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The analysis of variance for experiments where the fixed effects or 

random effects model is appropriate is generally agreed upon with regard 

to testing procedures and covariance structure. It is only in experiments 

involving both random and fixed factors, i.e. mixed effects models, that 

controversy occurs as to the proper analysis. The mixed effect model has 

been considered by many statisticians, and several techniques have been 

developed for explaining its structure and performing its analysis for 

halanaeddata sets. The relationship of these techniques have been dis-

cussed in several papers as well. 

The simplest case of the difficulties presented by the mixed effects 

models occurs in the two-way cross classification model with interaction. 

The various models for the two-way mixed situation were examined and com-

pared. It was found that Scheffe's model defined the effects in a mean-

inful way, is completely general, and provides exact tests. In situations 

where Scheffe's model cannot be applied, it was found that Kempthorne's 

model or Graybill's model should be used since they define effects in a 

meaningful way and, under certain assumptions, gives exact tests. Searle's 

model does not define the effects in the same manner as the former three 

models. Searle's effects are defined more for mathematical appeal and his 



model is designed for easy application to unbalanced cases. Consequently, 

his model was not found to be desirable in balanced two-way mixed effect 

designs. 

In higher order models, Scheffe's modeling techniques were found not 

to be practical since his test for fixed effect differences in m�dels with 

more than two random effects cannot be computed. Kempthorne's models and 

Graybill's models both, under certain assumptions, provide straightforward 

tests for all effects. For this reason, their modeling techniques are 

recommended for higher order mixed models involving balanced data sets. 

Searle's modeling technique was again found unapplicable for balanced data 

sets in higher order mixed models for the same reasons as those in the 

two-way case. 

The results of the investigation recommends Scheffe's model for two­

way situations, but Kempthorne's model!ng technique and Graybill's modeling 

technique seem the most versatile. Although the task would be very cumber­

some, further investigation is suggested in comparing Kempthorne's procedure 

and Graybill's procedure to Scheffe's procedure for testing fixed effect 

differences. 
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1. INTRODUCTION 

1 

Approximately fifty years ago, Sir R. A. Fisher 

developed the analysis of variance technique as a 

statistical tool for the interpretation of data. Although 

originally developed for use in agricultural and biological 

experiments, the technique is now widely used. The analysis 

of variance (ANOVA) derives its name from its function of 

subdividing the total variation among the observations into 

meaningful components associated with identifiable 

differences in the conditions under which the observations 

are taken. 

The components or effects associated with the 

differences in the conditions under which observations are 

taken are classified as either fixed or random depending 

on how the conditions were selected and on the type of 

inference that the researcher intends to make. In 

experiments where observations have been obtained on an 

entire set of conditions of interest and inferences are 

to be made to this set of conditions alone, then the 

conditions or effects are said to be fixed. When the 

researcher chooses a random sample of conditions from an 

infinite (large) population and intends to make inferences 

regarding the variation among the entire population of 



conditions or effects rather than the particular sample 

observed, then the conditions or effects are said to be 

random. 

Frequently experimental situations arise where more 

than one set of conditions or source of variation 1s 

recognized. These types of conditions are called factors. 

Models for observations are labeled fixed effects models if 

all factors are fixed, and random effects models if all 

factors are random. The analysis of variance for 

experiments where the fixed effects or random effects 

2 

model is appropriate is generally agreed upon with regard to 

testing procedures and covariance structure. It is only in 

experiments involving both random and fixed factors, i.e. 

mixed effect models, that controversy occurs as to the 

proper analysis. The mixed effect model has been 

considered by many statisticans, and several techniques 

have been developed for explaining its struct�re and 

performing its analysis for balanced data sets. The 

relationship of these techniques have been discussed in 

several papers as well. 

The simplest case of the difficulties presented by 

the mixed effects models occurs in the twe-way cross 

classification model with interaction. In chapter 3 this 

case will be examined as to the definition of the effects 



and the structure of the variance components and will be 

illustrated by a hypothetical example. The relationships 

of different models and their applications to experimental 

situations will be explained. In chapter 4 the expected 

mean squares and tests for significance will be examined. 

The final chapter will contain recommendations on how the 

results of the investigation of the two-way mixed model 

can be applied to higher order models. 

3 



2. REVIEW OF LITERATURE 

Explicit identification of the different types of 

observational models was first accomplished by Eisenhart 

(1947). He worked extensively with the analysis of the 

fixed effects and random effects models, deriving expected 

means squares and significance tests but doing little with 

the mixed effect model. On mixed models, Eisenhart 

(1947:21) stated, "More general methods need to be devised 

for interpreting "mixed" analysis-of-variance tables, 

particularly in regard to tests of significance ". 

Most of Eisenhart's research was based on earlier 

results from Daniel (1939) and Crump (1946). 

Cornfield and Tukey (1949) introduced the concept of 

the interaction component. The model they suggested was 

of the form 

where 

a ·  1 

13· 
J 

denotes the general mean, 

denotes the contribution of the a 

levels of the fixed factor, 

denotes the contribution of the b 

levels of the random factor, 

denotes the interaction components, 

and 

denotes the random errors. 

4 



One important aspect of this paper was the introduction of 

the assumption 

E i aS) . .  = 0, for all J . •  
i \ l.J 

Schultz (1955) was the first to give rules for 

determining expected mean squares for general mixed model 

designs with balanced observation sets. Schultz concluded 

that for the mixed effects model the interaction variance 

components should be included in the fixed effect expected 

mean square but omitted from the random effect expected 

mean square when the interaction was between a random 

effect and fixed effect. He reasoned that " • • •  such a 

component does exist as a part of the expectation of the 

mean square of the fixed effect (since measured over the 

random variate) but does not exist as a part of the 

expectation of the random variate (since measured over 

the fixed effect) 11 (Schultz, 1955: 125). Schultz's rules 

are particularly useful in higher order designs where 

there may be many fixed and random effects under 

consideration. Schultz based some of his work for the 

mixed model rules on work done by Kempthorne and Wilk 

(1955) who treated the model as a flexible concept and 

used it for the development of the expected means square 

for the two-way ANOVA. Like Tukey, Kempthorne and Wilk 

5 

(1955) assumed that the interaction term "is not independent 



of main effect terms." The model they proposed was very 

general and then was tailored to fit different designs. In 

the general case they included a term labeled the 

"interactive error ". Since there was "no structuring of 

the experimental units " , (Kempthorne & Wilk, 1955:1149) 

the term was assumed to equal zero so that their general 

model reduced to the more familiar model. Further 

investigation led Kempthorne and Wilk to conclude that 

there was no interaction term present in the random 

effect expected mean square, but it was present in the 

fixed effect expected mean square. They reasoned that 

the fixed effect was representative of (i.e. included) the 

entire population tested, while the random effect was a 

sample from an infinite population. 

, 

Scheffe (1956a) not only recognized the interaction 

term was not independent of the main effect, but proposed 

covariance expressions for it and the covariance of the 

� 

interaction term. Until Scheffe's work there had been 

general agreement on the fact that all tests generated 

by consideration of ANOVA expected mean squares in the 

conventional way followed an F distribution. However, in 

Scheff� s article it was noted that the fixed main effect 

did not have an exact F distribution and that Hotelling's 

1.-
t t . 

. 

T- es �s appropr�ate. The relationship of the usual 

6 
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F-test and T-test will be examined later. Scheffe also 

disputed the assumption that the variance-covariance 

matrix yielded equal correlation coefficients. It was 

, . 
noted, though, that Scheffe achleved the same expected 

mean squares as others except that the variances were 

defined differently. Later Scheffe
� 

(1956b) discussed the 

changes in testing terms and expected mean square 

expressions under different assumptions. He noted that 

when the interaction term was judged as purely random, 

then it was included in the expected mean square for the 

random main effect. This in turn changed the testing 

term for random main effects from error to mean square 

interaction, the same as used for the fixed main effect. 

This possibility was also discussed in an article by 

Johnson (1948}. Although Johnson made no specific 

reference to the mixed model, he assumed random interaction 

for both purely fixed and purely random effects cases. 

For this reason the interaction term was included in 

both the fixed and random effect expected mean square. 

It should be noted, however, that this assumption of 

purely random interaction when fixed effects are involved 

does not appear reasonable in most situations. 

Searle and Hartley {1969) offered a significant 

challenge to the accepted expected mean square situation 

7 



in the two-way mixed model. They drew attention to the 

fact that there exists" • • .  a discontinuity between 

customary analyses of balanced and of unbalanced data 

concerning the occurrence of certain interaction variance 

components in the expected mean squares" (Searle and 

Hartley , 1969:573). In their paper they explained that 

in the unbalanced two-way ANOVA expectation of Mean Square 

Blocks (random effect) there occurs an interaction 

component. Thus if all the nij are set equal to n then 

the balanced data expected mean square for block effects 

should also contain an interaction term. They do not 

make any assertion to the correctness of their result 

but " • • •  merely to emphasize its existence" (Searle and 

Hartley, 1969:575). Searle (1971) first proposes a model 

that is general and then proceeds to add restrictions to 

it in order to show its relationship to the "classical" 

model for the mixed effects case. He shows that the 

restricted model under the .J (4P)ij 0 assumption will 

lead to the usual accepted expected mean squares for the 

random main effect, but that this assumption is not 

always the case in the "real world situations ". Searle 

was not the only person to include an interaction component 

in the expected mean square for the random main effect. 

Others that include the interaction component with the 

8 



random effect are Henderson (1969), Steele and Torrie 

(1960), and Kirk (1968). Kirk stated in his book that 

"If the block and treatment effects are not add itive, then 

the interaction component • • • appears in . . • the 

denominator of MS siMS res " (Kirk, 1968:137) ,where "s" 

represented a random population. Kirk's main effect 

expected mean square differs from Searle's, but his 

testing term was identical. He points out, though, that 

this leads to a negatively biased test. 

Two recent papers have attempted to clarify the mixed 

9 

model controversy. Kim and Carter (1972a, 1972b) conducted an 

"empirical"study to determine whether the interaction 

variance component was present in the expected mean square 

of the random effect. They generated a fixed factor A such 

that { ai = 0, and a random factor fJ" ·N ( o, a;). Their 

study concluded that the interaction variance component 

should be absent from the expected mean square of the 

random effect. Hocking (1973} compared three basic 

� 
models: Scheffe's, Searle's, and Graybill's. The models 

were described in t wo fashions, the first in standard 

model form and the second "described the data by 

specifying the first two moments of the observations " 

(Hocking, 1973:148). Hocking made suggestions pertaining 

to experimental situations which applied to each model. 



He also compared the various variance-covariance matrices 

of the "true" means of the observations for the different 

/ 

models to that of Scheffe's. 

10 



3. COMPARISON OF TWO-WAY MIXED MODELS 

In this chapter the various two-way mixed models will 

be presented and comparisons made between them to point 

out their differences. Since differences in assumptions 

11 

amongst the various models are often difficult to visualize, 

they will be illustrated in terms of a "real life" 

situation. 
/ 

As used by Scheffe (1956a, 1959}, a fixed 

population of I machines will be operated by a random 

sample of J workers each of whom will operate each machine 

K times. The I X J X K responses will be measured 1n 

terms of output, i.e. piece work. 

3.1 
/ 

Scheffe's Model 

/ 

Scheffe's model appears to be the most general so 

his approach to deriving expected mean squares and variance 

component s will be used as a basis for all comparisons. 

The kth output of worker J on machine i is structured 

as 

Y ijk = fflij + eijk 

The "errors" ff eijJ are assumed to be " • • •  independently 
l 

distributed with zero means and variance ��2 ". / 

(Scheffe, 

1959:261). The errors are also distributed independently 

of the "true" means #nij· nl.ij is the "true" mean of worker 

j using machine 1. The distribution offflij is of primary 

interest. 



The workers selected for this experiment are to be 

representative of all workers capable of using the 

machinery to be tested. The population of all such 

workers has a distribution �, from which each worker is 

selected. The J workers are randomly selected so that 

�ij can be denoted as a random variable m(i,v) where v 

represents worker v randomly selected according to �. 

There are I random variables m(i,v) for each worker v 

which can be used as components of a "vector random 

variable . ", m (v) , where 

m(v) = {in ( 1, v) , m ( 2, v) , • • •  , m (I, vu • (3.2) 

Since there will be J of these v&Gtors, the resulting 

I X J matrix is formed 

f: I I 
Q = �m (1), m (2), (3.3) 

To find the "true" mean of machine 1, it is 

necessary to take the expected value of m(i,v) with 

respect to fJJv- The "true" mean of machine i will be 

denoted as 

( 3. 4) 

By taking the arithmetic average of the I "true" 

means, the general mean is found and denoted as 

Jj - Ltt i = m ( • , � ) • -- -
I 

(3.5) 

The effect of machine 1 1s defined as the amount �i 

exceeds the general mean. By letting �i represent this 

12 



effect, then 

4i= ..«i-� = m (i, .) - m (  ., .) • (3.6) 

The "true" mean for worker v is found by taking 

the average of m{i,v) over the i machines . The effect 

of worker v would be a random variable measuring his 

excess over the general mean. Using b (v) as the random 

variable measuring worker v's effect, then 

b (v) = m ( .,v) -A- . (3.7} 

The response, however, does not necessarily depend 

only on the worker and machine effects but on the 

interaction resulting from the particular worker and 

machine combination, also. To measure this interaction 

effect for worker v on machine i, the m (i,v) 's 

excess lS measured over ai, b (v) , and l.l .  Letting ci (v) 

represent the interaction effect, then 

Ci (v) m{i,v) -ai- b (v) -JJ. 

m{i,v) · - [m (i, . ) - � J - [m (  .,v} - � J - � 

m ( i , v ) - rn ( i , . ). - m (. , v ) + JJ. • 

The "true" mean N't ·  . now explained in terms of m ( i, v) lJ 

broken into effects, is 

(3.8} 

(3.9) 

Now that the model has been defined in terms of the 

effects, the properties of these effects will next be 

examined. 

Property 1: Since the expected value of m{i,v) has been 

13 



taken over �, then m ( i, . ) - P. is a constant. Since the 

general mean is the average of I m(i, .) 's, i.e. the I 

machine means, then the sum of the machine effects is 

equal to zero. Thus property 1 is 

� ai = m ( . , • ) - m ( . , • ) = 0. 
l. 

Property 2: If the expected value of b(v) is defined as 

b (.), then 

E (b (v)) = b (.) = m (., • ) - p. = 0. 

Property 3: The interaction effect 1.s "fixed 1.n one 

direction and random in the other." (Schultz, 1955:125) 

so that 

= F [ m(i,v) - m(i, .) - m(.,v) + p.J 
.· = I  m(.,v) - I m(., .) - I m(.,v) + IP. - 0, 

and 

E [ ci(v)] = ci ( . ) = m(i, .) - m(i, .) - m(., .) + P. = 0. 

It is next helpful to investigate the 

14 

variance-covariance structure of the system of "true" means. 

Denote the covariance between machine i and machine Y 

operated by worker v as uiY • Then 

b { v) + c i { v) )] 
b {v) + Ci'{V)) J} 
+ Ci (v) cJ:'(v)} 

( 3.11) 



The variance of the worker effects can now be 

expressed as 

m(.1v) - ..u] 
1 Z,m ( :i:' 1 v ) -

I 

I 

- l/I2 E[[F (M+ai + b (v) + ci (v)) - Lu][�(�+ ai1+ b (v) + 

c�(v) - I.u.Jl 
- l/I2 E [[lt(b (v) + ci (v))] [ � (b (v) + cj_"(v)JJ 
- 1/ I 2 E £ Li? ( b 2 ( v) + c i ( v) b ( v) +c i' ( v) b ( v) + c i ( v) c i" ( v)) J 

= l'L'O"ii' -
ii' I2 

- 0.. . (3.12) 

The covariance between the interaction effects of 

worker v using machine i and Y can be found as 

Cov [ci (v) 1 cj_"(v)] = 
Cov [(m(i1V) - m(i1 .) - m(.1v) +).l) 1 (m(i�v) - m(i� .) -

m (. 1 v) +M)j • 

Expressing each of the terms of this last expression in 

terms of the appropriate effects and carrying out the 

indicated operations results in 

Cov [ci (v) 1 Ci (v)] = 0· '1 - �([_. •/ - k6· ·1 +E2 0 · ·I 
ll "t ll ,, ll . . ll 

.;&;.-- ..L-- ll 
I I - I2 

15 

= 6 i i1 - 0. i1 - 0 i • + 0. . . 
( 3. 13) 

The matrix {6i:t} denoting Cov [ m (il v) 1 m (i11 v)J 
is an I X I symmetric matrix such that Oi�= Oii· 

Thus 

var [ ci (v)] = Cov [ ci (v) I ci (v) J = 0 ii - oi. - o.i + cr .. 
= 0· · - 2-" · + K 

11 u.l u.. • 

The last covariance to be evaluated is between the 

worker V1 machine i interaction effect and the worker v 



effect, i.e. 

Cov [b (v), Ci (v)J - Cov [m(. ,v )  -MJ (m(i,v) - m(i,. ) ­

m(. ,v) +A)]. 

Again expressing the terms of this with the appropriate 

effects leads to 

Cov [b (v) , Ci (v)] 

• (3.14) 

/ 

Scheffe "adopts" the following definitions of 

"variances" of the three effects: 

The 

The variance of the worker effect l S  taken to be 

var (l, (vtl and is denoted by6 i" 
J 

(3.15) 

the variance of machine effects is taken to be 

�di2 and is denoted by�A2
, (3.16) 

(I-1) 
and the variance of the machine x worker interaction 

effects is defined to be 

� v� ( civ)) and is 
l '(-I-1)-

quantities (3.15) and 

denoted by ��� • (3.17) 

(3.17) can be expressed in terms 

of the covariance matrix as 

i " <fa = u • •  and 
�2 = 4 va r ( c i ( v) ) 
UA8 l 

-� 
l 

(I-1) 

(<rii- 26i. +lJ .. ) 
(I-1) 

[6ii - 2�6 1·� +'E6.. r ·F-� _l 1 1 

1 
( I-1) 

( 3 .18) 

16 



- 4 \r j j ·� 2 I (f I I + f 6 •• 
1 (I-1) 

- �o-:.-r.: t5 I t  1 1 1 l. 

(I-1) 

3.2 Other Suggested Models 

= I; [o . . - a- • •  J . 11 
(I-1) • (3.19) 

The covariance between the random main effects and 

/ 
interaction effects pointed out in Scheffe's model was 

first discussed by Tukey (1949)� Kempthorne (1952), 

Searle (1971) ,Graybill (1961), Mood (1950), and others 

implicitly imposed restrictions on the matrix f6it] such 

that 

Q ii' = ()2 
= P()·2 

if 
if 

I 

1 - 1, 

1 t i' 

in their models. Note that these restrictions imply 

homogenity of variances of the I machine means and 

homogenity of covariances between all pairs of machine 

means. The imposition of this assumption leads to 

independence of the random main effects and the 

interactkneffects as well, i.e. 

Cov [b (v), Ci (v)J = Oi.- (). • = � <Jii' 

I 

��(f ... , -
l.l 11 

I2 

17 

(3.20) 

The simplifications resulting from the restriction are 

appealing, but obviously should be used only in situations 

where valid. In the example used earlier it 1s very 



probable that worker v will not be independent of his 

interaction with a machine. In fact the output depends 

almost entirely upon the correlation between the.worker 

effect and his interaction with the machine effect. The 

worker might be independent of the interaction effect 

if perhaps he could not tell any difference between 

the machines' individual performances, but suppose that 

the worker "feels" more confident with machine i than with 

I 

machine i. This would surely cause a covariance between 

himself and the interaction. It is certainly plausible 

to assume that each worker v would react differently 

operating different machines, even of the same make. 

18 

However, the more similar the machines, the less pronounced 

the covariance would be. It is again up to the researcher 

himself whether he thinks that a correlation is possible. 

In an experiment involving plants and fertilizer it 

might be entirely erroneous to assume a covariance 

between the plant effect and the fertilizer by plant 

interaction, since one could assume equal correlation 

between plants and fertilizers. This raises the question 

of determining which model fits a particular situation. 

Hocking's (1973) approach seems suitable to answer 

this question, provided Ke mpthorne's model lS considered 

as a fourth alternative. The models are: 



( 1) / Scheffe�s model. 

where��· = 0, 4 c· · 1 1 1 1] = 0 \1 j, the [ eijk J are NID 

(0,02) and distributed independently of [bj} and fijJ , 

and the f bj } and [cij} are normally distributed with 

zero means and the following variances and covariances 

as defined in terms of an I X I covariance matrix 

with elements [ G it} : 

var (bj ) = 0 .. , 

Cov (cij', Cij) = Oi�- 6i· - <J.i" + 6 .. , 

Cov (bj, 

= �[6 .. - 6 . . ] d 1 1 1 , an 
(I-1) 

Cij) = (fi • - {) • • • 

(2) Searle's model (although used by others such as 

Plackett ( 1960) and Mood ( 1950) )1. 

Yijk = P- + C i + Sj + ({-,B) ij + eijk, 

where [t3 j} , {<2'15') ij J , and [eijk] are normally 

distributed with zero means, are uncorrelated, and 

have the following variances: 

var 

var 

Var 

(eijk) = () 2 , 

- 2 
(,8 j) - ot3 , 
([;.J· . ) = K 2 

1] Uz./.3 

and 

• 

(3) Graybill's model (used by many other statisticans 

and statistics textbooks). 

19 



y ijk =M +CXi + 

where � cxi -
]_ 

f (�Y)ij} , and 

Y · + (LXY) .. + e . 'k J lJ lJ 

o, 1; (cxY)ij = o Vj 
]_ 

{e ijkJ are normally distributed 

with zero means and the following covariances and 

variances: 

var 

var 

var 

(e ijk) =a
2
) 

(Y·) = ().2 
J 

y ) 

( (C(Y) . · ) lJ - (I-1) 
Q 

2 
J and 

I ocY 

Cov [(cxY�j , (CXY) ,/,] = -1/I 1\ 2 
I ]_ =1: i� lJ · VO< y 

All other covariances are zero. 

(4) Kempthorne's model. 

Kempthorne's two-way model is of the form 

Y . . k = .,/A. + a . + b . + ( ab) . . + e k + n . . k. lJ ]_ J lJ lJ 

where the a . are a random sample of size i* from 
]_ 

a finite population of size I, the b. are a random 
J 

sample of size j* from a finite population of s1ze 

J, and the (ab) .. are interaction compon�nts lJ 

associated with each (ij) combination. He assumes 

furthermore that 

t a · = 0 1; b · 0 t ( ab) · · 
]_ ]_ 'J J - I i J.] -

� 
0, and f (ab)ij = 0 

In this model ek is the "additive error of the k th unit" 

and is measured as (Y • •  k- Y . • •  ) . nijk is called the 

11interactive error of the kth unit and treatment (ij)". 

nijk = (Yijk - Yjj. - Y. • k + Y • • • ) and this "unit 
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2 1 

treatment additivity" is assumed to be zero slnce the 

experimental units are not structured ln most cases. 

Kempthorne and Wilk (1955:1149) state that " • • •  even if 

untrue, it will not, in many cases, affect the 

interpretation of the analysis of variance too heavily . . •  " .  

To obtain the two-way mixed model we assume i* = I and 

J�oo. In this case the model reduces to 

y ijk =M+ Cj_ 
i* 

+ b
J
· + (ab)j_ · 

i=l 
and L where r . = 0 . l ( ab) . .  = 0. l] l l 

Kempthorne expresses variances and covariances for the 

general case. In the mixed model these become 

var (b J·) = lim (J-1) /1"' 2 = " 2 
J--.Oo-

J 
Vb V], 1 

r. ] 
-2 2 

var l (ab)i · = lim (J-1) (I-1) (); = (I-1) " J 
J-.oe JI � a.l, I uab 

Cov Dab)ij , (ab):i/j ] = lim - (J-1) 2 = -1 2 
J .... oo IJ O"ao r o-ab • 

,and 

Thus although developed from a general point of view, this 

model reduces to Graybill's form. 

All of these models are said to describe-the two 

way mixed model with interaction, yet there are several 

differences. Kempthorne's model is fairly close to 

Graybill's with the exception of the error term and 

variances. Hocking (1973) suggests relating the models 

by specifying and comparing the first two moments. As 

in Hocking's paper, relationships among the variances 
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will be examined. 

Basically each model structures the variance-covariance 

matrix [<ri{� in different ways. / Where Scheffe placed only 

the requirement of positive definiteness and symmetry on 

the matrix, the other models require equal correlation and 

homogenity of variance. Suppose the structure of {6irJ 
1s pi + qH where I is an I X I identity matrix and H is 

an I X I matrix of all ones. Then 

() . •/ p+q if . / and - l=l, ll - q if i#i'. 

Now using this restriction and imposing it upon (3.14), 

(3.18), and (3.19) the following quantities are obtained 

/ for Scheffe's model 

Cov (b., c .. ) = 6. . - 6.. = 0, J lJ l as indicated in (3.20), 

0:2 
8 

= (j. • = ll 6 . ., = I ( p+q) I I 2 .. , ll. + I(I-1) q'ji2 
ll 

I2 
p/I + q • 

var ((ab) ij)= oii - cr • •  

- p+q (p/I +q) = (I-l)p/I J and 

2 

(JAB= L( 6. . - o .. ) -i ll 

= p • 
(I-1) 

I(p+q)/(I-1)- I ( � +q)/I-1 

Thus as a result of the restrictions, the elements of 

ZOiiJ in terms of variance components are 

()ii'= (J/ + (I-1) [
2 if i=i', and 

I AB 

= rJs2 �s�I if i;t:�. 
Searle's model also imposes a similar structure on 

[()ir] , but as Hocking (1973:150) points out Searle is 

even more restrictive by making p = �c� and q = (Jf32 
• 



/ 

This relates Searle's model to Scheffe's model as follows 

2 
+ 1/I O?n , and 

In Searle's model the effects are defined differently 

/ 

when compared to Scheffe's model. The following 

relationships exist as pointed out by Hocking (1973:150) 

b . = 8 . J J + ( tf3). j , and c i j = ( C/.3) i j - ( C(3) • j . . · 

� 

Recalling how Scheffe developes his effects, it 1s 

difficult to assign a meaning to Searle's model terms 1n 

/ 

the same manner. Where Scheffe defines his worker effect 

as 

b j = m ( ., v) - M, 

Searle's worker effect would be 

.Q. = m ( v) -M -fv J •. , (·f/3) • .  
J • 

The value (c/3). j will be a random variable depending upon 

worker j. Thus Searle's worker effect is measured as 

the difference of the 11 true .. mean of t he work�r, minus 

the general mean, minus the average interaction effect 
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of the worker on the I machines. Again in his interaction. 

effect, Searle adjusts for an average interaction. 

Searle has 11defined11 all covariances between interaction 

effects and main effects out of existence since, as 

/ 

shown, re-defining Searle's effects in terms of Scheffe's 

effects will lead to covariances. The variance-covariance 



matrix [ Oii'] used by Searle is even more restrictive 

than Graybill's or Kempthorne's since variances are 

attributed to worker effect and interaction effect 

variances, but covariances are attributed only to worker 

effect variances. 

The definition of terms and restrictions on [6ir1 
make Searle's model mathematically appealing but not very 

practical for experiments, since the model terms have 

little intuitive meaning. The effects of Graybill's 

24 

and Kempthorne's model make sense in experimental situations 

but still the assumption of homogenity of variance and 

equal covariance is questionable. 
/ 

Scheffe's model is the 

most "flexible" or "practical" model for the two-way mixed 

effects case since the definition of effects and matrix 

{ Oi i' } does not create any bounds on an experiment. 

Although Searle's, Kempthorne's, or Graybill's model 1s 

I 
applicable in certain situations, Scheffe's model 1s less 

ambiguous in its applications. 



4. ANALYSIS OF THE MIXED TWO-WAY MODEL 

In chapter 3 the mixed two-way cross classification 

/ 

models proposed by Scheffe, Searle, Kempthorne, and 

Graybill were stated and examined. Comparisons between 

them pointed out the differences in assumptions and in 

the meaning of the model terms. In the analysis of 

experimental data generated according to each of these 

models, the ANOVA calculations of sums of squares are the 

same. However, the model selected to represent the 

experimental situation shapes the analysis of the data 

both in the interpretation of the model terms and through 

the construction of significance tests. In this chapter 

differences in the expected mean squares under the various 

model forms are first examined. Next the tests of 

significance including the multivariate test of the fixed 

/ 

main effects proposed by Scheffe are presented. Finally 

the various significance tests and methods of estimating 

variance components are applied to a data set taken from 

literature. 

4.1 Expected Mean Squares 

The significance tests of recognized sources of 

variation in the ANOVA are typically constructed by 

considering the expected mean squares. The ANOVA 

expected mean squares under the four models considered 
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are given 1n Table 4.1. Kempthorne's and Graybill's 

Table 4.1 Expected Mean Squares For the Two-Way Cross 
Classification Models With Interaction 

Fixed Effect A Random Effect B A B Interact 

Scheffe's 2 2 JK(fA + KCJAB IKO� + ()2 K()t� + ()2 
Model +(j2 

Searle's (I�� Ycfi + KOz.� IK()j + K()�B KOtt3 + 02 
Model 

Kempthorne's 
Model 

Graybill's 
Model 

+02 

-N'?+ K()2 1 ab 

o-2 

+ 

JK);. � 
(I-1) A_ + K(),2 

tJ..Y 

+ 02 

+ 02 

IKQ""; + ()� K ()4 
ab 

IK(J� + OL. � 
:� 6(j..y 

models have essentially the same ANOVA expected mean 

squares and consequently the same significance tests. 

+ ()2 

+ oL. 

Scheffe's model results in ANOVA expected mean squares 

which, again, are essentially the same as Kempthorne's 

and Graybill's but the more general structure of this 

model results in a multivariate test for the fixed main 

effects. Tests of other effects are the same� Searle's 

model, though, has a different expected mean square for 

the random effect which causes this to be tested by the 

interaction rather than by the error mean square as in 

the former three models. 
• 

The conflict over the proper expected mean square 

for the random effects has been discussed in numerous 

papers. Kim and Carter (1973a), (1973b) attempted to 
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resolve the controversy by an "empirical study." Using 

Monte carlo simulation 1200 data sets were generated for 

each of two sets of selected variance components. It 

should be noted that these data sets were generated with 

correlated interactions consistent with Graybill's, 

/ Kempthorne's, and Scheffe's models. (In this section 

Scheff�'s model will be used as including Kempthorne's and 

Graybill's models). 
2 

The X values under Searle's 

/ expected mean squares and Scheffe's expected mean squares 

were examined and tested for significance. However Kim 

and Carter failed to recognize that Searle's random effect 

/ 
is not defined the same way as Scheffe's. Table 4.2 

2 2 
appears in Kim and Carter (1973a:8) using 6 =1, (JAB =1/6 

and \fJ3 =1 . 

Table 4.2 The x2 Test With �2 =1, �2B =1 

'X'). 
2 

A Test D.F. 

SSA/E(MSA) 1251.79 1200 
SSB/ {G 1 + 1*) 

16(1"�) 
1157.57 1200 

SSB/ (6'2 + 8 AB+ 1073.38 1200 
SSA B/E (MffiB) 1256.23 1200 
SSE/E(MSE) 33521.77 3600 

*denotes (p < .01) 

z value = -(2;2 - ! 2n-l 

z value 

1.0562 
-.8637 

-2.6464* 
1.1448 
-.3000 

Since SSB = 1157.57 (()2+ 166i) then it is found that 

SSB = 1157.57 (1 + 16) = 19678.79. To prevent confusion, 
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Searle's random effect variance component will be noted as 

A2 2 
Ve and the interaction variance component as 6ce . In 

chapter 3 I section 3. 2 I it was found that ()2B - a; +1/A o}e 

and that Numerically then, Searle's variance 

components in this case are valued as 

Kim and Carter give the x2 test of Searle's model as 

28 

x2 - 19678.69 - 19678.69 - 19678.69 - 1073.38* 

02 + 8J2AB + 16(f2B 

The x2 test of Searle's 

19678.69 
t�2 + 8Cf2 + 160:2 v ce e 

19678.69 
17 

1 + 

model 

8·1 + 16·1 
6 

should be 

19678.69 
1 + 8•1 + 16•11 

6 12 

1157.57 n.s. 

110 
6 

Thus the x2 test of Searle's model produces the same 

.. non-significant .. value as the test of Scheffe's. 

In using �2 = .0833, cr2AB = .1667, and Q� - .3334 

Table 4.3 appears in Kim and carter (1973a:9). 



2 (J 2. 
'). 

Table 4.3 Thex Testwith - .0833,(]8 = .334 

SsA/E (MSF>.) 
SSB I (<J' � + 16cra ) 
SSB/ ((1'':1. + 80"A6 
SSAB/E (Mffi.B) 
SSE/E(MSE) 

1 
+ 16<rs) 

* denotes (p< .01) 

Z value = .y:;-;2 - V2n-l 

x 2 Test 

1215.32 
1252.12 
1004.83 
1224.21 

33775.33 

D.F. z value 

1200 .3218 
1200 1.0629 
1200 -4.1503* 
1200 .5019 
3600 .6770 

Using similar methods as before, �t was found that 

SS B - 6783.6105 and 6e = .2301. 2 
TheX test of Searle's 

model was found to be 

6783.6105 x2 = 6783.6105 
02 +8 <Y1e,+l6(J� .0833+1.333+5�3244 

1004.83* • 

:l Actually the X test of Searle's model is 

6783.6105 
/\2+8 (f2. + 166:2 \J �e e 

6783.6105 - 1252.12 
5.417 

6783.6105 
.0833+1.333+4.0112 

n.s. 

6783.6105 
6.7410 

= 

= 

The statement by Kim Carter (1973b:5) .. Under Assumption I 

[ scheffe] , thex2 values are not statistically significant 

while under Assumption II [ Searle] , thex2 values are 

statistically significant .. is clearly in error. In 

examining the power of the two tests, Kim and Carter 

repeat their mistake. Clearly, it is not a question of 

which expected mean squares are correct, but rather 

for which model do the terms have the meaning which 
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the experimenter attributes to them. The model selection 

then determines the expected mean squares. 

4.2 Tests of Significance 

Usually tests of significance of the sources of 

variation in analyses of variance are constructed through 

consideration of the expected mean squares. A source of 

variation is generally tested by taking its mean square as 

the numerator component of an F statistic and by selecting 

another mean square from the ANOVA which has the same 

30 

expectation under the null hypothesis. Thus using Scheffe's 

model the random effect would be tested by error while 

in Searle's model it would be tested by interaction. 

/ 
Obviously Searle's test is more conservative than Scheffe's � 

but it should not be forgotten that in each model the 

effects to be tested are defined in a different manner. 

Again, it is not a question of which model lS better than 

the other, but rather which model fits a specific 

experimental situation best. 

Ironically, it is the significance test of the fixed 

/ 
effect that is not exact, yet it is only Scheffe who 

discusses the situation. Aside from Searle and a few 

others, most statisticans define SSA and SSAB in terms of 

effects as I 2 
s sA = JK � (ex i + c i . · + e i . . - e • • •  ) , and ( 4 • 1 ) 

r J 

S SAB = K .L 1' ( c i J
. - c i . + e i J

. • - e i . . - e • 
J
. • + 

1=1 N. 2 
e • • •  ) . (4.2) 



Except for Searle's model, most other models used by 

statisticans recognize a covariance between c· · lJ and c {j 

For this reason, under the hypothesis 

Ho: CX., i = 0 i=l,2 • • •  r. 
. i 

the F test can't be used because SSA and SS\B are not 

distributed as a constant times a central (or non-central) 

x2 random variable. The proper test for fixed effects 1s 

Hotelling's T2 statistic. The drawback to Hotelling's 

T 2 statistic is that it is cumbersome to calculate. In 

order to use it, extensive matrix manipulations are 

required. Most statisticans ignore the T2 statistic and 

use an F-test with (I-1) and (J-1) (I-1) degrees of 

� 

freedom. Scheffe (1956:36) remarks of this practice, "A 

justification of this would be welcomed by the practicioner 

because the computations are simpler and more familiar 

than those of Hotelling's T2, but until numerical 

investigations are made which indicate the errors involved 

are tolerable, the practice should be suspect in the 

present case ". 

Searle's model does not have covariance existing 

between interaction effects. Since he defines ssA and 

SSAB in terms of effects as 

I . 2 
SSA = JK � (C i- Ct(c.dJi.-<l'4).;t-'e i.-e. •.•) , 

and SSAB = K �-t(,('ffl)ij -(�/3)i.-£2'sJ!j +{l/3� .• + eij -� •• -e. j• +e •• • )2 
WJ=l 

( 4. 3) 
( 4. 4) 
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then SSA and SS\B are distributed as x2 random variables 

and an F-test can be used. Mathematically Searle's 

. / 
modeling technique ls more appeallng than Scheffe's but 

it is considerably more restrictive in its application 

to experimental situations. 

4.3 Applications to Data 

To investigate the worth of the T 2 statistic and to 

illustrate the analysis resulting from different model 

assumptions, the following two-way mixed model 

experimental data is used from Anderson and Bancroft (1952). 

Nine sprays are tested for their ability to help hold 

fruit on cherry trees. The number of fruit in four 

32 

one-pound random samples of the crop from 81 trees is crunted. 

Table 4.4 Cell Totals in Fruit Per Four Pounds 

Treatments 

Reps 1 2 3 4 5 6 7 8 9 
1 506 471 580 438 497 514 468 455 494 

2 444 464 718 478 483 484 515 451 507 

3 452 417 638 485 474 526 495 445 506 

4 453 443 503 437 500 539 476 457 469 

5 468 459 596 417 493 516 462 436 470 

6 427 428 559 457 531 496 442 479 430 

7 460 468 583 482 509 427 470 468 462 

8 395 506 571 414 457 452 475 418 489 

9 455 454 718 429 515 511 406 425 484 

In analyzing the experimental data in table 4.4, two 

models will be used. The first model will 
/ 

be Scheffe's 
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model (effectwise equivalent to Kempthorne•s and Graybill1s). 

where 

Y. 'k = ,..u. +CX.. +b. + c  . .  + e1.J.k 1] 1 J 1] 

�= the general mean, 

�. - the spray effect 1 1,2, • • •  ,9,, 

b. 
J 

- the tree replication effect 

c .. - spray 1] X tree effect, and 

eijk - error in sampling k=l, . • •  4. 

The other model used will be Searle•s. 

where 
y . . k = p + c. + (3 . + ( C;/.)) . . + 1] 1 J � 1] 

..AA- = the general mean, 

j=l, • • •  9 

Ci - the spray effect as defined by Searle i=l, • • •  9, 

;Gj - the tree replication effect as defined by 
Searle j=l, • • •  9, 

spray x tree effect, and 

eijk - error 1n sampling k=l, • •  4. 

The resulting ANOVA of this .data is given in Table 4.5. 

Table 4.5 ANOVA of Fruit Trees 

Sources of variation D.F. s.s. 

Treatment (Fixed) 8 45,326 
Replication (Random) 8 2,804 
Treatment X Replication 64 19,722 

Error 243 4,610 

Total 323 72,462 

The first hypothesis 
H0: 0"2AB - 0 
Ha: J"2AB =I 0 

to be tested is 

or Ho: 6c.l32 
H a: 0 f,s 

- 0· 
"1- 0 

M.S. 
5,665.7 

350.5 
308.1 

18.97 



The F-test for both models is F = 308.1 = 16.24> 
- 18.97 

F � 2 64,243, .05 � 1.30. The null hypothesis of GAB = 0 or 

G�S = 0 is rejected. Normally analysis would turn to 

differences between individual treatment means, but 

analysis in this case will continue as if the null 

hypothesis was not rejected in order to indicate other test 

differences. 

The next hypothesis to be considered lS 

Ho: Os
2 0 

Ha: Gt =F 0 
or 

2 
Ho: Q,2 

- 0 
Ha: 013 =f. 0 

To test Scheffe's, Kempthorne's, and Graybill's random 

effect, the F test ls 

F = 350.5 = 19.002 > F _.,_ 8, 243,.05 � 1.96 
18.97 

so that H0 is rejected. To test Searle's random effect, 

the F test is 

F - 350.5 - 1.13 < F8,64,.05 2.10. 
308.1 

Here we fail to reject Ho• 

The last hypothesis to be tested lS 

Ho: CX- ·  0 v.. = 1,2, • •  9, Ho: C: l -l l or 
Ha: ex__ • l # 0 for some l. Ha! c-i 

0 

=I= 0 

Yi= 1,2, • • •  9 

for some l. 

Since Searle does not assume any correlation among his 

(c�)ij and.his SSA and SSAB are equations (4.3) and (4.4) 

as opposed to equations (4.1) and (4.2) then the F-test 

can be used to test the null hypothesis on the fixed 
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effects. For this example the test is 

F = 
5,665.7 

_ 18 52 > F 
308.1 

. 8,64,.025 = 2.41. 

Thus the null hypothesis is rejected. Kempthorne and 

Graybill use the identical F-test for their fixed effect. 

It should be noted here that C i = ex i + 1/9 ci. • Which 

1s not the same fixed effect as defined by Scheffe� 

Kempthorne and Graybill. Now to use the T2· statistic, 

/ 

assuming Scheffe's model it is necessary to examine the 

data in Table 4.4 and calculate d rj where 

(4.5) 

In other words the last cell total of each row is 

subtracted from each cell total of that row. A 9x8 

matrix results, which is given in Table 4.6. 

Table 4.6 The Matrix Resulting from drj=Yrj·- Yij. 

35 -23 86 -56 3 20 -26 -39 
-63 -43 211 -29 -24 -23 8 -56 
-54 -89 132 -21 -32 20 -11 -61 
-16 -26 34 -32 31 70 7 -12 

-2 -11 226 -53 23 46 -8 -34 
-3 -2 129 27 101 66 12 49 
-2 6 121 20 47 -35 8 6 

-91 20 85 -72 -29 -34 -11 -68 
-29 -30 234 -55 31 27 -78 -59 

225 -192 1258 -271 151 157 -99 -274 tot.al 

-25 -22 -139.77 -30.11 16. 7� 17.44 -11 -30.44 mean 

Next the (I-1) means and � (I-1) (I) sums of products are 
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computed. The resultant A matrix 1s (I-1) x (I-1), i.e. 

8x8, and symmetric with 

J 

A ' = L (d · - d ) (dr1
J

· - dr/.) rr j�1 rJ r. 

This is given in Table (4.7). 

Table 4.7 The A Matrix 

11880.0 
1242.0 

-2107.0 

2869.9 

9573.3 

5965.0 

-180.0 

6607.0 

-180.0 

1105.0 

-6403.0 

4240.0 

851.8 
-295.0 
6298.0 

4397.0 

1242.0 

8080.0 
-3345.0 

32.9 

4616.4 

-1955.0 

1105.0 

3740.0 

6607.0 

3740.0 

-5553.0 

8608.5 

11760.3 
5406.7 
4397.0 

11878.2 

-2107 .o 

-3345.0 
38995.5 

-1980.1 
-1860.2 

-1955.1 

-6403.0 

-5553.8 

2869.9 

132.9 
-1980.1 

9428.8 

6872.7 

1221.4 

4240.0 

8608.5 

9573.3 
4616.4 

-1860.2 

6872.7 

14777.5 

7480.3 
851.8 

11760.3 

There are then nine vectors d J , where 

( 4. 6) 

5965.0 

-1955.0 
-1955.1 

1221.4 
7480.3 

13072.2 

-295.0 

5406.7 

and each is normally and independently distributed 

N(�,�J) where an unbiased estimate of �d is 

'"' -1 "-'J.= (J-1) A = 1/8 A. 

/ 

The vector a'= (dl., d2.,d3�····,d8.) and Retelling's 

T2 statistic is 

( 4. 7) 

in this case J = 9 and { = 0 so equation ( 4. 7) becomes 

(4.8) 
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This T2 statistic �s equivalant to the following F statistic 

[(J-l), (I-l)J F (I-1) 1 (J-1+1) 
- 64 F8, 1 L(J- I + 1) 

which changes (4.8) to 

72 
64 

d' A-1 _d. n F 8,1. (4.9) 

Scheffe recommends a shortcut for calculations using 

� � � 'A1 � = �� [ A t 
A

� ' 
d 1_1 J. 

Thus the F statistic becomes from this data 

72 
64 

[. 7965 x lo29_� = 72 
L· 1586 X 10 2 7 J 64 

239 at a = .05. 

[506.79] 

(4.10) 

571.468>F8,1 = 

Thus Ho �s rejected at a - .05 but at a - .025 Ho is not 

rejected since F8,1 . 02 5 957, and 571.468 < 957. 

The large difference suggests that at a � .035 Ho will not 

be rejected. Searle's, Kempthorne's and Graybill's test 

/ 

for fixed effects is more liberal than Scheffe's test. 

Whether the added calculations are worth _the 

accuracy is up to the experimenter. Most texts do not 

mention Hotelling's T2 statistic. Instead they use an 

F test equivalent to Searle's. If Searle's model is used 

there is no worry about having an exact test. The 

advantage to using Hotelling's T2 statistic is that the 

power can be readily calculated. (For reference on power 

calculations and 



I 

contrasts see Scheffe (1959)). Since most researchers 

have access to computers, Hotelling's T2 statistic does 

not pose that much of a problem in computation and should 

be used. However the T 2. statistic can only be used when 

J < I, and in fact J should be greater than I so as to 

"deflate" the F value. 

-
In investigating variance component estimation Table 

4.8 will be useful. To estimate �2AB and �;B , the same 

Table 4.8 

M.S. 
5665.7 

350.5 
308.1 
18.97 

I 

Scheffe • s and Searle's Expected Mean Squares 

Scheffe's EMS 
36 I ex. 2 + 4<J�s 8 1 

+ cr 
2 

36CJt 
+ 

o2 
4 CJfs + 02 

cr2 

Searle's EMS 

36 .[ci 8 
+ 46l� 

36(j� + 4<J� + 
4 

()2-� + ()2 

02 

62 

formulas or combinations of M.S. are used 

2 2 k [ MS interaction - MSE] Q"" AB· -
OZ-13 

-
4 

18. 97] k [308.1 --
4 

- 289.13 - 72.26. 
4 

+ 
02 

To estimate (5: the following linear combinations of M.S. 

is used 

2 
()(3 = 1/36 

- 1/36 
- 1/36 

[MSB - MSAB) 
[350.5 - 308.1] 
(42.2) = 1.18. 
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<J2� is estimated as 

CfB2 - 1/36 
- 1/36 
- 1/36 

(MS B- MSE) 
[3 _50 • 5 - 18 • 9 7] 
[331.53] = 9.21. 

It is now interesting to verify the relationship of 

9.21 1.18 + 1/9 [72.26] 
1.18 + 8.03 
9. 21 • 

/ 

In estimating the variance components, Scheffe•s, 

Kempthorne•s, and Graybill's models will not vary. 

Searle's model differs in variance component estimation 

and testing procedures but this is because of the way 

Searle defines his effects. Searle's model eliminates 

inexact F-tests and provides a means of calculating 

power for each hypothesis, but as mentioned earlier 

it is a very restrictive model and perhaps leads to an 

unmeaningful interpretation of the model components. 

� 

Scheffe's model is the most "realistic" model and 

provides the most meaningful tests. Although Hotelling•s 

� statistic must be used to test the significance of the 

fixed effects, the procedure can be easily programed on 

a computer. 
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5. CONCLUSIONS AND EXTENSIONS 

40 

In chapter 3 the various models for the two-way mixed 

model with interaction were introduced and compared. 

Although developed as a special case of the finite 

population model, it was found that Kempthorne's model 

was equivalent to Graybill's model. In chapter 4 the 

analysis of variance expected mean squares and tests of 

significance were examined for Scheff�'s model, Kempthorne's 

and Graybill's model, and Searle's model. It was found 

/ 

that Scheffe's model has effects defined in a meaningful 

way, is completely general, and gives exact tests. The 

test for fixed effects, though, is somewhat tedious to 

compute and, in fact, can not be applied when the number 

of levels sampled for the random effect is less than that 

of the fixed factor. In two-way situations, the T
2 

statistic is not overly difficult to calculate so that 

whenever possible Scheff�'s model should be used. 

In situations where Scheffe's model can not be 

applied, then Kempthorne's and Graybill's model should be 

used, since, like Scheff�, the effects are defined in a 

meaningful way. Although the assumptions on the variance­

covariance structure {Grii'} makes their model somewhat 

restrictive, the tests of significance are straightforward 

and simple for all sources of variation. If the assumptions 



do not hold, then at least the test for fixed effect 

differences must be considered as approximate. The example 

of section 4.3 provides an indication as to the adequacy 

of the approximation where it was found to be only slightly 

more liberal than Hotelling•s T2 statistic. Little work 

has been done in comparing the F-test to the T2 statistic 

since the task grows more cumbersome as the number of 

effects and the model complexity increases. 

41 

As in Kempthorne•s and Graybill's model, Searle's model 

places assumptions on the variance-covariance structure 

{ Cfii'} , but additionally the 11 effects 11 are defined in a 

way which is conceptually difficult to visualize. Provided 

the assumptions hold, the tests resulting from consideration 

of expected mean squares are exact and easy to perform, the 

problem being that the tests constructed are for mathematical 

simplicity. The primary appeal of Searle's model lies in 

its consistency with models often used in unbalanced 

situations. Consequently, his model should not be used 

./ 

where the alternative models of Scheffe or Kempthorne 

and Graybill can be used. 

In modeling higher order experiments, Scheff�•s 

technique again offers meaningful definitions of effects 

and is general, but tests of significance for fixed 

effects become so numerically complex that Hotelling•s 
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T2 statistic is no longer practical. 
/ 

As Scheffe (1959:288-

289) remarks, " • • •  if in a mixed model two or more of 

the factors have random effects the use of Hotelling's T2 

statistic • • •  is unlikely ever to be applied in practice.". 

Kempthorne's and Graybill's modeling techniques are 

much more adaptable to higher order situations than Scheffe:. s. 

All effects are meaningfully defined, but similar assumptions 

as used in the two-way model are applied to restrict the 

variance-covariance matrix in higher order models. 

Expected means squares are calculated according to the 

rules proposed by Schultz (1955). Under the assumptions 

on the variance-covariance structure, all tests are exact 

or approximate F-tests based upon Satterthwaite's (1946) 

procedure. 

Searle's modeling techniques are also easily 

extendable to higher order models, but as in the two-way 

model, there is difficulty in interpreting the. definitions 

of effects. The same restrictive assumptions imposed 

upon the variance-covariance structure by the two-way 

model are extended to higher order models. Expected 

mean squares are based upon rules proposed by Henderson 

(1959, 1969). All tests, provided the assumptions hold, 

are exact F-tests or, as in Kempthorne and Graybill, 

approximate F-tests based upon Satterthwaite's (1946) work. 



While Scheff{•s modeling techniques are preferred for 

two-way modeling situations, the� can not be 

reasonably applied to higher order situations since the 

resulting tests on the fixed effects are too complex. 

Kempthorne's and Graybill's modeling techniques have 

similar restrictive assumptions in order for resulting 

tests to be exact. It is felt that the approximations 

resulting from either case do not have large discrepencies 

from exact tests where the restrictions are not imposed, 

as seen in the two-way model example of section 4.3. 

Searle's model is consistent with models often used in 

the analysis of unbalanced data sets. However, the 

Kempthorne-Graybill modeling technique is recommended for 

the analysis of higher order mod�ls with balanced data 

sets because of the advantage in having meaningful 

definition of each effect. 
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