
Fig. 9. (Best viewed in color) Sample of resulting host-level metrics when workloads

are co-located with live migration (i.e. interference test). Fileserver marked

as red ’X’, Videoserver as blue ’+’, fio as green points, and YCSB as magenta

squares.

37



points where both the workload and migration are running, including negatives pro-

vided by YCSB. It’s clear that some metrics, such as percent utilization are strong

indicators for interference.

With labeled samples generated from our tests, the predictive power of the col-

lected attributes is evaluated by constructing and testing models. Numerous ver-

sions of each model with varying hyperparameters are constructed and tested. We

use 5-fold cross validation on 75% of the samples in order to evaluate the classifi-

cation power of different combinations of our collected metrics. Included in these

trials are various transformations of each metric, intended to enhance separability

for the model. Models selected by cross-validation were then judged on their ability

to maximize both accuracy and F-score on the hold-out 25% test set. Under these

circumstances, both logistic regression and decision perform well with their default hy-

perparameters. However, we favor logistic regression for its more continuous output,

which applies well given our use of the output probability and not simply discrete

prediction. Our final logistic regression model is made up of the following coeffi-

cients and features: −2.27 × 10−5(IOPS Comp.)2, −7.80 × 10−1 log(IOPS Comp.),

2.10 × 10−2(IO Ticks)2, 0.55 · log(Throughput), 6.87 × 10−4(Util. P ct.)2, and an

intercept of −0.296. These learned coefficients provide some insight into the charac-

teristics of interference. Our model defines interference as periods where the host is

spending a large portion of time performing I/O, but the number of I/O operations

remains small. Thus, for our data, storage interference is a special case of extremes

- when more is demanded than can be given across a suspiciously low number of

requests.

Combining our three primary components at the host level, as described above

and illustrated in Figure 7, yields a practical version of our proposed design. With

this prototype, we can compare our method directly against static migration.

38



4.2 Results

In order to investigate our prototype implementation, we evaluate our method

under the same conditions as our initial interference experimentation in section 3.1.

In addition to these experiments, we also adjust the interference threshold of our im-

plementation to demonstrate the prototype’s ability to vary the degree of compromise

in migration performance.

For all experiments the interference-PID is empirically configured with the gains

pk = 2 × 106, ik = 5 × 104, dk = 6 × 104 bytes and the prefetching factor is set to

50. Unless otherwise noted, the high interference threshold is set to 0.5 and the low

interference threshold is set to 0.15. The lock count threshold is set at two with an

unlock count threshold of three. Functionally, this means that migration will begin

adapting when the probability of interference has remained above 0.5 for two time-

steps, and will only fully rebound if the probability remains under 0.15 for 3 steps.

The results of our evaluation are shown in Figure 10 for each combination of workload,

workload length, and workload launch time.

Our methodology is designed to page data yet-to-be-migrated into host memory

when the probability of interference is low. This prefetched data can then be used to

avoid storage interference later in the process. For this design, the worst case scenario

occurs when a high-interference I/O workload is already executing once the migration

is launched. In this situation, our implementation may have to reduce speed until

the I/O pressure resides, since no prefetched data exists in the buffer. Conversely,

the best case scenario for our methodology is when the entire virtual disk can be

prefetched before any interfering workloads launch. More precisely, if enough data is

prefetched to last a period of interference contention, our method will help prevent

degradation to both the I/O workloads and the migration.

39



Fig. 10. Comparison of migration latency when using Migration Buffering. Values

are computed as the normalized to the nominal migration latency (lower is

better).

40



Table 2. Workload degradation when co-located with adaptive migration

Fileserver Fio Videoserver YCSB

Throughput 1.01 1.01 0.923 0.855

IOPS 1.02 1.01 0.965 0.884

The results in Figure 10 illustrate our implementation’s ability to prevent degra-

dation in migration latency in the majority of scenarios. As expected, our method

only sees degraded performance when a contentious workload is executing at the start

of migration. When contentious workloads are launched later in the migration, data

prefetched into the buffer allows the migration to maintain it’s transfer rate.

A detailed example of a worst case scenario for our design is illustrated in Figure

11. In this experiment, fio is launched alongside our migration system for 240 seconds,

causing interference before our method is able to prefetch any amount of the virtual

disk. Still, our system recognizes the interference and reduces both prefetching and

migration transfer speed in order to avoid impacting the workload. Thus, even in

the worse case, when the migration latency is lengthened, the workload still performs

near nominal levels. In Figure 12 fio is launched 100 seconds into the migration, and

our configuration is able to prefetch almost all of the virtual disk before fio launches.

Thus, our implementation preserves the low migration latency as well as the co-

located workload’s performance. Intuitively, under this configuration with workloads

on or after 100 seconds, the migration and workload perform near nominal levels.

The results in Figure 12 also illustrate how our configuration pushes the prefetcher

to aggressively increase its rate and move the entire virtual disk into memory. Of

course, loading this much data into memory may cause unwanted memory pressure

41



Fig. 11. Live migration using Migration Buffering against 240 second fio launched

at the start of the migration. The migration resumes at full speed, with

prefetching at approximately 250 seconds.

42



Fig. 12. Live migration using Migration Buffering against 240 second fio launched at

100 seconds into an ongoing migration. The migration is able to maintain

speed during the contentious workload, allowing the migration to achieve a

nominal latency.

43



and disk utilization, but at the risk of later vulnerability to interference should an

I/O burst arrive. A trivial preventative measure for unwanted memory pressure is to

simply cap the amount of prefetched data.

In both Figures 11 and 12 some characteristics of our design are clearly exem-

plified. The interference-PID attempts to move the interference probability to the

configured interference threshold (0.5), and it does this by increasing the number of

pages prefetched each step. This can be seen between approximately 250 and 350

seconds in Figure 11 and 0 and 100 seconds in Figure 12. The interference threshold

combined with the prefetching factor is what we use to control this growth, though

the PID configuration also has an impact.

Varying the interference threshold allows one to vary the desired level of mi-

gration performance compromise. This is illustrated in Figure 13 - as expected, the

higher threshold value of 0.75 consistently results in faster migrations. Although not

explored, this higher threshold will inevitably lead to more interference.

Presented in Table 2 are the average IOPS and throughput of each workload

when run against our buffering methodology, normalized to the nominal results for

each workload. For simplicity, we only show results for the worst case - these results

are computed from experiments where each workload is run for 1920 seconds from the

start of migration. Shorter versions of the workload distort these values due to the

asymmetry of their metrics, while evaluating at later launch points would clearly favor

our method. This simple evaluation of the worst-case demonstrates the effectiveness

of simply reducing the migration speed - maintaining migration speed while sourcing

from the buffer is similarly effective.

Our evaluation has demonstrated our approach’s ability to mitigate storage

interference - in the majority of scenarios we maintain migration speed with sig-

nificantly reduced impact to workload performance.

44



Fig. 13. Effect of interference threshold on migration latency for 240 second fio. Higher

thresholds correspond to a more aggressive migration, allowing an adminis-

trator to tune the process to their needs.

45



CHAPTER 5

RELATED WORK

5.1 Virtual Machine Live Migration

Work in the area of live migration has largely focused on methods of improving

migration performance, for both memory [8] [9] [10] [11] and full-machine migrations

[12] [13] [14]. However, as migration has become more prevalent, researchers have

begun to recognize and address issue of interference caused by VM migration [15].

Methods tend to focus on reducing the overall data transfer [11][16] or optimally plac-

ing VMs [17][18] to avoid inter-machine interference on network, CPU, and memory

resources. iAware [17] treats a VM live migration as a CPU and network I/O de-

manding task. Given a group of VMs to be migrated along with potential destination

hosts, iAware can make an interference-aware migration decision based on the mea-

surements to jointly minimize VM migration and co-location interference. However,

iAware focuses on interference as it pertains to memory-only live migration, which

differs from the challenges unique to VM storage migration. Along with taxing CPU

and network usage, storage migration also introduces a burdensome disk read. As

we’ve shown, this additional I/O competes for the backing storage resource, nega-

tively impacting co-located VMs through interference. Work in DeepDive [18] uses

host-level metrics to identify when running VMs are interfering. Similar to the work

in iAware[17], DeepDive use live migration to move culprit VMs.

In [8] the authors implement a new termination criteria for KVM’s pre-copy mi-

gration. In pursuit of this goal, the authors explore the impact a migration has on

application performance in order to motivate the need to avoid pursuing counter-

46



productive downtime for stop-and-copy. Their algorithm focuses on the optimal mo-

ment that the migration should switch between iteratively copying the VMs working

memory to the stop-and-copy phase.

Migrating a full virtual machine, including it’s virtual disk, requires the transfer

of a considerable amount of data. Work in Shrinker [13], VMFlock [14], and CloudNet

[40] focus on reducing the amount of data to transfer to the destination. Still, these

works do not address storage interference nor do they detect the affinity between

related VMs in order to avoid application degradation. The work in LIME [41] instead

migrates the entire network of related VMs, but this method cannot scale when

VM clusters contain thousands of machines. Furthermore, the limited bandwidth

of a WAN connection may make this technique impractical. The authors of Pacer

[42] perform a synchronized migration of VMs, but again don’t propose a grouping

mechanism to handle large clusters.

5.2 Resource Contention

VM migration in general can be considered an abberation, which requires intense

utilization of almost all system components. Performance interference due to resource

contention, including CPU, cache, memory, and IO, has attracted significant research.

Thread slow-down caused by L2 cache contention has been reported in [43].

Classification-based thread scheduling has been proposed to address CPU time and

last level cache (LLC) contention in multicore processors [44]. In ordered to increase

the utilization of warehouse scale computers, Bubble-Up [45] proposes sensible co-

location of applications based on the prediction of performance degradation that

results from LLC and main memory bandwidth contention. VM storage performance

degradation caused by I/O device contention has also been discussed in [46] [47].

Although many methods have been proposed to address storage interference,

47



they’re generally not well-suited as a solution in the domain of storage migration.

Storage I/O bursts can cause a significant increase in request latency. Caching layers

are often used to absorb sudden bursts in read requests, helping to further reduce disk

contention. Everest [38] proposes write off-loading to dampen peak loads. However,

write off-loading does not address the long read burst caused by a storage migration.

Unfair storage resource allocation may violate the application service level objective

(SLO). Soundararajan et. al. [48] propose quanta-based proportional resource alloca-

tion via coordinated learning and throttling-based I/O scheduling to enforce applica-

tion SLO in Associateshared server farms. Stay-Away [49] also proposes proactively

throttling the execution of batch applications to protect the performance of latency

sensitive applications. In storage migration, I/O throttling can be employed to reduce

the migration speed so as to mitigate the interference. However, this will consider-

ably prolong the migration time, which is a key metric when evaluating VM migration

performance. Contention for the I/O device itself dramatically degrades VM storage

performance. To avoid I/O interference between servers, TRACON [46] proposes

task-VM mapping using interference prediction to minimize the runtime and maxi-

mize the I/O throughput of data-intensive applications in a holistic way. TRACON

assumes the storage of each physical machine is independent. However, our scenario

is based on deployments in which VMs are backed by a centralized storage system,

which is common in cloud environments [50]. Moreover, in TRACON the task and

VM are independent, but in our case the VM migration task cannot be isolated from

the migrating VM. To speedup MapReduce applications, ILA [47] proposes nonlinear

interference prediction and adaptive delay scheduling. ILA targets batch processing

applications and assumes jobs can be delayed and scheduled at a later time, while our

work targets maintaining the performance of delay-sensitive applications. DeepDive

[18] monitors low-level system metrics to pinpoint the culprit resources undergoing

48



interference, then employs VM migration to balance the system loads and mitigate

interference. However, the interference caused by the migration activity is not dis-

cussed. DeepDive primarily focuses on system management within a local area, but

storage migration typically occurs across wide area environments.

Fundamental to our interference avoidance mechanism are I/O burst off-loading

and prefetching. The I/O burst caused by storage migration is predominately a se-

ries of sequential reads. Similar to Everest [38], which redirects write requests to a

low-load volume, we use a buffer to serve the read requests of storage migration so as

to redirect the read requests out of the primary storage. In order to better utilize pe-

riods of low contention, prefetching is used to pull un-migrated data into the buffer.

Correlation-directed prefetching [51] employs frequent sequence mining to achieve

fine-grained data preloading. Adaptive feedback-directed prefetching [52] employs

counter based feedback to achieve prefetching aggressiveness control. However, since

the storage migration can be treated as a sequential stream, sophisticated prefetching

algorithms to discover and recognize block correlations are simply not needed. In-

stead, our method focuses on a rate-controlled prefetching mechanism. Empirically,

we employ logistic regression on a handful of I/O features to estimate interference

severity in order to dynamically adjust prefetching speed, as well as migration rate.

49



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

An entire industry, and with it countless new applications, has been spawned

from the rapid growth and success of virtualization technology. At the heart of the

modern cloud infrastructure is full machine virtualization, with its strong isolation

and administrative perks it has proliferated nearly all corners of modern comput-

ing. Live migration, a key enabler of virtualization’s flexibility, has seen significant

attention from both researchers and practitioners.

In order to mitigate migration storage interference, we’ve proposed a migration

approach that leverages the known sequential pattern of a pre-copy migration, in

combination with interference prediction and adaptive transfer. Our approach is suc-

cessful at abating workload degradation due to interference in nearly every scenario.

In some experiments, our methodology must compromise the performance of the mi-

gration itself, though we show that the degree of this trade-off is configurable. Still, in

the majority of tests where both the migration and workload suffer, our prototype is

successful at eliminating any reduction in storage performance, for both the workload

and migration.

6.2 Future Work

Our design and prototype invite several future enhancements and areas to ex-

plore. Most important is the need for a hypervisor-level implementation of migration

buffering, which would provide more granular control of the prefetching process and

50



introspection into the migrating machine’s I/O. An implementation within the hy-

pervisor would allow prefetching at the block-level rather than page-level, while also

removing the uncertainty of the operating system’s paging decisions.

To reduce complexity, we opted to not address the migrating machine’s I/O

pattern’s in this work, though it would intuitively impact both the buffering we

propose and the retransmissions typical of pre-copy migrations. New work in this

area should address this challenge more extensively.

In order to combat our design’s worst-case scenario, buffering of the virtual disk

can begin prior to the actual migration process - much the same way an application

buffers a portion of streaming media before beginning playback. For VM migration, an

administrator or placement algorithm may indicate their desire to perform migration

before it actually occurs. Thus giving time to prefetch and warm the migration buffer

as means to mitigate interference.

The control mechanisms centered around our interference-PID may be more com-

plex than required. An exploration into tuning this system, or even reworking it

entirely, may make the approach more effective while being easier for others to grasp.

Finally, while successful, our interference classifier is rudimentary - additional

work should investigate this component closely as its output controls many aspects

of the design. New features should be explored along with additional learning algo-

rithms, with success contingent on correctly classifying entirely unseen workloads.

51



Appendix A

52



ABBREVIATIONS

CPU Central Processing Unit

FTP File Transfer Protocol

GB Gigabyte

HPC High Performance Computing

IOPS I/O Per Second

KB Kilobyte

KVM Kernel Virtual Machine

LAN Local Area Network

MB Megabyte

MPI Message Passing Interface

NFS Network File System

OS Operating System

PID Proportional Integral Gain

QEMU Quick Emulator

RAID Redundant Array of Independent Disks

RAM Random Access Memory

R/W Read/Write

VCU Virginia Commonwealth University

VM Virtual Machine

VMM Virtual Machine Manager

WAN Wide Area Network

YCSB Yahoo! Cloud Serving Benchmark

53



REFERENCES

[1] Gerald J Popek and Robert P Goldberg. “Formal requirements for virtualizable

third generation architectures”. In: Communications of the ACM 17.7 (1974),

pp. 412–421.

[2] Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings of

the Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03.

Bolton Landing, NY, USA: ACM, 2003, pp. 164–177. isbn: 1-58113-757-5.

doi: 10.1145/945445.945462. url: http://doi.acm.org/10.1145/945445.

945462.

[3] Avi Kivity et al. “kvm: the Linux Virtual Machine Monitor”. In: Proceed-

ings of the Linux Symposium. Vol. 1. Ottawa, Ontario, Canada, June 2007,

pp. 225–230. url: http://linux-security.cn/ebooks/ols2007/OLS2007-

Proceedings-V1.pdf.

[4] Michael Armbrust et al. “A View of Cloud Computing”. In: Commun. ACM

53.4 (Apr. 2010), pp. 50–58. issn: 0001-0782. doi: 10.1145/1721654.1721672.

url: http://doi.acm.org/10.1145/1721654.1721672.

[5] Christopher Clark et al. “Live Migration of Virtual Machines”. In: NSDI’05.

CA, USA, 2005.

[6] Robert Birke et al. “When Virtual Meets Physical at the Edge: A Field Study

on Datacenters’ Virtual Traffic”. In: Proceedings of the 2015 ACM SIGMET-

RICS International Conference on Measurement and Modeling of Computer

Systems. SIGMETRICS ’15. Portland, Oregon, USA: ACM, 2015, pp. 403–

54

http://dx.doi.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://linux-security.cn/ebooks/ols2007/OLS2007-Proceedings-V1.pdf
http://linux-security.cn/ebooks/ols2007/OLS2007-Proceedings-V1.pdf
http://dx.doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672


415. isbn: 978-1-4503-3486-0. doi: 10.1145/2745844.2745865. url: http:

//doi.acm.org/10.1145/2745844.2745865.

[7] Younggyun Koh et al. “An Analysis of Performance Interference Effects in

Virtual Environments”. In: Performance Analysis of Systems Software, 2007.

ISPASS 2007. IEEE International Symposium on. 2007, pp. 200–209. doi:

10.1109/ISPASS.2007.363750.

[8] Khaled Z. Ibrahim et al. “Optimized Pre-copy Live Migration for Memory

Intensive Applications”. In: Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis. SC ’11. Seat-

tle, Washington: ACM, 2011, 40:1–40:11. isbn: 978-1-4503-0771-0. doi: 10.

1145/2063384.2063437. url: http://doi.acm.org/10.1145/2063384.

2063437.

[9] Constantine P. Sapuntzakis et al. “Optimizing the Migration of Virtual Com-

puters”. In: SIGOPS Oper. Syst. Rev. 36.SI (Dec. 2002), pp. 377–390. issn:

0163-5980. doi: 10.1145/844128.844163. url: http://doi.acm.org/10.

1145/844128.844163.

[10] Wei Huang et al. “High performance virtual machine migration with RDMA

over modern interconnects”. In: Cluster Computing, 2007 IEEE International

Conference on. 2007, pp. 11–20. doi: 10.1109/CLUSTR.2007.4629212.

[11] Petter Svärd et al. “Evaluation of Delta Compression Techniques for Efficient

Live Migration of Large Virtual Machines”. In: Proceedings of the 7th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-

ments. VEE ’11. Newport Beach, California, USA: ACM, 2011, pp. 111–120.

isbn: 978-1-4503-0687-4. doi: 10.1145/1952682.1952698. url: http://doi.

acm.org/10.1145/1952682.1952698.

55

http://dx.doi.org/10.1145/2745844.2745865
http://doi.acm.org/10.1145/2745844.2745865
http://doi.acm.org/10.1145/2745844.2745865
http://dx.doi.org/10.1109/ISPASS.2007.363750
http://dx.doi.org/10.1145/2063384.2063437
http://dx.doi.org/10.1145/2063384.2063437
http://doi.acm.org/10.1145/2063384.2063437
http://doi.acm.org/10.1145/2063384.2063437
http://dx.doi.org/10.1145/844128.844163
http://doi.acm.org/10.1145/844128.844163
http://doi.acm.org/10.1145/844128.844163
http://dx.doi.org/10.1109/CLUSTR.2007.4629212
http://dx.doi.org/10.1145/1952682.1952698
http://doi.acm.org/10.1145/1952682.1952698
http://doi.acm.org/10.1145/1952682.1952698


[12] Jie Zheng, T. S. Eugene Ng, and Kunwadee Sripanidkulchai. “Workload-Aware

Live Storage Migration for Clouds”. In: VEE’11. Newport Beach, USA, 2011.

[13] Pierre Riteau, Christine Morin, and Thierry Priol. “Shrinker: Improving Live

Migration of Virtual Clusters over WANs with Distributed Data Deduplication

and Content-Based Addressing”. In: Euro-Par’11. Bordeaux, France, 2011.

[14] Samer Al-Kiswany et al. “VMFlock: Virtual Machine Co-Migration for the

Cloud”. In: HPDC’11. San Jose, USA, 2011.

[15] David Breitgand, Gilad Kutiel, and Danny Raz. “Cost-aware Live Migration of

Services in the Cloud”. In: Proceedings of the 3rd Annual Haifa Experimental

Systems Conference. SYSTOR ’10. Haifa, Israel: ACM, 2010, 11:1–11:1. isbn:

978-1-60558-908-4. doi: 10.1145/1815695.1815709. url: http://doi.acm.

org/10.1145/1815695.1815709.

[16] Akane Koto et al. “Towards Unobtrusive VM Live Migration for Cloud Com-

puting Platforms”. In: Proceedings of the Asia-Pacific Workshop on Systems.

APSYS ’12. Seoul, Republic of Korea: ACM, 2012, 7:1–7:6. isbn: 978-1-4503-

1669-9. doi: 10.1145/2349896.2349903. url: http://doi.acm.org/10.

1145/2349896.2349903.

[17] Fei Xu et al. “iAware: Making Live Migration of Virtual Machines Interference-

Aware in the Cloud”. In: TRANSACTIONS ON COMPUTERS PP (99 2013).

[18] Dejan Novaković et al. “DeepDive: Transparently Identifying and Managing

Performance Interference in Virtualized Environments”. In: Proceedings of the

2013 USENIX Conference on Annual Technical Conference. USENIX ATC’13.

San Jose, CA: USENIX Association, 2013, pp. 219–230. url: http://dl.acm.

org/citation.cfm?id=2535461.2535489.

56

http://dx.doi.org/10.1145/1815695.1815709
http://doi.acm.org/10.1145/1815695.1815709
http://doi.acm.org/10.1145/1815695.1815709
http://dx.doi.org/10.1145/2349896.2349903
http://doi.acm.org/10.1145/2349896.2349903
http://doi.acm.org/10.1145/2349896.2349903
http://dl.acm.org/citation.cfm?id=2535461.2535489
http://dl.acm.org/citation.cfm?id=2535461.2535489


[19] Krishna Kant. “Data center evolution: A tutorial on state of the art, issues,

and challenges”. In: Computer Networks 53.17 (2009), pp. 2939–2965.

[20] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. “The case of the missing

supercomputer performance: Achieving optimal performance on the 8,192 pro-

cessors of ASCI Q”. In: Supercomputing, 2003 ACM/IEEE Conference. IEEE.

2003, pp. 55–55.

[21] Ken Koch. “How does ASCI actually complete multi-month 1000-processor

milestone simulations”. In: Proceedings of the conference on high speed com-

puting. 2002, pp. 22–25.

[22] Wei Huang et al. “A case for high performance computing with virtual ma-

chines”. In: Proceedings of the 20th annual international conference on Super-

computing. ACM. 2006, pp. 125–134.

[23] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[24] James E Smith and Ravi Nair. “The architecture of virtual machines”. In:

Computer 38.5 (2005), pp. 32–38.

[25] Daniel P Bovet and Marco Cesati. Understanding the Linux kernel. ” O’Reilly

Media, Inc.”, 2005.

[26] Michael Nelson, Beng-Hong Lim, Greg Hutchins, et al. “Fast Transparent Mi-

gration for Virtual Machines.” In: USENIX Annual technical conference, gen-

eral track. 2005, pp. 391–394.

[27] Michael R Hines, Umesh Deshpande, and Kartik Gopalan. “Post-copy live

migration of virtual machines”. In: ACM SIGOPS operating systems review

43.3 (2009), pp. 14–26.

57



[28] Aidan Shribman and Benoit Hudzia. “Pre-Copy and post-copy VM live migra-

tion for memory intensive applications”. In: European Conference on Parallel

Processing. Springer. 2012, pp. 539–547.

[29] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. “Market-oriented

cloud computing: Vision, hype, and reality for delivering it services as comput-

ing utilities”. In: High Performance Computing and Communications, 2008.

HPCC’08. 10th IEEE International Conference on. Ieee. 2008, pp. 5–13.

[30] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. “A taxonomy and survey

of cloud computing systems”. In: INC, IMS and IDC (2009), pp. 44–51.

[31] Robert Birke et al. “(Big)Data in a Virtualized World: Volume, Velocity, and

Variety in Cloud Datacenters”. In: Proceedings of the 12th USENIX Confer-

ence on File and Storage Technologies. FAST’14. Santa Clara, CA: USENIX

Association, 2014, pp. 177–189. isbn: 978-1-931971-08-9. url: http://dl.

acm.org/citation.cfm?id=2591305.2591323.

[32] V. Tarasov, E. Zadok, and S. Shepler. “Filebench: A Flexible Framework for

File System Benchmarking”. In: ;login: The USENIX Magazine 41.1 (2016),

pp. 6–12.

[33] Brian F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”.

In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC ’10.

Indianapolis, Indiana, USA: ACM, 2010, pp. 143–154. isbn: 978-1-4503-0036-

0. doi: 10.1145/1807128.1807152. url: http://doi.acm.org/10.1145/

1807128.1807152.

[34] Jens Axboe and Aaron Carroll. fio(1) Linux User’s Manual. http://linux.die.net/man/1/fio.

58

http://dl.acm.org/citation.cfm?id=2591305.2591323
http://dl.acm.org/citation.cfm?id=2591305.2591323
http://dx.doi.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152


[35] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In: Pro-

ceedings of the Annual Conference on USENIX Annual Technical Conference.

ATEC ’05. Anaheim, CA: USENIX Association, 2005, pp. 41–41. url: http:

//dl.acm.org/citation.cfm?id=1247360.1247401.

[36] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized struc-

tured storage system”. In: ACM SIGOPS Operating Systems Review 44.2 (2010),

pp. 35–40.

[37] Wenjin Hu et al. “A Quantitative Study of Virtual Machine Live Migration”.

In: CAC’13. Miami, USA, 2013.

[38] Dushyanth Narayanan et al. “Everest: Scaling Down Peak Loads Through I/O

Off-loading”. In: Proceedings of the 8th USENIX Conference on Operating Sys-

tems Design and Implementation. OSDI’08. San Diego, California: USENIX

Association, 2008, pp. 15–28. url: http://dl.acm.org/citation.cfm?id=

1855741.1855743.

[39] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[40] Timothy Wood et al. “CloudNet: Dynamic Pooling of Cloud Resources by Live

WAN Migration of Virtual Machines”. In: VEE’11. Newport Beach, USA, 2011.

[41] Eric Keller et al. “Live Migration of an Entire Network (and Its Hosts)”. In:

Proceedings of the 11th ACM Workshop on Hot Topics in Networks. HotNets-

XI. Redmond, Washington: ACM, 2012, pp. 109–114. isbn: 978-1-4503-1776-4.

doi: 10.1145/2390231.2390250. url: http://doi.acm.org/10.1145/

2390231.2390250.

59

http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1855741.1855743
http://dl.acm.org/citation.cfm?id=1855741.1855743
http://dx.doi.org/10.1145/2390231.2390250
http://doi.acm.org/10.1145/2390231.2390250
http://doi.acm.org/10.1145/2390231.2390250


[42] Jie Zheng et al. Pacer: Taking the Guesswork Out of Live Migrations in Hybrid

Cloud Computing. Tech. rep. TR13-01. Rice University Technical Report, Jan.

2013.

[43] Dhruba Chandra et al. “Predicting Inter-Thread Cache Contention on a Chip

Multi-Processor Architecture *”. In: HPCA05. Washington, DC, USA, 2005.

[44] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. “Addressing

Shared Resource Contention in Multicore Processors via Scheduling”. In: AS-

PLOS10. Pittsburgh, USA, 2010.

[45] Jason Mars et al. “Bubble-Up: Increasing Utilization in Modern Warehouse

Scale Computers via Sensible Co-locations”. In: Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture. MICRO-44. Porto

Alegre, Brazil: ACM, 2011, pp. 248–259. isbn: 978-1-4503-1053-6. doi: 10.

1145/2155620.2155650. url: http://doi.acm.org/10.1145/2155620.

2155650.

[46] R.C. Chiang and H.H. Huang. “TRACON: Interference-aware Scheduling for

Data-intensive Applications in Virtualized Environments”. In: High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2011 International

Conference for. 2011, pp. 1–12.

[47] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. “Interference and Locality-

Aware Task Scheduling for MapReduce Applications in Virtual Clusters”. In:

HPDC13. New York, USA, 2013.

[48] Gokul Soundararajan and Cristiana Amza. “Towards end-to-end quality of ser-

vice: controlling I/O interference in shared storage servers”. In: Middleware’08.

Leuven, Belgium, 2008.

60

http://dx.doi.org/10.1145/2155620.2155650
http://dx.doi.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/2155620.2155650


[49] Navaneeth Rameshan et al. “Stay-Away, protecting sensitive applications from

performance interference”. In: Middleware14. Bordeaux, France, 2014.

[50] Vasily Tarasov et al. “Virtual Machine Workloads: The Case for New Bench-

marks for NAS”. In: FAST’13. San Jose, USA, 2013.

[51] Zhenmin Li et al. “C-Miner: Mining Block Correlations in Storage Systems”.

In: FAST’04. San Francisco, USA, 2004.

[52] Ahsen J. Uppal, Ron C. Chiang, and H. Howie Huang. “Flashy Prefetching for

High-Performance Flash Drives”. In: MSST’12. Pacific Grove, USA, 2012.

61


