However we cannot use the empirical survival function if the data contains 

any censored observations. 

 

2.4.2 Non Parametric Methods that Incorporate Censoring 

 Two other non-parametric methods that do incorporate censoring include life-tables 

and Kaplan-Meier survival curve. 

 

2.4.3 Life Table Estimate 

 The life-table estimate of the survival function divides time into a series of time 

intervals of interest. Life-tables estimates are possible even when actual failure times are 

unknown and the only information available is the number of failures in a series of 

consecutive intervals. When the failure times are observable, the Kaplan-Meier approach is 

preferred over life-table estimation. 
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2.4.4 Kaplan-Meier Estimator of the Survival Function 

 Let 
1,..., nt t  be n times until an event of interest in the dataset. Suppose there are r  

unique time-to-events such that .r n  Let (1) ( )... rt t   be the r  ordered failure times. Let 

jn  be the number of individuals still alive at time ( )jt  including those who are about to fail 

at time ( )jt  and jd  be the number of deaths at time ( )jt for 1,2,..., .j r  The quantity 

(j) (j)/d n  is called the conditional probability of failure between ( )jt   and ( ) ,jt where   is 

some infinitesimal time interval that includes at least one failure time. The estimator of 

survival function is also called product-limit estimator or the Kaplan-Meier estimator and 

it is calculated as:  

 1

( ) ( 1)

1

1                                 if 

ˆ( ) (2.5.1)
1 if

k
j

k k

j j

t t

S t d
t t t

n







  
   

   


 

where 1, 2,...,k r  ordered survival times. The Kaplan-Meier estimator is also a step 

function like the empirical function but the censored observations are taken into account 

when calculating the number of persons at risk. If a censored and failure event occurs at 

the same time ( ) ,jt  it is assumed that the censored observation is censored immediately 

after the failure time ( )jt  and is included in number of risk .jn  The variance of the Kaplan-

Meier estimator is given by Greenwood’s formula:  

2

1

ˆ ˆˆ ( ) ( ) (2.5.2)
(n )

k
j

j j j j

d
V S t S t

n d

  
  

  
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Using Greenwood’s formula we can construct a confidence interval for the survival 

function ˆ( )S t  given by:    

1/2 1/2

1 /2 1 /2
ˆ ˆˆ ˆ( ) ( ) , ( ) ( ) (2.5.3)S t z V t S t z V t  

  
 

 

 

Example 2.1 – Leukemia data 

6-MP (n=21):  6
+
, 6, 6, 6, 7, 9

+
, 10

+
, 10, 11

+
, 13, 16, 17

+
, 19

+
, 20

+
, 22, 23, 25

+
, 32

+
, 32

+
, 

34
+
,35

+
 

Control (n=21): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23 

 

The pluses (+) indicate that at the end of the study no reoccurrence of leukemia had taken 

place; these are censored observations.   
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Figure 2.1: Kaplan-Meier Survival curves for placebo and treatment group 

 

In Figure 2.1 above, the treatment (6-MP) group appears to have better survival than the 

control group because the survival probabilities at different event times are higher for 

treatment group as compared to control group. 

 

2.5 The Log-Rank Test 

 The log-rank test is a useful tool to compare the survival distribution between two 

or more groups in the presence of right censoring. As a nonparametric procedure, no 

assumption on the distribution of the outcome variable is required to make inferences on 

the population. Previously presented, the survival curves derived from the Kaplan-Meier 

(KM) estimator allows for a graphical comparison of the survival probabilities between 

two groups, but it does not provide a formal test of statistical significance. The log-rank 
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test and the associated Wilcoxon test allow for this formal statistical comparison of the 

curves. 

The null hypothesis for the log-rank test is written as: 0 1 2: ( ) ( )H S t S t  (no 

difference in the survival between two groups) versus    1 1 2:H S t S t (there is a 

difference in the survival between the groups). The log-rank test for two groups is 

calculated as follows: 

Let 1iO  be the observed number of failures in group 1 at time of event i and let 1iE  be the 

expected number of failures in group 1 at the same event time. Let the time of events be 

ordered such that    1
...

r
t t   for r distinct event times. It can be shown that when number 

of deaths is not too small and number of subject n  is large, the sum of the differences in 

observed and expected failures  1 1

1

r

i i

i

O E


 
 

 
 follows a normal distribution. Combine the 

data from both groups. Then, find the number of distinct event times in the combined 

group. Let r be the number of distinct event time in the combined dataset. Construct a 

2 2  table at each distinct failure time. For the event time i , the 2 2  table is constructed 

as: 

 # Failure(deaths) #Survival Number at risk 

Group1  
1id  1 1i in d  1in  

Group2 
2id  2 2i in d  2in  

Total 
id  i in d  in  
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 In the above table, 1id  is the number of failures in group 1 at time point ,i  1in  is the 

number of people at risk in group 1 at time point 1 2, i i ii n n n    number of people at risk 

in both groups at time point 1 2, i i ii d d d   number of failures in both groups at time 

point .i  

 If the marginal totals in above table are considered to be fixed, then all the other 

entries in the table can be obtained by 1id . Here 1id  follows hypergeometric distribution, 

i.e.,  

  1 1 1

1

1

i i i

i i i

i

i

i

d n d

d n d
p d

n

n

  
  
    


 
 
 
 

  

with mean 1
1

i i
i

i

n d
e

n
  and the variance of 1id is given by:  

1 2
1 2

( )

( 1)

i i i i i
i

i i

n n d n d
V

n n





. 

Now, LU = sum of differences in the observed and expected failure at each time 

point given by: 

 1 1 1 1

1 1

.
r r

i
L i i i i

i i i

d
U d e d n

n 

 
    

 
   

The chi-square statistics is: 

 

2
2 2 ,L

df

L

U

Var U
   
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if G  is number of groups in the sample then degrees of freedom 1.G    

Since the failure times are independent, the variance of LU  is the sum of the 

variance of 1id  given by:  

 1 1

1 1

( ) .
r r

L i i L

i i

Var U Var d V V
 

     

Here, LU  has approximately normal distribution when n  is large, it implies:  

 0,1L

L

U
N

V
. 

Hence, 
2

2

1
L

L

U

V
 . The ratio 

2

L

L

U

V
 is called the log-rank statistics. 

 While the log-rank test is a powerful tool, it does have some disadvantages. Some 

of the disadvantages of the log-rank test include: 

1. The log-rank test detects the difference only in the case of constant differences 

across time and it may not show the difference if the survival curves are crossed at 

some point (Bland & Altman, 2004). 

2. The log-rank test provides a test of significance but does not provide information 

on the size of the difference between the two groups. Also, it cannot provide a 

confidence interval on the difference (Bland & Altman, 2004). 

 

2.6 The Wilcoxon Test 

 Wilcoxon test is a modification of the log-rank test that can also be used to test the 

difference in survival between two groups. The Wilcoxon test is based on the statistics 
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 1 1

1

( )
r

w j j j

j

U n d e


   and, as such, can be seen to be a weighted version of the log-rank 

test. The Wilcoxon test provides weight at each time point by multiplying the number of 

people at risk at each event time with the difference in observed and expected number of 

failures. The variance of the Wilcoxon statistic is given by 2

1

1

r

w j j

j

V n v

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which is same as in the log-rank test. The Wilcoxon test statistics is given by: 

2
2

1
w

w

w

U
W

V
 . 

 

2.7 The Cox-Proportional Hazards Model 

 In the previous section, we discussed the use of log-rank test to conduct a 

hypothesis test in two different groups without adjusting for any other covariates. When 

we have several covariates that we wish to include in the model, the Cox Proportional 

hazards model may be used. The Cox-proportional hazards model allows us to control for 

multiple variables. The Cox-proportional hazard model, developed by D.R. Cox in 1972, is 

a semi-parametric approach to estimating the survival function that makes no distributional 

assumptions on the baseline hazard function. While there are no distributional assumptions 

on the model, there is an assumption on the hazard function. The assumption states that the 

hazards in any groups are constant over time.  
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The proportional hazard model for two different individuals i  and j  with covariate 

vectors ix  and jx  can be written as:  

0
( ) ( ) exp( ' )

i ih t h t x  

 0
( ) ( ) exp '

j jh t h t x   

0

0

( ) ( )exp( ' )

( ) ( )exp( ' )

i i

j j

h t h t x

h t h t x




   

 
( )

exp '( ) (2.7.1)
( )

i
i j

j

h t
x x

h t
   

The ratio of the hazard function in equation (2.7.1) does not depend on time, i.e. the hazard 

ratio is constant regardless of the time elapsed, hence Cox’s model is also called the 

proportional-hazard (PH) model. The only difference between parametric proportional 

hazard regression and the Cox proportional hazard regression model is the shape of the 

baseline hazard function. The baseline hazard function  0h t  is specified in parametric 

proportional hazard regression but not in the Cox model, hence the Cox model is also 

called the semi-parametric model. For estimating the parameters in the model the partial 

likelihood functions in Cox-proportional hazard model are given by: 

 
 
 

 
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Where, n  denotes the total number of observations,    :i j iR t j t t   denotes the risk set 

at time ,it i  is censoring variable (1 if the event of interest occurs and 0 if observation is 
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censored), and, ̂  is the maximum (partial) likelihood estimate of   obtained by 

maximizing the partial log-likelihood function    ln .l L   Taking the log on both 

sides of equation (2.8.2) yields: 

     
1 1 ( )

ln ln exp (2.7.3)
i

n n
T T

i i i j

i i j R t

L z z    
  

  
   

  
    

For Cox’s model, the partial likelihood equation is valid only when there are no ties in the 

data, i.e., when no two individuals have an event of interest at the same time. When ties are 

present in the dataset, the Exact, Breslow or Efron’s adjustment to the likelihood is 

commonly used. 

 

2.7.1 Exact Method 

 The exact method for adjusting for ties is based on the idea that ties are due to the 

imprecision in measurements and that two events of interest cannot occur at the exact same 

time. The method assumes different ordering for the events that occurred at the same time. 

For illustrating the exact method consider the example data from below: 

Example data:  

Patient Time-to-event event (1=death,0=censored) Covariate 

1 
1t  1 

1Z  

2 
2t  0 

2Z  

3 
3t  1 

3Z  

4 
3t  1 

4Z  

5 
4t  1 

5Z  
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Here, the first patient died at time 1t  and second patient is censored at time 2 ,t  the third and 

fourth patient died exactly same time, let us say 3t . And 5
th

 patient died at time 4t .  

The partial likelihood function for patient 1  1L  and patient 5  5L  can be written 

as:  

51

53 51 2 4
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For patient 3 and 4 the likelihood function can be written as: 
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After the likelihood  L   is constructed the estimation of   can be done in the same 

manner as in the method with no ties. 

 

2.7.2 Breslow’s and Efron’s approximation to the Log Likelihood  

 The Breslow’s approximation is based on the approximation of likelihood 

functions. For the example data above, the approximation can be written as: 
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Here,  3P A  and  4P A  are equal hence, 
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If there are jd  tied event times at the j
th

 distinct event time, then  jL   is approximated 

by: 

 

  

ll D j

j

l

Z

j d
Z

l R j

e
L

e















 

where  R j is the risk set at the  j
th

 survival time and jD  is the event set at the j
th

  distinct 

failure time. So, the overall likelihood can be written as: 
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Here, r  is the number of total distinct events and jd  is number of events at each distinct 

failure time .j  Breslow’s approximation is preferred when the number of events jd  is 

small and number of person at risk jn  is large. Thus, if ties are relatively small Breslow’s 

approximation works well, otherwise, the next approximation called Efron’s 

approximation is better.  

From the example in the Exact test: 
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which can be approximated by: 
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Based on the above equation, Efron’s approximation can be written as: 
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2.7.3 Hypothesis Testing in Cox-Proportional Hazards Model: 

 There are three main global tests for hypotheses about the regression parameters 

, where   is a p-dimensional column vector of regression parameters. For testing the 

null hypothesis 0 0: ,H    first define  1
ˆ ˆ ˆ,..., p    as partial maximum likelihood 

estimate of  . Let  I   be the p p  information matrix calculated by taking the second 

derivative of the log likelihood function of ,  it can be written as: 
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2.7.3.1 Wald Test for Multiple Parameters: 

 For large samples the Wald test is based on the asymptotic distribution of ˆ , i.e., 

̂  follows p-variate normal distribution with mean ˆ( )E    and    1ˆ .Var I   For 

testing 0 0: ,H   the Wald test statistics may be written as: 

    2

0 0
ˆ ˆ ˆ

T

W I         

where ̂  is the maximum likelihood estimate (MLE) and  ˆI   is expected Fisher 

information evaluated at the MLE ˆ ,  
2

w  follows an asymptotic 
2  distribution with p  

degrees of freedom under 0H .  

 

2.7.3.2 Likelihood Ratio Test for Multiple Parameters:  

 For testing 0 0: ,H    the likelihood ratio test is given by:  

 2
0

ˆ2 LogL( ) LogL( )LR     

where LogL  ̂  is the log likelihood of   evaluated at the MLE ˆ ,  and LogL  0  is log 

likelihood of   evaluated at the null value 0.  
2

LR  follows an asymptotic chi-square 

distribution with p degrees of freedom under 0H . 
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2.7.3.3 Score Test for Multiple Parameters:  

 The score test is based on the vector of efficient scores   ,U  where 

   1 2( ),U ( ),..., ( )pU U U    . The scores are calculated by taking the first derivative 

of the log likelihood function of .   
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U
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In Cox-partial log likelihood the scores are given by: 
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where 1,...,i n  is number of subjects in the study and  ij R t  is number of people at 

risk at time .it   

 
 ln

for 1,...,
k

k

d L
U k p

d





   

For large samples,  U   is asymptotically distributed p-variate normal with mean 0 and 

covariance  .I   For testing 0 0:H    the score test statistic is given by 

     2 1

0 0 0 ,
T

SC U I U     which follows 
2  distribution with p degrees of freedom 

under the null hypothesis. 
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data lr&i; 

 set lr&i; 

if (_n_ eq 1) then set time&i; 

 keep logrank cutpoint; 

run; 

 

data lr&i; 

 set lr&i; 

if (_n_ eq 1); 

run; 

 

proc append base=logrank&j data=lr&i force; 

run; 

 

 

%end; 

%Mend Ages; 

 

%macro getlr(m=,ss=,newc=); 

%do j=1 %to 1000; 

 

 data t2; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

 run; 

 

 data t1; 

    set test1.sampledata&m&j._n&ss._cut&newc; 

    time=t; 

 run; 

 

 data chemo; 

  set t1; 

 run; 

************************************************* 

 * Get distinct failure time * 

***************************************************; 

data times; 

 set chemo; 

if (censor eq 0); *Censor=0 is for who had death at the time of study; 

run; 

 

*************************************************** 

* Remove any duplicate time from the times data * 

**************************************************; 

 

proc sort data=times out=times nodupkey; by time; *If any of the time is 

repeated delete the replicated time; 

run; 

 

********************************************************** 

* Just keep the time variable in the times data* 



174 

 

VITA 

 
Kabita Joshi  

Education:  

 PhD in Biostatistics, Virginia Commonwealth University: 2010-2016  

 Master’s in public Health, Major Biostatistics, Georgia Southern University, 

Statesboro, GA: 2008-2010  

 Master’s in Statistics, Tribhuvan University Nepal: 2002-2004  

 Bachelor of Science in Statistics: Tribhuvan University, Nepal: 1998-2002  

 

Work Experience:  

 Teaching Assistant for ANOVA course (BIOS 554), VCU, Richmond, VA: 

Jan 2015-Aug 2015  

 Teaching Assistant for Linear regression course (BIOS 553), VCU, Richmond, 

VA: Aug 2014 - Dec 2014  

 Research Assistant for Twin data, VCU, Richmond, VA: May 2014 - Jul 2014  

 Research Assistant for American Cancer Society grant, VCU, Richmond, VA: 

May 2013 - Apr 2014  

 Teaching Assistant for Mathematical Statistics (BIOS 513/514), VCU, 

Richmond, VA: Aug 2012 - May 2013  

 Teaching Assistant for Biostatistics Introductory course for clinicians (BIOS 

543/544), VCU, Richmond, VA: Aug 2010-Jul 2012  

 Graduate Assistant for Biostatistics Introductory course, Georgia Southern 

University, Statesboro, GA: Aug 2009- May 2010  

Skills:  

 SAS  

 R  

 JMP  

 SPSS  

 Microsoft Word, Excel, PowerPoint, Access  

 

Poster Presentation:  
 Joshi, K., Thacker, L.R., Elswick, R.K. 31st Annual Daniel T. Watts Research Symposium: 

Virginia Commonwealth University, Richmond, VA: October 2014. Topic: “Finding a Cutpoint of a 

Continuous Covariate in Survival Analysis”  

 Joshi, K. and Gennings, C. The Society of Toxicology (SOT) 52nd Annual Meeting, San Antonio, 

TX: March 2013. Topic: “Use of Human Environmental Chemical Concentration Patterns: 

Preliminary Steps in a Whole Mixture Strategy for Risk Evaluation”  

 

 

 


