
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2016

Understanding and Design of an Arduino-based PID Controller Understanding and Design of an Arduino-based PID Controller

Dinesh Bista
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Engineering Physics Commons, and the Other Physics Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/4665

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4665&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=scholarscompass.vcu.edu%2Fetd%2F4665&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarscompass.vcu.edu%2Fetd%2F4665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4665?utm_source=scholarscompass.vcu.edu%2Fetd%2F4665&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Understanding and Design of an Arduino-

based PID Controller

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science

at Virginia Commonwealth University

By

Dinesh Bista

Masters of Science, Physics, Virginia Commonwealth University

Director: Dr. Jason Reed, Assistant Professor, Physics Department

Virginia Commonwealth University

Richmond, VA

Fall 2016

ii

Acknowledgment

I am thankful to my parents, sisters, and my girlfriend for their love and constant support.

I wish to thank Dr. Jason Reed for his guidance throughout this project. I am grateful to my

colleague Daniel Guest and my friend Vikash Chauhan for their help and some healthy discussions

during my project. I would also like to express my gratitude to Dr. Marilyn Bishop and Dr. Shiv

Narayan Khanna for their inspiration. Finally, I would like to express my appreciation to the entire

VCU Physics Department for all their support and help.

iii

 Table of Content

 List of Tables…………………………………………………………………………….…….....v

 List of Figures…………………………………………………………………………………...vi

 List of Abbreviations and symbols…..viii

 Abstract……………………………………………………………………………………….....ix

 I. Introduction………………………………………………………………………………….…1

 II. Background Literature Review

 II.i: Literature Review of the PID Controller………………..…………….………...…4

 II.ii: A Practical PID Controller …………………………………………..………….…8

 II.iii: Discussion of some research papers on Arduino based PID controllers…………..13

 II.iv: Conclusion from the Literature Review …………………………………………19

 III. Temperature Controller System with a PID Control

 III.i: Description of the components in the system ……………………………….…..20

 III.ii: Description of the System Design…………………………………..……………26

 IV. Observations and Conclusions

 IV.i: Noise and Error ………………………………………………………………......32

 IV.ii: Setup, Procedure, and Observations……………………………………………...36

1. On/Off Controller…………………………………………………………….....37

2. P-Controller………………..…………………………………….……………...38

3. PI- Controller ……………………..…………………………………………….43

iv

IV.iii.Conclusion…………………….…….……………………………………………..48

 V. Appendix

 Appendix 1A…………………….………………………………..……………50

 Appendix 1B………………….……………………………………………..…51

 Appendix 1C………….……….……………………………….………………52

 Appendix 2 ………….…………………………………………………………53

 Bibliography ……………………………………………………………………………….....56

v

List of Tables

Table 1.a: List of comparisons of response parameters of all designed P-Controllers…….…42

Table 1.b: List of comparisons of response parameters of P-and PI-Controllers………….…47

Table 1.c: List of comparisons of response parameters of PI-Controllers……………..….…47

Table A1C: Devices and Appliances used in building of our temperature controller system….52

vi

 List of Figures

Fig 1.1: Schematic of PID controller with a feedback loop………………….…….4

Fig 1.2: Measure of controller’s performance………………………………….....11

Fig 3.1: Duty Cycles ………………………..……………………...…………….21

Fig 3.2: TMP36 analog temperature sensor ……………………………………...22

Fig 3.3: Working mechanism of H-bridges ……………………………………...23

Fig 3.4: Arduino UNO Board ……………………………………………….…...24

Fig 3.5: Schematic of the designed temperature controller system ……………...26

Fig 3.6a: Temperature controller system………..…………………………………29

Fig 3.6b: Sample attached to the heatsink and the temperature sensor …………...29

Fig 3.6c: View of hot-side of TEC being attached to the sample ……..…….…….30

Fig 3.6d: H-bridges…………………….…………….. …………….……………..30

 Fig 3.6e: Operational amplifiers used in the system ………………..………..……31

 Fig 4.1: Plot of analog input voltage vs digital output of signal from

 TMP36 sensor error …………………………..…………………….........34

 Fig 4.2: RMS measure of the signal from temperature sensor35

 Fig 4.3: Plots of Temperature and Controller’s Output vs Time of

 On/Off Controller ……..……….……………………………….………..37

vii

 Fig 4.4: Plots of Temperature and Controller’s Output vs Time of

 P-Controller with Kp =150 ……………………………….…..………….39

 Fig 4.5: Plots of Temperature and Controller’s Output vs Time of

 P-Controller with Kp=1500 ……………………………….…….……….40

 Fig 4.6: Plots of Temperature and Controller’s Output vs Time of

 P-Controller with Kp= 4300 ……………………………………………..41

 Fig 4.7: Plots of Temperature and Controller’s Output vs Time of

 PI-Controller with Kp=150 and Ki=1…………………..……………….44

 Fig 4.8: Plots of Temperature and Controller’s Output vs Time of

 PI- Controller with Kp=150 and Ki=3..45

 Fig 4.9: Plots of Temperature and Controller’s Output vs Time of

 PI-Controller with Kp=1500 and Ki=0.1..46

 Fig A1: Arduino UNO...50

 Fig A2: Closer view of TEC being attached to the sample …..……..….…...…....50

 Fig B1: Working mechanism of Peltier pellets……………...…....……………….51

viii

List of Abbreviations and Symbols

ADC : Analog to Digital Converter

AWU : Anti-Wind Up

D : Derivative

DC : Direct Current

DOF: Degree Of Freedom

HSAFM: High Speed Atomic Force Microscope

𝐾𝑝: Proportional Gain or Controller’s Gain

𝐾𝑖: Integral gain

𝐾𝑑: Derivative gain or parameter

LED : Light Emitting Diode

P : Proportional parameter

PID: Proportional Integral Derivative

PV: Process Variable

PWM: Pulse Width Modulation

RMS: Root Mean Square

SLFC: Self-Learning Fuzzy Controller

SSE: Steady State Error

TEC: Thermo-Electric Cooler

ZN: Ziegler Nichols

ix

Abstract

UNDERSTANDING AND DESIGN OF AN ARDUINO-BASED PID CONTROLLER

By

Dinesh Bista, MS

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science at

Virginia Commonwealth University,

 Virginia Commonwealth University, 2016

 Director: Dr. Jason Reed, Assistant Professor, Physics Department

This thesis presents research and design of a Proportional, Integral, and Derivative (PID)

controller that uses a microcontroller (Arduino) platform. The research part discusses the structure

of a PID algorithm with some motivating work already performed with the Arduino-based PID

controller from various fields. An inexpensive Arduino-based PID controller designed in the

laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric

cooler, and electronic components while the software portion includes C/C++ programming. The

PID parameters for a particular controller are found manually. The role of different PID parameters

is discussed with the subsequent comparison between different modes of PID controllers. The

designed system can effectively measure the temperature with an error of ± 0.6℃ while a stable

2

temperature control with only slight deviation from the desired value (setpoint) is achieved. The

designed system and concepts learned from the control system serve in pursuing inexpensive and

precise ways to control physical parameters within a desired range in our laboratory.

1

I. Introduction

Modern industry, scientific workstations, robotics, and regular activities have been greatly

aided by the use of control systems. The extensive use of the control systems is evident in the

cruise control of vehicles, the temperature control of baby incubators, the temperature and

humidity control of cell incubators, the mobile control of robots, and many more applications in

countless scientific research and industries. The PID algorithm is a simple process, which is easy

to understand conceptually and implement practically. The advantageous cost/benefit ratio

provided by the PID controllers makes them the most frequently used control tools in industry.1

The PID controllers have been extensively used since 1980s for the control engineering practice.

The PID controller has been suggested as the second most important control decision and

communication instrument of the 20th century only behind the “Microprocessors.”2 The cheaper

price and the compatibility in interfacing with the advanced computing programs like MATLAB

and LabVIEW make Arduino the preferred microcontroller for teaching.

The research in our laboratory focuses on the study of human cells: cancer cells, especially of skin

cancer cell, melanoma (cell lines M238, M229, and M249), and other cells which are part of human

immune systems (T-cell and Mast cell). We observe the rate of change in mass of the cancer cells

and the change in absolute mass of the immune cells under the influence of drugs. The cells are

placed inside the cell incubator, Steri-Cult 𝐶𝑂2 Incubator. The optimum conditions for

temperature, % of 𝐶𝑂2, and the humidity for the cells in this incubator are 37℃, 5%, and above

60% respectively. The interferometric phase imaging camera, Phasics SID4BIO, which gives the

1 Vilanova, R., & Visioli, Antonio. (2012). PID control in the third millennium lessons learned and new

approaches (Advances in industrial control). London; New York: Springer.

2 Rhinehart, R. (2000). The century's greatest contributions to control practice. ISA Transactions, 39(1), 3-

13.

2

interferometric phase images of the cells and color camera, Basler acA645-100gc, which helps to

focus on the cells and normalize the color image, are placed inside the cell incubator.

The setpoint temperature (desired temperature) for the cell incubator is 37℃. The upper limit is

very sensitive, as passing beyond 37.25℃ is not desirable. However, the lower limit is a bit

flexible, about 36℃ . Hence, the temperature range of 36.50℃ ± 0.50℃ is preferable for the cell

incubator. We are using a separate temperature controller, product of Omega platinum series

instead of using the in-built temperature controller system of the incubator. This separate

temperature controller system gives temperature reading with an accuracy up to two decimal

places. This extra care is essential because of the heat generated inside the incubator (system) due

to the following reasons: the motion of small motors adjusting the focus position at each imaging

location (basically three motors to vary the objectives in x, y and z directions) and the working of

cameras.

 The phase imaging camera and the color camera used in the cell incubator become heated. The

heating of the cameras contributes to the heating of the incubator in the short term when the

experiment is carried out. However, in the long run the performance of the cameras degrades

leading to the breakdown of cameras. Hence, they need to be cooled separately. Furthermore, we

are trying to learn using a new and faster technique to control the focus of microscope by a laser

beam reflection off of the sample in our laboratory. The applications of the control systems in the

live cell-interferometry and live cell-imaging has significantly motivated me to learn and design a

control system. The project work is split into following three parts:

The first part is the introductory part that discusses the background research of the project. This

part starts with the description of PID parameters and the characteristics of a practical PID

controller. The research analyzes the Arduino-based PID controller over the last few years. The

3

use of PID controller in different arenas is discussed with basic focus on the interfacing and

optimization of a PID controller to get the better performances. The second part deals with the

designing of our system, an Arduino-based temperature controller system using the PID algorithm.

The codes written in C programming serve as the software portion, while the hardware portion

includes Arduino UNO, electronic components, and solid state devices. The tuning of the PID

controller is done manually, which is also called a hit and trial method. In the final part, the

observations of different kinds of controllers are made through the experimental data and plots.

The characteristics of various modes of controllers are observed. The logical interpretations

justifying the experimental observations are presented. Finally conclusions are drawn based on the

experimental observations with some discussions on the possible applications of the designed

controller in our laboratory.

4

II. Background Literature Review

II.i. Literature Review of PID controller

There are various types of controllers used in industry, laboratory, and routine applications. Some

of the commonly used controllers are on/off, PID, fuzzy, and neural. The latter two are a bit

complex, and use more sophisticated concepts like artificial intelligence. The controllers can also

be differentiated as “feedforward” and “feedback” controllers. The feedforward controller works

by giving a result based on the anticipation of the next step, while the feedback controller works

by giving an observed result that changes the processing value of the later step. In this project, the

entire focus is on the feedback control system that uses the PID algorithm. PID stands for

proportional integral and derivative.

Fig 1.1 Schematic of a PID controller with a feedback loop: The sensor block measures the

process variable (PV) of a given process, which is compared to the setpoint (SP) to find the

error. Observed error is used to find the controller output, which in turn is sent into the

Actuators block.3

3 Peacock, F. (2008). How the PID Algorithm works and why it works. Retrieved from www.PID-

Tuning.com

5

The PID controller uses a feedback loop, which controls a parameter of the system called the

process variable (PV), which is supposed to match the desired output, the setpoint (SP). A PV is

any physical quantity of the system that can be measured using the sensor and can be controlled.

The PID controller uses an “error,” the difference between SP and PV, in each loop to control the

system. It is more like a machine that measures the error in each loop and gives the necessary

signals to an actuator, a device that works according to the received signals from the controller, to

minimize the error. Each term of a PID algorithm has its own characteristics and roles, which are

described in detail as followed:

P-Term: This takes into account the present error only. The P-Term makes an effort in proportion

to how far the PV is from the SP at the present time. However, approaching closer to the SP, the

error becomes so small that the controller cannot trigger the PV enough to catch the SP, which

implies that there always exists a steady state error (SSE), which appears as an offset from the

setpoint in the system. However, a larger value of the proportional term can trigger the PV to the

setpoint, but it makes the system unstable with oscillations and overshoots. Thus the controller’s

response in such case behaves more like the response coming from an on/off controller. Thus, the

P-controller alone is not sufficient for the most control designs. Therefore, the P-Term is generally

accompanied by an “I-term,” which makes the controller become a PI-controller. Mathematically,

the output of the P-controller is given by the equation:

 P-Term = 𝐾𝑝. e (t)……………………………..….. (1)

Where 𝐾𝑝 = Proportional gain and e (t) = error at the present time “t”

6

I-Term: This is the most important term in the PID controller. It takes into account all the errors

present in the system from the starting point to that particular point of time in the process. It looks

at the history of the error until that specific point. Mathematically, the I-Term is represented by

the equation:

 I-Term = ∫ 𝐾𝑖 . 𝑒(𝑡)𝑑𝑡
𝜏

0
…………………...……….. (2)

Where 𝐾𝑖 = integral gain and 𝜏 = total time of operation of the controller

The contribution from the I-Term tries to balance the difference in the time spent by the PV on the

both sides of the setpoint, i.e. below and above the setpoint. For example, if PV spends 10 seconds

running at 98% of the setpoint value, the I-Term will try to push the PV over to 102% for the other

10 seconds to compensate. Hence, there is an overshoot. For any sensitive system, the overshoot

can seriously damage the whole structure of the system. However, the PI controller is still better

than PID controller for most control systems due to its simplicity in operation. However, it is

important to make sure that the integral windup has been completely detached from the controller.

The integral windup refers to the saturated values of the integral term in either direction.

D-Term: This takes the derivative of a PV of the system at every point. Thus, it predicts the future

of the operation of the PID loop (this loop is an operation of the PID controller for each iteration,

as shown in Fig 1.1). The purpose of this term is to check how the process variable moves without

overshooting the setpoint. The D-Term acts on the PI terms by counteracting them. As the PV

approaches the setpoint, the PV settles with the set point with a small or no overshoot.

Mathematically, the D-Term is given by the equation:

7

 D-Term = 𝐾𝑑 ∙
𝑑 𝑒(𝑡)

𝑑𝑡
 ….…….…………..…..…… (3)

where, 𝐾𝑑 represents the differential gain. However, the D-Term introduces noise and the wearing

down of the equipment.4

The D-term looks at the fast and the short-term changes in the process variable, like noise that

appears as spikes with significant variations. The D-term assumes that there is too much change

going around and should be compensated by bringing about drastic undesirable changes to the

system. It is better to use the filter to reduce the noise, but over-filtration may also remove the

necessary signals and the essential information from the system. Furthermore, the D-Term can

destabilize the system if used without proper care. When the dampening action is too high, higher

proportional and integral gains are needed for the compensation. Furthermore, getting rid of an

offset quickly cannot be achieved due to the derivative’s dampening effect. Thus, the user has to

set the higher values of the P and I terms for compensation. This way it is responsible for the

wearing away of the equipment working as actuators.

It is important to make sure that if the PI-action alone is sufficient for the control designs, we do

not use the D-term. If the D-term is required for a system, adding it should be done with a

significant amount of care and appropriate use of the filters. The D-term is more desirable generally

under the following specific conditions:

I. When the actuators are only one dimensional, i.e. the system can be heated, but cannot be

 cooled. In such systems, once there is an overshoot, coming back to the setpoint at

4Welander, P. (2010, February 1). Understanding Derivative in PID Control. Retrieved from

http://www.controleng.com/search/search-singledisplay/understanding-derivative-in-pid-control/4ea87c406e.html

8

 the user’s will is very difficult.

II. It is necessary for a slow process, where the overshoot is strictly undesirable, like brewing

 beverages done at a particular temperature.

II.ii. A Practical PID Controller

A practical PID controller5 should be able to accomplish its objectives with the following

characteristics:

 i) Sample time: The controller should have a PID loop that runs through the system in each specific

time interval, called the sample time, rather than at any random time interval. Hence, the execution

of the controller’s effort can be observed and calculated every sample time-interval. The user

should be careful while writing the codes when changing the sample time of the PID loop.

ii) Derivative-Kicks: A good PID controller should have a characteristic that enables the user to

change the setpoint. Changing the setpoint allows the user to attain different conditions of the

system while working. But the change in setpoint changes the error, and that error gets amplified

due to its differentiation. A simple mathematical formula that can help to get rid of this problem

is as follows:

 Output (u) = 𝐾𝑝. e (t) + ∫ 𝐾𝑖. 𝑒(𝑡)𝑑𝑡
𝜏

0
 + 𝐾𝑑 ∙

𝑑 𝑒(𝑡)

𝑑𝑡
………..... (4)

5Bret. (2011, April). Improving the Beginner’s PID – Introduction « Project Blog. Retrieved from

http://brettbeauregard.com/blog/2011/04/improving-the-beginner-pid-introduction/

9

 D-Term = 𝐾𝑑 ∙
𝑑𝑒(𝑡)

𝑑𝑡
 = 𝐾𝑑 ∙

𝑑(𝑆𝑃−𝑃𝑉)

𝑑𝑡
….…………. (5)

 As the setpoint (SP) is constant for a certain operating period,

 D-Term = − 𝐾𝑑 ∙
𝑑(𝑃𝑉)

𝑑𝑡
…………………………... (6)

Equation (6) eliminates the SP from the D-Term, so there will not be such a problem while

changing the SP. Now the controller output can be written as:

 u = 𝐾𝑝. e (t) + ∫ 𝐾𝑖. 𝑒(𝑡)𝑑𝑡
𝜏

0
 − 𝐾𝑑 ∙

𝑑 (𝑃𝑉)

𝑑𝑡
………….. (7)

iii) On the-fly Tuning Changes: If the system is not too sensitive to the changes, the tuning

parameters can be changed while the PID loop is in operation. Using the PID controller in such a

way makes it more flexible and its tuning becomes much easier. However, for a sensitive system,

it is always better to tune the PID loop using a transfer function from MATLAB Simulink (The

transfer function of a linearly time invariant system is defined as the ratio of the output to the input

in the frequency domain.6) While changing the PID parameters, due to the integration (summation)

of errors in the integral term, an unpredictable output is observed from the controller.

The following change in the I-Term helps in getting a smooth controller output.

 I-term+ = 𝐾𝑖 ∙ ℯ(𝑡)……….………….…….…. (8)

6Aziz, M. M.(2010). Transfer Function and Block Diagrams. Retrieved from

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ea619_2s12/transfer_function_block_diagram.pdf

10

This change will make the controller look at the change in 𝐾𝑖 only at that specific point, neglecting

its past. Finally, the controller output becomes

 u = 𝐾𝑝. ℯ(𝑡) + 𝐾𝑖 ∙ ℯ(𝑡) – 𝐾𝑑 ∙
𝑑𝑃𝑉

𝑑𝑡
 …………………... (9)

 iv) No Integral and Total Windup: The PID controller cannot exceed certain higher and lower

limits. The higher and lower limits of the integral terms must be set in the program such that

beyond those limits, the PID loop is programmed to saturate to its corresponding limiting values.

Likewise, the total output of the PID controller cannot exceed the limits in either direction. Again,

the PID loop is programmed to saturate at the corresponding limiting values of controller output

in either direction. This phenomenon is called total anti-windup. It is one of the most important

characteristics of a robust PID controller.

For practical purposes, the controller’s performance7 can be analyzed through the following

controller’s response parameters:

i) Rising Time: The time taken by the controller to trigger the PV to 90% of the setpoint from

the 10% value is called the rising time for an underdamped system. 8 A smaller rising time is one

of the characteristics of a good controller.

7 National Instruments. (2011, March 29). PID Theory Explained. Retrieved from http://www.ni.com/white-

paper/3782/en/
8 Levine, W. (1996). The Control handbook (Electrical engineering handbook series). Boca Raton, Fl. : [New

York, NY]: CRC Press ; IEEE Press.

11

 Fig 2.1 Measures of controller’s performance: The vertical axes could represent any physical

quantity; the solid curve gives the measure of Process Variable.

ii) Peak-time: The peak-time can be defined as the time required for the response to reach the

maximum value of the process variable for the first time.

iii) Steady State Error (SSE): After the controller’s effort, the PV settles to a value closer to

the SP. The difference between SP and the settled PV at this particular point is called the steady

state error. The smaller the value of the steady state error, the better the controller behaves. The I-

Term contributes to the reduction and even elimination of the SSE.

iv) Settling time: The time taken by the controller for the PV to settle to the steady state error

is called the settling time. The smaller settling time also implies a better controller in terms of the

response rate. Generally, the PID controller has a smaller settling time than the PI controller.

v) Overshoot: While controlling the PV, the controller happens to push the PV beyond the

setpoint, the phenomenon is called the overshoot. The percentage overshoot represents the amount

 Overshoot

 Settling-Time

S Steady State Error

 Time

 P

ro
ce

ss
 V

ar
ia

b
le

 Peak-Time

 Setpoint

 Rising

 Time

12

that the response overshoots its steady-state (or final) value at the peak time, which is expressed

as a percentage of the steady-state value. It is given by equation (10)

 % overshoot=
𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑣𝑎𝑙𝑢𝑒− 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉

𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉
 × 100 %......(10)

The PI controller is generally regarded as giving a larger overshoot than the PID controller.

While designing a controller system, the aim is to achieve the following properties:

a. Reduction or omission of the steady state error.

b. Reduction of the overshoot (if any).

c. No oscillation (dampening of oscillation is preferred).

d. Small settling time.

13

II.iii. Discussion of some research papers on the Arduino-based PID controllers

A discussion of some of the exciting works with the Arduino-based PID controllers is made in this

section. The Arduino is an open source device which is cheap (price ranges from approximately

$24 for an Arduino-UNO to almost $44 for the Arduino-Mega) and is user friendly, making it

popular among hobbyists. Moreover, it can be programmed using the simple programming

language “C/C++,” and can be interfaced easily with other advanced computing environments like

MATLAB and LABVIEW (Arduino is discussed in detail in section III.i.5). The range of

applications of the Arduino-based PID controller varies from a simple temperature controller to a

robot controller. Five different research papers that present different applications of the Arduino-

based PID controller and use varying interfaces and tuning methods are discussed below:

“Design and implementation of a PID controller-based baby incubator” 9

In this research paper, the author uses a PID algorithm with Arduino to control the temperature

and humidity of a baby incubator. The temperature of the baby incubator is measured, and

displayed a using programmed Arduino, and controlled using Pulse Width Modulation

(abbreviated as PWM, which is discussed in detail in section III.i.1) through the PID loop. The

author emphasizes the use of the PID controller over the simple on/off controller for the following

two reasons: fast response, which is important for controlling a sensitive system, and for lower

power consumption. The on/off controller consumes higher power as it has to regularly feed the

power supply to the heater and fan to switch the system on and off.

9Theopaga, A. K., Rizal, A., & Susanto, E. (2014). Design and implementation of PID control based baby

incubator. Journal of Theoretical & Applied Information Technology, 70(1).

14

The experimental part and the tuning portion of this research can be summarized into the following

steps:

i.) The temperature of the baby and the incubator environment are measured and displayed

separately using an analog Read command (a command used to read the analog values of sensors

using the analog pins of the Arduino) on the Liquid Crystal Display (LCD) screen through the

coding uploaded in the Arduino.

ii.) The input reading is sent to the controller and compared to the setpoint.

iii.) If the temperature reading is less than the setpoint, the controller orders the heater to turn

on through PWM using a “digitalWrite” command. (This command assigns output values, i.e. 0-

255 PWM values, to the actuators through the digital pins of the Arduino.) But if the temperature

reading is less than the setpoint, the controller instructs the heater to turn off and the fan to turn on

again through the PWM signals.

iv.) The most challenging part of this research is tuning the PID controller. The author uses the

transfer function of the plant (process) in parallel form. The transfer function is defined as the ratio

of the output of the plant to its input in the frequency domain. The frequency domain is obtained

by taking the Laplace transform of the transfer function in the time domain. The parallel form

implies that all the parameters, proportional, integral, and derivative, are parallel to each other.

The author uses the Zeigler-Nichols (ZN) first tuning method. This method uses plant response for

the unit step input in the open loop system, which produces an S-curve (S-shaped curve) for time

(t) vs output (u). The tangent line drawn at the point of inflection gives the following two

parameters: delay time (L) and the time constant (T). The delay time (L) is the distance between

the intersection point of the tangent line to the time-axis and the origin. The time constant (T) is

15

the distance between the perpendicular lines drawn through the tangent line at which the output

starts giving the constant value to the time axis, to the origin.

v.) The values of delay time (L) and the time constant (T) obtained from the response curve

are used to determine the values of PID parameters 𝐾𝑃, 𝐾𝐼 , 𝑎𝑛𝑑 𝐾𝑑 using the Zeigler-Nichols first

tuning table. The tuned values of 𝐾𝑃 , 𝐾𝐼 , 𝑎𝑛𝑑 𝐾𝑑 are used in the coding using the PID library of

the Arduino. With these parameters, the controller controls the system to get the required setpoint

temperature. The rise time, the settling time, and the steady state error are calculated. These

observations show that the PID controller is very well tuned and the required SP for the

temperature controller system has been attained.

“Real Time DC Motor Speed Control using a PID Controller in LABVIEW” 10

This research paper discusses the control of DC motors by using Arduino-based PID controller.

The Arduino is interfaced with LabVIEW. The DC motors are very important tools for industrial,

scientific research, and experimental applications. The control of DC motors to a precise accuracy

is important for position control of sensors and in many other scientific applications. The authors

are using a very low cost technique to control the speed of the DC motors. An Arduino is used as

a very low cost data acquisition device. It is interfaced with a Graphic User Interface (GUI) of

LabVIEW called LabVIEW Interface for Arduino (LIFA) so that the users can set their target

speed for the motor on the screen of LabVIEW. The comparison between the open loop control

and closed loop feedback control (PID control) performance is also made. The tachometer is used

as a sensor to measure the speed of DC motors. The control process is summarized below:

10Vikhe, P., Punjabi, N., & Kadu, C. (2014). Real Time DC Motor Speed Control using PID Controller in

LabVIEW. IJAREEIE, 03(09), 12162-12167. doi:10.15662/ijareeie.2014.0309046

16

a) The tachometer is attached to the shaft of the DC motors and is connected to the analog

input pins of the Arduino. The tachometer measures the speed of the DC motor. The PWM values

from the digital output pins (PWM pins) of the Arduino are given to the motor to control its speed.

These are all done through the coding in the Arduino.

b) The Arduino UNO is interfaced with LABVIEW through a serial communication and the

authors are using LIFA as the GUI. The accessory files should be installed to connect LabVIEW

and Arduino. Then the programmed Arduino is controlled through the front panel of the LabVIEW

screen. The users can change the setpoint speed of the DC motors.

c) The open loop control performance is observed just by setting up a setpoint and controlling

the speed of the motor without any feedback loops. The performance is found to be very poor.

d) The closed feedback control with the PID loop is implemented to see the performance of

the control system. The speed of the motor is compared with the setpoint speed. The difference is

called the error “I” and the PID loop will try to minimize this error in every lap until the speed of

the motor is close enough to the desired setpoint (SP). The PID controller in the LABVIEW control

system palette can be helpful in tuning the PID parameters. The PID gains for the motor speed

controls can be also tuned by a hit and trial method.

In this way, this research paper presents a very simple and low cost method that is still effective

enough to control the speed of the DC motors.

 “Implementation of PID control to reduce wobbling in a line following robot” 11

The authors are using a PID controller with Arduino UNO to control the motion of the robot in

this research paper. The PID is tuned manually using a trial and error method. Two motors on two

11A. N. (2013). Implementation of PID control to reduce wobbling in a line following robot. International

Journal of Research in Engineering and Technology, 02(10), 531-535. doi:10.15623/ijret.2013.0210083

17

wheels are used as actuators while Infrared (IR) sensors are used to find the position of the robot

at any instant. The functioning of the line sensors and designing of the PID algorithm are

interesting parts of this paper.

The IR sensors are attached to the lower portion of the robot. The line that the robot should be

following is 3 cm wide and is black in color, while the background is chosen to be white. The

white and black surfaces reflect different amounts of light. The transmitters of the sensors transmit

light. On the basis of light being reflected back, the sensors find out whether the robot is on the

target line, the black line, or on the surrounding region given by the white background. The sensors

are employed in three different regions of the body of the robot: left, center and right. Hence, this

arrangement of the sensors gives detailed information about the position of the robot.

The information gathered from the sensors about the position of the robot is the measured position,

the process variable (PV) which is then compared with the desired position (setpoint) of the robot.

Their difference is defined as the error value (e). The output drive (TURN) from the controller is

given by the standard PID equation:

 TURN = 𝐾𝑃 ∗ e + 𝐾𝐼 ∗ ∫ 𝑒 𝑑𝑡 + 𝐾𝑑 ∗
𝑑𝑒

𝑑𝑡
…………... (11)

Where, 𝐾𝑃, 𝐾𝐼 and 𝐾𝑑 are proportional, integral and the differential gains respectively.

The TURN value is given to the actuator as a PWM from the Arduino UNO, which in turn controls

the direction of the robot. Likewise, the desired speed can be obtained using the digital output of

Arduino to the motors, the actuators. The tuning is done manually, starting with only the value

of 𝐾𝑃. It is increased until an oscillation is achieved. Then the values of 𝐾𝐼 are introduced and

18

increased until there is the least possible steady state error. Furthermore, the optimized value of

𝐾𝑑 would ward off any overshoots. Finally, the path of the robot with PID control is compared to

the motion of the robot without PID control. The wobbling of the robot is found to be significantly

reduced with the introduction of the PID controller while following the given path.

“Fast Steering Mirror Control Embedded Self-Learning Fuzzy Controller for Free Space

Optical Communication” 12

The research paper discusses the control applied to wireless communication. The paper proposes

the acquisition, tracking, and pointing system for free space laser communication to improve the

misalignment issues in Free Space Optical Communication. The system detects the image of the

laser beam using a Charge Coupled Device (CCD) sensor array while the central detection is

employed to find the location of the image. A Self-Learning Fuzzy Logic Controller (SLFC) is

used to derive the fast-steering mirror mechanism to point the laser beam on the receiver for the

coarse and the fine tracking. The SLFC controls the two DC motors for controlling the fast-steering

mirror mechanism. The adaptive fuzzy logic has been employed through the Arduino Mega 2560

board. The controller gains obtained using MATLAB & Simulink for the given systems have been

used for the experimental setup. The results show the proposed methodology for stabilizing the

fuzzy logic controller. The PID controller, tuned using Ziegler Nichols (ZN) method, controls the

plant while the fuzzy controller is learning the plant behavior. The fuzzy controller then gradually

starts controlling the system through its output, until it has taken total control of the system. In this

situation, the PID controller becomes idle.

12Alvi, B. A., Asif, M., Siddiqui, F. A., Safwan, M., & Bhatti, J. A. (2014). Fast Steering Mirror Control

Using Embedded Self-Learning Fuzzy Controller for Free Space Optical Communication. Wireless Personal

Communications, 76(3), 643-656

19

Since the role of the PID controller is the topic of interest, this study focuses on the working of the

PID controllers. The PID controller plays a significant role even when advanced controllers like

fuzzy or neural controls are employed to control the system. The PID controller is responsible for

controlling the system initially until SLFC learns the plant (process) behavior.

II.iv. Conclusion from the Literature Review

 The use of PID controller in diverse applications is studied with the realization of the interplay of

the Arduino interfaced with technical computing language and the basic understanding about the

signals, the latter of which gives an idea about the measurement and control of the signals. The

interface of the Arduino with a high level computing language like MATLAB, LABVIEW, and

some other specifically developed program, like NARMA, is observed. Such interfacing enables

users to apply the PID algorithm to yield the optimum control of the signal and make the controller

more versatile and compatible. The overwhelming role played by the PID controllers while using

the sophisticated controllers, like fuzzy and neural controllers, is recognized. The fuzzy controller

uses the PID controller in the beginning to control the system until the fuzzy controller finds the

pattern of the system. The significance of the widespread applications of the PID controller from

different regimes is understood from the literature.

20

III. Temperature Controller System with a PID Control

The temperature controller system is designed to understand the mechanism of an Arduino-based

PID controller. The designed system is used for studying the roles of the PID parameters and their

effects on the controller’s response parameters in different PID-modes. The different modes of a

PID controller are P-controller, PI-controller, and PID-controller mode. The implementation of

derivative control is difficult and should be encompassed only when it is a necessary, as discussed

in section II.i. Hence, we are not using the derivative term in our algorithm because we are simply

trying to control the temperature of the designed system to keep it closer to the setpoint. The P-

controller mode can be achieved from the PI-controller mode by simply assigning a zero value to

the integral gain (I-value).

III.i. Description of the components in the system

The control designs generally consist of microcontrollers, actuators, and sensors. The Arduino

UNO and thermo-electric coolers (TECs) are chosen as microcontroller and actuators respectively.

TECs are easy to operate, inexpensive, and are two directional, and so they can control the

temperature of the sample (heating and cooling) based on the required temperature conditions.

TMP36 analog temperature sensor is the preferred temperature sensor because of its low cost, self-

contained nature, its wide range of operation, and compatibility for interfacing with the sample.

The other electronic components used in the system design are h-bridges, non-inverting

operational amplifiers, and separate power supplies for the operational amplifier, Arduino UNO,

and TECs. We have extensively used a technique known as pulse width modulation (PWM). All

the components including PWM used in the system design are discussed in detail below.

21

1. Pulse Width Modulation (PWM):

PWM is a technique to get an average analog output signal from a digital input. The concept of

PWM can be understood by the following example of an LED. If an LED is turning on and off at

a moderate rate, then the turning on and off phenomenon of the LED can be observed. However,

if the rate of switching is fast enough, one can observe a dimmer LED instead of the turning on

and off phenomenon. A PWM signal is represented by a square wave of a given duty cycle and

frequency. A duty cycle expressed in percentage specifies the time of an input signal being “on”

over a given period of time. For example, 50 % duty cycle means that the signal is on for half of

the time period as shown in Fig 3.1.

Fig 3.1 Duty Cycles: 90%, 50%, and 10% duty cycle represent that the signal is turned on

for nine tenths, half, and one tenth of the whole time period respectively.13

13 Dominguez, B., Barba, F., & Castrejon, C. (2014, December 8). DC Motor Driver by EMG and EOG |

imditesmprojects. Retrieved from https://imditesmprojects.wordpress.com/dc-motor-driver-by-emg-and-eog/

 90% Duty Cycle

 50% Duty Cycle

 10% Duty Cycle

22

The frequency of a signal represents how many times the signal runs in a given time period. In

other words, it represents how fast the PWM switches between the higher and lower states. The

frequency of the signal should not be too high or too low for the load to respond. This technique

avoids the wearing out of components that normally occurs when the rheostat (a mechanical

switching) is used to control the voltage.

2. Analog Temperature Sensor (TMP36):

The TMP36 temperature sensor is a silicon based temperature sensor with three pins, the ground

pin, the analog voltage pin, and the positive voltage pin with a range of 2.7 to 5V as shown in Fig

3.2. The TMP36 temperature sensor is robust, precise in measurement, and compatible with the

sample. It has a very wide range of measuring capability from - 40℃ to 150℃. The change in

temperature around the sensor provides the proportional voltage across the diode of the sensor.

The precise amplification of the generated voltage provides an analog signal.

Fig 3.2 TMP36 analog temperature sensor: The central pin labelled as analog voltage output

gives the measure of analog output while the black block is the body that senses the change

in temperature of the sample attached.14

14Fried, L. (2012, July 29). Overview | TMP36 Temperature Sensor | Adafruit Learning System. Retrieved

from https://learn.adafruit.com/tmp36-temperature-sensor/overview

 Ground Pin

Analog Output

Voltage Pin

 Input Voltage Pin

23

3. Thermo-electric cooler (TEC):

An array of p-type and n-type semiconductors soldered between two ceramic plates electrically in

series and thermally in parallel forms a TEC. It is a solid state device which works according to

the Peltier effect. The Peltier effect is a phenomenon in which the heat flux is generated between

the junctions of two dissimilar materials when connected to an external DC power supply. The

working mechanism of TEC is explained in Appendix A2.

4. H-bridge:

An h-bridge is an electronic circuit causing the current to flow in either direction across the load.

Fig 3.4 shows the h-bridge with four solid-state switches. When the A1 and A4 switches are closed

while keeping A2 and A3 open, the current passes through the motor (load) in the clockwise

direction. On the other hand, the current flows counter-clockwise when A1 and A4 are open while

A2 and A3 are closed. Both switch pairs (A1 and A2) and (A3 and A4) should not be closed at the

same time because that leads to short circuit.

Fig 3.3 Working mechanism of H-bridges: When switches A1 and A4 are closed, the current

flows in clockwise direction across the load. The current flows counter-clockwise through the load

when the switches A2 and A3 are closed.15

15Hunt, O. (n.d.). HVLabs.com. Retrieved from http://www.hvlabs.com/hbridge.html

 Load

 V

 Ground

 A1

 A4

A4

 A
2

 A
3

24

5. Arduino UNO: An Arduino UNO is a microcontroller which operates by reading the sensor

values, making logical decisions, and sending the necessary signals to the actuators.16 A brief

description of Arduino UNO shown in Fig 3.5 is as follows:

i.) It has a USB power plug and a separate power plug. The separate power plug takes the

power supply through the external voltage source.

ii.) It has five analog input pins that measure the signals from the sensors.

iii.) It has a USB power plug and a separate power plug. The separate power plug takes the

power supply through the external voltage source.

iv.) It has twelve digital pins for digital input/output (2-13), among them five pins (3, 6, 9,

10 and 11) are PWM pins.

Fig 3.4 Arduino UNO Board: Arduino UNO board showing 16 digital pins, 6 analog

 pins, and other various parts.17

16Premeaux, E., & Evans, B. (2011). Saving the world. In Arduino Projects to Save the World, Spider temp.

Berkeley, CA: Apress.

17Roberge, J. K., & Lundberg, K. H. (2007). Background and Objectives. In Operational Amplifiers: Theory

and Practice [1.81] (2nd ed., pp. 1-11). Retrieved from http://web.mit.edu/klund/www/books/opamps181.pdf

25

v.) Digital pins 0 and 1 are labeled RX and TX respectively, which are serial in and serial

out pins.

vi.) There are three ground pins, one input voltage pin, one 5 V pin, one 3.3 V pin, one reset

push-button, and one Analog Reference (AREF) pin.

vii.) Atmega328 is a microprocessor used with an In Circuit Serial Programmer (ICSP).

In our experimental setup, the code written in a C programming language (Arduino software) is

uploaded to the Arduino UNO instead of using the PID library.

In our project, Arduino UNO is basically performing the following three tasks:

a) Reading the analog signals (values) from the temperature sensor.

b) After comparing the received signal with the desired signal, sending digital output as PWM

 signals to the actuators.

c) Printing the data as text-files, the process related to data acquisition.

6. Operational Amplifier:

The operational amplifier amplifies the input signal. The magnitude of the output voltage from the

amplifier is determined by the resistors connected across the negative feedback loop.

In order to open the gates of the MOSFETs completely, approximately 10V is required although

the PWM signal from the Arduino UNO can supply a maximum output of only 5V. The complete

opening of the MOSFET gates can be achieved by using the operational amplifier with gain of 2

(using two resistors each of 5K-Ohm). If the gates are not opened completely, the following two

problems may occur:

(i) MOSFETs becomes very hot and can easily get damaged.

(ii) A sufficient amount of current cannot flow through the actuators.

26

III.ii. Description of the System Design

The schematic of the designed temperature controller system is shown above in Fig 3.5.

 Fig 3.5: Schematic of the designed temperature controller system

27

In the schematic, the temperature sensor TMP36 is sandwiched between two TECs (TEC1 and

TEC2). However, the TMP36 sensor is inserted into the sample and then sandwiched between the

TECs in the real experiment. The N-channel MOSFETs used in making the h-bridges are labelled

as Qi, where i=1 to 8 (integers only). Two h-bridges shown are formed by these eight MOSFETs

as shown in the schematic on the either side of the Arduino-UNO. The gates of the MOSFETs are

grounded through the 10 𝑘Ω resistors (plated through-hole resistors). A pair of TECs work as loads

for these two h-bridges. The dual power source used for the non-inverting operational amplifier is

not shown in the schematic. The working mechanism of the temperature controller system can be

summarized with the help of the shown schematic as follows:

i) With the connection as shown in schematic, the code (as given in Appendix-2) for the

particular controller mode is uploaded to the Arduino through personal computer (PC).

ii) The Arduino reads the temperature of the sample using the TMP36-temperature sensor,

which is connected to the Arduino through analog-pin A2 as shown in the schematic.

iii) The received temperature value of the sample is compared with the setpoint

temperature and the necessary digital outputs are given through four digital output

PWM signals (PWM pins- 3, 9, 10, and 11). These PWM signals are sent to the non-

inverting amplifiers of gain 2. The amplified outputs from the amplifiers are supplied

to the common point of two gates (a switch) of the diagonal MOSFETs as shown in the

schematic.

iv) The TECs working as loads for the h-bridges receive the necessary PWM signals and

can heat and cool the attached sample to maintain the setpoint temperature. The

received PWM signals control the amount and the direction of the current across the

TECs. The amount of the current varies due to the different values of duty cycles (PWM

28

signals) provided as the controller’s output as given by the equation (9). The direction

of the current flow can be changed by sending the PWM signals through the different

switches.

Fig 3.6a shows the whole temperature control system where individual parts are shown by the

succeeding pictures. A rectangular aluminum bar in Fig 3.6b shows the sample of our designed

system with a hole drilled in the center. The TMP36 is placed inside of the mentioned hole while

the pins of the temperature sensor are connected to the Arduino. It is assumed that the temperature

at the center represents the average temperature of the whole sample. We have chosen aluminum

as the sample because of its higher thermal conductivity and easier availability in our lab. Fig 3.6c

shows the hot sides of a pair of TECs being attached to the surfaces of the rectangular sample. The

heat sinks with screws help the TECs to remain attached to the sample. The left pin of the TMP36

in Fig 3.2 is connected to both the AREF pin and the 3.3 V pin of the Arduino, while the central

and right pins are connected to the analog input pin and the ground pin of the Arduino UNO

respectively. Fig3.6d shows a common point connecting the gates of two MOSFETs to form one

switch. The PID parameters are found manually for each type of controller.

29

Fig 3.6a: Temperature controller system

 Fig 3.6b: Sample attached to the heatsink and the temperature sensor

S

 H-bridges

P Power supply

 for actuators

Arduino UNO

B Bipolar

power supply

for the

operational

amplifiers

 Operational

amplifiers

 Sample

Temperature sensor

H Heatsink with fan

S Stand

S Sample with

temperature

sensor

30

 Fig 3.6c: View of hot-side of TEC being attached to the sample

Fig 3.6d H-bridges: Four N-channel MOSFETS are connected in specific way by

jumpers to build one h-bridge; two h-bridges are made on the breadboard

 H-bridges

 N-channel

 MOSFET

 Switches

T Temperature sensor

S Sample

C Cold-side of Peltier

31

Fig 3.6e Operational amplifiers used in the system: Four digital outputs from Arduino

serve as input for four separate 741 CN operational amplifiers

 741 CN Operational

 Amplifier

 Resistor

32

IV. Observations and Conclusions

The designed system is run in on/off, P, and PI-controller modes to observe the controller’s

response parameters. The designed temperature controller can both heat and cool the sample to get

the desired constant temperature. However, we are only using the temperature controller system

in one direction (heating) to study the PID parameters and the controller’s response parameters.

At first, some discussion on the noise and errors in our temperature controller system is made.

Then different modes of controller is designed and their response parameters are observed.

 IV.i. Noise and Error:

The noise consists of any random fluctuations in the signal or any undesired random disturbance

of the signals. The noise in the temperature controller system is coming due to the digitization of

ADC and the random fluctuations of signals from the sensor (TMP36), which are discussed below:

a) Digitizing error and noise: The analog to digital converter (ADC) converts an analog input

signal to a digital output. The analog signal is continuous in amplitude and time while the

digital signal is discrete in both the amplitude and the time. The process of discretizing the

signal amplitude and the time are called the digitization (quantization) and the sampling

respectively.

The digitization brings about an inherent error associated with the ADC called the digitizing

error. This phenomenon is the limitation of ADC being not able to convert an analog signal

to a precise digital value. A range of analog signals produces the same digital output value.

This range, also known as step-size, is the minimum change in input analog voltage that can

be resolved by the ADC. The step size (Q) depends on the input voltage range and the

resolution of the ADC which is given by the equation (12),

33

 Q =
𝐼𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 …….……..…..….. (12)

The resolution of ADC (Arduino UNO) = 210 (with 10 bit of precision)

We are using analogReference (EXTERNAL) command to use a 3.3V pin of Arduino as a

powering voltage for the TMP36 temperature sensor. But the actual voltage reading coming out

from the 3.3V pin is found to be only 3.2V. Hence, the input voltage range for ADC = 3.2V.

 Q =
3.20±0.03 V

210
 = 3.14 mV...………………… (13)

Using the 3.3 V pin instead of the 5V lowers the step size (Q), which helps us to measure the

temperature more precisely. We are interested in the temperature change corresponding to the

voltage change of the sensor. A 10 mV change corresponds to the temperature change by 1℃ for

TMP36-temperature sensor. Hence, in terms of temperature, the step-size of the ADC is given by

equation (14)

 Q ≈ 0.31℃ ………………..………………..…. (14)

Hence, the step-size corresponding to the temperature is approximately 0.31℃. The input analog

signal coming from TMP36 being measured using Arduino and its digital output values are shown

in Fig 14.1. The difference between the input and output gives the digitizing error. The digitizing

error lies within ± Q/2 as shown in Fig 14.1. Any value of error is equally likely to occur in a

uniform distribution between ± Q/2. Hence, the RMS (root mean squared) values of digitizing

34

errors in ±

Q

2
 interval gives the digitizing noise and can be represented by the formula of equation

(15).18

Fig 4.1: Plot of analog input voltage vs digital output of signal from TMP36 sensor error.

The green saw wave like curve gives the digitizing error that ranges between ±
𝐐

𝟐
.

 The digitizing noise (𝜎𝑑) =
Q

√12
 ………….…. (15)

Hence, 𝜎𝑑=
0.31℃

√12
 ≈ 0.09℃ (0.89 mV)

b. Sensor noise: The RMS value (ac) of the sensor signal gives the average sensor noise in

the system. The measurement is carried out when the TMP36 sensor is giving a stable

temperature reading. The body of the sensor is placed inside a plastic wrapper and inserted

into the normal water in a beaker for few minutes until the constant temperature reading is

observed in the serial monitor. This isolating phenomenon of the temperature sensor just

ensures that the RMS values being measured are not associated with the temperature change

of the sensor and other interactions of the sensor with the surroundings. Sensor noise (𝜎𝑠) is

18 Gupta, S., & Pathak, A. (2012, January). ADC Guide, Part 1- The Ideal ADC. Retrieved from

http://www.cypress.com/file/113946/download

35

found by measuring the RMS volts reading from the sensor signal (in ac coupling mode of the

oscilloscope) which is shown in Fig 4.2. The bandwidth of the oscilloscope used is 70MHz.

The vertical scale is fixed to 10 mV as the temperature change of 1 degree Celsius corresponds

to 10 mV in our experiment.

Fig 4.2 RMS measure of the signal from temperature sensor: The snapshot of Tektronix

oscilloscope screen is taken while measuring the RMS value of the isolated temperature

sensor.

The RMS value of the sensor signal is measured to be approximately 5.97 mV, i.e. 𝜎𝑠 = 5.97 mV,

that corresponds to the temperature change =
5.97 mV ℃

10 mV
 ≈ 0.6℃

Hence, the total noise in the system due to the digitization and the sensor in terms of volts and ℃

are estimated as follows:

𝜎 = √(𝜎𝑑)𝟐 + (𝜎𝑠)𝟐 = √(0. 09)𝟐 + (0.6)𝟐 = 0.603℃ ≈ 0.6 ℃

The sensor noise contributes almost to the total noise.

 Calibration of TMP36: The accuracy of the temperature reading from the TMP36 temperature

sensor is found to be ± 0.35℃. It is calibrated with the help of Digi-Sense calibrated high accuracy

digital thermometer from our laboratory, which gives temperature reading up to two decimal

places.

36

IV.ii. Setup, Procedure and Observations:

The same following procedures are followed from uploading a code in Arduino to interpreting the

results for each controller mode:

i) Uploading code: The code written in C language, according to our purpose and on the basis

of the employed controller-mode, is uploaded in Arduino UNO through laptop/PC. The codes

for different controllers’ modes are given in Appendix-2.

ii) Ambient temperature and choosing the setpoint: The (ambient) initial temperature of the

system is the room temperature which ranges approximately from 19℃ to 22℃. The setpoint

is chosen to be 36.00℃, regarding the setpoint temperature for the mammalian (human) cell

incubator is 37.00℃. (Generally, human cell incubator is also kept at 36.50℃ to get the

optimum temperature with tolerance of 36.50℃ ± 0.5℃)

iii) Data acquisition and plots: The temperature (PV) and the controller’s output (PWM) are

printed and saved into the PC using “CoolTerm”, an open source serial communication for

Arduino, every 100ms for approximately 18 minutes. The PID controller is also updated every

100ms. It is always advisable to use interrupts to make sure that the task is done exactly after

the certain time after using “delay” command. The data acquired as text-files through

“CoolTerm” are imported in MATLAB. The average over distinct blocks of 10 values are

taken. The plots of the temperature (PV) and the controller’s output (PWM) against the time

are plotted in the same window in MATLAB. This helps us to show how the controller is

responding to the changes in the PV (indirectly to the error).

The following section discusses the observation and their conclusion based on the observation

of on/off controller, P-Controller, and PI-Controller respectively. The setpoint temperature is

37

taken as 36.00℃ while the ambient temperature of the sample is found between from 19.00℃

to 22.00℃.

1. On/Off-Controller:

The On/Off controller feeds 100% duty-cycle of the PWM signal, i.e., 255 to the TECs if

the temperature is below the setpoint, otherwise it supplies 0 % duty cycle of PWM. The

controller keeps the TECs either completely turned on or completely turned off. The

observed temperature and corresponding PWM values against the time are plotted in Fig

4.3.

 Fig 4.3: Plots of Temperature and Controller’s Output vs Time of On/Off Controller

38

The on/off controller’s response parameters are discussed below:

i) Rising Time:

90% value of the temperature change from initial value to the setpoint value = (36.00℃ -

19.09℃) x 0.9 = 15.22℃ ±0.6 ℃

The value of PV with this 90% change value = 19.09℃ + 15.22℃= 34.31℃ ± 0.6℃, which

is found in approximately 514 seconds.

10% value of the temperature change from initial value to the setpoint value = (36. 00℃ -

20.00℃) x 0.1 = 1.69℃ ± 0.6 ℃

The value of PV with the 10% value change = 19.09℃ +1.69℃ = 20.78℃ ± 0.6 ℃

, which is found in approximately 59 seconds.

Hence, Rising Time = (514 – 59) seconds = 455 seconds

ii) Peak Time: The peak time of this system is found to be 637s, when the temperature of

 the system reaches 36.25℃ + 0.6℃.

iii) Settling value & settling time: The system undergoes oscillation and does not settle.

iv) Overshoot: Ample overshoots are observed.

2. P-Controller:

Rewriting the equation of P-Controller’s ouput from equation (1), section II.i.

Controller Output (P-Term) = 𝐾𝑝. e (t)

The controller’s output is directly proportional to the proportional gain and the error. We would

try to observe the controller’s behavior for different values of proportional gains. We have used

following three values of the proportional gains in our study of the P-Controllers.

39

I) P-Controller with 𝐾𝑝 = 150

The ambient temperature of the system is found to be 20.00℃. The plot of temperature (Process

Variable) and the controller’s output (PWM) against the time of the P-Controller with Kp= 150,

is shown in Fig 4.4 below:

Fig 4.4: Plots of Temperature and Controller’s Output vs Time of P-Controller with Kp =150

The controller’s response parameters are discussed below:

i) Rising Time: The rising time of the system is calculated to be 387 seconds.

ii) Peak Time: The peak time is 501s, when the temperature reaches 35.14℃ ± 0.6℃.

iii) Settling value & settling time: The system settles in approximately 501s, when the

 temperature of the sample reaches 35.14℃ ± 0.6℃.

iv) Steady State Error (SSE) = 36.00 ℃ - 35.14℃= 0.86℃ ± 0.6℃.

40

v) Overshoot: There are no overshoots in the system.

II) P-Controller with Kp=1500

The ambient temperature of the system is found to be 21.93℃ ± 0.6℃. The plots of temperature

and the controller’s output vs time of the P-Controller with Kp = 1500, is shown in Fig 4.5

below:

Fig 4.5: Plots of Temperature and Controller’s Output vs Time of P-Controller with Kp=1500

The response parameters of the P-Controller with Kp =1500, are discussed below:

i) Rising Time: The rising time of the system in this mode is calculated to be 335 seconds.

ii) Peak Time: The peak time of the system is found to be at approximately 441s, when the

temperature of the sample reaches 35.83℃ ± 0.6℃.

iii) Settling value & settling time: The system settles in approximately 441seconds, when the

settling value of the system is found to be 35.83℃ ± 0.6℃.

41

iv) SSE = 36.00℃ - 35.83℃ = 0.17℃ ± 0.6℃.

v) Overshoot: No overshoots are observed in the system.

III) P-Controller with Kp=4300

The ambient temperature obtained in this configuration is found to be 21.50℃ ± 0.6℃. The

plots of temperature and the controller’s output (PWM) vs time of the P-Controller with Kp =

4300, is shown in Fig 4.6 below:

Fig 4.6: Plots of Temperature and Controller’s Output vs Time of P-Controller with Kp=

4300

The controller’s response parameters of P-Controller with Kp= 4300, are discussed below:

i) Rising Time: The rising time is calculated to be 346 seconds.

42

ii) Peak Time: The peak time is 451seconds, when the temperature of the system reaches

 36.25℃ ± 0.6℃.

iii) Settling value, SSE, & settling time: The process variable of the system oscillates along

 the setpoint and the system does not settle.

iv) Overshoot: Ample overshoots are observed.

Table 4.a lists the response parameters of all the designed P-Controllers.

 Table 4.a: List of comparisons of response parameters of all designed P-Controllers

Parameters Kp = 150 Kp = 1500 Kp = 4300

 Settling value The system settles to

the value 35.14℃ ±

0.6℃. This

temperature is below

the setpoint.

The system settles to the

temperature of

35.83℃ ±0.6℃ temperature

(little below the setpoint).

T The system does not settle.

The PV (temperature)

oscillates about the

setpoint.

 Settling Time 501s 441s Cannot be determined

 SSE 0.86℃ ± 0.6℃. 0.17℃ ± 0.6℃. Cannot be determined

 Overshoots No overshoots. No overshoots. O Ample overshoots are

observed.

 Rising time

387 seconds 335 seconds 346 seconds

Conclusion based on the observations of the P-Controllers:

a) The SSE exists for this mode of controller.

b) The system becomes unstable with oscillations for larger values of proportional gains.

43

c) When the proportional gain is increased, the rising time,settling, and the SSE of the system

is generally found to decrease. Since the initial temperatures are different for theses P-

controllers, thus the values of settling times and rising times are not relatively comparative.

However, when we analyzed the data, we observed that there is only slight decrease in settling

time and rising time going from Kp=150 to Kp=1500. However, the rising time for the P-

Controllers with Kp = 1500 and Kp = 4300 are found to be almost same.

3. PI-Controller:

The output of the PI-controller is given below using equation (2) from section II.i as:

Controller Output = P-Term + I-Term

Controller Output = 𝐾𝑝 × e (t) + ∫ 𝐾𝑖. 𝑒(𝑡)𝑑𝑡
𝜏

0

We have already studied the bahaviors of the P-Controllers with the values of “ 𝐾𝑝” as 150,

1500, and 4300. Now we are designing the PI-controllers by setting varying values of integral

gains (𝐾𝑖), while taking the 𝐾𝑝 values 150 and 1500 respectively.

I) PI-Controller with Kp=150 and Ki=1

The initial temperature of the system in this configuration is obtained to be 20.00℃ ±

0.6℃. The plots of temperature and the controller’s output (PWM) vs time of the P-

Controller with Kp=150 and Ki=1, is shown in Fig 4.7 below:

44

Fig 4.7: Plots of Temperature and Controller’s Output vs Time of PI-Controller with

Kp=150 and Ki=1

The PI-controller’s (Kp=150 and Ki=1) response parameters are discussed below:

i) Rising Time: The rising time is calculated to be 409 seconds.

ii) Peak Time: The peak time for this system is found to be 567 seconds, when the temperature

 reaches 36.48℃.

iii) Settling value & settling time: The steady value with which the system settles is found to

 be 35.99℃ at 696 seconds.

iv) SSE = 36.00℃ - 35.99℃ = 0.001℃ ±0.6℃, which is so small such that it can be

neglected. The SSE is eliminated by this controller. (0.001℃ is smaller by more than 200

times the step-size of ADC that is measuring the temperature.)

v) Overshoot and % overshoot = The overshoots are observed closer to 500 seconds

 as shown in Fig 4.7. The calculation of the overshoot % is given below:

45

 % overshoot = (36.48℃ - 35.99℃)/ 35.99℃ x 100%=1.36 %

I) PI-Controller with Kp=150 and Ki=3

The ambient temperature for this configuration is obtained to be 20.69℃ ±0.6℃. The plots of

temperature and the controller’s output (PWM) vs time of the P-Controller with Kp = 150 and Ki

= 3, is shown in Fig 4.8 below. The controller’s response parameters are discussed below:

i) Rising Time: The rising time is calculated to be 306 seconds.

ii) Peak Time: It is found to be 419 seconds, when the temperature of the sample reaches

 36.34℃ ±0.6℃.

iii) Settling value & settling time: The system oscillates and does not settle with a steady value.

iv) Overshoot: Ample overshoots are observed.

Fig 4.8: Plots of Temperature and Controller’s Output vs Time of PI-Controller with Kp=150

and Ki=3

46

II) PI-Controller with Kp=1500 and Ki= 0.1

The ambient temperature for this configuration is obtained to be 21.87℃ ±0.6℃. The plots of

temperature and the controller’s output (PWM) vs time of the P-Controller with Kp= 1500 and

Ki= 0.1, is shown in Fig 4.9 below. The controller’s response parameters are discussed below:

i) Rising Time: The rising time is obtained to be 333 seconds.

ii) Peak Time: The peak time is found to be 447 seconds, when the temperature of the sample

 becomes 36.25℃ ±0.6℃.

iii) Settling value & settling time: There is plenty of oscillations in the system such that the

 system does not settle with a steady state value.

iv) Overshoot: Ample overshoots and oscillation are observed such that the system becomes

 unstable.

Fig 4.9: Plots of Temperature and Controller’s Output vs Time of PI-Controller with Kp=1500

and Ki=0.1

47

 Table 1.b: List of comparisons of response parameters of P- and PI-Controllers

 Table 1.c: List of comparisons of response parameters of PI-Controllers

Conclusions based on the observations of the PI-Controllers:

a) SSE is reduced and eliminated.

b) Overshoots observed.

Parameters 𝐾𝑝 = 150 𝐾𝑝 = 150 and 𝐾𝑖 = 1

Rising time 387s 407s

Peak-time

816s 567s

Settling time 501s 696s

SSE 0.86℃ ± 0.6℃ 0.001℃ ± 0.6℃ (negligible)

Overshoots

No overshoots Overshoots Observed (1.3%)

Parameters 𝐾𝑝 = 150; 𝐾𝑖 = 1 𝐾𝑝 = 150; 𝐾𝑖 = 3

Rising time 407 306s

Peak-time

567s 669s

Settling time 696s Cannot be determined

SSE 0.001℃ ± 0.6℃ (negligible) Cannot be determined

Overshoots

Few Overshoots just before

settling (1.3% of overshoot)

 Ample Overshoots with continuous

oscillations.

48

c) Increasing integral gain leads to the decrease in the rising time.

d) Increasing integral gain leads to the increase in overshoots.

e) Adding even a small fraction of an integral gain, i.e. Ki = 0.1, in the P-Controller with

Kp=1500, the process variable of the system oscillates. Thus, it leads the system to become

unstable.

IV.iii. Conclusion

We found that the marking of an exact temperature at any time becomes extremely difficult due to

the digitizing error. This error depends on the step size of the ADC, which can be minimized by

increasing the resolution of the ADC and decreasing the powering voltage range. However for our

temperature control system, the digitizing error of approximately ±0.16℃ is quite acceptable

regarding the purpose.

The observed controller’s response parameters demonstrated that the on/off controller responds

faster but incurs oscillations with the overshoots. For the P-controllers with lower values of the

proportional gains, the system settles at the temperature lower than the setpoint with SSE while

the system is found to settle near the setpoint for the moderate value of the proportional gain.

However, the larger values of the proportional gain leads the process variable to overshoot and

oscillate, thereby leading the system to become unstable.

In PI-controller, increasing the integral gain while keeping the proportional gain constant, we

observed that the controller responds faster but with the increments in the occurrence of overshoots

too. The appropriate choice of the proportional and integral gains leads the system to settle with a

very small steady state error values and smaller overshoots. The system becomes stable closer to

49

the setpoint. Among all the controllers that we designed for this project, we found that the PI-

controller with 𝐾𝑝 = 150; 𝐾𝑖 = 1, gives a very stable temperature controller system with small

overshoots. Hence, the PI-controller with appropriate gain values lead to a more stable and

desirable control of our temperature controller system.

Hence, the contribution of my dissertation and the system that I designed are as follows:

1) Regarding the sensitivity of the temperature and the other parameters in the cell incubator

in the laboratory, the system that I designed helped me to the basic understanding of the

control systems. I learned the methods to build devices and systems in control designs that

may help in the further development of better controllers for lower prices and to use them

for other applications. The system that I designed can be used as the temperature controller

system for the incubator which would cost around $45 to $85 (discussed in appendix 1C).

It would be cheaper than the temperature controller, product of Omega platinum series,

which we are using for the cell incubator (costs around $230). Although a different sets of

actuators should be used to affect the temperature of the incubator. Furthermore, noise

should be calculated precisely regarding the temperature sensitivity of the cells in the

incubator.

2) The system that I designed may find applications in cooling of the cameras inside cell

incubator.

3) The PI-controller is found to help in controlling the focus of microscope by a laser beam

reflection off of the sample in our laboratory. This is the new technique for fast sampling

of the images from the sample. The knowledge of the functioning of PI-controllers helps

significantly to tune the PID parameters for the optimum focus of the sample.

50

Appendix 1A

Fig A1 Arduino UNO: Jumpers from temperature sensors and input channels of

operational amplifiers are connected to the analog and digital pins of Arduino UNO.

 Fig A2: Closer view of TEC being attached to the sample

Heatsink

Peltier

Sample

Common point to grounds of

TMP36 Sensor and Arduino UNO

Analog Output pin of TMP36 connected

to A2 analog pin of Arduino UNO

Common (point)

connecting AREF pin

and 3.3V pin of

Arduino to the analog

input pin of TMP36

sensor

51

 Appendix 1B

Fig B1: Working mechanism of Peltier pellets

The electrons are at greater energy levels in an order from n-type semiconductor, metal, and, p-

type semiconductor respectively. The heat is carried along the elements by electron transport and

released on the opposite side as the electrons move from a high- to low-energy state and the thermal

energy from the surrounding is absorbed for electrons moving from low –to high energy state.

When the electrons travel from metal to p-type semiconductor, the energy is released which heats

the lower ceramic plate labelled as heat sink. Then, the electrons transferring from p-type

semiconductor to metal absorbs heat from surrounding and cools the upper ceramic plate.

Likewise, the electrons from metal plate transferring to the n-type semiconductor absorbs heat

from the surrounding thereby cooling the upper plate. Finally, the transfer of electrons from the n-

type semiconductor transfer to the metal heats the lower ceramic.

N n-type semiconductor
N p-type semiconductor

 Metal plate

52

Appendix 1C

 Table A1C: Devices and appliances used in the building of our temperature

controller system:
Devices Name Number of quantity used

Thermoelectric Cooler MARLOW RC3-2.5 2

Temperature Sensor TMP36 1

N-MOSFET FQP30N06L 8

Operational Amplifier LM741 Op. Amp 4

Arduino-UNO ATmega328 1

Resistors 5 kilo-ohm 8

1) Power Source: Protek P6000 Programmable DC Power Supply is used for supplying power

to the actuators through the h-bridge, and a dual power source is used for operational

amplifier.

2) Jumping wires, Fret boards, USB cable, and Aluminum bar (Sample) are used for the

system design. 0.1µF ceramic capacitor (connected across Voltage Input pin and ground

pin of TMP36 temperature sensor to minimize the radio frequency interference.)The

Schematic is drawn using Fritzing (open source software).

53

 Appendix 2

1) Codes for ON/OFF Controller

int sensorPin = A2; //initiate analog sensorPin 2

int Setpoint = 36.00 ; // setting setpoint value

int Output;//PWM values

float error;

void setup (){

 Serial.begin(9600);

 pinMode(3, OUTPUT); //Initiates digital pin 3

 pinMode(9, OUTPUT); //Initiates digital pin 9

 pinMode(10, OUTPUT); //Initiates digital pin 10

 pinMode(11, OUTPUT); //Initiates digital pin 11

 analogReference (EXTERNAL);//calling external analogReference to use 3.3V pin

 delay(10);}// delaying 10ms to call the 3.3V pin

void loop (){

 float reading = analogRead(sensorPin); // reading ADC values through sensor

 float voltage = reading *3.2 ;//converting ADC value to the voltage

 voltage /= 1024.00; //dividing the voltage into precision of 10 bits

 float Input = (voltage- 0.5) * 100 ; //converting to the degrees with 10 mV/℃ with 500 mV offset

if (Input<Setpoint){

 analogWrite(3,0); //turning off output through digital pin 3

 analogWrite(9,255); //Establishes output through digital pin 9

 analogWrite(10,255); //Establishes output through digital pin 10

 analogWrite(11,0); //turning off output through digital pin 11

 Output = 255; } // declaring the output

else{

 analogWrite(3,0); //turning off output through digital pin 3

 analogWrite(9,0); //turning off output through digital pin 9

 analogWrite(10,0); //turning off output through digital pin 10

 analogWrite(11,0);//turning off output through digital pin 11

 Output=0;} //declaring the output

 Serial.print (“Temperature”);

 Serial.print (Input); //printing the output temperature (PV) in each loop

 Serial.print(“Output”);

 Serial.println(Output); //printing the controller's output(PWM) in each loop

 delay(100); } //delaying for 100ms

54

2) Codes for P-Controller with 𝑲𝒑 = 150

int sensorPin = A2; //initiate analog sensorPin 2

float Kp = 150 ; // Proportional gain values

float Output, Input, error, Setpoint = 36.00; // variables

void setup (){

 Serial.begin(9600);

 pinMode(3, OUTPUT); //Initiates digital pin 3

 pinMode(9, OUTPUT); //Initiates digital pin 9

 pinMode(10, OUTPUT); //Initiates digital pin 10

 pinMode(11, OUTPUT); //Initiates digital pin 11

 analogReference (EXTERNAL);//calling external analogReference to use 3.3V pin

 delay(10); //delaying for 10ms to call the 3.3V pin

 }

void loop (){

 float reading = analogRead(sensorPin); // reading ADC values through sensor

 float voltage = reading * 3.2;//converting ADC value to the voltage

 voltage /= 1024.00; //dividing the voltage into precision of 10 bits

 Input = (voltage - 0.5) * 100 ; //converting from 10 mV/℃ with 500 mV offset

 error = Setpoint - Input; // calculate error

Output = Kp * error; // preparing the output variable

 if (Output > 255)

Output = 255; // keeping the output within the available output range

 if (Output < 0)

 Output = 0;

 analogWrite(3,0); // turning off output through digital pin 3

 analogWrite(9,Output); //Establishes output through digital pin 9

 analogWrite(10,Output);// Establishes output through digital pin 10

 analogWrite(11,0); //turning off output through digital pin 11

 Serial.print(" TEMPERATURE ");

 Serial.print (Input); // printing the output temperature in each loop

 Serial.print(" PWM ");

 Serial.println(Output); //printing the controller output (PWM) in each loop

 delay(100);//delaying for 100ms

3) Codes for PI-Controller with 𝑲𝒑 = 150 and 𝑲𝒊 = 1

int sensorPin = A2; //initiate analog sensorPin 2

float Kp = 150, Ki = 1; // PID gain values

float error, Output, Input, ITerm, Setpoint = 36.00; // Setting variables

void setup () {

 Serial.begin (9600);

 pinMode (3, OUTPUT); //Initiates digital pin 3

 pinMode (9, OUTPUT); //Initiates digital pin 9

 pinMode (10, OUTPUT); //Initiates digital pin 10

55

 pinMode (11, OUTPUT); //Initiates digital pin 11

 analogReference (EXTERNAL); //calling external analogReference to use 3.3v pin

 delay (10);

 }

 void loop () {

 float reading = analogRead (sensorPin); // reading ADC values through sensor

 float voltage = reading * 3.2;//converting ADC value to the voltage

 voltage /= 1024.00; //dividing the voltage into precision of 10 bits

 Input = (voltage - 0.5) * 100; //converting from 10 mV/℃ with 500 mV offset

 error = Setpoint - Input; // calculate error

 ITerm += (Ki *error); // add current error to running total of error

if (ITerm > 255) // check for integral windup and correct for upper limit

ITerm = 255;

if (ITerm < 0)//check for integral windup and correct for lower limit

 ITerm = 0;

 Output = Kp * error + ITerm; // preparing the output variable

 if (Output > 255); // keeping the output within the available output range

 Output = 255; //

 if (Output < 0)

 Output = 0;

 analogWrite(3, 0); //turning off output through digital pin 3

 analogWrite (9, Output); //Establishes output through digital pin 9

 analogWrite(10, Output); //Establishes output through digital pin 10

 analogWrite(11, 0); //turning off output through digital pin 11

 Serial.print(“TEMPERATURE”);

 Serial.print(Input); printing the Temperature (PV) in each loop

 Serial.print(" PWM ");

 Serial.println(Output); //printing the controller’s output (PWM) in each loop

 delay(100);//delaying for 100ms

56

Bibliography

Alvi, B. A., Asif, M., Siddiqui, F. A., Safwan, M., & Bhatti, J. A. (2014). Fast Steering Mirror

Control Using Embedded Self-Learning Fuzzy Controller for Free Space Optical

Communication. Wireless Personal Communications, 76(3), 643-656.

Arduino-ArduinoBoardUno. (n.d.).

Retrieved from https://www.arduino.cc/en/Main/ArduinoBoardUno

 Aziz, M. M. (2010). Transfer Function and Block Diagrams. Retrieved from

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ea619_2s12/transfer_function_block_dia

gram.pdf

Bret. (2011, April). Improving the Beginner’s PID – Introduction « Project Blog. Retrieved from

http://brettbeauregard.com/blog/2011/04/improving-the-beginner-pid-introduction/

Dominguez, B., Barba, F., & Castrejon, C. (2014, December 8). DC Motor Driver by EMG and

EOG | imditesmprojects. Retrieved from https://imditesmprojects.wordpress.com/dc-

motor-driver-by-emg-and-eog/

Fried, L. (2012, July 29). Overview | TMP36 Temperature Sensor | Adafruit Learning System.

Retrieved from https://learn.adafruit.com/tmp36-temperature-sensor/overview

Gupta, S., & Pathak, A. (2012, January). ADC Guide, Part 1- The Ideal ADC. Retrieved from

http://www.cypress.com/file/113946/download

57

Hunt, O. (n.d.). HVLabs.com. Retrieved from http://www.hvlabs.com/hbridge.html

Levine, W. (1996). The Control handbook (Electrical engineering handbook series). Boca Raton,

Fl.: [New York, NY]: CRC Press; IEEE Press.

Nath, A.S., R, A.K., & Malik, T. (2013). “Implementation of PID Control to Reduce Wobbling in

a Line Following Robot”. International Journal of Research in Engineering and

Technology,2(10).doi:10.15623/ijret

http://esatjournals.net/ijret/2013v02/i10/IJRET20130210083

National Instruments. (2011, March 29). PID Theory Explained. Retrieved from

http://www.ni.com/white-paper/3782/en/

Peacock, F. (2008). How the PID Algorithm works and why it works. Retrieved from www.PID-

Tuning.com

Premeaux, E., & Evans, B. (2011). Saving the world. In Arduino Projects to Save the World,

Spider temp. Berkeley, CA: Apress.

Rhinehart, R. (2000). The century's greatest contributions to control practice. ISA

Transactions, 39(1), 3-13.

Roberge, J. K., & Lundberg, K. H. (2007). Background and Objectives. In Operational

Amplifiers: Theory and Practice [1.81] (2nd ed., pp. 1-11). Retrieved from

http://web.mit.edu/klund/www/books/opamps181.pdf

58

Sparks, T.D. (2013). How do thermoelectrics work? Retrieved from

http://www.eng.utah.edu/~sparks/how-do-thermoelectrics-work.html

Theopaga, A. K., Rizal, A., & Susanto, E. (2014). Design and implementation of PID control based

baby incubator Journal of Theoretical & Applied Information Technology, 70(1).

Vikhe, P., Punjabi, N., & Kadu, C. (2014). Real Time DC Motor Speed Control using PID

Controller in LabVIEW. IJAREEIE, 03(09), 12162-12167.

doi:10.15662/ijareeie.2014.0309046

Vilanova, R., & Visioli, Antonio. (2012). PID control in the third millennium lessons learned and

new approaches (Advances in industrial control). London; New York: Springer.

Welander, P. (2010, February 1). Understanding Derivative in PID Control. Retrieved from

http://www.controleng.com/search/search-singledisplay/understanding-derivative-in-pid-

control/4ea87c406e.html

59

	Understanding and Design of an Arduino-based PID Controller
	Downloaded from

	tmp.1482268250.pdf.7RSkY

