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Pancreatic cancer is a devastating disease that leaves patients with a very poor 

prognosis and few therapeutic options.  Many of the treatment options available are the 

same that have been used for almost 2 decades.  There is a dire need for both novel 

treatments for this disease as well as novel strategies of treatment.  This body of work 

will introduce and provide evidence in support of a novel combination therapy for 

pancreatic cancer treatment, a novel strategy of modifying currently used 

chemotherapeutics for pancreatic cancer therapy, and a novel transgenic preclinical 

mouse model of pancreatic cancer.  Sabutoclax, an antagonist of the anti-apoptotic Bcl-



 xiv 

2 proteins, and Minocycline, a commonly used antibiotic, show potent synergy when 

used in combination in both pancreatic cancer cells and in multiple immune-deficient 

and immune-competent mouse models of pancreatic cancer.  Sabutoclax alone is 

capable of inducing cell cycle arrest and apoptosis in cells and its cytotoxicity is 

enhanced significantly when combined with Minocycline.  This combination results in 

the loss of Stat3 activation both in vitro and in vivo, which is essential for its toxicity.  It 

also inhibits tumor growth and prolongs survival in the KPC transgenic mouse model of 

pancreatic cancer.  Also presented here are studies that demonstrate efficacy in vivo of 

modified versions of Gemcitabine and Paclitaxel.  These drugs are linked to a peptide 

that shows specificity for the EphA2 receptor, which is overexpressed on the surface of 

pancreatic cancer cells and only minimally on normal cells.  This peptide results in 

increased cellular uptake of drug, as it is bypassing its normal mechanism of entry.  

These normal mechanisms are often dysregulated in cancer, leading to decreased 

uptake and drug resistance.  The use of these modified drugs show significantly 

increased tumor growth inhibition as compared to the parent drug alone. Finally, we 

provide data on the characterization of a novel transgenic mouse model of pancreatic 

cancer.  This model, the Pan Met View (PMV) mouse, combines the commonly used 

KPC transgenic mouse model of pancreatic cancer and a mouse that expresses a 

Luciferase reporter gene under the control of the cancer-specific promoter, CCN1.  Our 

data shows that double transgenic PMV mice can now be used to follow primary tumor 

and metastasis development in real time by Bioluminescent imaging (BLI) through 

disease progression and potentially therapy. This strategy will enhance the use of 

genetically engineered mouse models (GEMMS) to study cancer initiation and 



 xv 

progression with potential to non-invasively monitor therapy.  These chapters present 

novel and exciting data that have the potential to open multiple avenues of translational 

study and result in significant advances in pancreatic cancer therapy.   
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Chapter 1: Introduction 

 

I. Pancreatic Cancer  
 

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive cancer 

that is estimated to result in over 39,000 deaths in the US in 2014 (NCI 2014).  It is 

currently the fourth most commonly diagnosed cancer and holds a 5-year survival 

rate of about 4% (1).  This poor prognosis results, in part, from a delayed diagnosis 

of the disease.  Patients experience few symptoms and those that they may 

experience tend to be vague in nature.  Abdominal pain, depression, weight loss, 

and loss of appetite are all commonly seen, though they are often overlooked until 

they become chronic issues.  Jaundice can be a symptom of pancreatic head 

tumors, which is much more telling of a significant underlying problem.  The 

consequence of this clinical presentation is that most patients have either locally 

advanced or metastatic disease at the time of diagnosis.  Risk factors for pancreatic 

cancer include a history of smoking, diabetes, chronic pancreatitis, and some 

inherited genetic mutations/familial diseases (2).  

II. Pancreatic Cancer Therapy   

 

Unfortunately, treatment options remain minimal for patients diagnosed with this 

aggressive disease.  Surgical resection is the only potentially curative treatment, but, 

due to delayed diagnosis, is only an option for approximately 15% of patients (2).  

Because of the anatomical location of the pancreas, even tumors discovered before 
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metastatic spread are usually not resectable.  Significant involvement of the tumor 

with surrounding vital organs and vessels, such as the celiac trunk, superior 

mesenteric artery/vein, and the hepatic artery, eliminate its ability to be surgically 

removed (2).  This tumor involvement, which can often eventually encase organs or 

vessels entirely, can often be a primary cause of death in these patients, a result of 

the rupture of vessels or impairment of normal function.   

Chemotherapy remains the most utilized option for patients with pancreatic 

cancer, though outcomes are still poor.  Gemcitabine remains the standard of care, 

even though it has been almost 2 decades since it was established to have a 

prolonged survival benefit as compared to Fluorouracil (3).  Despite this, Fluorouracil 

is still used in treatment regimens, as well as a number of novel combination 

therapies.  Folfirinox, a combination of fluorouracil, irinotecan, oxaliplatin, and 

leucovorin, has been shown to improve survival in patients with metastatic disease 

and is now being evaluated in patients with locally advanced tumors.  Additionally, 

the combination of Gemcitabine and nab-Paclitaxel (Abraxane) was also recently 

approved by the FDA for the treatment of metastatic pancreatic cancer after clinical 

trials showed significant survival advantages.  These two combination therapies are 

now considered standard of care for patients with metastatic disease.    Though 

radiotherapy is often incorporated into some treatment regimens and clinical trials, 

data regarding its efficacy remains somewhat controversial (2).   

 

III. Genetics of Pancreatic Cancer 
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The aggressive nature of the cancer and the resulting dismal prognosis for patients 

results, in part, from the vast array of molecular changes that occur during the 

development of pancreatic adenocarcinoma.  Pancreatic tumors are known to be 

chemoresistant as well and this resistance to therapy is often due to the many different 

genetic changes seen in pancreatic tumors. 

The development of a pancreatic adenocarcinoma follows a sequence of 

histological changes that turns a normal pancreatic epithelium into an invasive 

pancreatic adenocarcinoma.  This process has been classified into a series of pre-

invasive stages referred to as pancreatic intraepithelial neoplasia (PanIN) lesions 

(Figure 1).  These dysplastic ductal lesions range in number from PanIN I (low-grade 

lesion to PanIN 3 (high grade lesion or pancreatic ductal adenocarcinoma in situ).   

These progressive histological changes occur as the result of parallel underlying 

molecular changes.  It is these molecular changes that ultimately result in an invasive 

pancreatic adenocarcinoma.  It is also important to note that these changes occur at 

fairly specific time points throughout this progressive model and in a particular order.  

Additionally, not all pancreatic cancers will have the exact same molecular changes, 

further contributing to its inherent aggressive and chemoresistant nature.  Different 

tumors will often have different combinations of genetic mutations, chromosomal losses, 

etc.  This is why finding therapy to treat pancreatic cancers as a group remains so 

difficult.  Despite the vast number of potential molecular changes, there are a few that 

occur in a large number of pancreatic cancer cases.  

A. Major Oncogenes and Tumor Suppressors 
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One of the very first changes that occur in a normal pancreatic epithelial cell is the 

mutation of K-ras.  K-ras is part of the Ras family of proteins that is involved in signal 

transduction through the MAPK and PI3K/Akt pathways.  K-ras is mutated in over 90% 

of pancreatic cancers and primarily responsible for the initial transformation event in 

normal cells.  This mutation has been seen in codons 12, 13, and 61, with codon 12 

being the most frequently seen sight for K-ras mutations (4).  This oncogenic, early 

event results in constitutive activation of K- ras and is seen in PanIN 1 lesions through 

to invasive carcinoma.  K- ras mutation is seen in approximately 36% of PanIN-1A 

lesions, 44% of PanIN-1B lesions, and 87% of PanIN 2-3 lesions (5).  It should also be 

noted that pancreatic adenocarcinomas that arise in a patients with chronic pancreatitis 

tend to have lower frequencies of K-ras mutations, though the reason is not entirely 

clear (4). 

In vitro and in vivo studies have confirmed K-ras mutation as an early and 

initiating event in the development of PDAC.  Mouse models developed that express 

mutant K-ras in the pancreas result in the generation of ductal lesions resembling PanIN 

lesions (6).     
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Figure 1: Genetic Progression Model of Pancreatic Cancer.  Adapted from (7). 
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One of the next changes often seen affects the gene encoding p16, 

CDKN2A/INK4A.  p16 is a cell cycle checkpoint protein and can initiate G1-S phase 

arrest.  It is a very important protein in normal cell cycle function and is lost in around 

90% of pancreatic cancer cases.  Though p16 is lost in the majority of PDAC cases, the 

mechanism of its loss is not always the same.  Possible mechanisms of p16 loss 

include homozygous deletion of the CDKN2A/INK4A gene, intragenic mutation plus the 

loss of the 2nd allele, and epigenetic silencing through promoter methylation (4).  Loss of 

p16 is considered a fairly early to intermediate event in the development of PDAC.  

Around 30% of PanIN-1A and 1B lesions, 55% of PanIN 2 and 71% of PanIN 3 lesions 

show loss of p16 (4).  Additionally, as seen with K-ras mutations, the frequency of loss 

of this tumor suppressor is decreased in cancer cases resulting from chronic 

pancreatitis.   

The next big molecular event seen in the progression to PDAC is the inactivation 

of the TP53 gene.  p53 function is lost in approximately 50-75% of pancreatic 

adenocarcinomas and occurs much later in PDAC development, with changes in p53 

not usually seen until the stage of a PanIN-3 lesion.  It is normally involved in cell cycle 

regulation and loss of it results in inappropriate cell cycle progression.  It is also thought 

to contribute to the overall genomic instability seen in pancreatic cancer.  In the majority 

of cases, p53 function is lost through intragenic mutation of one allele and loss of the 

second.   

Another late event that occurs in PDAC development is the loss of the 

DPC4/SMAD4/MADH4 gene.  The SMAD4 protein is involved in signal transduction 

downstream of TGF-β and plays a role in growth inhibition.  Loss of this tumor 
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suppressor gene therefore results in uncontrolled proliferation.  This gene is lost in 50-

90% of pancreatic cancers (8).  SMAD4 is expressed in lower and intermediate stage 

PanIN lesions and lost in 31-41% of PanIN-3 lesions, supporting this as a later 

occurring event (4).   

These four changes are the most significant and frequent molecular events seen 

in the development of pancreatic adenocarcinoma.  Animal models developed by 

different groups have shown that combinations of K-ras mutations and loss of these 

tumor suppressor genes result in the development of a pancreatic adenocarcinoma in 

mice that closely resembles human PDAC (9).   

B. Stat3 

 

Stat3 is a transcription factor that is a part of a large family of signal transducer 

and activator of transcription (STAT) proteins.  This family consists of seven proteins 

and they each carry six conserved protein domains.   These domains consist of a 

tetramerization domain, a N-terminal coil-coil domain, a DNA-binding domain, a linker 

domain, a SH2 domain, and a C-terminal transactivation domain (10).  These domains 

play important roles in the normal function of Stat3 and can have clinical implications as 

well. 

In a normal cell, Stat3 resides predominantly in the cytoplasm.  When ligand 

binding activates tyrosine receptor kinases, they dimerize and undergo 

transphosphorylation.  This activates a series of phosphorylation steps that can involve 

a variety of different intracellular kinases.  These phosphorylations lead to the 

recruitment of proteins that are involved in signal transduction pathways.  Stat3 is one 
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such protein.  It gets recruited to the receptor complex via its SH2 domain and then it 

becomes phosphorylated (11).  Stat3 has a tyrosine residue at position 705 and a 

serine residue at position 727, both of which can be phosphorylated.  In most cases, it is 

a tyrosine kinase involved in this process and, as a result, tyrosine 705 of Stat3 is 

usually the phosphorylation site involved in this protein’s activation.  While multiple 

kinases are able to phosphorylate and subsequently activate Stat3, most times it is the 

JAK family of kinases that carry out this job (12). 

Once Stat3 is phosphorylated, it forms a dimer with another Stat3 monomer 

through the binding of the phosphorylated tyrosine of one monomer to the SH2 domain 

of the second.  This forms an active Stat3 dimer.  This dimer is now able to translocated 

into the nucleus, where it function as a transcription factor, binding DNA and regulating 

gene expression of its targets (10). 

As a transcription factor, Stat3 can regulate the expression of its transcriptional 

targets.  It is through the regulation of these targets that Stat3 can be responsible for the 

cancer supporting phenotype seen when it becomes constitutively active.  Many of the 

transcriptional targets of Stat3 play pro-survival roles in the cell and, when Stat3 

signaling goes unregulated, these targets become active players in cancer 

development.  Some of these targets are important specifically in pancreatic cancer and 

include (but are not limited to) the antiapoptotic members of the Bcl-2 family, Cyclin D1, 

and VEGF (13).  

Targeting Stat3 in pancreatic cancer has further shown the importance of this 

protein in this disease.  Yang, et. al. showed that knocking down Stat3 via lentivirus 
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mediated RNAi in a pancreatic cancer cell line resulted in decreased cell growth, 

decreased expression of VEGF and MMP-2, and decreased invasive abilities in a in-

vitro invasion assay (Yang, G. et. al. 2009).  Lewis, et. al. utilized a different approach 

by developing oligonucleotides complementary to binding sequences of Stat3.  They 

showed that these oligos were able to induce apoptosis in a pancreatic cancer cell line 

and that they could decrease expression of Stat3 target CD46.  CD46 is a protein that 

can protect tumor cells from complement-mediated cytotoxicity (Lewis, HD, et. al. 2008). 

These two methods target Stat3 expression and activity.  Other methods, such 

as the development of peptide inhibitors and small molecule inhibitors, take a look at the 

activation of the Stat3 monomer and use this process to develop inhibitors.  As 

mentioned previously, activated Stat3 monomers form dimers via their SH2 protein 

domains.  It is this dimer that can translocate to the nucleus and carry out its 

transcriptional function.  A strategy in targeting Stat3 has been to develop inhibitors that 

bind to this SH2 domain, prohibiting it from binding to another Stat3 monomer and 

forming a functional dimer.   

This was first accomplished by Turkson, et. al.  This group created the peptide, 

PY*LKTK (Y* = a phosphorylated tyrosine), that bound to the SH2 domain of a Stat3 

monomer.  However, like many firsts, this peptide did not exhibit good efficacy and 

required high doses to achieve results (Turkson, J. et. al. 2001).  Further derivatives 

were developed by multiple groups, but, as with many peptide inhibitors, the polarity of 

them and the transient nature of the phosphate groups resulted in problems 

(Haftchenary, S. et. al. 2011).  Ge, et. al. tried to address this problem by developing an 

unnatural amino acid meant to replace the phosphorylated tyrosine.  In this amino acid, 
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the phosphate group was replaced by an isoxazole carboxylic acid moiety.  The 

compound made with this new amino acid, ISS610, was a tripeptide that was shown to 

have moderate inhibitory effects against the SH2 domain of Stat3 and improved cell 

permeability (Ge, J. et. al. 2010). 

Many of the small molecule inhibitors of Stat3 aim to function in the same way as 

the peptide inhibitors, by targeting the SH2 domain of Stat3 and preventing 

dimerization.  However, small molecule inhibitors often have much greater efficacy than 

peptide inhibitors due to their more advantageous physiological properties.  For 

example, small molecule inhibitors are able to rapidly diffuse through cell membranes, a 

property not exhibited by peptide inhibitors.  Though there have been many Stat3 small 

molecule inhibitors developed, those discussed here will focus on two that have been 

studied in the context of pancreatic cancer, LLL12 and Cucurbitacin. 

LLL12 was developed by Lin, et. al. via a structural based approach.  It has been 

shown to bind directly to phosphorylated tyrosine 705 and exert a variety of inhibitory 

effects on cancer, but not on normal, cells.  In pancreatic cell lines, LLL12 was shown to 

reduce Stat3 DNA binding, induce apoptosis, and decrease mRNA and protein 

expression of Stat3 targets CyclinD1, Survivin, and Bcl-2 family anti-apoptotic proteins.  

Additionally, it showed synergy with Gemcitabine, the current first line treatment for 

pancreatic cancer (Lin, L. et. al. 2010). 

Cucurbitacin, unlike LLL12 and other Stat3 small molecule inhibitors, functions by 

targeting the JAK family of kinases.  Inhibition of these proteins blocks Stat3 activation 

at the level of the receptor complex (Jing, N. et. al. 2005).  Zhang, M. et. al. examined 
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the effect of Cucurbitacin B in pancreatic cancer.  This group found that in addition to 

decreasing Stat3 activation, this compound inhibited pancreatic cancer cell growth, 

induced apoptosis, increased p21 levels, and decreased Stat3 targets Bcl-2 and 

survivin (Zhang, M. et. al. 2010). 

 

C. Other Genetic Alterations 

As mentioned earlier, the aggressive nature of this cancer is due to the vast 

number of molecular events that occur in its development.  In addition to the major 

genetic changes seen, there are many other alterations that occur during the 

development of this cancer.  Examples of these include overexpression of the HER-

2/NEU/ERBB2 gene, mutation of the BRCA2 gene and upregulation of the proteins 

Cyclin D1 and COX-2.   

Overexpression of the HER-2/NEU gene is something that sometimes occurs as 

an early event in the development of PDAC.  Reports vary as to what percentage of 

pancreatic cancers exhibit overexpression and range from 7-82% (14).  Overexpression 

and therefore activation of this oncogene leads to constant proliferative signals through 

a multitude of pathways. 

Another late event in PDAC development is mutation of the BRCA2 gene.  

BRCA2 is involved in DNA damage repair in cells, and loss of the normal function of the 

associated protein results in accumulation of DNA damage in cells.  BRCA2 is mostly 

associated with inherited pancreatic cancer cases.  Germline BRCA2 mutations 

predispose patients to pancreatic cancer, increasing their lifetime risk by 5-10% (15).  
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Despite this, there are cases of sporadic pancreatic cancer with BRCA2 mutations.  

Around 7-10% of pancreatic cancer cases are found to have a germline BRCA2 

mutation, some of which were thought to be sporadic (4). 

Cyclin D1 is another protein often overexpressed in pancreatic cancer.  Cyclin D1 

functions normally as part of the cell cycle in conjunction with cyclin-dependent kinases 

4 and 6.  Together, these proteins inactivate the retinoblastoma gene (Rb), an inhibitor 

of cell cycle progression, and encourage the cell cycle to proceed.  Overexpression of 

CyclinD1, therefore, accelerates cell cycle progression.  Nuclear overexpression is seen 

in around 33% of PanIN-2 lesions, over 50% of PanIN-3 lesions, and in between 60-

80% of invasive PDAC (4).  Importantly, cyclin D1 overexpression has been correlated 

with decreased survival in patients with pancreatic ductal adenocarcinoma (16).   

Well known for its role in inflammation, Cox-2 also can be involved in the 

development of cancer.  One study found Cox-2 to be overexpressed by 

immunohistochemistry in between 69 and 81% of pancreatic tumors (17).  It is also 

increasingly expressed as lesion progresses from a PanIN-1 lesion to a PanIN-3 lesion 

(4). 

Changes in some of genes/proteins already discussed can lead to activation of 

not only the individual protein, but of whole pathways as well.  K-ras is an example of 

this.  Interestingly, activation of some other pathways seen in pancreatic cancer 

includes a few normally involved in embryological signaling.  The Hedgehog and Notch 

signaling pathways are actively involved in embryological development of different 

organs and are usually turned off in adult tissues.  However, in pancreatic cancer, there 
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is evidence of activation of the components of these pathways, as well as some of their 

targets, like the Hes1 gene of the Notch pathway (4).  As their embryological function 

involved regulation of cell differentiation, this activation may play a role in the abnormal 

differentiation and transformation seen in invasive pancreatic cancer (18). 

As in many types of cancer, there is a large degree of genomic instability seen 

both throughout the PanIN stages and in pancreatic adenocarcinoma.  The result is 

many chromosomal abnormalities, both numerical and structural.  Loss of chromosomal 

material can lead to some of the changes discussed above, such as loss of the 

DPC4/SMAD4/MADH4 gene, which is located on frequently lost locus 18q21 (15).  It is 

important to remember that the molecular events leading to the development of 

pancreatic adenocarcinoma are not necessarily isolated events and that they often 

represent underlying overall instability in the genome. 

As mentioned previously, this genomic instability is an early event, seen in low 

grade PanIN lesions.  Evidence of this at that stage is made apparent by shortening of 

telomeres seen in over 90% of PanIN lesions (4).  It is thought that this early loss of 

telomere length initiates a state of genomic instability by leaving chromosomes 

vulnerable and sets the stage for future molecular events to occur.   

In general, changes in K-ras, p53, INK4A, and SMAD4 provide a solid base for 

the transformation of a normal pancreatic epithelial cell into an invasive pancreatic 

adenocarcinoma.  It is clear, however, that these changes do not solely contribute to 

PDAC development and that there is a vast array of molecular events that can occur in 

different combinations to produce an invasive cancer.  The additional examples 
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discussed above (only a representative sample of the vast number of possible 

molecular changes) show how different the normal functions of these proteins can be 

and illustrate how the changes that contribute to PDAC development are very much 

widespread across the genome.  Despite some of their differences of origin or function, 

they often work synergistically to encourage cancer development.   

The correct sequence of these changes plays an important role as well.  An early 

oncogenic mutation of K-ras helps to start the push of proliferative pressure on a cell.    

The loss of gatekeeper tumor suppressors later in development relieves any final hold 

on the growth of the progressing cancer.  These timed events are important and, with 

the addition of all of the other potential molecular changes, result in the development of 

an invasive cancer that is aggressive, nearly impossible to treat, and ultimately and 

unfortunately, fatal.  

IV. Apoptosis and the Bcl-2 family of proteins 
 

Apoptosis is a biological process that is integral to normal physiological functions 

and maintenance of homeostasis in an organism.  The cell’s ability to undergo 

apoptosis is a consequence of a vast array of complex cellular processes that involve 

multiple proteins.  Apoptosis can occur through two distinct, but interrelated, pathways: 

the extrinsic pathway of apoptosis or the intrinsic/mitochondrial pathway of apoptosis 

(Figure 1). The extrinsic pathway involves activation of cell surface death receptors 

(Fas, TNFR) by extracellular ligands such as FasL or TNF.  Activation of any of the 

death receptors results in cleavage and activation of caspase-8, leading to a signaling 

cascade that culminates in death of the cell.  The intrinsic pathway, which can be 

initiated by a variety of stress signals, involves permeabilization of the outer membrane 
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of the mitochondria, which leads to cytochrome c release.  Once released, cytochrome 

c binds to Apaf-1 and forms the apoptosome, which results in cleavage and activation of 

caspase-9 and, ultimately, cell death (19).  This mitochondrial pathway is controlled 

primarily by the complex interactions of the Bcl-2 family of proteins. 

Bcl-2 is the founding member of this family of proteins and was discovered in studies 

of B-cell lymphoma.  The proteins in this family share certain sequence homology via 

the presence of Bcl-2 homology (BH) domains.  There are four BH domains that exist in 

this family and each member has at least one.  The family is divided into two groups: 

one group that has pro-apoptotic effects and one group that has anti-apoptotic effects.  

The pro-apoptotic group is further divided into two subgroups: one group containing 

proteins such as Bax and Bak and a second group containing proteins including Noxa, 

PUMA, Bim, and Bid.  The latter group is often referred to as the BH3 only proteins, as 

the members of this subgroup share sequence similarity to the rest of the family only 

through their BH3 domain.  The anti-apoptotic group includes the proteins Bcl-2, Mcl-1, 

Bcl-XL, Bfl-1/A1 and Bcl-w (20).  

Apoptosis through the intrinsic pathway is imminent when mitochondrial outer 

membrane permeabilization (MOMP) occurs.  This process arises as the result of the 

formation of homo/heterodimers of the pro-apoptotic proteins Bax and Bak.  The other 

two groups of proteins in this family ultimately regulate apoptosis by either promoting or 

inhibiting this dimerization.  The Bcl-2 family of proteins does this through physical 

interactions with each other.  Two different models have been proposed to describe 

precisely how this process might occur (Figure 2).   
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The first scheme is an ‘indirect activation model’.  In this model, the anti-apoptotic 

proteins bind to Bax/Bak and block dimerization.  The BH3 only proteins exert their pro-

apoptotic actions by binding to the anti-apoptotic proteins, thereby displacing Bax and 

Bak.  Free Bax and Bak are now free to form dimers resulting in MOMP.  The second 

theory is a ‘direct activation model’ that is somewhat more complicated.  In this model, 

the BH3 only proteins are divided into sensitizer and activator proteins.  In this model, 

Bax/Bak oligomerization occurs when the activator BH3 only proteins bind to and 

activate Bax/Bak.  The goal of the anti-apoptotic proteins is to bind the activator proteins 

and prevent them from binding and activating Bax/Bak.  Accordingly, the sensitizer BH3 

only proteins bind the anti-apoptotic proteins and prevent them from interacting with the 

activator BH3 only proteins (21).  Ultimately, it is likely that these two models may both 

occur, since apoptosis regulation is all about balance.  At a given point in the life of a 

cell, the ratio of pro-apoptotic to anti-apoptotic proteins dictates whether the cell will 

survive or undergo apoptosis.  When the pro-apoptotic proteins are expressed in 

greater quantity, the balance is pushed toward apoptosis.  However, when the ratio 

favors the anti-apoptotic proteins, cell survival will be the net consequence.   
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Figure 2: Two proposed hypothetical models of the mechanism of action of 
the Bcl-2 family of proteins. The “indirect activation model” describes a scenario in 
which the binding of anti-apoptotic proteins inhibits Bax/Bak oligomerization.  
Displacement of these anti-apoptotic proteins by a BH3 only protein allows dimers to 
form and apoptosis to occur. In contrast, the “direct activation model” holds that BH3 
only proteins are divided into two classes: activators and sensitizers. The activator 
proteins bind to Bax or Bak, activating them and leading to apoptosis. The anti-
apoptotic proteins function in this model by binding to these activator and sensitizing 
proteins and sequestering them. The BH3 only sensitizers bind to anti-apoptotic 
proteins in an attempt to displace the activator BH3 proteins. When enough activator 
BH3 proteins are free, they are able to activate Bax/Bak and induce apoptosis. 
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V. Mcl-1 (myeloid cell leukemia-1) 
 

Mcl-1 was the second member of the Bcl-2 family discovered.  Kozopas et al. (22) 

were investigating the human myeloid leukemia cell line, ML-1.  Their goal was to 

differentiate ML-1 cells into monocytes/macrophages and identify genes whose 

expression was increased during this differentiation process.  One of the early induction 

genes identified through this strategy was named Mcl-1 (myeloid cell leukemia-1) and 

was shown to have sequence similarity to the previously identified protein, Bcl-2.  Based 

on this similarity and its mode of isolation, Mcl-1 was predicted to play significant roles 

in cell differentiation and death (22).  Future studies showed that c-myc-induced 

apoptosis in CHO cells was delayed by Mcl-1 overexpression, illustrating that Mcl-1 

indeed contributed to the regulation of the cell death process (23). 

Since its discovery in 1992, studies of Mcl-1 have revealed this to be an intriguing 

protein, which performs a fundamental role in cell physiology.  Mcl-1 is an anti-apoptotic 

member of the Bcl-2 family of proteins and contains three BH domains.  This is unlike 

the other anti-apoptotic members, which contain four BH domains.  Despite this fact, it 

is the largest of the proteins, containing 350 amino acid residues (24).  Mcl-1 is also 

different than other pro-survival proteins due to its N-terminus, which is larger than that 

of other Bcl-2 family proteins and has been shown to affect Mcl-1’s function and 

localization (25).  It also contains two proline (P), gluatamic acid (E), serine (S), and 

threonine (T) (PEST) sequences (22) which may account for its relatively short half life 

(i.e., 2-3 hr), as these regions have been shown to target proteins for degradation (26). 

The structural differences seen between Mcl-1 and the other prosurvival Bcl-2 

proteins account for some of the differences seen in binding partners among these 
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proteins.  The anti-apoptotic proteins all generally function in the same way as 

described above, but the pro-apoptotic proteins with which they specifically interact 

differ.  For example, Mcl-1 binds with high affinity to the BH3-only protein Noxa, but 

does not bind to Bad.  In contrast, Bcl-2 binds well with Bad, but not as well with Noxa 

(24).   

Mcl-1 retains an alpha helical fold, similar to the other proteins, but differs in the 

exposed surface of its binding groove.  In addition to simply having different residues, 

this groove is more electropositive than the other anti-apoptotic proteins.  It is flanked on 

either side by positive electrostatic potential and contains multiple histidine residues.  

Proteins like Bcl-XL, however, have grooves that are almost completely uncharged.  

Furthermore, there are differences in the positions of some surface helices of Mcl-1, 

adding to the differences between this protein and its other family members (27).  These 

structural differences become very important in the development of inhibitors of these 

proteins.   

Mcl-1 is regulated at multiple levels, including transcriptional and translational.  

Transcriptionally, Mcl-1 expression can be induced by a variety of cytokines and 

signaling pathways, including the PI3K/AKT, Stat-3, and p38/MAPK pathways (28) 

Additionally, alternative splicing of Mcl-1 results in two protein isoforms, Mcl-1L and Mcl-

1S.  Interestingly, the Mcl-1S isoform behaves in a manner opposite to that of the normal 

protein, functioning to promote apoptosis, much like the BH3 only proteins (29).  At the 

translational level, many studies have highlighted the role of microRNAs in Mcl-1 

regulation.  Mott et al. (30) identified mir29b as targeting Mcl-1 in studies comparing 
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cholangiocarcinoma cells to normal cholangiocytes.  Additional studies have implicated 

this microRNA in Mcl-1 regulation in other cell types as well (31,32). 

Mcl-1 also contains multiple phosphorylation sites in its PEST region. Multiple 

proteins resulting in different outcomes mediate the phosphorylation of these sites.  

Thr163 can be phosphorylated by ERK leading to the increased half-life of the protein 

(33).   Conversely, GSK-3 mediated phosphorylation of Ser159 leads to increased 

ubiquitination and degradation of Mcl-1 (34).  As previously noted, Mcl-1 has a very 

short half-life.  This is due to its rapid degradation in the cell, primarily through the 

proteasome.  Proteasome-mediated degradation of Mcl-1 can occur through a variety of 

mechanisms, GSK-3-mediated phosphorylation representing the most highly 

investigated of these.  Mcl-1 Ubiquitin Ligase E3 (MULE) has been shown to 

ubiquitinate Mcl-1 on 5 different lysine residues and to be the primary mediator of 

normal Mcl-1 degradation (35).  Additionally, Mcl-1 can be targeted for degradation 

through interactions with additional proteins such as Noxa and the tumor suppressor 

SCFFBW7 (28,36). 

A. Role of Mcl-1 in Cancer 
 

Mcl-1 is highly expressed in a variety of human cancer cell lines including breast, CNS, 

colon, lung, ovarian, prostate, renal, and melanoma (Table 1)(37).  Human melanoma 

cell lines express Mcl-1, though they do not show increased expression when compared 

to normal melanocyte controls.  However, studies done in paraffin sections of benign 

nevi, primary melanoma, and metastatic melanoma showed an increase in Mcl-1 

expression that correlated with melanoma progression (38,39).   
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Mcl-1 overexpression is exploited by cancer cells to evade cell death, i.e. to 

survive, and as a mechanism for developing resistance to diverse chemotherapeutic 

agents.  The other anti-apoptotic members of the Bcl-2 family of proteins are also 

frequently overexpressed in cancers, although they will not be discussed in this review.  

Although overexpression of Mcl-1 does not result in increased cell proliferation, its 

ability to suppress apoptosis is an important contributor to the transformed state.  As 

noted earlier, apoptosis regulation is based on the balance between pro- and anti-

apoptotic proteins within cells.  The ability of a cancer cell to shift the balance toward 

survival provides it with a major advantage in protecting itself from toxic factors.  The 

clinical implications of this phenomenon may be manifested by chemoresistance.  For 

example, while chemotherapeutic agents operate through a variety of mechanisms, 

many of them are believed to act through initiation of apoptosis in a cell.  Consequently, 

protection from apoptosis via overexpression of Mcl-1 may represent a significant 

barrier to the effectiveness of chemotherapeutic agents.   

Dysregulation of Mcl-1 is an important genomic change in diverse cancers, many 

of which become dependent upon this protein for survival as well as resistance to 

chemotherapy.  Indeed, numerous reports have documented the importance of this 

protein in transformed cell survival.  Thallinger et al. (40) reported that Mcl-1 antisense 

oligonucleotides (ASO) resulted in decreased Mcl-1 expression in cell lines in vitro and 

in tumors in vivo, and that Mcl-1 ASO treatment given by paraspinal infusion of SCID 

mice with melanoma subcutaneous tumors resulted in tumor sensitization to the 

chemotherapeutic drug, DTIC, accompanied by increased levels of apoptosis in tumor 

cells (40).  In a study of head and neck cancer, twenty-six tumor samples from patients 
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with locally advanced head and neck cancer showed a 92% increase in Mcl-1 

expression (41). Transfection of Mcl-1 ASO in a head and neck squamous cell 

carcinoma cell line promoted cytotoxic synergy when combined with chemotherapeutic 

agents, Paclitaxel and Cetuximab (42).  Additionally, Mcl-1 is overexpressed in 

hepatocellular carcinoma (HCC).  Sieghart et al. (43) showed that human tumor 

specimens overexpressed Mcl-1.  They went on to show that the use of Mcl-1 ASO 

induced apoptosis in HCC cells and sensitized them to cisplatin (43).  Additionally, Mcl-

1 ASO decreased cell viability and induced apoptosis in multiple human myeloma cell 

lines as well as two primary myeloma cell lines.  This result was not seen following Bcl-2 

or Bcl-XL ASO treatment (44).  Pancreatic adenocarcinoma is another cancer that 

overexpresses Mcl-1.  Studies have shown that knockdown of Mcl-1 in a pancreatic 

cancer cell line leads to decreased cell viability and colony formation in vitro and 

decreased tumor size and weight in xenograft models.  Furthermore, loss of Mcl-1 

sensitized these resistant cells to the current first line treatment for pancreatic cancer, 

Gemcitabine (45).   

Mcl-1 has been shown to play important roles in lymphomas and leukemias as 

well.  In mantle cell lymphoma, Mcl-1 overexpression correlated with high-grade 

morphology, high levels of proliferation, and p53 overexpression (46).    Additionally, 

mice expressing a Mcl-1 transgene were shown to develop B cell lymphomas at a 

frequency of 85% over a period of 2 years (47).  In both acute and chronic leukemias, 

Mcl-1 has been demonstrated to be extremely important for cancer survival, with siRNA 

knockdown of Mcl-1 leading to apoptosis in cell lines.  Furthermore, patients who show 

resistance to Rituximab, an anti-CD20 antibody used to treat B-cell malignancies, 
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exhibit increased levels of Mcl-1.  Mcl-1 knockdown has also been demonstrated to 

sensitize cells to Rituximab treatment (48). 

VI. Strategies employed in targeting Mcl-1 

There have been numerous approaches designed to target Mcl-1.  Some of 

these schemes focus primarily on Mcl-1, but the majority of strategies target multiple 

anti-apoptotic proteins in the Bcl-2 family.  Here we review the most significant inhibitors 

developed to date.   

A. Drugs that result in Mcl-1 Downregulation 

There are multiple drugs that, despite not being designed to specifically target Mcl-1, 

display a mechanism of action that involves downregulation of Mcl-1.  Studies with 

these drugs provide continued evidence of the importance of this protein in 

maintenance and progression of the cancer phenotype.    

1. Cyclin-dependent kinase inhibitors 

Flavopiridol 

Flavopiridol is a semisynthetic flavonoid that functions as a cyclin-dependent kinase 

inhibitor by competing for the kinase active site.  It is able to inhibit the activity of 

multiple CDKs and results in G1/S and G2/S cell cycle arrest (49).  Flavopiridol also 

globally decreases transcription levels in the cell via inhibition of P-TEFb and it can also 

bind double stranded DNA (50).  However, one of the more interesting observations 

seen with Flavopiridol was its ability to downregulate Mcl-1 protein levels in B-cell 

chronic lymphocytic leukemia cells (51). Notably, significant activity was observed in 
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patients with high-risk CLL treated with a hybrid infusional flavopiridol schedule.  This 

new dosing regimen included a 30-minute loading dose prior to 4 hours of infusion given 

weekly for 4-6 weeks.  A group of 42 patients with refractory CLL were studied and of 

those 42, 45% showed a partial response.  Importantly, genetically high-risk patients 

with del(17p13.1) showed a 42% response rate and those with del(11q22.3) a 72% 

response rate (52).  

Further studies in breast cancer showed that Flavopiridol treatment 

synergistically enhanced the toxicity of the ERBB1/ERBB2 inhibitor Lapatinib in a Mcl-1-

dependent manner.  The combination of Lapatinib and Flavopiridol increased the rate of 

reduction of Mcl-1 protein compared to Flavopiridol alone.  Moreover, overexpression of 

Mcl-1 induced resistance to this combination (53). In studies involving human leukemia 

cells, Flavopiridol interacted synergistically with the HDAC inhibitor Vorinostat through a 

mechanism involving Mcl-1 down-regulation (54). 

Flavopiridol is the first cyclin-dependent kinase inhibitor to enter clinical trials.  It 

has been studied in a variety of cancer types and has shown moderate effects in some 

neoplastic diseases.  Dose-related toxicities, which include neutropenia and diarrhea, 

have limited some studies (50,55).  Interestingly, one study looking at a combination of 

Flavopiridol and Cisplatin/Carboplatin in solid tumors suggested that the lack of 

significant activity seen may be the result of the failure to achieve decreases in Mcl-1 

levels in tumors (50). Nevertheless, there is preclinical evidence of synergism between 

Flavopiridol and proteasome inhibitors associated with Mcl-1 down-regulation (56,57). 

SNS-032 
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Another cyclin-dependent kinase inhibitor, SNS-032 was originally identified in a 

screen developed to identify specific inhibitors of Cdk2.  This compound has since been 

shown to also inhibit Cdk7 and Cdk9 as well.  SNS-032, like Flavopiridol, also shows 

strong cytotoxic effects in vitro and results in decreases in anti-apoptotic proteins such 

as Mcl-1 (58).  Unfortunately, this compound exhibited disappointing results when 

evaluated in clinical trials (59).   

2. Sorafenib   

Sorafenib is a multi-kinase inhibitor that was originally developed as an inhibitor 

of B-Raf, but was subsequently shown to inhibit multiple other kinases, including 

PDGFR, FLT, Kit, and VEGFR. In human leukemia cells, pharmacologically achievable 

concentrations of sorafenib induced apoptosis through a mechanism involving Mcl-1 

down-regulation (60-62).  This has been found to be due to inhibition of translation 

resulting from sorafenib-induced ER stress (60). 

3. Deubiquitinase Inhibitors 

WP1130 

As discussed previously in this review, Mcl-1 is degraded rapidly in the cell via a 

proteasome-dependent pathway.  Blocking the proteasome can lead to increased levels 

of Mcl-1 protein.  Mcl-1 can also be rescued from degradation by deubiquitinases 

(DUBs), which are able to remove ubiquitin from ubiquitinated Mcl-1.  In a study 

investigating interactions between Mcl-1 and other proteins in the cell, Schwickart et. al. 

(63) found that one of the proteins that co-immunoprecipitates with Mcl-1 is the DUB 
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USP9X.  This group hypothesized that this interaction might lead to increased stability 

of Mcl-1 and play an important role in cancers that overexpress Mcl-1.  Indeed, they 

showed that USP9X, in addition to Mcl-1, was overexpressed in samples of ductal 

adenocarcinoma, colon adenocarcinoma, and small cell lung cancer.  Additionally, 

USP9X overexpression was found to correlate with poor prognosis in multiple myeloma.  

Knockdown of USP9X via siRNA resulted in decreased Mcl-1 protein levels, but not 

RNA levels, supporting the suggestion that USP9X knockdown results in increased Mcl-

1 degradation.  This knockdown also led to increased sensitivity of colon carcinoma and 

leukemia cells lines to ABT-737, a compound discussed later in this review, which are 

usually resistant to this agent (63).   

WP1130 is a small molecule that has multiple anti-cancer effects.  It has been 

shown to induce removal of Bcr-Abl from the cytoplasm into aggresomes, where it is not 

able to facilitate oncogenic signaling.  Additionally and most interesting for this review, it 

directly inhibits USP9X.  When used as a treatment in CML, WP1130 results in 

decreased levels of Mcl-1, compartmentalization of Bcr-Abl, and the induction of 

apoptosis (64). 

B. Antisense oligonucleotide (ASO) treatment 

Despite the fact that there are many studies looking at the effects of Mcl-1 ASO 

treatment on cancer in vitro and in animal models in vivo, there is no report of a Mcl-1 

ASO treatment being effectively translated into the clinic.  This is likely due to the issues 

that can arise with the use of ASO treatment in patients. In the human body, ASO have 

an extremely short half-life, which makes achieving sufficient blood concentrations 
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difficult.  This is partly due to the ability of DNases to degrade them.  Delivery of ASO is 

also an issue, as it is difficult to direct ASO to their specific cellular target (65). 

C. BH3 Mimetics 

The concept of BH3 mimetics has been one of the most promising translational 

strategies.  As discussed, pro-apoptotic or anti-apoptotic effects arise, ultimately, as a 

result of physical interactions between the anti-apoptotic Bcl-2 protein and the BH3 

proteins.  The anti-apoptotic proteins contain a hydrophobic binding pocket made from 

the folding of their BH1, BH2, and BH3 domains.  The BH3 domain of the BH3 only 

proteins fits into and binds this hydrophobic pocket (66).  Based on this modeling 

prediction, small molecules have been developed that mimic the BH3 domain and 

therefore are able to fit into the hydrophobic pocket of the anti-apoptotic proteins and 

block their ability to bind pro-apoptotic proteins, inhibiting their function.  Some of these 

mimetics have been developed through structural studies and others through screening 

studies.  Regardless of how these drugs were discovered, they represent a novel and 

exciting new strategy in cancer therapeutic development. 

1. ABT-737 

One of the most successful and well studied BH3 mimetics, ABT-737, was 

discovered using NMR-based screening and demonstrated strong binding affinity to the 

Bcl-2 family anti-apoptotic proteins Bcl-2, Bcl-XL, and Bcl-w.  ABT-737 does not bind to 

Mcl-1 or Bfl-1.  This difference in affinity is due to differences in the structures of these 

proteins as was described previously in this review.  Initial studies showed that ABT-737 

was effective in inducing cytotoxicity as a single agent in follicular lymphoma and small 
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cell lung carcinoma (SCLC) cell lines.  Additionally, it was found to enhance the lethality 

of paclitaxel in NSCLC (non small cell lung carcinoma) (67).  Subsequently, ABT-737 

has been widely studied in a variety of cancers.  It has been shown to induce 

cytotoxicity both in vitro and in vivo in leukemia and lymphoma, glioblastoma, multiple 

myeloma, and SCLC (68-72).  Despite many promising studies in these cancer types, 

there remain a large percentage of cancers that are resistant to ABT-737.  This 

resistance has been shown to stem from an overexpression of Mcl-1, one of the anti-

apoptotic proteins to which ABT-737 does not bind.  Even within cancers that are 

sensitive to ABT-737, specific cell lines that express higher levels of Mcl-1 display 

increased resistance to this compound (68).  Mcl-1-dependent ABT-737 resistance has 

been consistently shown in the literature and multiple studies document that 

downregulation of Mcl-1 through a variety of mechanisms is able to induce sensitivity to 

ABT-737 (73-76). Notably, the CDK inhibitor roscovitine dramatically increased ABT-

737 lethality in human leukemia cells through a mechanism involving Mcl-1 down-

regulation (77). 

Phase I/II clinical trials with ABT-263, an orally available form of ABT-737 with a 

longer half-life, are in progress in patients with SCLC, leukemia, and lymphoma.  Thus 

far, studies in chronic lymphocytic leukemia (CLL) and SCLC have shown this drug to 

be well tolerated, with some potentially manageable toxicities including back pain, 

nausea/vomiting, diarrhea, and thrombocytopenia (78).  More advanced clinical trials, 

however, have shown limited efficacy of this drug as a single agent in SCLC (79).  

2. Obatoclax (GX15)           
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Obatoclax is another example of a BH3 mimetic.  This mimetic differs from ABT-

737 in that in addition to targeting Bcl-2, Bcl-XL, and Bcl-w, it also binds to and inhibits 

Mcl-1 and Bfl-1.  Studies have shown that this compound induces cytotoxicity in a 

number of cancer types including, but not limited to, NSCLC and a variety of leukemias.  

Additionally, it has shown synergy when combined with various conventional 

chemotherapeutic agents (53,80-83).  Obatoclax also serves to again illustrate the 

importance of Mcl-1 in cancer.  Studies have shown that this compound’s cytotoxic 

effects are partially mediated through specific effects on Mcl-1.  Obatoclax can disrupt 

the constitutive Bak-Mcl-1 interaction on the outer mitochondrial membrane (84). This 

compound has advanced to clinical trials and Phase I studies in a variety of cancer 

types have shown it to be fairly well tolerated, with neurologic toxicities being the most 

common adverse event seen.  Some evidence of efficacy was seen in these studies, 

though ongoing Phase II trials will ultimately determine the effectiveness of this agent 

(85-87).   

3. Gossypol 

Gossypol is a polyphenolic aldehyde derived from cottonseed.  Original studies 

with this extract focused on its ability to function as a male contraceptive (88).  

However, it has also been shown to have potent anti-cancer activity. Gossypol functions 

as a typical BH3 mimetic and binds to and inhibits the Bcl-2 anti-apoptotic proteins Bcl-

2, Bcl-XL, and Mcl-1 (89).  Many groups have shown Gossypol to exhibit anti-

carcinogenic effects toward a wide variety of cancer types both in vitro and in vivo, 

including, but not limited to, breast, prostate, glioma, and colon cancer (88,90-93).  

LeBlanc et al. (94) also demonstrated Gossypol’s ability to inhibit growth of adrenal 
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gland carcinoma cells, medullary thyroid carcinoma cells, ovarian carcinoma cells, and 

endometrial carcinoma cells.  Compared to ABT-737, Gossypol displays toxicity against 

a much wider array of cancer types, possibly due to its ability to target Mcl-1. This 

compound has been evaluated in Phase II clinical trials as a single-agent in patients 

with advanced malignancies as well as in clinical trials that evaluated Gossypol in 

combination therapy with conventional chemotherapeutics (95-98).  

The presence of two reactive aldehyde groups on Gossypol, combined with initial 

clinical trial results that showed difficulty in achieving sufficient Gossypol blood 

concentrations, prompted groups to create Gossypol derivatives. Apogossypol was the 

first derivative designed and showed better efficacy and less toxicity than its parent 

compound (99).  To date, there have been many such derivatives created with varying 

binding affinities to the Bcl-2 anti-apoptotic proteins.   

4. Sabutoclax (BI-97C1) 

Sabutoclax (BI-97C1) is one of the newest Apogossypol derivatives developed 

by Wei et al. (89,100).  This novel compound binds to the Bcl-2 anti-apoptotic proteins 

Bcl-2, Mcl-1, Bcl-XL, and Bfl-1.  It was originally identified for its ability to bind Bcl-XL 

with low to submicromolar binding affinity.  Competitive fluorescence polarization 

assays showed that BI-97C1 inhibited Bcl-XL with an IC50 value of .31 mM.  Further 

assays showed that this compound also had displacement activity against Bcl-2 (IC50 = 

0.32 mM), Mcl-1 (IC50 = 0.20 mM), and Bfl-1 (IC50 = 0.62 mM) (100).   

Sabutoclax induced apoptosis in the large B-cell lymphoma cell line, BP3, which 

expresses high levels of Mcl-1 and Bfl-1 and is resistant to ABT-737.  Furthermore, 
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while toxic to wild type mouse embryonic fibroblasts, this compound showed only slight 

toxicity against BAX/BAK double knockout MEF cells.  This provided evidence that 

Sabutoclax only has minimal off-target effects. Additionally, as Sabutoclax showed 

efficacy against a cell line that overexpressed Mcl-1, unlike some earlier compounds 

like ABT-737, it was evaluated in the context of a prostate cancer xenograft involving 

M2182 cells, which rely on Mcl-1 for survival. A dose of 3 mg/kg induced nearly 60% 

tumor inhibition, while a dose of 5 mg/kg nearly eliminated the tumors (100). 

5. BH3-M6 

This BH3 mimetic is a very new compound designed to inhibit Bcl-2, Bcl-XL, and 

Mcl-1.  It has been shown to disrupt the interactions between these proteins and the 

pro-apoptotic BH3 only proteins.  In the lung adenocarcinoma cell line, A549, this 

compound induced apoptosis through cytochrome c release from the mitochondria.  

Preliminary studies, however, showed high doses of this compound (doses of 25 and 50 

mM) were needed to induce apoptosis.  Additional studies with this compound in other 

cancer types will be useful in determining the efficacy of this new BH3 mimetic (101). 

VII. Functional Redundancy Among the Bcl-2 Family 

As discussed previously, the majority of compounds that target Mcl-1 also affect 

other members of the anti-apoptotic Bcl-2 family of proteins.  This reflects structural and 

functional redundancy in many protein members of this gene family.  While some 

cancers rely more heavily on Mcl-1 (44), others rely on alternate anti-apoptotic 

members of the family for survival and progression (100).  Accordingly, one might try to 

identify and employ therapies for a particular cancer based on such reliance. Indeed, 
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there have been compounds, such as ABT-737, that do not target all of the anti-

apoptotic Bcl-2 proteins.  This compound is most effective in cancers that rely on 

proteins targeted by ABT-737.  However, the limitations observed with ABT-737 

highlight why targeting of specific anti-apoptotic proteins alone may not promote optimal 

therapeutic outcome.   

In addition to a lack of efficacy against cancers reliant on Mcl-1 and Bfl-1, 

multiple studies have now shown that, over time, cells sensitive to ABT-737 begin to 

develop resistance to the drug by upregulating the anti-apoptotic proteins that it does 

not target, i.e., Mcl-1 and Bfl-1.  Yecies et al. (102) showed that lymphoma cells 

subjected to long-term exposure of ABT-737 developed resistance via transcriptional 

upregulation of Mcl-1 and Bfl-1. They further demonstrated that decreasing Mcl-1 

protein levels via multiple mechanisms resulted in restored sensitivity to ABT-737 (102).  

Previously, a similar phenomenon was also seen in acute myeloid leukemia (AML) cells.  

This group noticed a positive correlation between Mcl-1 expression and ABT-737 

resistance (101).  These studies indicate that the Bcl-2 family of anti-apoptotic proteins 

may provide overlapping compensatory functions when one of the proteins is lost.  This 

supports strategies involving compounds that target all of the anti-apoptotic proteins, as 

this approach may help prevent the development of resistance mechanisms to BH3 

mimetics.   
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Chapter 2: Novel combinatorial therapy for pancreatic cancer:  

a BH3 mimetic and a synthetic tetracycline 

 

Introduction: 

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive cancer that is 

predicted to cause almost 40,000 deaths in the US this year (NCI 2014).  PDAC is fairly 

resistant to most standard therapies and results in a 5-year survival rate of about 4%(1).  

These dire statistics, combined with the fact that there have been minimal new 

therapies developed for PDAC over the last decade, highlight the need for new 

approaches to effectively treat this invariably fatal disease. 

The aggressive nature and dismal prognosis of patients with pancreatic cancer 

results partly from the plethora of molecular changes that occur during PDAC 

development, one of which is overexpression of the anti-apoptotic proteins of the Bcl-2 

family (103-106).  Cancer cells exploit this overexpression to evade cell death and as a 

mechanism promoting resistance to diverse chemotherapeutic agents.  Apoptosis 

reflects a balance between pro- and anti-apoptotic proteins within cells.  The ability of a 

cancer cell to shift the balance toward survival promotes resistance to toxic factors 

(107). 

Consequently, the anti-apoptotic Bcl-2 proteins have emerged as a novel 

therapeutic target.  While multiple strategies have attempted to target these molecules, 

BH3 mimetics have shown significant promise.  Pro-apoptotic or anti-apoptotic effects in 

cells arise, ultimately, as a consequence of physical interactions between anti- and pro-
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apoptotic Bcl-2 proteins (66,72).  Based on modeling predictions of these interactions, 

small molecules have been developed that mimic the BH3 domain of pro-apoptotic 

proteins and bind to the anti-apoptotic proteins, thereby impeding their ability to inhibit 

apoptosis.  These drugs represent a novel and exciting new strategy in cancer 

therapeutic development (107). 

Sabutoclax (BI-97C1) is a novel Apogossypol derivative BH3 mimetic developed 

by Wei et al. (89,99,100,108).  This compound binds to the Bcl-2 anti-apoptotic proteins 

Bcl-2, Mcl-1, Bcl-XL, and Bfl-1.  It was originally identified based on its ability to bind Bcl-

XL with low to submicromolar binding affinity (100).  We have previously shown that 

Sabutoclax shows efficacy against prostate and colorectal cancers, two cancers that 

also overexpress anti-apoptotic Bcl-2 proteins (109,110).   

Minocycline is a synthetic tetracycline antibiotic that displays marginal activity 

against multiple cancers (111-115).  However, less than stellar outcomes have 

diminished enthusiasm for using these drugs in cancer research. The marginal single 

agent effects of Minocycline against cancer may be due to the fact that it also impedes 

cell death in the face of toxicity or injury by inhibiting mitochondrial apoptosis and 

upregulation of Bcl-2 (116-118).  In an attempt to develop a unique therapeutic strategy 

for PDAC, we hypothesized that Sabutoclax and Minocycline might show therapeutic 

efficacy against this disease when used in combination because of both the reliance of 

PDAC on the Bcl-2 proteins for survival as well as the theoretical ability of Sabutoclax to 

counteract the anti-apoptotic effects of Minocycline, thereby uncovering the true 

therapeutic potential of this previously overlooked drug.   
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Materials and Methods 

Human Cell Lines 

 

MIA PaCa-2, PANC-1, BxPC-3, AsPC-1, and HPNE cells were all obtained from the 

American Type Culture Collection (ATCC).  LT2 cells were purchased from Millipore.  

MIA PaCa-2 and PANC-1 were maintained in DMEM plus 10% FBS.  BxPC-3 and 

AsPC-1 cells were maintained in RPMI plus 10% FBS.  HPNE and LT2 cells were 

maintained with media according to distributor’s instructions.  Cell lines were expanded 

and cryopreserved at early passages and new vials were thawed out and used for 

experiments approximately every 3 months.   

Creation of KPC Mouse Cell Lines 

Cell lines were derived from the ascites of tumor bearing KPC mice.  At the time of 

necropsy, ascitic fluid was collected from the mice and centrifuged to pellet tumor cells.  

The pellet was repeatedly washed in PBS and centrifuged before being resuspended in 

RPMI supplemented with 4% FBS and placed in culture.  This media was used to 

maintain these cell lines.   

Drugs and Drug Administration 

For all in vitro studies, Sabutoclax (produced by Dr. Maurizio Pellecchia) was diluted in 

DMSO and Minocycline (Sigma) in PBS.  For combination treatments, Sabutoclax and 

Minocycline were administered to cells simultaneously.  zVAD-FMK (20 µM, Promega) 

was incubated with cells for 1 hour prior to treatment with Sabutoclax and Minocycline.   
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Caspase 8 specific inhibitor, z-IETD-FMK (20 µM, BD Pharmingen) was also incubated 

with cells for 1 hour before treatment with Sabutoclax and Minocycline. 

Proliferation Studies 

5 x 103 cells were plated in 96-well plates and treated with Sabutoclax and/or 

Minocycline for 72 hours. Proliferation was assessed by MTT assay as previously 

described (119).  All data were normalized to the control.   

Cell Death Assays 

For Trypan Blue exclusion assays, 5 x 105 cells were plated in 6-cm dishes, treated as 

indicated for 48 hours, and then assayed as previously described (120). 

LDH Cytotoxicity Assays 

5 x 105 cells were plated in 6-cm dishes and treated as described.  After 48 hours, 

media was collected from each dish and assayed according to the manufacturer’s 

instructions (Cytotoxicity Detection Kit (LDH), Roche).  

Cell Cycle Studies 

1 x 106 cells were plated in 10-cm dishes and cultured in normal media with 0.5% serum 

for 48 hours.  Cells for the zero hour time point were collected and fixed at this point. 

Remaining plates were kept in either normal media or 750 nM Sabutoclax for indicated 

time points.  Once all cells were collected and fixed, they were incubated with propidium 

iodide and FACS was used for cell cycle analysis.  Cell cycle studies were done as 

previously described (121).   
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Colony Forming Assay 

MIA PaCa-2 cells were treated with Sabutoclax (500 nM), Minocycline (50 µM), or a 

combination of both for 24 hours.  Cells were then trypsinized and 1,000 cells were 

plated into 6-cm plates in triplicate.  Cells were allowed to grow and form colonies in 

normal media for approximately 14 days.  Plates were then fixed and stained with 

Giemsa. 

Western Blotting 

5 x 105 cells were plated in 6-cm dishes and treated as described. After 48 hours, whole 

cell lysates were prepared and western blotting analysis was carried out as previously 

described (120). Primary antibodies used for these studies are PARP (1:1,000), Stat3 

(1:1,000), pStat3 (1:750), Mcl-1 (1:1,000), Survivin (1:750), p21 (1:750), p27 (1:1,000), 

Cyclin D1(1:500), Caspase 2 (1:1,000), Caspase 3 (1:1,000), Caspase 6 (1:1,000), 

Caspase 7 (1:1,000), Caspase 8 (1:1,000), Caspase 10 (1:1,000), Caspase 12 

(1:1,000), AIF (1:1,000), pRB (1:750) (Cell Signaling), EF1- (1:1,000, Millipore), and 

Actin (1:5,000, Sigma).  Densitometric analysis was done using ImageJ software 

(National Institutes of Health).  

Constructs and Transfection 

Stat3Y705F Clones: MIA PaCa-2 or PANC-1 cells were transfected with a plasmid 

expressing a mutated form of Stat3 (pRc.CMV.Stat3Y705F, Addgene).  Clones were 

selected with Neomycin for approximately 2 weeks and then picked and grown up 

individually.  Whole cell lysates were made and samples were used for western blotting 

to characterize clones.  Luciferase Clones: MIA PaCa-2 or PANC-1 cells were 
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transfected with pGL3.CMV.luc (Promega).  Transfections used Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) according to the manufacturer's protocol.   

Immunohistochemistry 

Tumors were fixed in formalin, embedded in paraffin, and sectioned for staining.  

Staining was done as previously described (122) with anti-p-Stat3 (1:100, Abcam), anti-

PCNA (1:100, Abcam), and anti-Mcl-1 (1:100, Abcam) per the manufacturer’s 

instructions. 

Combination Index Calculation 

Combination index (CI) values were determined for the combination of Sabutoclax and 

Minocycline in MIA PaCa-2 cells.  Values were calculated using CompuSyn software 

(ComboSyn, Inc.) according to the Chou-Talalay method.   

In vivo studies 

Subcutaneous Xenograft Studies 

5 x 106 MIA PaCa-2 and 3.5 x 106 PANC-1 cells were used to establish bilateral 

subcutaneous tumors on the flanks of 8-10 week old male athymic nude mice.  Studies 

were done as previously described (109).  Treatment began when tumors reached 

~100-mm3.  Sabutoclax was given at a dose of 1 mg/kg for both studies and was 

dissolved in a 10:10:80 solution of 100% ethanol:Cremophor:PBS.  Minocycline was 

given at a dose of 20 mg/kg and dissolved in PBS.  Both drugs were given via IP 

injection 3 times per week.  n = 5 mice/group 
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Quasi-Orthotopic Xenograft Studies 

Low Tumor Burden 

In this model, we injected 1 x 106 MIA PaCa-2-luc cells IP into 8-10 week old male 

athymic nude mice.  We allowed 1 week for tumor cells to attach and grow and then 

began treatment with PBS, 1 mg/kg Sabutoclax, 20 mg/kg Minocycline, or both 

Sabutoclax and Minocycline.  Sabutoclax and Minocycline were given via IP injection 

3x/week.  Mice were imaged by BLI at 3 weeks after treatment was initiated and then 

sacrificed at 4 weeks.  At time of sacrifice, mice were imaged pre-necropsy.  After 

necropsy, organs from a few mice/group were imaged to determine tumor specificity.  n 

= 7 mice/group 

High Tumor Burden 

5 x 106 MIA PaCa-2-luc cells were injected IP into 8-10 week old male athymic nude 

mice.  We allowed 1 week for tumor cells to attach and grow and then began treatment 

with PBS, 1 mg/kg Sabutoclax, 20 mg/kg Minocycline, or both Sabutoclax and 

Minocycline.  Sabutoclax and Minocycline were given via IP injection 3x/week.  Mice 

were sacrificed at 4 weeks.  The pancreas from each mouse was removed and weighed 

during necropsy. n = 10 mice/group 

BLI of Mice 

During imaging, mice were placed in the imaging chamber and maintained with 2% 

isoflurane gas anesthesia at a flow rate of approximately 0.5-1 L/min per mouse. 

Anesthetized mice were injected IP with 150mg/kg body weight D-Luciferin (Xenogen 

Corporation, Alameda, CA). After approximately 10 min, mice were imaged using a 
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charge-coupled-device (CCD) camera coupled to the Xenogen in vivo imaging (IVIS) 

imaging system (Caliper Life Sciences, Inc., Hopkinton, MA). The positive signal from 

background-subtracted images was analyzed by Living Image software for integrated 

density.  

Syngeneic Mouse Study 

KPC (Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt) mouse cell line 48 was injected subcutaneously 

into both flanks of non-tumorigenic KPC mice (Pdx-1-Cre negative/K-rasLSL-

G12D/p53flox/wt).  Tumors were inoculated 1 week prior to initiation of treatment.  Mice 

were treated with PBS, 1.5 mg/kg Sabutoclax, 10 mg/kg Minocycline, or both 

Sabutoclax and Minocycline.  Sabutoclax was dissolved in a 10:10:80 solution of 100% 

ethanol:Cremophor:PBS.  Minocycline was dissolved in PBS.  Mice were treated with 

Sabutoclax, Minocycline, or both drugs every 2-3 days via IP injection for a total of 6 

injections.  Tumors were measured with calipers to obtain tumor volumes. n = 5 

mice/group 

Survival Study 

KPC mice (Pdx-1-Cre/K-rasLSL-G12D/p53flox/flox) were started on a Sabutoclax and 

Minocycline treatment regimen at 1 month of age.  Mice were treated with a 

combination of Sabutoclax (1.5 mg/kg) and Minocycline (10 mg/kg) via IP injection 3 

times per week.  Mice were kept on this treatment until reaching a moribund status.  At 

this point, mice were sacrificed and necropsied.  Tumor sections were obtained from 

these mice and subjected to immunohistochemistry.  n = 12 mice (control group); n = 10 

mice (Sabutoclax + Minocycline group).   
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Statistical Analysis 

The data presented are the mean + S.D. of the values from three independent 

experiments.  For in vivo studies, data shown are the mean + 95% confidence interval. 

Significance was determined using the Student’s t-test.  p<0.05 was considered 

statistically significant.   

 

Results: 

Sabutoclax inhibits cell growth and induces apoptosis in PDAC  

Multiple PDAC cell lines, one immortalized pancreatic fibroblast cell line (LT2), and one 

immortalized pancreatic epithelial cell line (HPNE) were treated with increasing doses of 

Sabutoclax and assessed for effects on proliferation.  The normal cell lines displayed 

little change in cell growth (Fig. 3A-B), while all of the cancer cell lines were growth 

inhibited.  Interestingly, the sensitivity of the cancer cell lines varied, with some being 

very sensitive to Sabutoclax (MIA PaCa-2) and others more resistant (AsPC-1) (Fig. 

3A). The ability of Sabutoclax to induce cell death and apoptosis was also evaluated 

through Trypan Blue assays and detection of the cleavage of PARP, a protein cleaved 

by caspases during apoptosis (Fig. 4A-B).  Again, MIA PaCa-2 was most sensitive to 

Sabutoclax.  However, despite not showing a potent cell death phenotype, cells like 

AsPC-1 still showed profound growth inhibition following Sabutoclax treatment at higher 

doses.  Furthermore, Sabutoclax displayed greater growth inhibitory effects than the 

BH3 mimetic ABT-737 (Fig. 5A-B). 
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Figure 3: Sabutoclax inhibits cell growth and induces apoptosis in pancreatic 
cancer cells. (A) Sabutoclax dose response curves via MTT proliferation assays in 
pancreatic fibroblast cell line, LT2, and pancreatic cancer cell lines PANC-1, AsPC-1, 
MIA PaCa-2, and BxPC-3. Experiments done in triplicate and independently repeated 
three times. (B) Sabutoclax dose response curve via MTT proliferation assay in 
pancreatic epithelial-derived cell line, HPNE.  Experiments done in triplicate and 
independently repeated three times. 
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Figure 4: Sabutoclax inhibits cell growth and induces apoptosis in pancreatic 

cancer cells. (A) Western blotting for PARP and EF1- (loading control). Data 
representative of three independent experiments. (B) Trypan Blue assays in AsPC-1, 
PANC-1, and MIA PaCa-2.  **p<0.001 as compared to UT sample.  Experiments done 
in triplicate and independently repeated three times.  
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Figure 5: Sabutoclax has greater efficacy than ABT-737.  (A) MTT proliferation 

assays 72 hours post treatment.  (B) MTT proliferation assay comparing ABT-737 to 

Sabutoclax. *p < 0.001. Experiments done in triplicate and independently repeated three 

times.  
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Sabutoclax induces G1-S phase arrest  

Sabutoclax induces cell death in MIA PaCa-2 cells, without promoting potent cell 

death in either AsPC-1 or PANC-1.  Despite this, there is still a dramatic reduction in cell 

growth after drug treatment in these cell lines.  To interrogate the mechanism of growth 

suppression in these cell lines, we performed cell cycle analysis via FACS analysis (Fig. 

6-7).  Sabutoclax increased the percentage of MIA PaCa-2 subG1 phase cells, which 

have a DNA content less than 2n and are indicative of dead cells, after 24 and 48 hours, 

without affecting cell cycle, which is consistent with our previous data (Fig. 6A,D).  In 

PANC-1 and AsPC-1 cells, however, potent G1-S phase cell cycle arrest was evident 

(Fig. 6B-C).  These experiments only evaluated cells up to 48 hours post-treatment.  A 

second set of experiments also included 72 and 96 hour time points (Fig. 8-9) to 

determine if longer drug incubations promoted cell cycle arrest or resulted in a switch to 

apoptosis.  In AsPC-1, the G1-S phase arrest was sustained throughout all time points 

evaluated (Fig. 8B).  However, at 72 and 96 hours, PANC-1 showed an increase in the 

subG1 population of cells, indicating that there is an initial cell cycle arrest in these cells 

that later switches to apoptosis (Fig. 8A,C). These results emphasize the complexity of 

responses observed in PDAC to a single agent, such as Sabutoclax.  

Evaluation of cell cycle protein markers (Fig. 8D) confirmed decreased Cyclin D1 

and increased p27 expression in AsPC-1 and PANC-1 cells.  Additionally, there was a 

dramatic decrease in levels of phosphorylated Rb (Ser780).  This corresponded with the 

observed G1-S phase arrest.  Interestingly, while levels of p21 in AsPC-1 cells 

increased, p21 levels decreased in PANC-1 cells.  This difference may account for the 

switch from growth arrest to apoptosis in these cells (123,124). 
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Figure 6: Sabutoclax causes a G1-S phase cell cycle arrest.  (A-C) Cell cycle 
analysis. (D) Percentage of cells analyzed in the subG1 phase, indicating cell death. 
Data representative of three independent experiments. 
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Figure 7: Sabutoclax causes a G1-S phase cell cycle arrest. (A-C) FACS analysis 

data of graphs presented in Figure 6. Data representative of three independent 

experiments. 
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Figure 8. Sabutoclax causes a G1-S phase cell cycle arrest.  (A-B) Cell cycle 
analysis. (C) Percentage of cells analyzed in the subG1 phase, indicating cell death. (D) 
Western blotting of whole cell lysates for Cyclin D1, Cyclin E, p27, p21, and phospho-

Rb.  EF1- was used as a loading control. Data representative of three independent 
experiments. 
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Figure 9: Sabutoclax causes a G1-S phase cell cycle arrest. (A-B) FACS analysis 

data of graphs presented in Figure 8. Data representative of three independent 

experiments. 
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Sabutoclax synergizes with synthetic tetracycline, Minocycline, in PDAC 

It is now almost axiomatic that to successfully combat cancer multiple targeting 

strategies used in combination will be necessary. Cancer cells develop resistance to 

initially effective treatments and acquire avoidance mechanisms preventing toxicity. 

Accordingly, combinatorial approaches attacking multiple pathways in a cancer cell can 

increase drug efficacy, reduce toxicity, and increase the time to resistance.  Based on 

this concept, we sought to identify an agent that would promote synergy when 

combined with Sabutoclax.  Minocycline, a commonly used antibiotic, can negatively 

impact cancer growth and survival (111-115).  Despite this, it paradoxically also protects 

cells in the face of an insult through inhibition of mitochondrial apoptosis and 

upregulation of Bcl-2 (116-118).  For these reasons, we hypothesized that these drugs 

might work well in combination, given their cancer-selective toxicities as single agents 

and the potential of Sabutoclax to counteract the pro-survival effects of Minocycline.   

Minocycline is fairly nontoxic to several PDAC cells (MIA PaCa-2 and PANC-1), 

but is inhibitory in others (AsPC-1 and BxPC-3) (Fig. 10).  In resistant cells, the 

combination of Sabutoclax and Minocycline is very toxic and significantly reduces cell 

proliferation and overall cell number, and induces cell death to a much greater extent 

than either agent alone in MIA PaCa-2 (Fig. 11) and PANC-1 cells (Fig. 15-16). 

Combination index values also demonstrate synergy between these two compounds 

(Fig. 13).  It also promotes increased apoptosis and reduced colony formation in PDAC 

cells.  Importantly, this synergistic effect is not evident in the non-cancerous cell line, 

HPNE (Fig. 12).  
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Figure 10: Pancreatic cancer cells exhibit varying levels of sensitivity to 
Minocycline. MTT proliferation assay in MIA PaCa-2 and PANC-1 cells (A) and AsPC-
1 and BxPC-3 cells (B) 72 hours post treatment.  Experiments done in triplicate and 
independently repeated three times. 
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Figure 11: The combination of Sabutoclax and Minocycline produce synergistic 
cytotoxic effects. (A) MTT proliferation assay in MIA PaCa-2 cells 72 hours post 
treatment.  Experiments done in triplicate and independently repeated three times. (B) 
Trypan blue assays evaluating cell death and cell numbers in MIA PaCa-2 cells 48 
hours post treatment.  **p<0.0001.  Experiments done in triplicate and independently 
repeated three times.  (C) Western blotting of whole cell lysates for PARP expression in 
MIA PaCa-2 cells 48 hours post treatment.  Actin was used as a loading control.  Data 
representative of three independent experiments. (D) Colony forming assay in MIA 
PaCa-2 cells. Experiments done in triplicate and independently repeated three times.  
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Figure 12: The combination of Sabutoclax and Minocycline produce synergistic 
cytotoxic effects. (A) MTT proliferation assays in HPNE cells 72 hours post treatment. 
Experiments done in triplicate and independently repeated three times. (B) LDH 
cytotoxicity assay in pancreatic epithelial cell line, HPNE. Experiments done in triplicate 
and independently repeated three times. (C) Western blotting for PARP using whole cell 
lysates from HPNE cells 48 hours post treatment.  Data representative of three 
independent experiments. 
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Figure 13: Sabutoclax and Minocycline show synergy.  Combination index (CI) 
values for the combination of Sabutoclax and Minocycline in MIA PaCa-2 cells.  

 

 

 

 

We next sought to define the mechanism underlying this synergy.   The 

combination of subtoxic doses of Sabutoclax and Minocycline induced potent cell death 

that was partially abrogated by pretreatment with zVAD, indicating that this toxic effect 

is, in part, caspase-mediated.  This rescue phenotype is evident in the morphology of 

treated cells (Fig. 14A, 16) and through reductions in LDH activity, indicating lower 

levels of cell death (Fig.14B, 15B).  Furthermore, PARP cleavage was reduced in cells 

pretreated with zVAD (Fig. 14C, 15A).  When specific caspases were evaluated, the 

combination treatment showed caspase-3 cleavage and loss of full-length caspase-8.  

In zVAD-treated samples, caspase-3 cleavage was not seen at all and levels of full-

length caspase-8 were partially restored.    
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Figure 14: The cytotoxicity induced by Sabutoclax and Minocycline is caspase-
dependent and dependent upon loss of Stat3 activation. (A) Phase contrast images 
showing MIA PaCa-2 cells 48 hours post Sabutoclax and/or Minocycline treatment. 
Experiments done in triplicate and independently repeated three times. (B) Media from 
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plates photographed in panel A was collected and used for LDH activity assays. 
*p<0.005 as compared to single drug treated samples. **p=0.006 as compared to 50 µM 
Minocycline + Sabutoclax-treated samples. Experiments done in triplicate and 
independently repeated three times. (C) Western blotting of whole cell lysates for 
expression of PARP, caspase-3, and caspase-8.  Actin was used as a loading control. 
Data representative of three independent experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Sabutoclax and Minocycline induce cytotoxicity in PANC-1 cells that is 
reversed with zVAD. (A) Western blotting of whole cell lysates for expression of PARP 
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48 hours post treatment.  Actin was used as a loading control.  Cells treated with zVAD 
were incubated with the inhibitor for 1 hour prior to combination treatment.  Data 
representative of three independent experiments. (B) Media from plates used for 
western blots in panel A was used for LDH activity assays. **p=0.01.   
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Figure 16: Sabutoclax and Minocycline induce cytotoxicity in PANC-1 cells that is 
reversed with zVAD. (A) Phase contrast images showing PANC-1 cells 48 hours after 
treatment.  Data representative of three independent experiments. 

 

 

 

The cytotoxic effect of Sabutoclax and Minocycline is Stat3-dependent 

Stat3 activation is clinically relevant for PDAC as constitutive activation of Stat3 

has been reported in 30-100% of human tumor specimens, and is crucial for PDAC 

initiation, progression, and maintenance (125). Sabutoclax treatment resulted in a 

potent loss of Stat3 phosphorylation (Tyr 705), as well as a loss of downstream Stat3 

targets, such as survivin (Fig. 17A).  Minocycline alone induced similar changes (Fig. 

17B).  Subtoxic doses of each drug lowered Stat3 activation, but the combination of 

both drugs almost completely eliminated pStat3 expression (Fig. 17C).  To determine 

whether this would affect the cytotoxicity of the combination, we created MIA PaCa-2 

clones stably expressing an activated Stat3 mutant, Stat3 Y705F, e.g. C 13 (Fig. 18A).  

As compared to the parental cell line, C 13 showed enhanced resistance to combination 

treatment (Fig. 18B).  A similar elevated resistance was observed in other Stat3 Y705F 

overexpressing MIA PaCa-2 clones (data not shown). Because pretreatment with zVAD 

partially rescued cells from Sabutoclax and Minocycline-induced cell death, we 

evaluated expression of a variety of caspases to determine their potential involvement 

not only in death induced by the combination, but which ones might be affected in C 13 

cells (Figure 18C).  In parental MIA PaCa-2 cells, caspases 3, 7, and 8 were cleaved.  



 61 

Loss of full-length caspases 2 and 6 was evident, whereas AIF, caspase 12, and 

caspase 10 (caspase 10 data not shown) were not significantly altered.  In C 13 cells, 

however, we did not see any significant changes in any caspase examined, supporting 

the observation that loss of Stat3 activation is necessary for caspase-dependent cell 

death by Sabutoclax and Minocycline.  We also created stable cell lines overexpressing 

Stat3 Y705F in PANC-1 cells.  Similar to what we observed in MIA PaCa-2 cells, 

constitutive Stat3 activation in these clones protected them from cytotoxicity induced by 

the combination of Sabutoclax and Minocycline (Fig. 19).   
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Figure 17: The cytotoxicity induced by Sabutoclax and Minocycline is caspase-
dependent and results in loss of Stat3 activation. (A-B) Western blotting of whole 

cell lysates for pStat3 Tyr705, Stat3, Survivin, Actin (loading control) and EF1- (loading 
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control) 48 hours post treatment. Data representative of three independent experiments. 
(C) Western blotting of whole cell lysates for pStat3 Tyr705 48 hours post treatment.  
Actin was used as a loading control.  Cells were incubated with zVAD for 1 hour prior to 
Sabutoclax and Minocycline treatment. Data representative of three independent 
experiments.  
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Figure 18: The cytotoxicity induced by Sabutoclax and Minocycline is dependent 
upon loss of Stat3 activation. (A) Western blotting of whole cell lysates from MIA-
PaCa-2-Stat3Y705F stable clones for pStat3 Tyr705.  Actin was used as a loading 
control.  Graph below blot shows quantification. Data representative of three 
independent experiments. (B) Western blotting of whole cell lysates for PARP in 
parental MIA Paca-2 and Stat3Y705F stable clone 13.  Actin was used as a loading 
control.  Sab = 500 nM Sabutoclax, Mino = 50 µM Minocycline. Data representative of 
three independent experiments. (C) Western blotting of whole cell lysates 48 post 
treatment for PARP, AIF, Caspase-7, Caspase-8, Caspase-12, Caspase-2, Caspase-6, 
and Caspase-3. Actin was used as a loading control. Data representative of three 
independent experiments.  
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Figure 19: The cytotoxicity induced by Sabutoclax and Minocycline is dependent 
upon loss of Stat3 activation. (A) Western blotting of whole cell lysates from PANC-1-
Stat3Y705F stable clones for pStat3 Tyr705.  Actin was used as a loading control. (B) 
Western blotting of whole cell lysates for PARP in parental PANC-1 cells and 
Stat3Y705F stables clones 8 and 11.  Actin was used as a loading control. Data 
representative of three independent experiments. 

 

 

 

Sabutoclax and Minocycline induce cytotoxicity through the intrinsic pathway of 
apoptosis 
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Caspase-8 activation is an integral part of the extrinsic pathway of apoptosis.  

However, it can also be activated independent of this pathway by other caspases (126).  

To determine if caspase-8 involvement was due to extrinsic pathway activation or 

downstream intrinsic pathway activation, we used Z-IETD-FMK to specifically inhibit 

caspase 8 before drug treatment. Unlike the pan caspase inhibitor, zVAD, pretreatment 

with Z-IETD-FMK did not protect cells from Sabutoclax and Minocycline-induced cell 

death (Fig. 20).  This indicates that caspase-8 activation is dispensable for Sabutoclax 

and Minocycline-induced cell death and is most likely a secondary effect of other 

caspases.  Therefore, our data support the hypothesis that Sabutoclax and Minocycline 

induce a cytotoxic phenotype through activation of the intrinsic pathway of apoptosis.  
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Figure 20: The cytotoxicity induced by Sabutoclax and Minocycline works 
through the intrinsic pathways of apoptosis. Western blotting 48 hours post 
treatment for PARP and Actin (loading control).  Cells were incubated with zVAD or z-
IETD-FMK for 1 hour prior to treatment with Sabutoclax and Minocycline.  Data 
representative of three independent experiments. 
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Sabutoclax alone reduces tumor growth in a xenograft model of pancreatic 
cancer and this effect is enhanced with the addition of Minocycline 

Luciferase-expressing MIA PaCa-2 cells, displaying a similar phenotype as 

parental cells (Fig. 21A), were established as subcutaneous xenografts in athymic nude 

mice, which were then treated with Sabutoclax (1 mg/kg), Minocycline (20 mg/kg), or 

both agents.  Both drugs were given via IP injection 3x/week. Minocycline treatment 

alone showed minimal effects, while Sabutoclax alone showed greater reductions in 

tumor weight and growth (Fig. 21B-C).  Despite this, animals treated with a combination 

of Sabutoclax and Minocycline showed a synergistic reduction in tumor growth, with a 

significantly smaller tumor growth rate, even as compared to Sabutoclax alone (Fig. 

21C).  This was confirmed with bioluminescence imaging (BLI) (Fig. 21D).  A similar 

experiment was conducted using PANC-1-luc cells resulting in the same trend, with the 

combination group showing significant inhibition of tumor growth (Fig. 23).  

Immunohistochemistry of tumor sections  (Fig. 22) demonstrated higher intensity 

proliferation marker PCNA staining in control, Sabutoclax, and Minocycline-treated 

groups as compared to the combination-treated group.  Furthermore, combination-

treated tumors showed significantly less phosphorylated Stat3 expression, consistent 

with in vitro observations. 
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Figure 21: Sabutoclax reduces tumor growth in a subcutaneous xenograft model 
and is enhanced by the addition of Minocycline. (A) MTT proliferation assay of MIA 
PaCa-2 cells stably expressing luciferase after treatment with Sabutoclax and/or 
Minocycline.  ***p<0.0001. Experiments done in triplicate and independently repeated 
three times. (B) Tumor weight as normalized to the control animals at the end of the 
experiment. (C) Tumor growth kinetics of MIA PaCa-2-luc cell subcutaneous tumors on 
the flanks of athymic mice. *p<0.04 as compared to all other groups. (D) 
Bioluminesence imaging (BLI) of tumors and image quantification.  Exposure time = 5 
seconds. n= 5 mice/group. 
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Figure 22: Sabutoclax and Minocycline reduce PCNA expression and Stat3 
activation in vivo. Tumors were fixed in formalin, embedded in paraffin, and sectioned 
for staining. Representative images of immunohistochemistry (IHC) stained with p-Stat3 
Y705 and PCNA.  Arrows in PCNA images show margin of negatively stained tumor 
area at the periphery of each tumor.  Data representative of three independent 
experiments. 

 

 



 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Sabutoclax and Minocycline reduce tumor growth in a subcutaneous 

xenograft model of pancreatic cancer. (A) Tumor growth kinetics of PANC-1-luc cell 

subcutaneous tumors on the flanks of athymic mice. *p<0.04 as compared to all other 

groups. (B) Bioluminesence imaging (BLI) of tumors.  Exposure time = 8 seconds. n= 5 

mice/group 
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Quasi-orthotopic xenograft mouse model 

While subcutaneous xenograft studies are useful in evaluating in vitro 

observations in an in vivo setting, flank tumors do not accurately mimic natural disease 

states.  To study the effect of our drugs in a more natural setting, we used a quasi-

orthotopic model of PDAC (127).  We found that MIA PaCa-2-luc cells, when injected 

intraperitoneally, specifically homed to the pancreas, with the majority of tumors or 

tumor nodules found in this organ.  Other locations in which we found tumors (liver, 

peritoneal lining) are common places for this cancer to metastasize and more closely 

mimic the clinical picture of this disease.   

In an initial set of experiments, we injected 1 x 106 cells i.p. and allowed 1 week 

for tumor establishment before treating mice with Sabutoclax and Minocycline, alone or 

in combination. Consistent with our previous data, Minocycline as a single agent did not 

have any effect and mice presented similarly to control animals.  Sabutoclax showed a 

potent single-agent effect, with fewer animals showing evidence of disease.  The 

combination group showed even more promise (Fig. 24C), with only 1/7 mice showing 

tumors by BLI (Fig. 24A-B).  Pancreas weight did not show significant differences, 

though the trend supported our other observations (data not shown).  

A second quasi-orthotopic study was conducted using similar drug dosing 

parameters.  Tumors, though, were initiated with the injection of 5 x 106 cells as 

opposed to 1 x 106.  In our first study, the use of fewer cells allowed testing whether 

Sabutoclax and Minocycline could prevent tumor formation.  However, the use of fewer 

cells also means that the overall tumor burden was less when therapy was initiated, 
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which prevented determining the true magnitude of the effect Sabutoclax and 

Minocycline would have in the context of a greater tumor burden, which might more 

closely imitate the clinical setting.   

As anticipated, injecting a greater number of cells resulted in a larger overall 

tumor burden in the animals.  Mice from all groups developed tumors or tumor nodules 

in the pancreas.  However, the weight of the pancreas from mice treated with both 

Sabutoclax and Minocycline was significantly less than those from animals in all 3 other 

groups and visually showed fewer gross nodules (Fig. 24D).  
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Figure 24: Sabutoclax and Minocycline reduce tumor growth in a quasi-orthotopic 
xenograft model. (A) Low Tumor Burden study: BLI images of mice post treatment.  
Exposure time = 5 seconds. (B) Image quantification of panel A.  (C) Tumor incidence in 
pancreas – measured by imaging and by gross examination of animals at necropsy. n= 
7 mice/group. (D) High Tumor Burden study: pancreas weight at necropsy.  Treatment 
groups normalized to the control. *p=0.03, **p=0.01, ***p=0.004. n= 10 mice/group 
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Sabutoclax and Minocycline in a transgenic mouse model of PDAC (KPC) 

The KPC transgenic PDAC mouse model is used frequently in PDAC research 

(128-132). This animal spontaneously develops precursor pancreatic lesions, PanINs, 

which progress and eventually develop into invasive disease. Tumors form as a result of 

activated K-ras and functional loss of p53 in the pancreas, genetic changes also seen in 

a high percentage of human tumors.  Histological analysis shows extensive local 

invasion as well as metastasis in a subset of animals (133). 

Pancreatic tumors from these mice overexpress Mcl-1 as shown by 

immunohistochemistry (Fig. 25A).  This is consistent with the disease observed in 

humans (103-106) and provides a rationale for using Sabutoclax in these animals.  

Additionally, cell lines derived from these animals show combination effects with 

Sabutoclax and Minocycline (Fig. 25B).  These cells were injected subcutaneously into 

the flanks of control KPC mice (Pdx-1-Cre-negative/K-rasLSL-G12D/p53flox/wt) and allowed 

to grow for approximately one week.  Mice were treated with Sabutoclax, Minocycline, 

or both drugs every 2-3 days via i.p. injection for a total of 6 injections.  Sabutoclax or 

Minocycline alone did not significantly affect tumor growth.  The combination of drugs, 

however, significantly inhibited tumor growth as compared to controls (Fig. 26).  

Immunohistochemistry of tumor sections demonstrated decreased staining for PCNA 

and pStat3 in combination-treated tumors (Fig. 27-28).  
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Figure 25: KPC tumors express Mcl-1 and KPC cell lines show sensitivity to 

Sabutoclax and Minocycline. Tumors from Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt and Pdx-

1-Cre/K-rasLSL-G12D/p53flox/flox mice overexpress Mcl-1 and show sensitivity to Sabutoclax 

and Minocycline.  (A) IHC for Mcl-1 in sections of pancreas from control, Pdx-1-Cre/K-

rasLSL-G12D/p53flox/wt and Pdx-1-Cre/K-rasLSL-G12D/p53flox/flox mice.  (B) Western blotting of 

whole cell lysates for PARP 48 post treatment in cell lines derived from Pdx-1-Cre/K-

rasLSL-G12D/p53flox/wt mice.  Data representative of three independent experiments. 
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Figure 26: Sabutoclax and Minocycline reduce tumor growth in a syngeneic KPC 
model. Syngeneic study: Tumor growth kinetics of control Pdx-1-Cre negative/K-rasLSL-

G12D/p53flox/flox mice bearing subcutaneous Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt–derived 
tumors. **p<0.01 as compared to all other groups. n= 5 mice/group. 
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Figure 27: Sabutoclax and Minocycline reduce proliferation in a syngeneic KPC 
model. IHC for PCNA. Data representative of three independent experiments.  
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Figure 28: Sabutoclax and Minocycline reduce Stat3 activation in a syngeneic 
KPC model. IHC for pStat3 Y705. Data representative of three independent 
experiments.  
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Additionally, a survival study was done using KPC mice (Pdx-1-Cre/K-rasLSL-

G12D/p53flox/flox) to determine the effects of Sabutoclax and Minocycline.  Mice were 

treated with Sabutoclax (1 mg/kg), Minocycline (10 mg/kg), or a combination of both 

three times a week via i.p. injection starting at around 1 month of age and continuing 

until animals reached a moribund state.  Mice receiving combination treatment showed 

a significant survival advantage as compared to control mice (Fig. 29).  Importantly, no 

toxicity was seen from either drug in any of the animal studies conducted.   
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Figure 29: Sabutoclax and Minocycline enhance survival in the KPC transgenic 
mouse model. Kaplan-Meier survival curve for Pdx-1-Cre/K-rasLSL-G12D/p53flox/flox mice 
treated with Sabutoclax and Minocycline.  *p=0.001. n = 12 mice (control group); n = 10 
mice (Sabutoclax + Minocycline group).    
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Discussion: 

Pancreatic cancer is one of the most lethal cancers, remaining largely 

untreatable.  Moreover, advances in therapy have been minimal over the last 15 years, 

due in part to the aggressive nature of PDAC and the difficulty in developing selective 

and effective therapeutics.  We presently describe an efficacious novel drug 

combination for PDAC that uses a new BH3 mimetic and uncovers the hidden 

therapeutic potential of Minocycline as an anti-cancer agent.  

Considering overexpression of the anti-apoptotic Bcl-2 proteins in PDAC, we 

initially evaluated the efficacy of Sabutoclax, a BH3 mimetic that targets these anti-

apoptotic proteins, inhibiting their function.  Sabutoclax was effective as a single agent.  

It induced cancer-inhibitory effects in multiple genetically diverse PDAC cell lines.  

Potent apoptosis-inducing activity was evident in some PDAC cell lines and in those 

that only showed minor increases in death, we found instead a potent cell cycle arrest.  

Tumor heterogeneity is a problem manifested to some degree in all cancers, but is 

especially relevant in PDAC, contributing to the global resistance seen in this cancer to 

conventional chemotherapeutics.  A beneficial aspect of Sabutoclax is its anti-cancer 

activity in multiple PDAC cell lines, irrespective of genetic background.   

Despite the potential of Sabutoclax as a single-agent, there is a pressing need 

for combination therapy in the clinical setting.  Cancer is an adaptive disease and 

effectively combatting it requires a multifaceted approach.  Because of this, we sought 

to find a second drug that would potentially synergize with Sabutoclax to further 

promote its clinical applicability.  We focused on the antibiotic, Minocycline, which has a 

small literature base supporting a novel role for this drug in the field of cancer (111-
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115).  Despite these reports, translational cancer research using tetracyclines never 

expanded as only minor efficacy was evident with these drugs.  In addition to its 

classical role as an antibiotic, Minocycline has also been studied extensively as a 

neuroprotective agent.  Zhu, et. al. showed that this neuroprotection develops, in part, 

through the inhibition of caspase-9 and caspase-3 activation after exposure to death-

inducing stimuli due to the inhibition of cytochrome c release from mitochondria (118).  

Minocycline has also been shown to lead to increases in the expression of anti-

apoptotic Bcl-2 proteins like Bcl-2 (116,117).  We hypothesized that these properties 

might actually mask the true potential of Minocycline as a cancer therapeutic and 

contribute to the disappointing results seen in the past.  However, we hypothesized that 

these properties might make it an ideal combination partner for Sabutoclax.  Sabutoclax 

works by directly acting at the level of the mitochondria, specifically inducing apoptosis 

driven by cytochrome c release.  In combination with Sabutoclax, the block on apoptosis 

in cells treated with Minocycline may be released, thereby leading to synergistic anti-

cancer properties.   

Our study has shown that Sabutoclax plus Minocycline is exceptionally effective 

against pancreatic cancer (Fig. 30).  Subtoxic individual doses of each drug produced a 

dramatic synergistic cytotoxic effect.  Furthermore, we found that this combination 

resulted in a loss of Stat3 activation.  Reintroduction of a constitutively active Stat3 

mutant into cells rendered them resistant to the combination of Sabutoclax and 

Minocycline. This combination shows promise in vivo using multiple mouse models, 

both immune-compromised and immune-competent transgenic models of PDAC, 

showing significant anti-cancer activity without any signs of gross toxicities.   
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In summary, we describe an innovative combinatorial therapeutic approach with 

remarkable activity against pancreatic cancer cells in vitro and in vivo in three animal 

PDAC models. Considering the paucity of effective therapies for PDAC, it is clear that 

new approaches are mandatory to impact clinically on this invariably fatal cancer. The 

ability to target the Bcl-2 family for inactivation, using Sabutoclax, and combining this 

with a simple synthetic tetracycline antibiotic, such as Minocycline, opens up new areas 

of research with the potential to lead to an effective therapy for pancreatic cancer. 
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Figure 30: Overview model showing therapeutic effects of Sabutoclax and 
Minocycline in PDAC. 
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Chapter III: Gemcitabine Chemotherapy Modification for the  

Treatment of Pancreatic Cancer 

 

Introduction: 

Pancreatic cancer is an extremely deadly disease, with a 5-year survival rate of 

less than 5%.  Most tumors are either locally advanced or metastasized at the time of 

diagnosis and, intrinsically, this cancer is extremely resistant to chemotherapy and 

radiation.  Currently, first line treatment for pancreatic cancer consists of surgical 

resection, if possible, and a subsequent course of chemotherapy.  This chemotherapy 

usually consists of treatment with Gemcitabine (2).   

In 1997, Burris, et al. published a clinical study comparing Gemcitabine to 5-

Fluoruracil for the treatment of pancreatic cancer.  In this study, 126 patients were 

enrolled with 63 per treatment group.  23.8% of patients showed clinical benefit with 

Gemcitabine, as compared to only 4.8% of 5-FU-treated patients.  The median survival 

was shown to be 5.65 months for Gemcitabine and 4.41 months for 5-FU.  Finally, 18% 

of patients treated with Gemcitabine were alive at 12-month time point, while survival at 

this time point for patients treated with 5-FU was only 2% (3). This trial helped 

encourage the FDA to approve Gemcitabine for the treatment of pancreatic cancer in 

1998.  Gemcitabine is currently a standard treatment used for patients with pancreatic 

cancer.  Despite this, the drug only provides minimal benefit to patients.   

Gemcitabine’s cytotoxic effects are due to its ability to act as a pyrimidine analog.  

Gemcitabine triphosphate acts as an analog for deoxycytidine triphosphate, which 

allows it to be incorporated into DNA during replication.  After Gemcitabine is 
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incorporated, another nucleotide may be added to the chain, but inhibition of chain 

elongation subsequently occurs.  DNA damage repair is not able to remove the drug 

and, consequently, apoptosis occurs (134).    

Gemcitabine enters the cell through multiple cell membrane transporters, though 

the sodium-independent transporter, hENT1, has been shown to preferentially transport 

Gemcitabine (134).  Though there are multiple mechanisms of Gemcitabine resistance, 

one important mechanism revolves around expression of this protein.  Giovannetti, et al. 

showed that patients with tumors that express high amounts of hENT1 have a greater 

survival advantage with Gemcitabine treatment as compared to those with lower hENT1 

expression (Giovannetti, et al. 2006).  Patients with higher hENT1 expression have 

tumors that can more readily take up Gemcitabine, leading to an increased clinical 

benefit.  However, in many tumors, low expression of Gemcitabine transporters 

translates to a need for the drug to be administered frequently and at high doses, two 

things that can add significantly to drug toxicity. 

Toxicity is a major issue with many chemotherapeutic agents and, as a result, the 

creation of more targeted therapies that have a lower risk of toxicity has become an 

attractive strategy in developing cancer therapeutics.  Many conventional 

chemotherapeutic drugs work well in killing cells, but because they also target normal 

cells, often lead to high levels of toxicity.  Targeted therapies focus on attacking cancer 

cells specifically and sparing normal cells to reduce ill side effects.  One specific 

strategy of targeted therapy involves modifying currently used drugs to make them 

cancer specific.  This often involves identifying a biomarker on cancer cells that the 

modified drug can target.  One such target is the Ephrin receptor. 
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Ephrin receptors are a family of tyrosine kinase receptors involved in neuronal 

connectivity, blood vessel development, and cell-cell interactions.  EphA2 was identified 

in 1990 and is expressed in the majority of epithelial cells.  In cancer cells, EphA2 is 

highly overexpressed and encourages communication not only between individual 

cancer cells, but also between cancer cells and surrounding stromal or vascular cells.  

EphA2 overexpression also correlates with poor prognosis in patients.  Despite EphA2 

overexpression, expression of EphrinA1, its ligand, often remains normal even in a 

cancerous state.  This can lead to accumulation of unactivated EphA2 and subsequent 

oncogenic activity (135). 

Peptides have been created that, similar to the natural ligand for this receptor, 

selectively bind EphA2 and cause receptor activation and internalization.  These 

peptides are linked to commonly used chemotherapeutic drugs and act as a specific 

delivery strategy for these drugs to tumor cells.  Once the receptor is activated, the 

peptide and its attached drug are internalized into a lysosome, where the peptide is 

degraded and the drug is free to exert its toxic effects on the cell (136).  Previous 

studies have shown that Paclitaxel conjugated with these peptides shows increased 

efficacy in prostate and renal cancers (137). 

Gemcitabine, though the current first-line treatment for pancreatic cancer, does 

not offer a great therapeutic benefit to patients.  This study aims to study a modified 

version of Gemcitabine as an alternate to the traditional drug.  This modified drug, YNH-

Gemcitabine, consists of the drug with a peptide attached (YNH).  This peptide was 

designed to specifically bind to the EphrinA2 receptor, which is overexpressed on 

pancreatic cancer cells.  The result of this is that the attached Gemcitabine gets 
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internalized into the cell via EphA2, bypassing its normal mechanism of cellular entry.  

We believe that this will allow a greater amount of Gemcitabine to enter the pancreatic 

cancer cell and, ultimately, show greater efficacy in vivo as compared to traditional 

Gemcitabine alone.   

To expand these studies, we also evaluated 123B9, a newer derivative of the 

previously developed YNH family of compounds.  Though the YNH compounds showed 

good efficacy, the terminal tyrosine of YNH could be degraded by aminopeptidases in 

the blood, which limited its half-life.  123B9 contains a synthetic tyrosine that is resistant 

to aminopeptidase degradation, leading to a significantly longer half-life in blood and, 

hopefully, greater efficacy as well.  Due to the recent approval of Gemcitabine and 

Abraxane as first-line therapy for metastatic pancreatic cancer, we evaluated 123B9-

Paclitaxel and Gemcitabine.  Additional studies evaluating 123B9-Gemcitabine versus 

Gemcitabine in pancreatic cancer are currently in progress.  

Materials and Methods: 

 

Human Cell Lines 

MIA PaCa-2, PANC-1, BxPC-3, and AsPC-1 cells were all obtained from the American 

Type Culture Collection (ATCC).  LT2 cells were purchased from Millipore.  MIA PaCa-2 

and PANC-1 were maintained in DMEM plus 10% FBS.  BxPC-3 and AsPC-1 cells were 

maintained in RPMI plus 10% FBS. LT2 cells were maintained with media according to 

distributor’s instructions.  Cell lines were expanded and cryopreserved at early 

passages and new vials were thawed out and used for experiments approximately 

every 3 months.   
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Drugs and Drug Administration 

Gemcitabine, YDH-Gemcitabine, YNH-Gemcitabine, Paclitaxel, 123B9, 123B9-

Paclitaxel and 123B9-Gemcitabine were produced by Dr. Maurizio Pellecchia (Sanford-

Burnham Institute, La Jolla, CA).  For biological studies, all drugs were diluted in 10% 

Tween80, 10% DMSO, and 80% PBS.  

 

Western Blotting 

5 x 105 cells were plated in 6-cm dishes and treated as described. After 48 hours, whole 

cell lysates were prepared and western blotting analysis was carried out as previously 

described (120). Primary antibodies used for these studies were EphrinA2 (1:1,000, Cell 

Signaling) and EF1-α (1:5,000, Sigma).  

 

Subcutaneous Xenograft Studies 

5 x 106 MIA PaCa-2-luciferase cells were used to establish bilateral subcutaneous 

tumors on the flanks of 8-10 week old male athymic nude mice.  Studies were done as 

previously described (109).  Treatment began when tumors reached ~100-mm3.  All 

drugs were administered by tail vein injection twice per week for 4 weeks, a total of 8 

injections. Gemcitabine was given at a dose of 10 mg/kg and all Gemcitabine 

derivatives were given at equimolar doses to 10mg/kg Gemcitabine, also via tail vein 

injection. PTX was given at a dose of 2.5mg/kg.  All 123B9 compounds were given in 

equimolar doses to PTX.  BLI was done at the beginning and end of the study.  Tumors 
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were measured twice per week using calipers.  Tumors were fixed in formalin, 

embedded in paraffin, and sectioned for staining.   

 

Survival Study 

After their last injection, mice were kept for 1 additional week to monitor tumor growth 

and imaged at the end of this week. The mice were then kept to monitor for the effects 

of treatment on survival. Mice were kept until reaching a moribund status or until tumors 

reached a combined volume of 2000mm3, whichever came first.  They were then 

sacrificed at this time. 

 

BLI  

During imaging, mice were placed in the imaging chamber and maintained with 2% 

isoflurane gas anesthesia at a flow rate of approximately 0.5-1 L/min per mouse. 

Anesthetized mice were injected IP with 150 mg/kg body weight D-Luciferin (Xenogen 

Corporation, Alameda, CA). After approximately 10 min, mice were imaged using a 

charge-coupled-device (CCD) camera coupled to the Xenogen in vivo imaging (IVIS) 

imaging system (Caliper Life Sciences, Inc., Hopkinton, MA).  

 

Statistical Analysis 
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For in vivo studies, data shown are the mean + 95% confidence interval. Significance 

was determined using the Student’s t-test.  p<0.05 was considered statistically 

significant.   

Results: 

 

YNH-Gemcitabine shows greater efficacy in vivo compared to Gemcitabine 

 

MIA-PaCa-2-luc cells were used to create bilateral subcutaneous xenografts in 

athymic mice.  Western blot data shows that this pancreatic cancer cell line highly 

expresses EphA2 (Figure 31).  Cells were injected into each flank and then allowed to 

grow for approximately 1 week.  At this point, mice were imaged using BLI and 

treatment was subsequently initiated.  Mice were divided into 4 groups (PBS, 

Gemcitabine, YDH-Gemcitabine, YNH-Gemcitabine) with 9 mice/group.  YDH-

Gemcitabine is a scrambled control, where the peptide attached to Gemcitabine should 

not be specific for EphA2 and, therefore, should not bind to the receptor.  Animals were 

treated 2x/week via tail vein injection for 4 weeks.  A dose of 10mg/kg Gemcitabine was 

used along with equimolar doses of YDH-Gemcitabine and YNH-Gemcitabine.  At the 

end of 4 weeks, animals were again imaged and treatment was ended.   

As expected, YDH-Gemcitabine did not have significant effects on tumor growth.  

Gemcitabine had a modest effect on tumor growth, though YNH-Gemcitabine showed 

the greatest inhibition of tumor growth of all groups evaluated (Fig. 32).  This can be 

observed both through tumor measurement and by BLI (Fig. 33).  No negative side 

effects of the drugs were observed and the mouse weight remained consistent 
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throughout the study (data not shown).  3 animals per group were sacrificed at the end 

of this study and tumors were excised and fixed in formalin for further study.  

To determine whether YNH-Gemcitabine also gave a survival advantage, 

remaining mice were not sacrificed at the end of the experiment, but rather when their 

individual tumor burden approached 2000mm3.  YNH-Gemcitabine gave mice a 

significant survival advantage over other treatment groups (Fig. 34).  
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Figure 31: Pancreatic Cancer cells express EphA2. Western blotting of normal 

pancreatic fibroblasts and pancreatic cancer cells.  
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Figure 32 : YNH-Gemcitabine inhibits tumor growth in vivo to a greater extent as 

compared to Gemcitabine. Tumor volume as calculated by caliper tumor 

measurement.  *p < 0.05;** p<0.01. n=9 mice/group 
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Figure 33 : YNH-Gemcitabine inhibits tumor growth in vivo to a greater extent as 

compared to Gemcitabine. Bioluminescent tumor images at Day 34.  Exposure time = 

0.5 seconds 
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Figure 34: YNH-Gemcitabine prolongs in a xenograft model of pancreatic cancer.  

Kaplan-Meier curve showing survival in days.   *p < 0.05.  
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123B9-Paclitaxel and Gemcitabine show combination effects in pancreatic cancer 

in vivo 

 

MIA-PaCa-2-luc cells were used to create bilateral subcutaneous xenografts in 

athymic mice.  Cells were injected bilaterally into the flanks and then allowed to grow for 

approximately 1 week.  At this point, mice were imaged using BLI and then treatment 

was initiated.  Mice were divided into 8 groups (Control, Gemcitabine, PTX, Gem+PTX, 

123B9-PTX, 123B9+PTX, 123B9-PTX+Gem, 123B9+PTX+Gem) with 5 mice/group.  

Animals were treated 2x/week via tail vein injection for 4 weeks.  A dose of 10mg/kg 

Gemcitabine, 2.5mg/kg PTX, and an equimolar dose of the 123B9 compounds were 

used.  Tumors were measured with calipers twice a week.  At the end of 4 weeks, 

animals were again imaged and treatment was stopped.  No negative side effects from 

any of the compounds used were observed and the mouse weight remained consistent 

throughout the study (data not shown).  

As expected, Gemcitabine or PTX treatment alone did not have a significant 

effect on tumor growth, but the combination of these two drugs did significantly inhibit 

tumor growth (Fig. 35).  Additionally, both 123B9-PTX and 123B9+PTX showed greater 

inhibition of tumor growth as compared to PTX (Fig. 36).  The addition of Gemcitabine 

to these groups further suppressed tumor growth.  Mice that were treated with 

123B9+PTX+Gem showed the greatest inhibition of tumor growth (Fig. 37).  Tumors in 

this group were significantly smaller as compared to 123B9+PTX, PTX, Gem, and 

Control groups.   
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Figure  35: Gemcitabine (Gem) and Paclitaxel (PTX) inhibit tumor growth in vivo 

to a greater extent than either single drug. Tumor volume as calculated by caliper 

tumor measurement.  Asterisks show significance between the Gem+PTX group and 

Control, Gem, and PTX groups. *p<0.05; **p<0.01. n=5 mice/group 
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Figure 36: 123B9-PTX inhibits tumor growth in vivo to a greater extent than PTX. 

Tumor volume as calculated by caliper tumor measurement. Asterisks show 

significance between the 123B9-PTX group and both the PTX and Control groups. 

*p<0.05; **p<0.01 n=5 mice/group 
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Figure 37: 123B9+PTX+Gem inhibit tumor growth in vivo to a greater extent than 

other treatment combinations. Tumor volume as calculated by caliper tumor 

measurement. Asterisks show significance between the 123B9+PTX+Gem group and 

Control, Gem, PTX, Gem+PTX, and 123B9+PTX groups. *p<0.05. n=5 mice/group 
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Discussion 

Though not overly efficacious, chemotherapy remains the mainstay of pancreatic 

cancer therapy.  There is a vital need to develop novel therapies that provide greater 

clinical benefit to patients.  This study evaluated modifications of both Gemcitabine and 

Paclitaxel against pancreatic cancer.  The strategy involved in these modifications 

revolved around developing conjugated drugs that are capable of specifically targeting 

the EphA2 receptor that is overexpressed on the surface of pancreatic cancer cells.  

Initial studies used Gemcitabine linked to the YNH peptide, which showed encouraging 

results.  This modified drug show greater tumor growth inhibition and prolonged survival 

in a xenograft model of pancreatic cancer.   

However, despite these results, the YNH was found to have less than optimal 

plasma stability.  The terminal tyrosine of this peptide, which is essential to specific 

EphA2 binding, was shown to be susceptible to aminopeptidases in the blood, leading 

to degradation.  This resulted in a half-life of only a few minutes.  A new peptide was 

subsequently created, 123B9, which replaced the terminal tyrosine with a synthetic 

tyrosine.  This new amino acid is resistant to aminopeptidase degradation while still 

retaining EphA2 specificity.  This translates into an increased drug half-life of 

approximately 4 hours.   

Paclitaxel is a commonly used chemotherapeutic drug most often used in breast, 

lung, ovarian, and AIDS-related sarcomas, though it is studied and sometimes used in 

combination in other cancer types as well.  Paclitaxel is a microtubule inhibitor and acts 

to stabilize polymerized microtubules.  Consequently, cells get stuck in the G2 and M 

phases of the cell cycle.  Solubility is a major issue with this drug.  It must be 
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administered in a solution with Cremophor and dehydrated ethanol.  These vehicles can 

have toxic effects on their own and have led to the inability to use higher doses of this 

chemotherapeutic drug in patients.  Furthermore, Cremophor-bound paclitaxel has a 

tendency to form micelles that trap the drug in the center, limiting its efficacy (138).   

Recently a novel formulation of Paclitaxel has been developed in which the drug 

is bound to albumin (nab-Paclitaxel).  High-pressure homogenization is used to combine 

albumin and paclitaxel.  Once injected, the drug is free to bind/unbind albumin or other 

molecules in the blood freely.  This results in more unbound drug in the circulation as 

compared to Cremophor-bound drug.  However, the nab-paclitaxel that is bound tends 

to be bound to albumin, which helps to facilitate its entry into tumor cells.  Nab-

Paclitaxel can use normal albumin transport mechanisms to gain entry.  Also, some 

albumin-binding proteins, such as SPARC, show high prevalence in the tumor 

microenvironment.  Whether or not this has clinical significance is still unclear (138).  In 

mouse studies, xenografted pancreatic tumors were found to have a 2.8 fold increase in 

intratumoral Gemcitabine concentration when the drug was administered in combination 

with nab-Paclitaxel.  They hypothesized that this may be due to nab-Paclitaxel-induced 

disruption of the stroma (139).  

A Phase 3 clinical study in patients with metastatic pancreatic cancer evaluated nab-

Paclitaxel + Gemcitabine versus Gemcitabine alone in a total of 861 patients.  The 

median survival was 8.5 months in the nab-paclitaxel + Gemcitabine group vs. 6.7 

months in the Gemcitabine group.  The survival rate at 1 year was 35% vs 22%; 9% vs 

4% at 2 years.  The response rate was 23% for combination group and 7% for 

Gemcitabine alone.  Toxicities included neutropenia, fatigue, and neuropathy (140).  
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These results encouraged the FDA to approve the combination of Gemcitabine and 

nab-Paclitaxel (Gem-Abraxane) for metastatic pancreatic cancer. 

In conclusion, these novel Ephrin-binding peptides represent an exciting new 

strategy in cancer drug development.  Of significant interest is that this technique is not 

limited to a single drug, but rather can be adapted to almost any drug, either by linking 

the drug of interest to a peptide or by using it in combination with the peptide.   We 

found in our studies with Paclitaxel that 123B9 showed greater tumor inhibition, 

presumably by helping to facilitate drug entry into cancer cells, even when it wasn’t 

actually linked with Paclitaxel.  In fact, when 123B9 was administered in conjunction 

with chemotherapy (Gemcitabine and Paclitaxel), but not actually as part of a modified 

drug, we saw the greatest efficacy.  We believe that this may be due to 123B9 

encouraging entry of both Paclitaxel and Gemcitabine.  Overall, these studies provide 

encouraging evidence that modifications of standard chemotherapeutic agents have the 

potential to improve clinical outcome in pancreatic cancer patients.   
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Chapter 4: Characterization of a novel double transgenic pancreatic 

adenocarcinoma mouse, ‘PanMetView (PMV) Mouse’, to non-invasively monitor 

tumor development and progression. 

 

Introduction 

Pancreatic cancer is an extremely deadly disease that lacks efficacious 

therapeutic options (1). There is a dire need to develop novel therapies for targeting this 

cancer. Translational research has focused on many strategies to target this cancer 

(141-145), but the study of such strategies is often impeded by the lack of appropriate 

preclinical models to validate efficacy. The creation of effective drugs or therapeutic 

strategies is a rigorous process that requires not only an understanding of the 

mechanism of action of a new drug, but also the ability to stringently test compounds in 

appropriate in vitro and in vivo settings. In vitro studies are fairly straightforward, as a 

variety of human pancreatic cancer cell lines have been established and are available to 

test experimental drugs (146). Testing new drugs in vivo, however, can be a daunting 

challenge if one does not have an appropriate preclinical model that recapitulates 

pancreatic cancer development and disease progression. Currently, there are a number 

of transgenic mouse models of pancreatic cancer that have been developed. They vary 

in a variety of ways, including the histological subtype of tumor developed, tumor 

latency, and the absence or presence of metastases (147,148). However, one missing 

component of all of these models is an efficient and simple global method to temporally 

monitor tumor development and growth. To perform sophisticated preclinical animal 

studies, one must be able to monitor tumor kinetics in a quantifiable way and use this 

strategy to define efficacy of newly developed therapies. Doing so in a non-invasive 

manner without having to sacrifice the mouse is particularly difficult and defining 
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approaches to obviate this problem will be transformative for preclinical testing of 

therapies.  

Bioluminescence imaging (BLI) is an optical imaging technique that is relatively 

inexpensive, user-friendly, and has wide-spectrum applicability. It is based on the ability 

of a cell that expresses luciferase to convert luciferin into oxyluciferin, which results in 

the release of photons that can be captured and processed into an image (149,150). 

Traditionally, this imaging modality has been used in xenograft studies, where cells that 

are engineered to express luciferase are injected subcutaneously or orthotopically into 

mice to create a tumor model with imaging capabilities. We are pioneering a strategy in 

which we can use BLI to image pancreatic tumors in the widely used pancreatic ductal 

adenocarcinoma (KPC) transgenic mouse model, or in principle any other solid tumor 

transgenic mouse model.  

Bioluminescence imaging (BLI) has been transformative for animal tumor studies 

permitting live non-invasive in vivo imaging to monitor tumor growth and progression 

using xenograft, orthotopic and metastasis models (149-154). For optimizing this type of 

imaging for transgenic animals, cancerous cells in the transgenic animals need to 

express a reporter gene, such as luciferase, under the control of a cancer-specific 

(cancer-selective) promoter. In previous collaborative studies with Dr. Martin G. Pomper 

(Johns Hopkins University) we demonstrated the utility of a reporter gene expressed 

under the control of a cancer-specific promoter, progression elevated gene-3 (PEG-

Prom), to image metastases (153) and study tumor progression.  
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CCN1 is a member of a large family of integrin-binding proteins that affects 

multiple signal transduction pathways in cells (155,156). In cancer, integrin-binding 

proteins are often dysregulated and can lead to changes in cell migration, adhesion, 

angiogenesis, and tumor growth. In pancreatic cancer, CCN1 mRNA and protein are 

elevated in tumor specimens and established pancreatic tumor cell lines (157). CCN1 is 

critical for EMT in this cancer type as well as for maintenance of stemness and 

aggressive behavior, with more aggressive cell lines expressing higher levels of CCN1 

(158). These pro-tumorigenic properties result in part through signaling via the Sonic 

hedgehog pathway (159,160). Silencing of CCN1 has also been shown to mitigate 

some of CCN1’s pro-cancer properties (158). Based on the cancer-selectivity of CCN1, 

we hypothesized that a CCN1-promoter-driven construct would be amenable for 

imaging tumors and metastases in vivo, similar to what we found with the PEG-Prom-

Luc-PEI construct (154). This possibility was verified using a CCN1-Prom-Luc-PEI 

construct, which when administered intravenously to nude mice containing primary and 

metastatic tumors was able to image these tumors/metastases (data not shown).  

The PDAC KPC transgenic mouse model, Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt, 

has been used to study pancreatic cancer development and progression as well as 

therapeutic approaches for inhibiting these processes (128-132). As with all cancers, 

there is a multitude of genetic changes observed in PDAC that contribute to its 

development and progression. Activating K-ras mutations are found in over 90% of 

pancreatic cancers (1), making it a highly active contributor to the tumorigenic state. 

There is also a variety of tumor suppressors lost in high frequency in this disease, p53 

being one of them. This important gene is either deleted or functionally inactivated in 
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approximately 50-75% of PDAC (1). The KPC model of PDAC, which is broadly used in 

the pancreatic cancer field, mimics these human genetic changes in the mouse. A 

mutated form of K-ras, rendering it constitutively active (K-rasG12D), is introduced into the 

mouse with a Lox-Stop-Lox sequence located transcriptionally upstream (K-rasLSL-G12D). 

p53 alleles are floxed in these animals as well, either one or both alleles (p53fl/wt or 

p53fl/fl). Cre-mediated recombination results in the removal of the stop codon preceding 

the mutant K-ras and expression of this new genetic element, giving the tissue continual 

K-ras signaling. Additionally, Cre will remove one or both alleles of p53, resulting in full 

or partial loss of function of this critical tumor suppressor. Cre is introduced into the 

pancreas through the transcriptional control of a pancreatic-specific promoter, Pdx-1. 

When both alleles of p53 are deleted, tumors develop very rapidly and most animals do 

not live past 2 months of age, with a tumor latency of around 6 weeks. Animals that still 

retain one functioning p53 allele show longer tumor latency of around 21 weeks. This 

longer survival permits additional time to therapeutically intervene. p53 null animals, 

however, have more aggressive disease and can be useful for certain studies. As seen 

in human PDAC, this disease initially develops as a series of pre-invasive lesions, or 

Pancreatic Intraepithelial Neoplasms (PanINs) before eventually becoming an invasive 

cancer. The tumors show both local invasion and micrometastasis (133). 

We hypothesized that crossing these animals to a mouse that expresses 

luciferase under the control of a cancer-selective promoter, CCN1, would result in a 

mouse in which CCN1 would be transcriptionally activated in conjunction with tumor 

development in the pancreas and that the tumor cells would subsequently express 

luciferase, allowing them to be easily imaged via BLI (Fig. 38). We also aim to show that 
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this model is not only capable of detecting primary tumor development through BLI, but 

that metastatic lesions may also be visualized through this method. This is a significant 

advantage over traditional imaging methods, where the detection of metastasis is very 

difficult. These studies in general are highly significant, as they will provide a new 

platform for developing and using transgenic mice to study pancreatic, and theoretically 

other cancers, development and progression.  
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Figure 38: Development strategy for the PMV Mouse 
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Methods 

 

Characterization of ‘PanMetView’ (PMV) Mice 

Useful progeny PMV mice with the following genotypes were followed temporally by 

BLI: animals positive for the activating K-ras mutation, having either one or both alleles 

of p53 lost, positive for Pdx-1-Cre (which is responsible for the appropriate K-ras and 

p53 genetic changes), and also expressing CCN1-luc. We evaluated approximately 15-

20 mice. Mice were started on an imaging protocol beginning post-weaning, at around 4 

weeks of age. Animals were imaged using BLI one time per week and any signal on 

these images was quantified using Living Image software. Weekly imaging was followed 

over time and tumor kinetic graphs for each mouse based on these imaging studies 

were created. These mice were followed by BLI until they reached a moribund status.  

At this point, the mice were sacrificed and imaging done at different points throughout 

the necropsy to determine the origin of any signal seen in the animal. 

 

BLI of PMV Mice 

During imaging, PMV mice were placed in the imaging chamber and maintained with 

2% isoflurane gas anesthesia at a flow rate of approximately 0.5-1 L/min per mouse. 

Anesthetized mice were injected IP with 150 mg/kg body weight D-Luciferin (Xenogen 

Corporation, Alameda, CA). After approximately 10 min, mice were imaged using a 

charge-coupled-device (CCD) camera coupled to the Xenogen in vivo imaging (IVIS) 

imaging system (Caliper Life Sciences, Inc., Hopkinton, MA). The positive signal from 
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background-subtracted images was analyzed by Living Image software for integrated 

density.  

Analysis of tumor tissues 

Criteria for euthanasia included loss of body mass, abdominal bloating and/or lack of 

grooming behavior.  Once mice reach a point where sacrifice is required, the animals 

were necropsied post-imaging. A second set of images was taken of individual organs 

to confirm the origin of the signal seen in the first set of images of the live animal.  

Tumor tissue was preserved in neutral buffered formalin and formalin fixed and 

sectioned for further evaluation.  

Immunohistochemistry 

Tumors were fixed in formalin, embedded in paraffin, and sectioned for staining.  

Staining was done as previously described (122) with anti-CCN1 (1:100, Abcam) per 

the manufacturer’s instructions. 

 

Results 

KPC mouse tumors express CCN1 

The KPC (Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt) mouse is extensively used as a 

representative model for PDAC development and progression, and for therapeutic 

studies (128-132). This animal spontaneously develops precursor pancreatic lesions, 

PanINs, which progress and eventually develop into invasive disease. The model 

recapitulates the human condition, in which animals remain symptomatically unaffected 

by their disease until it is at a late stage of development. Tumors form as a result of 



 113 

activated K-ras and functional loss of p53 in the pancreas, genetic changes also seen in 

a high percentage of human tumors.  Histological analysis shows extensive local 

invasion as well as metastasis in a subset of animals (133).  Immunohistochemistry 

(IHC) was used to monitor CCN1 expression in KPC mouse pancreatic tissue from 

control, p53+/-, and p53-/- animals. Control animals had limited basal CCN1 expression, 

with the exception of the islets of Langerhans, which showed mild CCN1 expression. 

Mice with p53+/- tumors had increased CCN1 expression and mice with p53-/- tumors, 

which are more aggressive, showed very high CCN1 expression (Fig. 39). To 

summarize, CCN1 expression correlates with both PDAC development and 

aggressiveness in the KPC mouse model. This data supports double transgenic GEMs 

that incorporate the CCN1-Luc promoter to identify tumors and metastases in the KPC 

PDAC mouse.  
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Figure 39: KPC mouse tumors highly express CCN1. CCN1 expression by IHC in 
sections of normal pancreas or pancreatic tumor from control and transgenic KPC mice. 
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CCN1-luc-KPC mice can monitor pancreatic tumor growth in vivo  

CCN1-luc mice were crossed with KPC mice to generated PanMetView (PMV) 

mice and several PMV mice have now been evaluated. After weaning, the mice were 

started on an imaging protocol, in which they were imaged by BLI one time per week.  

We evaluated both p53wt/fl and p53fl/fl mice.  This allowed us to study a number of 

additional factors, such as metastases. As has been previously shown (133), a portion 

of p53wt/fl mice will show metastases as well as local invasion. Most p53fl/fl mice though, 

because of the aggressive nature of their disease and their short lifespan, do not show 

distant metastasis, though evidence of local invasion is still demonstrated (133).   

PMV Mouse #41 (p53fl/fl): This mouse was imaged twice before it reached a moribund 

state requiring sacrifice. This animal showed strong abdominal signals, representing 

underlying tumor once the animal was necropsied.  As CCN1 is expressed in the testes, 

a signal in the testes in this animal was evident (Fig. 40). The strong signal from the 

testes often masks the signal from the pancreas. To overcome this issue, we covered 

the testes with dark paper blocking the signal, thereby allowing any signal originating in 

the pancreas or other CCN1-expressing tumor cells to be identified (Fig. 40). During 

necropsy, individual organs were imaged to determine the signal source.  As in the 

intact animal, the testes masked tumor expression, though when they were removed, 

the signal was clearly seen in the remaining organs. Most of the signal came from the 

pancreatic tumor, though signal was also detected in the spleen (which was encased in 

tumor upon opening the animal) and in the lung (Fig. 40B). Lung tissue will be analyzed 

to determine the presence of lung metastases.  
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Figure 40: Characterization of PMV Mouse #41 (p53fl/fl).   (A) Upper panel: intact 
mouse showing amplification of abdominal signal when testes are covered. Lower 
panel: exposed abdominal cavity showing actual pancreatic tumor and amplification of 
signal from that tumor following testes coverage. (B) Individual organ post necropsy of 
Mouse #41 showing specificity of signal 
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PMV Mouse #51 (p53fl/fl): This animal also showed strong abdominal signals, as well 

as signals from the testes (Fig. 41). This mouse was imaged for four weeks before 

sacrifice. Upon necropsy, a signal was also detected in the spleen and lung (Fig. 41B). 

This mouse had a large pancreatic tumor that displayed a strong and specific signal.  

 

PMV Mouse #48 (p53fl/wt): This animal still has one functioning allele of p53, which 

results in a mouse with a longer tumor latency.  Because of this, we were able to gather 

imaging data on this animal for approximately 2 months. The data show a clear increase 

in tumor growth that can be observed both through BLI and the quantification of these 

images (Fig. 42).   

 

PMV Mouse #225 (p53fl/fl):  Imaging of this mouse showed evidence of a pancreatic 

tumor as well as potential lung metastasis.  Individual organ imaging supported this 

(Fig.43).   

 

PMV Mouse #247 (p53fl/fl): Similar to previous mice evaluated, this mouse showed 

increasing signal over time, which paralleled its underlying tumor development. 

Evaluation of organs after sacrifice showed tumor specificity.  This mouse also showed 

evidence of metastasis in the lung as well as in the area ventral to the 

esophagus/trachea.  This latter region is atypical for this model (Fig 44).   
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Figure 41: Characterization of PMV Mouse #51 (p53fl/fl).   (A) BLI images and 
quantification. (B) BLI of organs post necropsy. Exposure = 10 seconds 
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Figure 42: Characterization of PMV Mouse #48 (p53fl/wt). BLI images and 
quantification. Exposure = 15 seconds.  
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Figure 43: Characterization of PMV Mouse #225 (p53fl/fl).  (A) BLI images. (B) BLI 
images of organs post-necropsy. 
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Figure 44: Characterization of PMV Mouse #247 (p53fl/fl).   (A) BLI images and 
quantification. (B) BLI images of organs post-necropsy. 
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PMV Mouse 271 (p53fl/fl) – female: Unlike the testes of male mice, female PMV mice 

do not show any strong non-specific signal.  The increasing signal seen is most likely 

indicative of underlying tumor (Fig. 45).   

 

PMV Mouse 261 (p53fl/fl) – female:  This mouse did not show significant non-specific 

signal throughout imaging.  Upon necropsy, pancreatic tumor and lung showed 

expression, as well as minor expression in the reproductive tract.  However, though 

there is some background signal in the reproductive tract, removing these organs do not 

significantly enhance the signal in the pancreas and lung, which supports that the signal 

is only mild and not affecting the ability to detect the pancreatic tumor (Fig. 46). 

 

PMV Mouse 249 (p53fl/fl) – female:  This mouse showed specific signal in the 

pancreas/pancreatic tumor.  There does not appear to be any evidence of metastasis in 

this animal – the lungs were negative for expression (Fig. 47).  
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Figure 45: Characterization of PMV Mouse #271 (p53fl/fl)(female).  BLI images.  
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Figure 46: Characterization of PMV Mouse #261 (p53fl/fl)(female).   (A) BLI images. 
(B) BLI images of organs post-necropsy. 
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Figure 47: Characterization of PMV Mouse #249 (p53fl/fl)(female).   (A) BLI images. 
(B) Imaging of opened abdominal cavity and organs post necropsy.  
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A PMV pancreatic tumor-derived cell line retains luciferase expression in vitro 

 

A cell line was established in vitro from a pancreatic tumor that developed in 

PMV Mouse #48. After being established in culture, cells (1 x 106) were injected 

bilaterally into the flanks of three athymic nude mice.  Imaging at 10 days post-injection 

showed that these cells retained luciferase activity. Luciferase expression was detected 

by BLI in these tumors (Fig. 48). The tumors developed very rapidly and showed a more 

aggressive phenotype as compared to human pancreatic cancer cell lines similarly 

injected into nude mice (i.e., MIA-PaCa-2 and PANC-1 cells) (data not shown).  These 

cells were also injected intraperitoneally into immune-competent Pdx-1-Cre-negative/K-

rasLSL-G12D/p53 mice, where they showed luciferase expression approximately 1 week 

after injection (Fig. 48). This last set of conditions was also repeated with bilateral flank 

injections.  These mice form rapid tumors that can be imaged by BLI and make for a 

very useful syngeneic mouse model (Fig. 48).  
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Figure 48: PMV-derived cells retain luciferase activity in vitro and when 

reintroduced in vivo 
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Discussion 

 

The KPC model (Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt) combines a mutated form of 

K-ras with loss of either one or both alleles of p53 specifically in pancreatic tissue, which 

is accomplished through the use of a pancreatic specific promoter, Pdx-1. The result is 

a mouse that develops spontaneous pancreatic ductal adenocarcinoma (PDAC) at 

approximately 21 weeks of age (133). 

Current studies utilizing the KPC model highlight the need for improved 

monitoring of tumors. Many studies either wait until an animal is sacrificed to collect 

data on therapeutic efficacy (130,132) or use more sophisticated imaging techniques 

that require additional training and cost (129,131). To enhance the utility of the KPC 

transgenic mouse model we developed CCN1-Prom-Luc (CCN1-Luc) transgenic mice, 

which display de novo Luciferase expression in the testes, but no other organ. Crossing 

CCN1-Luc mice with PDAC (KPC; Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt) mice generated 

double transgenic mice (CCN1-luc/Pdx-1-Cre/K-rasLSL-G12D/p53flox/wt mice, PanMetView 

or PMV). Primary tumors and metastases in PMV mice display luciferase expression as 

pancreatic cancers develop and metastasize. Confirming the utility of PMV mice for 

detecting and monitoring progression and therapy of pancreatic cancer has the potential 

to transform how this PDAC animal model is used to study pancreatic cancer. 

Additionally, this approach also holds significant promise as a potentially universal 

strategy for converting any transgenic animal into a reporter-driven PanMetView (PMV) 

mouse by crossing it with CCN1-Prom-Luc transgenic mice.     
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All animals imaged thus far have shown expression in the testes, which was 

expected due to CCN1 expression in this organ. The signal in the testes is frequently 

strong enough that it overshadows any other signals, which can be problematic. 

However, because the anatomical location of this organ is distant from that of the 

pancreas, we can use black paper to physically cover parts of the mouse to block such 

signals. When one utilizes this approach, non-testes signals intensify. This has been a 

useful technique in identifying the presence of pancreatic tumors. Future studies will 

include alternate means of genetic and chemical modification to reduce or eliminate this 

signal in male animals. In the context of female animals, no non-specific signals are 

detected.  

As with many transgenic models of human cancer, the KPC models shows great 

variability from animal to animal with respect to the precise time of tumor development, 

as well as the kinetics of tumor growth. This problem is also seen in the human disease 

state. PDAC is a particularly variable cancer, as some patients can survive for longer 

periods of time with a high tumor volume, while other patients die with relatively small 

tumors. The location of the tumor, as well as the growth parameters and invasive nature 

of the tumor, all of which can affect the normal functioning of surrounding organs and 

vessels, contributes to this end point. Because of this variability, one cannot make 

assumptions on the therapeutic efficacy of a drug based on a group of these mice. 

Rather, each mouse needs to be evaluated individually so as to be able to accurately 

assess the outcome of therapy on a particular tumor. The ability to generate individual 

tumor kinetic curves with the PMV mouse will be a great advantage to developing highly 

impactful preclinical studies.   
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Our PMV model provides a way of non-invasively monitoring KPC tumor 

progression that improves the quality of studies relying on survival and/or post-mortem 

evaluation for data. Additionally, our PMV model also provides an imaging strategy that 

is relatively inexpensive, easy to use, and has wide levels of applicability, which gives it 

advantages over other imaging modalities. Furthermore, the ability to detect metastasis 

is possible using the PMV system, which is not a possibility with imaging methods, such 

as ultrasound. The PMV model is transformative and can be rapidly used to test for 

effective therapies of PDAC in an immune-competent transgenic mouse. Showing the 

therapeutic efficacy of a novel drug or compound in immune-competent transgenic pre-

clinical models of disease is critical for developing improved therapies for patients with 

PDAC. Our proposed studies will allow for a significant gain in utility of an accepted 

PDAC model for the study of pancreatic cancer development, progression and therapy.  
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Chapter 5: Summary and Future Perspectives 

 

Despite years of research, pancreatic cancer remains an extremely deadly 

disease with very few therapeutic options.  The poor prognosis results from both a delay 

in diagnosis, due to a lack of telling symptoms, as well as a significant amount of 

diverse genetic changes, which contribute to its intrinsic aggressive nature and 

resistance to standard therapies.  This body of work has focused on exploring novel 

avenues of therapeutic targeting in pancreatic cancer.  This includes the identification 

and targeting of novel targets, the modification of current therapies to improve efficacy, 

and the creation of improved methods of studying potential therapies in preclinical work.  

Chapter 2 describes this first technique, in which the anti-apoptotic Bcl-2 proteins 

were hypothesized to be a potential therapeutic target in pancreatic cancer. Sabutoclax, 

a small molecule BH3 mimetic, binds to and inhibits the function of the anti-apoptotic 

Bcl-2 proteins.  In this study, we aimed to evaluate the efficacy of Sabutoclax and 

Minocycline, a synthetic tetracycline and understudied potential anti-cancer agent in the 

treatment of pancreatic cancer.  We used a variety of in vitro techniques including 

proliferation and cell death assays, cell cycle analysis, and western blotting to 

accomplish this in multiple pancreatic cancer cell lines.  Several mouse models were 

also used to scrutinize these drugs in vivo, including the commonly used KPC mouse 

model.  Sabutoclax induced growth arrest and apoptosis in pancreatic cancer cells and 

synergized with Minocycline.  Together, these two drugs showed profound cytotoxicity 

that was caspase-dependent and occurred through the mitochondrial pathway of 

apoptosis.  Furthermore, the toxicity induced by Sabutoclax and Minocycline was reliant 
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upon loss of phosphorylated Stat3, with reintroduction of activated Stat3 capable of 

rescuing cells from toxicity.  In vivo work showed that this combination inhibited tumor 

growth in immune-deficient and immune-competent models and prolonged survival in 

the KPC transgenic mouse.  In conclusion, Sabutoclax and Minocycline promoted 

profound cytotoxicity in pancreatic cancer, both in vitro and in multiple in vivo animal 

models providing significant survival benefits.  These drugs offer a novel and exciting 

direction for developing effective therapeutic options for patients with this devastating 

disease.   

Chapter 3 introduced a novel strategy of taking a commonly used 

chemotherapeutic drug, Gemcitabine, and altering it in an attempt to increase efficacy.  

Despite being used extensively in the treatment of pancreatic cancer, Gemcitabine 

delivers minimal survival results at best.  This is partly due to intrinsic cellular resistance 

mechanisms that lead to either decreased uptake of the drug, improper metabolism and 

utilization, or increased output of the drug.  We showed that linking Gemcitabine to a 

peptide that specifically targets the EphrinA2 receptor, which is overexpressed on 

pancreatic cancer cell surfaces, leads to an increased uptake of the drug through an 

alternate delivery mechanism. More recent studies using a synthetic peptide, 123B9, 

tethered to Paclitaxel also showed encouraging results, with the drug conjugate 

demonstrating better efficacy as compared to Paclitaxel alone.  This modified drug also 

showed exciting results when used in combination with Gemcitabine.  These studies 

and this combination in particular are extremely clinically relevant due to the recent 

approval of Gemcitabine-Abraxane (nab-Paclitaxel) as the first line treatment for 

metastatic pancreatic cancer.  123B9 demonstrates increased plasma stability as 
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compared to YNH, which translates to greater clinical potential.   We found that in vivo, 

these novel drug conjugates inhibit tumor growth and lead to a prolonged survival.  

Importantly, the addition of the peptide does not confer any additional toxicity to the 

drug and holds significant clinical potential.  123B9-Gemcitabine conjugates have been 

made as well and studies with this drug are in progress.   

Finally, in Chapter 4 we introduce an exciting and novel preclinical mouse model 

that builds off of the existing and commonly used KPC transgenic mouse model of 

pancreatic cancer.  Though this model accurately recapitulates the human disease, 

monitoring tumor development and growth remains a difficult obstacle and hinders the 

ability of researchers to perform sophisticated studies with this animal.  Many imaging 

techniques, such as ultrasound or PET, though useful for monitoring tumor in these 

mice, can be expensive, require extensive training, and take significant time.  Most 

importantly, these methods cannot detect tumor metastasis, an important feature of this 

disease.  We hypothesized that crossing KPC mice to a mouse that expresses a 

Luciferase reporter gene under the control of a cancer specific promoter, CCN1, would 

allow us to create a mouse in which the promoter was turned on during cancer 

development in the pancreas and lead to luciferase expression in all transformed cells.  

Luciferase expression in vivo can be easily monitored via BLI and provides a rapid 

result image that can be easily quantified to follow tumor development.  Of significance 

is the ability to monitor metastasis in this mouse.  As tumor cells express luciferase, 

metastatic lesions that would otherwise be too small to see via other imaging modalities 

show expression using BLI and provide a novel technique of monitoring the metastatic 

process in the KPC model.    
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Moving forward, these studies provide important beginnings for novel avenues of 

therapeutic exploration in pancreatic cancer.  The Bcl-2 family of proteins is 

understudied as a therapeutic target in pancreatic cancer and our data provide solid 

evidence that compounds such as Sabutoclax deserve further attention and study.    

From a clinical perspective, there is significant potential in targeting Mcl-1 for 

suppression.  The Bcl-2 anti-apoptotic proteins continue to present roadblocks in the 

treatment of cancers when using conventional chemotherapeutics.  Their 

overexpression becomes vital to the survival of many types of tumors.  Mcl-1, in 

particular, plays a significant role in the ability of cancers not only to survive, but also to 

resist treatment with chemotherapy and radiation.  In vitro experiments using Mcl-1 ASO 

emphasize the anti-tumor potential of targeting Mcl-1 both alone and in combination 

with other therapeutic agents.   

Developing an optimal cancer therapeutic for any tumor indication is clearly an 

imprecise process and very difficult. To achieve this objective, a number of issues must 

be considered one of which is the best approach to use. What technique would be most 

appropriate to target Mcl-1?  Since the ultimate aim is to develop a viable clinical 

therapy, it is important to consider the translational potential of any strategy.  Some 

strategies, like those that employ ASO, may be very effective in in vitro and preclinical 

experimental settings, but are not easily translated into the clinic.  In contrast, other 

methodologies, like the use of small molecule antagonists, may hold greater potential 

for clinical translation if an effective drug level can be attained without unacceptable 

toxicity.  Ultimately, the real potential of these compounds may lie in combination 

therapies, as we have demonstrated with Sabutoclax and Minocycline.   
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Another important consideration in developing an appropriate cancer therapeutic 

is the target itself.  There is abundant evidence in almost every cancer type that the Bcl-

2 anti-apoptotic proteins play a significant role to some extent in that cancer’s survival.  

Many studies provide evidence that targeting these anti-apoptotic proteins individually 

might be a promising treatment strategy. What is only recently becoming abundantly 

evident is the importance of interactions between these proteins in both normal and 

cancer cells. Protein:protein interactions are complex and the interplay between multiple 

proteins in these complexes and their consequences on cellular phenotype are active 

areas of investigation.  It is also important that when targeting these proteins to block 

their interactions off-target toxicity in normal cells and tissues is not promoted.  

Our studies with Sabutoclax and the combination of Sabutoclax and Minocycline 

may demonstrate the importance of such interactions through the potent loss of Stat3 

activation observed with this treatment.  Though the effect of Stat3 activation on Mcl-1 is 

clearly defined, the reverse situation is not.  Why does targeting downstream proteins 

like Mcl-1 lead to such potent upstream signaling changes?  Research into the literature 

on Stat3 regulation and potential feedback loops through Mcl-1 or Bcl-xL reveal very 

little.  Known interactions between the anti-apoptotic Bcl-2 proteins with proteins outside 

of this family do not play any known role in Stat3 activation.  However, due to the low 

dose of Sabutoclax that is being used, we feel strongly that these signaling changes are 

not reflective of off-target effects of the drug.  Rather, we have hypothesized that 

Sabutoclax may be interrupting a protein:protein interaction between Mcl-1 or one of the 

other antiapoptotic proteins and a yet unidentified second protein.  Our theory is that 

disruption of this interaction may release this second protein, which we hypothesize to 
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have either direct or indirect effects on Stat3 activation.  Recent studies by Maurizio 

Pellecchia’s group have provided evidence that may support this hypothesis (161).  

Using Sabutoclax as competition, they screened a 12-residue phage display library for 

peptides that bound Mcl-1, specifically the BH3 binding domain.  Their studies resulted 

in the identification of a novel Mcl-1 protein-binding motif and subsequently, novel 

potential protein interaction partners that display this motif.  This is significant, especially 

for our studies, as it sheds light on previously unknown Mcl-1 binding partners.  As we 

have hypothesized that such an interaction may be mechanistically responsible for the 

effects we have observed with Sabutoclax and Minocycline, this new information 

provides a beneficial point from which to develop future studies.   

In continuing efforts to develop new and better BH3 mimetics, understanding 

potential mechanisms of resistance is critical.  Resistance remains a significant problem 

in cancer therapy in general, and understanding how it develops may be of great value 

in designing approaches to circumvent this major barrier to cure. Considering that the 

Bcl-2 family of anti-apoptotic proteins plays a critical role in cancer maintenance and 

resistance, these proteins represent high-priority targets for the next generation of 

combinatorial therapies for neoplastic diseases. 

The development of novel targeted agents, however, is only as useful as the 

model with which you can test them.  Our studies characterizing the PMV mouse are 

very exciting, as this strategy elevates the sophistication and utility of the KPC 

transgenic mouse model by adding a non-invasive imaging component.  This mouse will 

soon be used in therapeutic studies that we hope will produce beneficial preclinical 

data.  Future studies will focus not only on using these mice for preclinical work, but 



 137 

also on improving the model even more.  To enhance further the value of the PMV 

mouse we intend to create a transgenic mouse producing the human secreted 

embryonic alkaline phosphatase (SEAP) protein selectively in cancerous pancreatic 

tissue by regulation through a cancer-selective promoter, CCN1-Prom. Crossing 

tCCN1-SEAP animals with PMV animals will produce compound ‘Pancreatic Biomarker 

Metastasis View’ (PBMV) mice. This model would not only have a built-in imaging 

system to non-invasively monitor tumor development and growth, but it would also have 

a built-in biomarker detection system to support and confirm imaging analyses non-

invasively. Early detection of tumors can be integral in managing the life of a patient 

with cancer, but in most situations achieving this objective can be problematic. Although 

imaging and other modalities have been used for this purpose for subsets of cancers, 

developing a more direct approach would be of added benefit. The ability to detect 

cancer biomarkers in a patient’s blood sample represents a valuable contribution to 

cancer detection.  Unfortunately, there has been limited success to date clinically due to 

sensitivity and specificity issues related to a given biomarker.  

SEAP transgenic mice have been previously engineered in which SEAP 

expression is under the control of an organ-specific promoter (162) and adenoviruses 

expressing SEAP under the control of cancer-specific promoters have been shown to 

be functional both in vitro and in vivo (163,164). However, a transgenic animal that 

expresses SEAP under the control of a cancer-specific promoter is a novel strategy that 

would further enhance the utility of our PMV mouse. Depending on the sensitivity of this 

system, it may even allow us to detect tumor initiation earlier than with BLI. This dual-

monitoring compound transgenic model would be unique and would significantly 
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enhance a variety of chemoprevention and therapeutic studies in pancreatic cancer 

transgenic as well as in other cancer transgenic mouse models.  
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