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Abstract 

 

DISCOVERY AND CHARACTERIZATION OF BILE ACID AND STEROID METABOLISM 
PATHWAYS IN GUT-ASSOCIATED MICROBES 
 

Spencer Harris, B.S. 
 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University 
 

Virginia Commonwealth University, 2017 
 

Major Director:  Phillip Hylemon, Ph.D. 

Professor, Department of Microbiology and Immunology 

 

The human gut microbiome is a complex microbial ecosystem residing in the lumen of our 

gastrointestinal tract.  The type and amounts of microbes present in this ecosystem varies based 

on numerous factors, including host genetics, diet, and environmental factors.  The human gut 

microbiome plays an important role in normal host physiological functions, including providing 

energy to colonocytes in the form of short-chain fatty acids.  However, gut microbial metabolites 

have also been associated with numerous disease states.  Current tools for analyzing the gut 

microbiome, such as high-throughput sequencing techniques, are limited in their predictive 

ability.  Additionally, “-omic” approaches of studying the complex array of molecules, such as 

transcriptomics (RNA), proteomics (proteins), and metabolomics (previously identified 

physiologically active molecules), give important insight as to the levels of these molecules but 

do not provide adequate explanations for their production in a complex environment.  With a 



 xix 

better physiological understanding of why specific metabolites are produced by the gut 

microbiome, more directed therapies could be developed to target their production.  Therefore, it 

is immensely important to study the specific bacteria that reside within the gut microbiome to 

gain a better understanding of how their metabolic actions might impact the host.  Within this 

framework, this study aimed to better understand the production of secondary bile acid 

metabolites by bacterial in the gut microbiome.  High levels of secondary bile acids are 

associated with numerous pathophysiological disorders including colon cancer, liver cancer, and 

cholesterol gallstone disease.  In the current study, three bile acid metabolizing strains of bacteria 

that are known members of the gut microbiome were studied.  A novel strain of Eggerthella 

lenta was identified and characterized, along with the type strain, for its ability to modulate bile 

acid and steroid metabolism based on the atmospheric gas composition.  Additionally, it was 

shown that the oxidation of hydroxyl groups on primary bile acids by E. lenta C592 inhibited 

subsequent 7α-dehydroxylation by Clostridium scindens. The gene involved in the production of 

a Δ4,6-reductase enzyme, responsible for catalyzing two of the final reductive steps in the 7α-

dehydroxylation pathway, was putatively identified and characterized in Clostridium scindens 

ATCC 35704.  Lastly, the transcriptomic profile of Clostridium scindens VPI 12708 in the 

presence of numerous bile acids and steroid molecules was studied.  These studies contribute 

significantly to the understanding of why specific bile acid metabolites are made by members of 

the gut microbiome and suggest ways of modulating their production. 

 



 1 

Chapter 1:  Introduction 

 

Introduction to the human gut microbiome 

 

The human body can be thought of as a vehicle used by trillions of microscopic passengers.  In 

fact, the number of prokayotic cells associated with our bodies outnumbers our own eukaryotic 

cells by an order of magnitude (1). The overall conglomeration of microbes making up the 

“human microbiome” varies based on numerous factors including:  diet, environment, and host 

genetics, among others (2). There has been significant effort by scientists to better understand 

this complex microbial community.  Next generation nucleic acid sequencing, along with 

advances in both computational and bioinformatic analysis, allows for whole-genomic 

sequencing from both isolated strains in culture and those isolated via single-cell sorting (3) as 

well as reconstruction of these individual genomes in more complex microbial communities (4) 

and even modeling bacterial metabolic potentials (5). In tandem with these high-throughput 

analyses, the assignment of bacterial strains into operational taxonomic units (OTUs) is 

accomplished via comparison against 16S sequencing data.  The utilization of OTU classification 

has important implications, as it is used to predict metabolic potential of complex microbial 

ecosystems.  It is on the basis of OTU assignment that the observation was made that in spite of 

vast variation of microbial constituents, there is maintenance of metabolic potential across 

different individuals (2). 

 

Within this association between humans and microbes, a large amount of attention has been paid 

to the lumen of the large intestine. The anaerobic environment here harbors the highest 
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concentration of microbes in the human body, as well as a vast host mucosal layer allowing for 

direct interaction with the microbes. With over 1013 prokaryotic cells (6), the number of 

microbial genes eclipses our own by over 100-fold.  The “human gut microbiome” refers to this 

incredibly diverse microbial ecosystem and under normal physiological conditions it establishes 

a symbiotic relationship with us.  The gut microbiome has important, established roles in 

producing energy sources for gut epithelial cells (7), modulating host immunity (8, 9), and 

preventing colonization by harmful pathogens (9).  This, however, is only the beginning of our 

understanding of the complex interplay between gut-associated microbes and their hosts. 

 

Microbial fermentation of complex carbohydrates in the large intestine 

 

As with many niches in symbiotic ecosystems, there is usually an evolutionary “opening” that 

allows for abundant but otherwise unused byproducts and nutrients to be exploited for energy 

production, respiration, or used for other cellular processes.  The most quantitatively important 

example of this phenomenon in the large intestine is the plant-derived complex carbohydrates 

that escape absorption and metabolism in the small intestine. Resistant starches undergo 

anaerobic fermentation by bacteria, forming short chain fatty acids (SCFAs) (10). The three 

major SCFAs produced in human large intestine include acetate, propionate, and butyrate (11). 

Figure 1.1 depicts the structure of these three major SCFAs. SCFAs are present at a 

concentration of 13-130mM in the lumen of the gut (12), and are rapidly absorbed by the 

surrounding epithelial cells.  Buryrate is favored by the colonic epithelial cells as an energy 

source (12), but all SCFAs are an important source of energy for intestinal epithelial cells, 

contributing to an estimated 3-9% of our calorie intake per day (7). 
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Figure 1.1:  Chemical structure of major short chain fatty acids produced by gut-associated 

microbes 
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Both propionate and acetate are detected in portal circulation (12, 13), but propionate is mostly 

metabolized by the liver, leaving acetate as the major SCFA reaching systemic circulation (13). 

It is important to note that SCFA production varies widely and is impacted by bacterial species 

present, gut transit time, pH, hydrogen partial pressure, and the availability of complex 

carbohydrate substrates (14-16). 

 

Landmark studies have been performed comparing the contributions of genetics, environmental, 

and dietary factors towards predisposition to colorectal cancer (CRC).  Native Africans eating a 

diet rich in complex carbohydrates and low in animal protein had a significantly lower rate of 

CRC compared to African Americans eating a “Western diet” low in complex carbohydrates but 

high in fats and animal protein (17, 18). The mechanism by which increased complex 

carbohydrates play into prevention of CRC has been a topic that has received a lot of attention.   

 

Both butyrate and propionate have been shown to have beneficial effects on colonocytes and gut-

associated immune cells, and also impact colorectal tumor growth.  On normal colonic epithelial 

cells, SCFAs aid in the maintenance of normal physiological functions by sustaining the integrity 

of the mucosal barrier (19, 20), regulating inflammatory responses (9, 21), and cell 

growth/differentiation (22, 23). Butyrate and propionate are inhibitors of histone deacetylases 

(HDACs), leading to induction of apoptosis in CRC cell lines (24, 25).  SCFAs also impact 

peripheral regulatory T cells (Treg) through the same HDAC inhibition, leading to an 

upregulation of forkhead box P3 (FOXP3) and enhancement of the Treg population and anti-

inflammatory function, under normal conditions (26).  Because of the dual functionality of 
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preventing CRC cell proliferation and maintaining homeostatic conditions, the production of 

SCFAs in the colon has been suggested as a means of reducing the occurrence of CRC.   

 

Microbial production of hydrogen gas in the large intestine 

 

SCFAs are not the only end products of the fermentative actions of gut microbes on 

carbohydrates in the colon.  Both carbon dioxide (CO2) and hydrogen gas (H2), found in 

abundance in the colon, are byproducts of anaerobic bacterial fermentation (27).  The majority of 

CO2 produced by gut-associated microbes is either absorbed into circulation through the 

enterocytes or is immediately utilized by other microbes in the vicinity (28).  On the other hand, 

approximately 60-70% of H2 produced remains after utilization by other microbes to be excreted 

via breath or flatus (28).  Upwards of 13L per day of H2 can be produced in the human colon 

(29), while germ-free animal studies show negligible hydrogen gas production until introduced 

to fecal slurries containing gut microbes (30).  The amount of H2 found in the lumen of the large 

intestine varies based on numerous factors, but is mainly impacted by the rate of production 

versus the rate of utilization of H2 by various members of the gut microbiota (14, 28, 29). 

 

H2 producers are relatively abundant in the gut microbiota.  Hydrogen production is common 

within the Firmicutes and Bacteroidetes phylum, the two major constituents colonizing the colon. 

In vitro studies have shown that members of the genera Roseburia (31), Ruminococcus (32), 

Eubacterium (33-35) generate H2.  Another means of microbial H2 production is through the 

oxidation of ferredoxin, pyridine nucleotides, and formate by microbial hydrogenases.  Through 

this process, anaerobic bacteria are able to rid their cells of reducing equivalents and maintain 
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intracellular redox balance.  Genes encoding various hydrogenases are widespread throughout 

bacteria known to inhabit the colon, especially in the Bacteroidetes phylum (36). 

 

Hydrogen gas utilization by microbes in the large intestine 

 

Because H2 is a major byproduct produced by many gut bacteria, microbes able to utilize it as a 

substrate would have an evolutionary advantage in the gut microbiota.  One such group of H2 

utilizers is methanogens, a group of archaea that are able to reduce CO2, methanol, or acetate to 

methane gas (CH4), using H2 as an electron donor (37).  CH4 is an entirely microbial-derived 

product, as it is neither made nor utilized by our own cells (38). The reduction of CO2 to CH4 is 

carried out by a series of dehydrogenases and reductases, forming an electron transport chain 

(38).  CO2 is first reduced and attached to methanofuran as a formyl group, then affixed to 

tetrahydromethanopterin, undergoes a dehydration followed by two reductive steps, is transferred 

to its next carrier sulfhydryl-coenzyme M along with the generation of a Na+ gradient, and 

undergoes a final reduction resulting in CH4 (39, 40) (Figure 1.2).   

 

This process is energetically favorable, the resulting change in free energy (ΔGº’) = -131 kJ/mol 

and leads to approximately one mol ATP generated for each mol CH4 formed (41).  

Methanobrevibacter smithii is the most numerically prominent methanogen found in the gut 

microbiome and can be present in up to 1010 CFU/g in stool (42).  Presence of methanogens in 

the gut microbiome is impacted by diet (17, 38), host genetics (43), and environmental factors 

(17).  Early studies on methanogens in humans used breath assays to determine presence of CH4
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Figure 1.2:  Biochemistry of the methanogenesis pathway in archaea from CO2 
 
Conversion of CO2 and H2 to methane via methanogenesis in Methanobrevibacter species starts 

by the fixation of CO2 with H2 to methanofuran.  The resulting formyl group is then transferred 

to tetrahydromethanopterin.  After a dehydration step, the resulting molecule undergoes two 

successive reductive steps (requiring additional H2).  The resulting methyl group is then 

transferred to reduced coenzyme M.  The last step requires reduced coenzyme B and the nickel-

containing porphinoid F430, and results in the production of methane.
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producers (45).  Detection of CH4 in a breath assay is indicative of relative activity of methane 

producers, although the lack of CH4 detection was not necessarily indicative of their absence 

(46).  More modern molecular techniques have been developed to screen for a highly conserved 

methanogenic gene, i.e. coenzyme M reductase (mcrA) (47, 48).  Studies have shown that 

methanogens are found in colonic samples at rates ranging from less than 103 to over 109 CFU/g 

stool (49). 

 

Methanogens have been implicated to have various effects on human health.  For instance, 

patients with terminal ileal disease, Crohn’s disease, and ulcerative colitis (UC) have been shown 

to have significantly lower amounts of CH4 excretion compared to healthy controls (50-54).  

Moreover, gene copy number of mcrA is significantly reduced in patients with UC (47).   

Whether the lack of methanogens contributes to or is merely a symptom of these disorders 

remains to be elucidated, although the reduced gut microbial diversity found in these disorders 

may contribute to the reduction in methanogenesis.  There is less definitive data surrounding the 

effects methanogens may play on CRC, and the data that exists is mixed.  Older reports indicate 

increased amounts of CH4 in patients with CRC versus control patients (55, 56), while newer 

ones show no difference or less methanogens in patients with CRC versus control patients (57, 

58).   

 

In the colon, methanogens are not the only group of microbes that are able to utilize H2.   

Sulfate reducing bacteria, are able to reduce sulfate (SO4
2-) as their terminal electron acceptor, 

forming hydrogen sulfide gas (H2S or HS-).  This reaction is able to utilize reducing equivalents 

from numerous electon donors, including lactate, pyruvate, ethanol, formate, SCFAs, and amino 
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acids (59, 60), although H2 appears to be the preferred electron donor for the most prevalent 

sulfate reducing bacteria found in the gut microbiome (61).  Similar to methanogenesis, 

reduction of sulfate to hydrogen sulfide gas is carried out through an electron transport chain 

(62) (Figure 1.3). Sulfate and ATP are first linked via an ATP-sulfurylase to form adenosine-5’-

phosphosulfate, which then undergoes reduction via APS-reductase leading AMP and sulfite 

(SO3--) (62). Sulfite then undergoes three successive reductive steps leading to H2S (63).  This 

process is even more energetically favorable under physiological conditions than 

methanogenesis, resulting in ΔGº’ = -152.2 kJ/mol, although the overall ATP generation is 

estimated to still be 1 mol ATP per mol H2S formed (41).   

 

Sulfate reducing bacteria with the highest activity and affinity for H2 are found within the genus 

Desulfovibrio (59) and are known members of the gut microbiome at a level of 104 to 1011 CFU/g 

wet weight (46, 64).  Newer molecular techniques screening for genes conserved in sulfate 

reduction have confirmed sulfate-reducing bacteria are relatively ubiquitous in the human gut 

microbiome (65, 66).  In addition to using numerous electron donors, sulfate can come from 

numerous sources both endogenous and exogenous, including secreted mucin, non-absorbed 

proteins, sulphur-containing amino acids, and taurine (a source of sulfite) (63, 64, 67).  Since 

both sulfate-reducing bacteria and methanogens in the gut microbiota compete for the same pool 

of H2, the deciding factor is the availability of sulfate for hydrogen sulfide production.  

Energetically, hydrogen sulfide generation is a more favorable reaction than methanogenesis.  

While presence of one strain is not mutually exclusive of the other, screening tests of human 

fecal samples have shown that patients usually harbor either methanogens or sulfate-reducing 
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Figure 1.3:  Biochemistry of sulfidogenesis in gut microbes from sulfate and taurine 
 
In the process of hydrogen sulfidogenesis from sulfate, adenosine triphosphate is first linked to 

sulfate via ATP sulfurylase.  This molecule is then reduced, forming AMP and sulfite.  Sulfite 

can also be liberated from bile acid conjugate taurine via bacteria such as B. wadsworthia (68).  

Sulfite then undergoes three successive reductions (via dissimilatory sulfite reductases) to 

ultimately produce hydrogen sulfide.  
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bacteria (46), although in situations of abundant H2 there are reports of both being present and 

active (59, 60, 69).  In vivo studies comparing methanogenesis and H2S production in mouse 

models confirm that when both methanogens and H2S producers are present and available sulfate 

is abundant, H2S production dominates and methanogenesis along with viable methanogens are 

below the limits of detection (70, 71).  By reducing the amount of sulfate available, 

methanogenesis has been shown to recover (71), suggesting a direct inverse link between H2S 

production and methanogenesis and confirming that sulfate-reducing bacteria out-compete 

methanogens for utilization of H2. 

 

High levels of H2S have been reported to have deleterious effects on human health. Several 

studies have suggested a link between ulcerative colitis and gut microbial H2S production (72, 

73) while others have refuted this claim (74).  There is a demonstrated link between UC and a 

western diet high in protein and sulfur-containing amino acids (75, 76). Similarly, removal of 

such foods from the diet of UC patients results in an improved outcome (76). Another source of 

sulfite, taurine from conjugated bile salts, has been shown to be increased in the lumen of the 

large intestine in individuals eating a western diet (77, 78).  Studies have also suggested a link 

between bacteria able to liberate sulfate from conjugated bile acids and the development of 

colitis in mice (68).  In addition to ulcerative colitis, H2S production has been associated with 

CRC.  In a mouse model of colonic dysplasia, mice given a source of sulfate had significantly 

more colonic dysplasia than those treated with a source of sulfate plus metronidazole, suggesting 

both H2S is formed by gut microbes and that it is associated with dysplasia (79).  Stool H2S 

levels in CRC cancer patients have been shown to be increased (80).  However, a concurrent 
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increase in H2S producing bacteria was not significant, suggesting that H2S producing activity 

instead of presence of H2S producing bacteria is more predictive for CRC (81, 82). 

 

One suggested link between H2S and CRC is the H2S-mediated inhibition of acyl-CoA 

dehydrogenase in colonocytes, the enzyme responsible for butyrate oxidation (83, 84).  

Inhibition of butyrate oxidation leads to increased epithelial permeability, decreased absorption 

of ions, as well as membrane lipid and mucus formation (85).  Even at physiological 

concentrations, H2S has been shown to be cause DNA damage in colonocytes, at least partially 

via stimulation of reactive oxygen species (ROS) (86, 87).  In addition to direct DNA damage, 

H2S can induce inflammatory and DNA damage repair pathways in human intestinal cells (88).  

Levels of the enzyme thiosulphate sulphotransferase, responsible for detoxifying H2S, are 

significantly reduced in patients with CRC (89).  Taken as a whole, H2S is a likely culprit for 

creating and maintaining an environment that can, over time, lead to the formation of CRC in 

individuals that have sufficient substrates promoting H2S formation in the colon. 

 

A third mechanism of utilizing H2 produced by gut microbial fermentation is through 

acetogenesis.  Acetogenesis is the process by which bacteria fix CO2 and molecular H2 to form 

acetate.  The study of acetogenesis takes its roots in the study of gas metabolism by anaerobic 

soil bacterium, as one of the first reports of this “new type of glucose fermentation” was found in 

a strain of Clostridium thermoaceticum isolated from manure (90).  Subsequent studies by 

Harland Wood and Lars Ljungdahl elucidated enzymatic pathway responsible for autotrophic 

synthesis of acetate from CO2 known as the Wood-Ljungdahl pathway (WLP) (91). The WLP is 

a multi-step enzymatic pathway that utilizes eight reducing equivalents and two CO2 to form 
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acetate (Figure 1.4).  The overall reaction yields even less energy than methanogenesis or 

sulfidogenesis, with a �Gº’ = -95kJ/mol (41).  ATP is generated from ADP during the final 

substrate-level phosphorylation of acetyl-CoA to acetate (92). However, more recently it has 

been suggested that instead of acetogenesis being a pathway of energy production, it is a means 

of regenerating oxidized pyridine nucleotides and ferredoxin to maintain intracellular redox 

equilibrium (93).  As many of these bacteria are found in anaerobic environments and electron 

acceptors are at a premium, the ability of acetogens to use CO2 as an electron acceptor via the 

WLP gives them an evolutionary advantage.  In addition, the majority of acetogens are able to 

use a multitude of different electron acceptors and electron donors, making them good at 

adapting to the energy and redox requirements of their environment (94). 

 

In addition to harboring the genes for the WLP, most acetogens additionally have membrane 

bound hydrogenases that are able to interconvert their reducing equivalents in an electron 

transport chain.  One of the best-characterized examples of this is the Rhodocbacter nitrogen 

fixation (RNF) complex originally characterized in an electron transporter associated with 

nitrogenases (95-97).  The RNF complex, found in numerous strains of acetogens, couples the 

oxidation of ferredoxin (Fd) to the reduction of pyridine nucleotides and the generation of either 

a Na+ or H+ membrane gradient (98) (Figure 1.5).  This process is reversible and can help cycle 

reducing equivalents between various electron carriers (99, 100).  The gradient produced by the 

RNF complex can then be utilized to generate additional ATP, coupling acetogenesis to an ATP-

generating process in the cell in addition to regenerating oxidized electron carriers (93, 98).  Not 

all acetogens harbor RNF complexes, although those that do not usually encode some 

membrane-bound energy conserving hydrogenase system capable of interconverting reducing 
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Figure 1.4:  Diagram of acetate formation via the Wood-Ljungdahl Pathway 
 
The multistep process of CO2 fixation to acetate starts with the fixation of carbon dioxide by 

formade dehydrogenase.  Formate is then linked to tetrahydrofolate (requiring ATP) via formyl-

tetrahydrofolate synthetase.  Formyl-tetrahydrofolate is then recognized by a cyclohydrolase, 

forming methenyl-THF.  This molecule undergoes two successive reductive steps by methylene-

THF dehydrogenase and methylene-THF reductase, respectively. The resulting methyl-group is 

transferred to a corrinoid/iron sulfur protein via a methyltransferase.  Then, along with CoA and 

carbon monoxide (from reduction of CO2 by a carbon monoxide dehydrogenase), the methyl 

group is used to generate acetyl CoA via acetyl-CoA synthase.  This acetyl-CoA then undergoes 

substrate-level phosphorylation, ultimately leading in the production of acetate and the 

generation of ATP.  This process is energy-neutral (1 mol ATP used/1 mol ATP generated per 

mol acetate), but requires a significant amount of reducing equivalents (four reducing 

equivalents/mol acetate) (101).  
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Figure 1.5:  Schematic of RNF Complex and ATP Synthase in Acetogens 
 
RNF complex is a multi-subunit NADH/ferredoxin oxidoreductase capable of reversibly 

oxidizing reduced ferredoxin forming reduced NADH and generating a proton or Na+ gradient.  

Other transmembrane machinery can utilize this gradient for transport or for energy generation, 

such as an ATP synthase.  
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equivalents whilst generating an ion gradient (98, 102, 103).  More recently, acetogenesis has 

begun to garner interest as an alternative pathway of H2 elimination in the lumen of the large 

intestine.  Due to the contributions of CH4 production of livestock to global warming (104), 

acetogens have been suggested as a potential alternative probiotic in the rumen of cattle (105). 

The largest group of characterized acetogens present in mammalian gut microbiomes is from the 

Firmicutes phylum (106). However, unlike the methanogenesis and sulfidogenesis, the 

acetogenesis phenotype has also been identified in other phyla, making acetogens a more diverse 

group of H2 utilizers (107).  Studies have shown that in humans, acetogenesis during glucose 

fermentation by gut microbes contributes to up to a third of the total amount of acetate produced 

(11).  Much less is known about contributions acetogens may have on human health.  Since 

acetogens, in contrast with methanogens and sulfidogens, are a more heterogenous group of 

organisms, traditional means of molecular screening testing are less effective, though some 

studies that have screened genes from the acetogenic pathways in stool samples have found them 

at rates of 103 – 107 genes/g stool (49).  Based on the energetics, acetogenesis is the least 

energetically favorable reaction behind methanogenesis and sulfidogenesis.  However, in vivo 

data suggests acetogens are the most quantitative potential H2 utilizers present in the gut 

microbiome (11, 106). Taken together, this suggests that acetogenic utilization of H2 in the colon 

may be the prevalent method in humans that harbor neither active methanogens nor active H2S 

producers.  Ultimately, acetogenesis in the human colon can be influenced by numerous factors 

that impact microbial fermentation, the levels of available CO2 and H2, the presence of 

methanogens or sulfidogens, and presence of sulfate or sulfite for reduction. 
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Bile acid formation and enterohepatic circulation 

 

Under normal physiological conditions, microbial fermentation of complex carbohydrates and 

amino acids in the colon is quantitatively the most prevalent reaction occurring.  However, other 

exogenous and endogenous molecules also enter the lumen of the large intestine where they 

become substrates for microbial conversion.  One such group of molecules is bile acids, sterol 

molecules synthesized by hepatocytes from cholesterol.  The two major bile acids produced in 

humans are cholic acid (3α, 7α, 12α-trihydroxy-5β-cholan-24-oic acid; CA) and 

chenodeoxycholic acid (3α, 7α-dihydroxy-5β-cholen-24-oic acid, CDCA) (Figure 1.6).  Bile 

acids are conjugated to either taurine or glycine forming bile salts, resulting in their characteristic 

amphipathic nature.  Bile salts are actively secreted across the canalicular membrane of 

hepatocytes via the bile salt export pump (BSEP) (108), and subsequently stored and 

concentrated in the gallbladder during the interdigestive phase.  Upon the arrival of fatty acids 

and/or amino acids reaching the duodenum, enteroendocrine cells in the mucosal lining of the 

duodenum secrete cholecystokinin (CCK).  CCK stimulates release of pancreatic enzymes, 

inhibits gastric emptying, and induces the gallbladder to constrict (109).  This constriction causes 

the stored bile salts through the cystic duct, common bile duct, ampulla of Vater, and finally 

through the relaxed sphincter of Oddi into the lumen of the duodenum (110).  Once in the lumen 

of the small intestine, bile salts serve to aid in the sequestration and absorption of lipids and lipid 

soluble vitamins (A,D,E,K) via the formation of micelles (111).  Bile salts activate pancreatic 

lipase, producing monoglycerides and free fatty acids, which become key components of the 

mixed micelles (112).  Due to their high concentration and detergent-like actions, bile salts also 

help to prevent overgrowth of bacteria in the small 
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Figure 1.6:  Chemical structure of primary bile acids and their conjugates  
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intestine (113).  Once the bile salts reach the terminal ileum they are actively transported across 

the apical membrane of ileal enterocytes via the apical sodium-codependent bile acid transporter 

(ASBT) (108).  They are then transported across the apical membrane of enterocytes via the 

OSTα/OSTβ transporter (114) and enter portal circulation.  When they reach the liver, bile salts 

are highly efficiently taken up through active transport across the sinusoidal membrane of 

hepatocytes via Na+ taurocholate cotransporting polypeptide (NTCP) and returned to the pool of 

bile salts (115), thus completing a process known as enterohepatic circulation.  Enterohepatic 

circulation of bile salts is only approximately 95% effective, allowing 400-800mg/day of bile 

salts to escape into the large intestine where they become substrates for numerous microbial 

biotransformations (113). 

 

Bile acid metabolism by gut microbes 

 

Beginning in the ileum and occurring in earnest once in the large intestine, the first reaction bile 

salts undergo is deconjugation of bile acids from their taurine or glycine conjugate via bile salt 

hydrolases (BSH) (116).  Typically the ratio of glycine:taurine conjugation in humans is 3:1, 

however this is impacted by diet. It has been shown that individuals on a “Western diet” have 

predominantly taurine conjugation, while individuals on a vegetarian diet shift towards glycine 

conjugation (77, 78).  BSH activity is widely present in the microbes populating both the large 

and small intestines.  Gram-positive commensal bacteria with BSH activity include Clostridium 

(117, 118)), Enterococcus (119), Bifidobacterium (120, 121), and Lactobacillus (122, 123).  

BSH activity is less widespread in commensal Gram-negative bacteria, but include members of 

Bacteroides genus (124).  Gut-associated archaea Methanobrevibacter smithii and 
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Methanosphera stadmanae have also been found to have BSH activity (116).  BSH enzymes 

specifically hydrolyze the N-acyl bond on the 24th carbon that is responsible for linking the 

amino acid conjugate to the bile acid (Figure 1.7) (125).  Studies that have characterized BSH 

activity from purified enzymes show that their pH sensitivities tend to be between 5-6, are 

located intracellularly, and have higher activity on glycine-conjugated bile salts (121, 126-128).   

 

Once bile acids are liberated from their conjugate, they become substrates for numerous 

microbial biotransformations.  7α-dehydroxylation is a process by which a small group of 

bacteria within the Clostridia genus are able to remove the hydroxyl group from the seventh 

carbon of both CA and CDCA forming secondary bile acids deoxycholic acid (3α, 12α-

dihydroxy-5β-cholen-24-oic acid; DCA) and lithocholic acid (3α-monohydroxy-5β-cholen-24-

oic acid; LCA), respectively (113) (Figure 1.7).  This process is unique to gut microbes, as 

hepatocytes do not produce secondary bile acids nor are they found in fecal samples of germ free 

animals (129, 130). Studies measuring fecal bile acid composition show that secondary bile acids 

form the major constituency (113), suggesting that even though only approximately 0.0001% of 

gut microbes harbor the 7α-dehydroxylation pathway (131), it is the most quantitatively 

significant biotransformation of primary bile acids by gut microbes after BSH.  In metagenomic 

analyses, C. scindens, a well-characterized 7α-dehydroxylating species, has been shown to be a 

member of the “core gut microbiome” in humans, due to its high rate of prevalence in human 

fecal samples (132).  DCA, and to a smaller degree LCA, both passively diffuse across the 

epithelial barrier and enter portal circulation, where they are reabsorbed by the liver and  
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Figure 1.7: Diagram of bile salt biotransformations by gut bacteria 
 
Endogenous bile salts are produced by the liver and then undergo biotransformation by gut 

microbes.  Bile acids are liberated from their conjugates by microbial bile salt hydrolases.  

Primary bile acids then undergo numerous further reactions, such as oxidation and epimerization 

(bottom) or 7α-dehydroxylation (right).    
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accumulate in the bile acid pool, since human hepatocytes cannot perform 7α-hydroxylation 

(133).   

 

While bile acids had seen usage as “liver tonics and laxatives” earlier, contemporary scientific 

interest in both primary bile acids and secondary bile acids began after determination of their 

chemical structure in 1932 (134).   In 1946, an effective method for developing cortisone from 

DCA was developed (135). Three years later the use of cortisone in patients was shown to cause 

significant improvement in patients dealing with rheumatoid arthritis (136).  However, since at 

the time the only source for DCA was from bile isolates from livestock, pharmaceuticals began 

to worry there would not be enough supply to cover the demand for cortisone (134), and as a 

result plant sterols became used as a more widespread and effective precursor to cortisone (137). 

As such, interest in bile acids dwindled but for a few dedicated laboratories.  However, work on 

bile acids continued in a Swedish laboratory run by Sune Bergström where means of tracking H3 

and 14C incorporation into bile acids (138), as well as GC and MS techniques for measurements 

of bile acids were developed (139).  Bergstrom and colleagues were the first to distinguish 

primary bile acids, made by the host, and secondary bile acids, made by commensal intestinal 

microbes (140, 141).  In this earliest work of determining the pathway for microbial conversion 

of primary bile acids to secondary bile acids, it was proposed that the mechanism was a two-step 

process with a single intermediate, cholen-6-oic acid (142). However, subsequent work by 

Hylemon et al. of CA-induced conversion of [24-14C]-CA by Clostridium scindens showed the 

formation of numerous bile acid metabolites (143). MS identification of the metabolites and 

chemical synthesis and introduction to CA-induced Clostridium scindens showed DCA was the 

major end product, suggesting these were intermediates in the formation of DCA (143).  Taken 
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together, it was suggested that the formation of secondary bile acids by 7α-dehydroxylating 

bacteria was an inducible, multi-enzymatic process. 

 

Although 7α-dehydroxylation of primary bile acids leads to the most abundant end products, 

there are several other biotransformations that bile acids can undergo in the large intestine.  

Members of the intestinal microbiota have genes that encode a variety of pyridine nucleotide-

dependent hydroxysteroid dehydrogenases (HSDH).  HSDHs are widely distributed throughout 

various members of the gut microbiota (113).  Gut microbes are known to be capable of 

oxidation and reduction of the hydroxyl groups on the 3-, 7-, and 12- carbons of bile acids 

(Figure 1.7).  The epimerization of bile acid hydroxyl groups (α ↔ β) requires two position-

specific bile acid α- and β- HSDHs, which generate a stable oxo-bile acid intermediate i.e., 7α-

hydroxy ↔ 7-oxo ↔ 7β-hydroxy.  Bacterial bile acid HSDHs differ in their pH optima, pyridine 

nucleotide specificity (NAD(H), NADP(H), or both), subunit molecular weight, and gene 

regulation (113).  Amino acid sequence analysis suggests that most bacterial HSDHs in the gut 

microbiota belong to the short-chain alcohol/polyol dehydrogenase family (113). Bile acid 

HSDHs have been found and characterized in numerous genera inhabiting the lumen of the 

colon, including Bacteroides (144, 145), Clostridium (146-148), Escherichia (149), Eggerthella 

(150), Eubacterium (151-154)), Peptostreptococcus (155), and Ruminococcus (156, 157). 

 

Bile acids with oxidized hydroxyl groups (oxo-bile acids) have been shown to be present in fecal 

bile acids (158-160), portal circulation (161, 162), and human serum (163).  Interestingly, the 

hydroxyl groups on dihydroxy-bile acids (DCA, CDCA) have been shown to be more sensitive 

to microbial oxidoreduction than trihydroxy-bile acids (CA) (164).  Also, cholecystectomised 
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patients have been shown to have increased levels of oxo-bile acid derivatives in enterohepatic 

circulation (165).  This observation is likely that due to the increased levels of bile acids being 

seen by the gut microbes in cholecystectomised patients leading to increased microbial 

biotransformation.  The extent of epimerization and the accumulation of oxo-bile acids appears 

to be influenced by the oxidation/reduction potential of the local cellular environment.  For 

example, the formation of oxo-bile acids may be more favorable in bacteria associated closer to 

the mucosal edges, where there is a higher redox potential than further inside the lumen of the 

intestines (125). 

 

Consequences of bile acid metabolism on microbial and host physiology 

 

To understand the effects of microbial biotransformations of bile acids on host and microbial 

physiology, it is important to first discuss the effects that bile acids have on normal host 

physiology.  Near the turn of the millennium, it was discovered that endogenous bile acids were 

ligands for the orphan nuclear receptor farsenoid X receptor (FXR) (166, 167).  Under normal 

physiological conditions, primary bile acids CA and CDCA activate FXR in enterocytes, leading 

to expression of fibroblast growth factor 15/19 (FGF15/19) (168).  FGF15/19 then acts on the 

hepatic FGFR4 receptor in hepatocytes and, among other effects, leads to a down-regulation of 

CYP7A1, the rate-limiting enzyme of bile acid synthesis (169).  Through this pathway, bile acids 

are able to effectively inhibit their own synthesis. 

 

Soon after the discovery of FXR activation by bile acids, it was shown that transmembrane G-

coupled protein receptor 5 (TGR-5), a widely distributed receptor throughout human cells, is 
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activated by bile acids (170, 171).  TGR-5 is a Gαs receptor that leads to an increase in 

intracellular c-AMP (172).  It has been reported that activation of TGR-5 can lead to the release 

of glucagon-like peptide 1 (GLP-1), which has roles in glucose homeostasis as well as appetite 

suppression (173).  Subsequent work also showed bile acids as ligands for pregnane-activated 

receptor (PXR) (174), vitamin D receptor (VDR) (175), sphingosine-1 phosphate receptor 2 

(S1PR2) (176), and some muscarinic receptors (M2,3) (177).   

 

While primary bile acids have been shown to be agonists for many different receptors, the 

potency of their activation differs based on their substituents.  In addition, secondary bile acids 

produced by gut microbes have differing and sometimes more potent agonist properties than 

primary bile acids.  In the case of FXR, primary bile acid CDCA appears to be the most potent 

activator, but both secondary bile acids LCA and DCA are more potent than CA (167).  

Similarly, PXR appears to be most potently activated by LCA (174), VDR by 3-oxo-LCA (175), 

and TGR-5 by DCA and LCA (170).  Taken together, this suggests that not only can bile acids 

modulate the structure of the gut microbiome, but the microbes can also modulate host 

physiology by the creation of secondary bile acid “hormones” (178).   

 

In addition to modulating normal host physiology, bacterial bile acid metabolites such as DCA 

and LCA also have roles in pathophysiological disorders.  There is a body of evidence 

suggesting a link between secondary bile acids (DCA and LCA) and numerous gastrointestinal 

diseases, including colon cancer (67), liver cancer (179), and cholesterol gallstone disease (131).  

Both LCA and DCA levels are increased in fecal samples of CRC patients compared to control 

(180).  In African Americans, when compared to rural, native Africans, a high-fat diet is 
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correlated with increased levels of DCA/LCA as well as an increased rate of CRC (18).  DCA 

and LCA have been shown to be effective enhancers of mutagenesis (181, 182), and in rats 

endogenous levels of secondary bile acids led to increased CRC tumor numbers and invasiveness 

(183).  In addition, rats supplemented with DCA show decreased production of protective 

SCFAs when compared to control, along with significant changes to the makeup of the gut 

microbiota away from SCFA-producing bacterial species (184).   

 

The mechanism by which DCA and LCA may contribute to the formation of CRC is an area of 

significant study.  Based on their hydrophobicity, DCA and LCA can cause membrane 

pertubations in colonocytes (185).  Chronic exposure to secondary bile acids has been shown to 

lead to resistance to apoptosis and enhanced cell proliferation in many epithelial cell lines (186, 

187).  Secondary bile acids have been shown to generate reactive oxygen and reactive nitrogen 

species, can cause DNA double-stranded breaks, and inhibit DNA repair mechanisms (188, 189).  

They also cause NF-κB activation in intestinal epithelial cells, which can promote CRC 

development (126, 188, 190-192).  It has been suggested that DCA may directly stimulate CRC 

progression through activation of protein kinase C, which effects growth regulation, 

differentiation, and apoptosis (193).  DCA has also been shown to cause hypomethelation of 

DNA, leading to increased transcription of proto-oncogenes (194).  In CRC cells, DCA has been 

shown to phosphorylate β-catenin, causing increased invasiveness (195).  DCA can also prevent 

apoptosis in CRC cells via activation of EGFR, NF-κB, and Akt (188, 196, 197).  While 

secondary bile acids themselves have not been shown to be carcinogenic (67), they produce an 

environment both in the microbiota (decreased production of protective SCFAs) and in the 

enterocytes themselves that promotes progression of CRC.  These effects on colonocytes also 
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seem to be dose-dependent, as low concentrations of bile acids and secondary bile acids appear 

to be protective, while higher concentrations have deleterious effects. 

 

Even oxidized or epimerized bile acids have differing effects on host physiology.  3-oxo-LCA 

has been shown to be the most potent agonist for the VDR (175).  Epimerization of the 7α-

hydroxyl group on CDCA yields a much more hydrophilic and therefore less toxic metabolite 

ursodeoxycholic acid, which has been shown to be protective against CRC-inducing effects of 

DCA (157).  Recent studies reported that 7-oxo-lithocholic acid acts as a competitive inhibitor of 

human hepatic 11β-HSDH-1 (198).  11β-HSDH-1 is responsible for converting 7-oxo-LCA back 

to CDCA, however it also catalyzes the activation of cortisol from cortisone (199).  When 7-oxo-

LCA is in high enough concentrations, it acts as a competitive inhibitor preventing production of 

active cortisol.  7-oxo-LCA and ursodeoxycholic acid are both less potent agonists of FXR than 

the endogenous bile acid they are formed from, CDCA (167).  Since the expression of the 

antimicrobial peptide cathelicidin is controlled by FXR in enterocytes, it follows that by 

lessening the affinity of bile acids for FXR, an otherwise susceptible microbe could increase its 

fitness in the lumen of the large intestine.  The full extent to which alteration in bile acid 

hydroxyl oxidation or epimerization effects host metabolism is a field that requires more 

significant study. 

 

The effects of bile salt biotransformations is not restricted to host-microbe interactions, as there 

are many microbe-microbe interactions that occur as a result of bile salt metabolism.  Taurine 

can be found conjugated to primary bile acids and is more prevalent in the bile acid pool of those 

eating a Western diet (78).  When liberated from bile acids through BSH activity by microbes in 
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the intestinal tract, taurine becomes a substrate for further bacterial metabolism.  Microbes are 

able to utilize taurine as an energy source via Stickland fermentation (200).  In addition, the 

formation of H2S through metabolism of taurine by Bacteroides has been shown to enhance 7α-

dehydroxylation by Clostridium sp. in germ-free mice colonized with both bacterial strains 

(201).  Addition of taurocholic acid to a low-fat diet in IL-10 deficient mice led to a bloom of 

sulfate-reducing bacteria and induced colitis (68).  These effects seem to be specific for taurine 

conjugation, as glycine liberated from bile salts has not been shown to be a source of sulfate for 

H2S production nor does it induce 7α-dehydroxylation. 

 

Bile acid 7α-dehydroxylation has recently been shown to have consequences for Clostridium 

difficile colonization and growth in the gastrointestinal tract.  C. difficile infection, the causative 

agent of antibiotic-associated diarrhea and colitis, is a significant health concern for patients 

taking broad-spectrum antibiotics (202).  An estimated 29,000 deaths are attributed to C. difficile 

infection (CDI) in the US every year (203), and the numbers are expected to increase as the 

aging population becomes more colonized.  Although rates of C. difficile colonization vary 

significantly, it has been reported that up to 90% of healthy neonates and infants, 15% of healthy 

adults, and 51% of elderly patients are asymptomatic C. difficile carriers (204).  Treatment of 

patients with broad-spectrum antibiotics, especially in hospital settings, leads to a decreased level 

of protective gut microbes which allows for the over proliferation of C. difficile which tend to be 

resistant in their spore form (205).  Once induced to germinate in the GI tract, increased C. 

difficile proliferation leads to overproduction of vegetative cells that produce toxin A and B 

causing diarrhea and severe colitis in some patients (206).  In patients with relapsing C. difficile 

infection, approximately 17% of patients do not respond to metronidazole or vancomycin 
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treatment (207).  However, fecal transplants of gut microbiota from healthy donors have been 

shown to be a successful treatment, with 81% having resolution of CDI after the first fecal 

infusion and 94% having resolution after a second fecal infusion (208).  Initial reports indicated 

an increased fecal bacterial diversity in fecal-infused CDI patients, as well as an increase in 

Bacteroidetes and Clostridium sp. as well as a decrease in Proteobacteria species (208).  A more 

directed attempt to ascertain the gut microbes that were responsible for resistance to CDI 

suggested that Clostridium scindens, the group of bacteria responsible for production of 

secondary bile acids, was strongly associated with inhibition of Clostridium difficile colonization 

and antibiotic-induced CDI in animal models and human patients (209).  Earlier work on C. 

difficile linked bile salts and bile acids to germination of spores, showing that when CA, TCA, or 

DCA were added germination of C. difficile spores occurred (210, 211).  Later work by Sorg et 

al showed C. difficile specificity for specific bile acids, as taurocholate, cholate, and 

deoxycholate induced germination in vitro but chenodeoxycholate did not (212).  It was later 

shown by the same group that chenodeoxycholate competitively inhibits taurocholate 

germination of C. difficile spores (213).  More recent work found a germinant receptor (CspC) in 

C. difficile was recognized specifically by 12α-hydroxylated bile acids (214).  Binding to this 

receptor led to the release of Ca2+ dipicolinic acid from the inside of the spore and subsequent 

influx of water, ultimately leading to growth into a vegetative cell (214).  Some recent studies 

have shown that secondary bile acids inhibit C. difficile growth in vitro (215) and that 

ursodeoxycholic acid inhibits C. difficile growth and sporulation (216).  Since C. scindens are the 

major producers of secondary bile acids, it would follow that these secondary bile acids are the 

mechanism by which C. scindens is associated with protection against CDI.  However, 

experimental proof of C. difficile growth inhibition by physiological concentrations of secondary 
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bile acids in vitro or in vivo is lacking.  Furthermore, a molecular mechanism by which DCA 

inhibits growth (as opposed to germination) is also absent.  More work to determine the interplay 

between these bacteria in the colon is necessary, but the potential for a probiotic to prevent 

against CDI is an exciting prospect.   

 

Research Objectives: 

 

The research described in this thesis is aimed at better understanding numerous mechanisms by 

which gut-associated bacteria metabolize bile acid and steroid molecules and how this 

metabolism is linked to overall microbial physiology in the anaerobic environment of the colon.   

Within this framework, three objectives were pursued.  The first objective was the 

characterization of a novel strain of Eggerthella lenta, screening and comparing its ability to 

metabolize various primary and secondary bile acids and steroid molecules, and linking its 

unique pattern of bile acid metabolites with specific gene clusters linked to acetogenesis.  The 

second objective was the discovery of a gene in Clostridium scindens ATCC 35704 responsible 

for the production of a Δ4,6-reductase that catalyzes two of the three reductive steps of the 7α-

dehydroxylation pathway.  The third objective was the utilization RNA-seq analysis to determine 

the transcriptomic changes in Clostridium scindens VPI 12708 treated with various steroid and 

bile acids, with the ultimate goal of locating the gene encoding a 17α-hydroxysteroid 

dehydrogenase responsible for production of epitestosterone from androstenedione.  The work in 

this thesis gives better insight into the 7α-dehydroxylation pathway in Clostridium scindens.  In 

addition, a unique interplay between atmospheric gases, bile acid oxidation, and 7α-
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dehydroxylation was discovered and evidence put forth to characterize Eggerthella lenta as an 

acetogen.  
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Chapter 2:  Materials and Methods 

 

Bacterial strains and materials 

 

Clostridium scindens ATCC 35704 obtained from ATCC, Clostridium scindens VPI 12708 

obtained from Virginia Polytechnic Institute, Clostridium absonum ATCC 27555 obtained from 

ATCC, and human fecal isolates C592, I10, SA14, 19BHI, KS11, SO46, SO77 from 

collaborators at Ryukyus University in Okinawa, Japan are maintained as -80°C glycerol stocks 

in our laboratory.  Eggerthella lenta ATCC 25559 was acquired commercially (ATCC).  Before 

further analysis, strains were propagated on brain heart infusion (BHI) agar plates and grown 

under anaerobic conditions in Brewer jar with AnaeroPack (Mitsubishi) for 48 hours at 37°C, 

and colonies were picked and grown individually.  Unless otherwise noted, bacterial strains were 

grown in liquid BHI broth (Becton, Dickinson) in round bottom flasks anaerobically under 100% 

N2 gas atmosphere (Airgas), supplemented with 5g/L yeast extract (Becton, Dickinson), 1g/L 

cysteine HCl (Sigma) and 40mL/L of a salt solution containing 0.2g CaCl2, 0.2g MgSO4, 1g 

K2HPO4, 1g KH2PO4, 10g NaHCO3 per liter.  When arginine (Sigma) was used, it was added 

separately to the media to a final concentration of 5g/L (0.5% wt/volume) or 10g/L (1% 

wt/volume).  Chenodeoxycholic acid (3α-, 7α- dihydroxy-5β-cholan-24-oic acid; CDCA), cholic 

acid (3α-, 7α-, 12α-trihydroxy-5β-cholan-24-oic acid; CA), and deoxycholic acid (3α-, 12α-

dihydroxy-5β-cholan-24-oic acid, DCA) were obtained from Sigma.  Allocholic acid (3α-, 7α-, 

12α-trihydroxy-5α-cholan-24-oic acid; ACA), androst-4-ene-3,17-dione (androstenedione), 

androst-4-en-17β-ol-3-one (testosterone), and androst-4-en-17α -ol-3-one (epitestosterone) were 

obtained from Steraloids.  [24-14C]-labeled CDCA and CA were obtained from American 
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Radiochemicals.  [24-14C] DCA and lithocholic acid (3α-monohydroxy-5β-cholen-24-oic acid; 

LCA) were produced biologically.  Before addition to culture, bile acids were suspended in 

methanol to a concentration of 10mM before being diluted to their final concentration in culture 

media. 

 

Production of radiolabeled secondary bile acids and bile acid metabolism screening 

 

For numerous experiments, [24C-14C]-bile acid biotransformation to secondary metabolites was 

screened.  Unless otherwise noted, bile acid biotransformation profiles were investigated in 

whole cell cultures grown at 37ºC overnight in anaerobic BHI medium under 100% N2 

atmospheric gas.  For primary bile acid biotransformation screens, cultures were grown in the 

presence of 25µM bile acids and 1µCi labeled bile acids.  For secondary bile acid metabolism 

screens, cultures were grown in the presence of 25µM secondary bile acids with varying amounts 

of analogous [24-14C]-labeled bile acids. Culture growth was monitored using UV 

spectrophotometry (BioMate 3), monitoring at 600nm.  Once adequate growth was observed, 

cultures were acidified to pH = 3.0 by adding 1N HCl (Sigma) and confirmed via pH meter.  

Cultures were then extracted with 2x volume ethyl acetate (Fischer Scientific).  The organic 

layer was isolated and concentrated under a stream of N2 gas.  Organic extracts were then 

suspended in methanol, spotted, and run on silica gel TLC plates (J.T. Baker) with a 75:20:2 

benzene:dioxane:acetic acid (Sigma) mobile phase.  Plates were exposed to MS autoradiographic 

film (Kodak) overnight and bands corresponding to bile acid metabolites were scraped off and 

quantified using liquid scintillation spectrophotometry (RPI Budget-Solve; Tri-Carb 2100TR).  

These biotransformation of [24-14C]-labeled bile acids experiments were run alongside unlabeled 
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bile acid biotransformation experiments, separated on the same TLC plates as described above, 

and the corresponding unlabeled bands were scraped and isolated for future MS analysis. 

 

Bile acid metabolite characterization 

 

For future MS analysis, 100mL C592 cultures were grown to stationary phase as stated above in 

the presence of 25µM CDCA or DCA with and without [24-14C] radiolabel.  Bile acid 

metabolites were extracted, separated, and isolated as stated above and then underwent LC-MS 

analysis.  LC-MS analysis was run on a Shimadzu UPLC coupled with a Shimadzu LCMS-IT-

TOF System (Shimadzu Corporation, Kyoto, Japan).  The LC operating conditions were as 

follows: LC column, C-18 analytical column (Capcell Pak C18, Shiseido, Japan), 250 mm × 2 

mm i.d., particle size - 3µm (C18 (RP18, ODS, Octadecyl); mobile phase, H2O containing 0.1% 

formic acid (A), and acetonitrile containing 0.1% formic acid (B); total flow rate of mobile 

phase, 0.2 ml/min; total run time including equilibration, 41 minutes.  The initial mobile phase 

composition was 70% mobile phase A and 30% mobile phase B. The percentage of mobile phase 

B was changed linearly over the next 5 minutes until 35%.  Over the next 25 minutes, the 

percentage was increased to 98% linearly.  After that the percentage was maintained for 5 

minutes, the mobile phase composition was allowed to return to the initial conditions and 

allowed to equilibrate for 5 minutes.  The injection volume was 10 µL.  The mass spectrometer 

(LCMS-IT-TOF) was operated with an electrospray ionization (ESI) source in both positive and 

negative ion mode with multiple reaction monitoring (MRM).  The nebulizer gas pressure was 

set at 150kPa with the source temperature of 200°C and the gas flow at 1.5L/min.  The detector 

voltage was 1.65kV.  High-purity nitrogen gas was used as collision cell gas. The raw 
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chromatograph and mass spectrogram data were processed with the LC solution Workstation 

software (Shimadzu).  For further characterization of C592 CDCA metabolites, as well as the 

production of 3-dehydro-DCA for putative Δ4,6-reductase screening, radiolabeled CDCA, DCA, 

putative 7-oxo-CDCA, and putative 7-oxo-isoCDCA were treated with 0.25 unit/mL purified 3α-

hydroxysteroid dehydrogenase (Sigma) for one hour in the presence of 150µM NAD+ (Sigma) in 

0.1M Tris-HCl buffer (pH 8.0).  Enzymatic reaction was quenched with ethyl acetate and 

separated on TLC as described above. 

 

Steroid metabolism screening 

 

Similar to bile acid metabolism screening, steroid metabolism screening was performed in whole 

cell cultures grown at 37ºC overnight in anaerobic BHI media under 100% N2 gas.  For whole 

cell biotransformation screening of androstenedione, testosterone, and epitestosterone 

metabolism, cultures were grown in the presence of 25µM of the steroid molecule.  Once 

adequate growth was observed, growth was quenched with the addition of 2x volume ethyl 

acetate.  The organic layer was then isolated, the solvent evaporated, and the extract suspended 

in 500µL methanol.  One hundred microliters were injected and run on high-pressure liquid 

chromatography (Agilent) using a C-18 reverse phase column (Agilent Eclipse XDB-C18), 50:50 

methanol:water mobile phase at a flow rate of 1mL/min, as adapted from previous work in (217).  

Absorbance of steroid metabolites was monitored at 240nm by UV-Vis spectroscopy.  The C. 

scindens VPI 12708 androstenedione metabolite was fractionally collected and sent for NMR 

analysis, which was performed as previously described (217).  For TLC separation of 11β-

OHAD and hydrocortisol cell culture biotransformation screens, organic extracts were run 
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similarly to described above except for the use of a different mobile phase:  5:25:0.2 isooctane; 

ethyl acetate; glacial acetic acid. 

 

Primer design, polymerase chain reaction, and plasmid construction 

 

Genomic DNA from C. scindens ATCC 35704, C. scindens VPI 12708, and C592 were isolated 

as described previously (218).  Genomic DNA was then used as template for further PCR and 

genomic sequencing.  A streptavidin tag engineered into the reverse primer (for EDS08212.1 and 

various putative 17α-HSDH candidates) or the forward primer (various putative 17α-HSDH 

candidates) and genes to test for activity were PCR amplified, restriction digested, and ligated 

into expression vectors.  Generic 16S primers (16s357F, 16s1392R) and ExTaq polymerase kit 

(Takar) were used for initial 16S screening of Eggerthella lenta strain C592.   

 

Methods for PCR amplification and plasmid construction are based on previously published 

methods (217).  The gene encoding the putative Δ4,6 reductase, EDS08212.1, was PCR 

amplified using the TITANIUM TAQ PCR Kit (Clontech) using primers designed to include the 

E. coli ribosome binding site and KpnI restriction site on the forward primer and a streptavidin-

affinity peptide encoding sequence and BamHI restriction site on the reverse primer.  The PCR 

product was purified through gel electrophoresis, underwent restriction endonuclease treatment 

(Kpn1 and BamHI), and was ligated into the pSport1 expression vector.  Recombinant plasmid 

was transformed into chemically competent E. coli DH5α cells via heat stock method, plated, 

and grown for 16 hours at 37 °C on lysogeny broth (LB) agar plates supplemented with 

ampicillin (100 µg/mL). A single colony from each transformation was inoculated into LB 
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medium (5 mL) containing ampicillin (100 µg/mL) and cultivated overnight at 37°C with 

agitation. The cells were subsequently centrifuged (3220 x g, 15 min, 4 °C) and plasmids were 

extracted from the resulting cell pellet using the QIAprep Spin Miniprep kit (Qiagen, Valencia, 

CA). The foreign DNA inserts in the recombinant plasmids were sequenced to confirm the 

correctness of the gene sequence (Virginia Commonwealth University Nucleic Acid Sequencing 

Core Facility, Eurofins Genomics).  Similar methods were used for putative 17α-HSDH genes of 

interest.  In some cases, troubleshooting changes were made via altering the streptavidin tag 

presence and location (C-terminal tag, N-terminal tag, or No strep tag), varying restriction 

endonuclease sequences, and utilization alternative expression vectors (pASK-IBA15plus and 

pASK-IBA43plus). 

 

C592 genomic sequencing 

 

Genomic DNA (1.5µg) was sheared in a gTube (Covaris, Woburn, MA) for 1 minute at 6,000 

rpm in an Eppendorf MiniSpin plus microcentrifuge (Eppendorf, Hauppauge, NY). The sheared 

DNA was converted into a Nanopore library with the Nanopore Sequencing kit SQK-NSK007 

(Oxford Nanopore, UK). The library was sequenced on a SpotON Flowcell MK I (R9) flowcell 

for 48 hours, using a MinION MK 1B sequencer. Basecalling was performed in real time with 

the software Metrichor version 2.40.17.  Poretools v-0.5.1 software (219) was used to extract 

sequences from Oxford Nanopore MinION output file folder, and then converted to fastq format.  

FastQC v-0.11.2 software was also used to further access quality scores and other attributes of 

the data set.  A Perl script was then used to trim adaptors from the raw nanopore reads. The 

adapter trimmed reads were used to blast against NCBI Ecoli_strK12_MG1655 genome.  Reads 
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with greater than 95% alignment to this genome were removed.  2,113,230 reads from the 

Illumina paired end MiSeq run and 14,023 reads from Oxford Nanopore sequencing platform 

were used for de novo hybrid assembly with SPAdes-v3.9.0 (220). The assembly produced 245 

contigs, five of which were 500 base pairs and longer. The top five contigs were selected to blast 

NCBI NT database.  Nucleotide level comparisons between Eggerthella lenta DSM 2243 

genome and the longest contig from the assembly were done with the dnadiff program from 

MUMmer v-3.23 (221).  Annotation comparisons between Eggerthella lenta DSM 2243 genome 

and the longest contig were made with Prokka v-1.11 (222).  Annotated CDS file for the longest 

C592 contig were then imported into Geneious v9.1.3 for Mauve alignment and further analysis, 

as well as utilized to form KEGG maps via BlastKOALA (223).  

 

C. scindens VPI 12708 RNA purification and Illumina sequencing 

 

After -80ºC stock of C. scindens VPI 12708 was grown overnight at 37ºC in BHI broth, a 1% 

inoculum was transferred to 100mL BHI containing 25µM of either: cholic acid, allocholic acid, 

androstenedione, cortisol, or only BHI (for uninduced control) along with relevant [24-14C]-bile 

acid.  Cells were allowed to grow to early-log phase, an additional 25µM of the inducing 

molecules were added, and then at mid-log phase cells were pelleted by centrifugation.  Pelleted 

cells were immediately suspended in RNALater (Ambion) and placed in -80ºC freezer.  

Supernatant was extracted and the metabolism of all four molecules in culture was confirmed via 

TLC and HPLC analysis, as outlined above.  
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Isolation of mRNA from C. scindens VPI 12708 follows a similar procedure to previously 

published work (Ridlon 2013). Cell pellets were suspended in 500µL lysis buffer (200mM NaCl, 

20mM EDTA, in diethylpyrocarbonate-treated water) and then transferred to 2mL bead beating 

tubes (Sarstedt).  To each tube, 1mL 5:1 acid phenol (Ambion), 200mL 20% SDS (Ambion), and 

200µL zirconium beads was added.  Cells were then disrupted on max RPM on a Mini-

BeadBeater (Biospec Products) for one-minute increments twice and placed on ice in between.  

Samples were then centrifuged to separate the aqueous and phenol phases.  The aqueous phase 

was isolated and subsequently washed with an additional 1mL of 5:1 acid phenol, and then 

separated again via centrifugation.  The nucleic acids in the purified aqueous phase were 

precipitated by addition of 2x volume of 2-propanol (Sigma), 100µL ammonium acetate 

(Ambion), and 1µL glycoblue (Ambion).  Samples were incubated at -80ºC overnight, 

centrifuged for 30 minutes, and the pellet isolated.  RNA was isolated from the nucleic acid 

samples using the Ambion “Megaclear” kit, according to the manufacturers instructions.  

Purified RNA samples were treated 2x with DNAse (Takara), following manufacturers 

instruction. Resulting RNA was checked for purity via a 1.6% denaturing gel electrophoresis (for 

16S and 23S bands) as well as via RT-PCR to check for contaminating genomic DNA following 

the Clontech manufacturer instructions. 

 

Purified total RNA then underwent mRNA enrichment protocol, following a similar procedure to 

previously published work from our lab (217). Custom biotinylated TEG-spaced 

oligonucleotides were designed against C. scindens VPI 12708 16S and 23S rRNA sequences.  

Dynabeads M-280 Streptavidin (Invitrogen) were made RNAse free and then bound to 

oligonucleotides by resuspending beads in 500uL DEPC 0.5x SSC containing 360 pmol of each 
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oligonucleotide.  Beads were captured using Promega magnetic stand (Promega).  After 

oligonucleotide beads were isolated, the rRNA capture-hybridization protocol was run using a 

Biorad C1000 thermocycler (Biorad).  Total RNA (1µg) was suspended in 35uL 6x SSC, heated 

to 70ºC for 5 minutes, cooled to 0ºC for 3 minutes, and then 150uL of oligonucleotide-bound 

beads were added.  The mixture was then incubated at 68ºC for 30 minutes.  Beads were 

magnetically captured using the Promega stand, and the supernatant containing the enriched 

mRNA was isolated and precipitated as described above.  Total RNA and enriched mRNA were 

compared using Bioanalyzer to see a distinct drop in the bands corresponding to rRNA subunits 

before RNAseq analysis. 

 

mRNA-enriched C. scindens VPI 12708 samples were then used to create libraries for Illumina 

whole transcriptome sequencing using the NEBNext Ultra RNA Library Prep Kit for Illumina, 

following manufacturer’s instructions (NEBNext).  Samples were then run using MiSeq 

instrumentation using a 2 x 300 bp recipe.  Resulting reads were then were aligned to a 

previously annotated C. scindens VPI 12708 genome using the BowTie2 algorithm. 

 

Protein overexpression and purification 

 

For the putative Δ4,6-reductase gene expression, pSport-EDS08212 plasmid was transformed 

into E. coli BL-21 CodonPlus (DE3) RIPL chemically competent cells by the heat shock method 

and grown overnight at 37 °C on LB agar plates supplemented with ampicillin (100 µg/mL). 

After 16 hours, five isolated colonies were used to inoculate 10 mL of fresh LB medium 

supplemented with antibiotics and grown at 37 °C for 6 hours with vigorous aeration. The pre-
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cultures were then added to fresh LB medium (1L), supplemented with the same antibiotic at the 

same concentrations, and grown with vigorous aeration at 37 °C. At OD600 of ~0.3, isopropyl β-

D-1-thiogalactopyranoside (IPTG) inducer was added to each culture at a final concentration of 

0.1mM and the temperature was decreased to 16 °C. Following 16 hours of culturing, cells were 

pelleted by centrifugation (4,000 x g, 30 min, 4 °C).  Cells were then suspended in buffer (20mM 

sodium phosphoate buffer pH 7.0, 0.1M NaCl, 15% glycerol, 10mM 2-mercaptoethanol) and 

treated with lysozyme (5ug/mL) on ice for 1 hour.  Cell suspension was then run through a 

French press at 1,500 psi and following cell extract was centrifuged (30min, 16,000g, 4ºC). 

Recombinant EDS08212.1 gene product was then purified using Strep-Tactin® resin (IBA) as 

per manufacturing protocol. The recombinant protein was eluted using an elution buffer 

composed of 20mM Tris-HCl, 150mM NaCl, 20% glycerol, 10mM 2-mercaptoethanol pH 7.9 

and 2.5mM desthiobiotin. Protein purity was assessed using both sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting using the Strep Tag II 

antibody (IBA).  The purified protein concentration was determined via the Bradford Assay 

(BioRad).  The same methods were used for the overexpression and purification of putative 17α-

HSDH enzymes from C. scindens VPI 12708 with minor adjustments.  Constructs lacking a 

streptavidin tag were not purified on a Strep-resin column nor were visualized via Western blot 

hybridization.   

 

Δ4,6-reductase and 17α-HSDH purified enzyme reactions 

 

To test the oxidation of 3-dehydro-DCA by EDS08212.1, we used a standard buffer composed of 

20mM sodium phosphate (pH 7.0), 100mM NaCl, 20% glycerol, and 10mM 2-mercaptoethanol. 
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When utilized, pyridine nucleotides (NAD+, NADP+, NADH, NADPH) were added at 150µM 

final concentration. 3-dehydro-DCA was added at 30µM final concentration. The reaction was 

initiated by addition of 0.5µg purified rEDS08212 to 1ml reaction buffer and was terminated 

after 6 hrs at 37°C by addition of 75µl 1N HCl, and was extracted and chromatographed as 

described above. 

 

Similar methods were used for testing purified putative 17α-HSDH enzymes.  Buffers used 

included 20mM sodium phosphate (pH 7.0) or 100mM sodium acetate buffer (pH 5.5) with 

either 10mM 2-mercaptoethanol or 1mM dithiothreitol (Sigma).  When utilized, pyridine 

nucleotides (NAD+, NADP+, NADH, NADPH) were added at 150µM final concentration. 1µg 

purified recombinant putative 17α-HSDH enzymes were added to each 1mL reaction volume. In 

the case of whole cell extract assays, up to 100ug of whole cell protein extract was added per 

1mL reaction volume.  Aerobic metabolism of androstenedione and epitestosterone was tested by 

monitoring changes in pyridine nucleotide oxidation states spectrophotometrically by absorption 

at 340nm over time. Alternatively, aerobic metabolism of the steroid molecules was screened by 

extraction of reaction mixtures and separation on HPLC as described above.  Anaerobic 

metabolism used the same reaction buffers that had been made anaerobic under N2 stream.  The 

metabolism of substrates was tracked via HPLC separation, as described above.  Additionally, E. 

coli BL-21 CodonPlus (DE3) RIPL transformed with putative 17α-HSDH gene plasmid 

constructs were grown aerobically and anaerobically, induced with IPTG at early log phase, and 

inoculated with 25µM androstenedione or epitestosterone. Whole cell conversion of these 

steroids was then screened via extraction and HPLC separation, as described above. 

 



 50 

Bioinformatics analysis and statistics 

 

Phylogenetic analysis of EDS08212.1 by maximum-likelihood was performed using RAxML 

8.2.0 (224), with gamma-distributed heterogeneity rates, automatically selected empirical 

substitution model, and 100 bootstrap pseudoreplicates. Selection and alignment of sequences 

from the NCBI nr database were performed as previously described (217). The resulting tree was 

drawn in Dendroscope (225) and cosmetic adjustments were performed in Inkscape. 

 

For C. scindens VPI 12708 RNAseq analysis, significance was assessed using a false discovery 

rate corrected p-values of 0.05, which were calculated and assessed using this cut-off.  RNAseq 

was utilized to make a heatmap using a distance metric of 1-(abs(pearson correlation)), and the 

“ggplot” and “heatmap.2” R packages. 

 

 



 51 

Table 2.1:  Bacterial strains used in the present study 
 
Strain Source 
Clostridium scindens VPI 12708 VPI 
Clostridium scindens ATCC 35704 ATCC 
Clostridium absonum ATCC 27555 ATCC 
Eggerthella lenta ATCC 25559 ATCC 
Eggerthella lenta strain C592 Collaborators at Ryukyus University 
I10  Collaborators at Ryukyus University 
SA14 Collaborators at Ryukyus University 
19BHI Collaborators at Ryukyus University 
KS11 Collaborators at Ryukyus University 
SO46 Collaborators at Ryukyus University 
SO77 Collaborators at Ryukyus University 
E. coli BL21 (DE3) New England Biolabs 
E. coli Top10 Thermo Fischer 
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Table 2.2:  Primers used in the present study 

Primer Use Sequence (5’ – 3’) 

16s357F Fwd: C592 16S 

amplification 

CTCCTACGGGGAGGCAGCAA 

16s1392R Rev:  C592 16S 

amplification 

ACGGGCGGTGTGTRC 

16s35704cap1 C. scindens VPI 

12708 rRNA 

depletion 

GCGTTACTGACTCCCATGGTGTGACGG/3BioTEG/ 

16s35704cap2 C. scindens VPI 

12708 rRNA 

depletion 

CTTGCGAACGTACTCCCCAGGTGGACTA/3BioTEG/ 

16s35704cap3 C. scindens VPI 

12708 rRNA 

depletion 

GCTTCGGTCTTATGCGGTATTAGCAGCC/3BioTEG/ 

23s35704cap1 C. scindens VPI 

12708 rRNA 

depletion 

CCAGGGTAGCTTTTATCCGTTGAGCGA/3BioTEG/ 

23s35704cap2 C. scindens VPI 

12708 rRNA 

depletion 

GACAGTGCCCAAATCATTACGCCTTTCG/3BioTEG/ 

23s35704cap3 C. scindens VPI 

12708 rRNA 

depletion 

AACCTGTTGTCCATCGGCTACGGC/3BioTEG/ 

23s35704cap4 C. scindens VPI 

12708 rRNA 

depletion 

GGACATGGATAGATCACCCGGTTTCG/3BioTEG/ 

23s35704cap5 C. scindens VPI 

12708 rRNA 

depletion 

GACACCTCCGGATCAAAGGGTATTTGCC/3BioTEG/ 
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Primer Use Sequence (5’ – 3’) 

pSport112708_ 

00455NTERM 

Rnew 

Rev: Cs12708_ 

00005_00084 

w/ N-terminal 

Strep tag 

GTCGACTTATTCCTCAGCCTGCTC 

pSport112708_ 

00455NTERMF 

Fwd: Cs12708_ 

00005_00084 

w/ N-terminal 

Strep tag 

CTGCAGATTAGAGAGGTGGATAACATGTGG- 

-AGCCACCCGCAGTTCGAAAAAAATTTATTT 

CLONE12708_ 

00455F 

Fwd:  Cs12708_ 

00005_00084 

no tag 

CACTGCTCATGGTGACCTATTTCTA 

CLONE12708_ 

00455R 

Rev:  Cs12708_ 

00005_00084 

no tag 

GCTATCATCTTCACCTCTCATCATT 

pSport_00455_ 

CF 

Fwd: Cs12708_ 

00005_00084 

w/ C-terminal 

Strep tag 

TAATCTGCAGATTAGAGAGGTGGATAAC 

pSport_00455_ 

CR 

Rev: Cs12708_ 

00005_00084 

w/ C-terminal 

Strep tag 

ATATGTCGACTTATTTTTCGAACTGCGGGT- 

-GGCTCCATTCCTCAGCCTGCTC 

pASK_64_18 

Forward 

Fwd: Cs12708_ 

00064_00018 

in pASK p43 

and p15 vectors 

GGATCCAATTCATATACAGTA 

p43_68_18_R Rev: Cs12708_ 

00064_00018 

in pASK p43 

 

CCATGGCCTATTCGCTCG 
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Primer Use Sequence (5’ – 3’) 

   

p15_64_18_R Rev: Cs12708_ 

00064_00018 

in pASK p15  

ATGCATCCATGGCTCCTTATATTCGCTCG 

Cs12708_64_ 

18F 

Fwd:  Cs12708_ 

00064_00008 

in pSport1 with 

N-terminal 

Strep tag 

GTCGACGGATCCCGGAGAATGAAT- 

-TCATATACAGTA 

Cs12708_64_ 

18R 

Rev:  Cs12708_ 

00064_00008 

in pSport1 with 

N-terminal 

Strep tag 

AAGCTTCTATTTTTCGAACTGCGGGTG- 

-GCTCCATATTCGCTCGACTTTCTG 

Cs12708_114 

_9_NF 

Fwd:  Cs12708_ 

00114_00009 

in pSport1 with 

N-terminal 

Strep tag 

CTGCAGAAAAGGAAGGGGATGATAGG 

Cs12708_114 

_9_NR 

Rev:  Cs12708_ 

00114_00009 

in pSport1 with 

N-terminal 

Strep tag 

GGATCCTTATTTTTCGAACTGCGGGTGG- 

-CTCCAAACAAGCGTCCAGCC 

Cs12708_114 

_9_NoTagF 

Fwd:  Cs12708_ 

00114_00009 in 

pSport1 no tag 

GTCGACCTGCAGGATAGGATGAAGAA- 

-TTTATTTGAT 

Cs12708_114 

_9_NoTagR 

Rev:  Cs12708_ 

00114_00009 in 

pSport1 no tag 

ATGCATGGATCCAATTGTCTAAACAAG- 

-CGTCAA 
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Primer Use Sequence (5’ – 3’) 

   

Cs12708_124 

_9_NF 

Fwd:  Cs12708_ 

00124_00009 

in pSport1 with 

N-terminal  

Strep tag 

CTGCAGAAAGGAGAACAAAAAGGA 

Cs12708_124 

_9_NF 

Rev:  Cs12708_ 

00124_00009 

in pSport1 with 

N-terminal  

Strep tag 

GGATCCTTATTTTTCGAACTGCGGGTGGCT- 

-CCATATCAACGGTTCATA 

Fwd – Forward; Rev – Reverse; 3BioTEG – 3’ Biotin with triethyleneglycol (TEG) spacer 
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Table 2.3:  Plasmids used in the present study 

Plasmid Description Source 

pCRTMBlunt II-TOPO® Kanamycin resistance, 

designed for blunt-end ligation 

Thermo Fischer 

pSPORT-1 Ampicillin resistance, contains 

lac-promotor for expression in 

E. coli cells 

Thermo Fischer 

pASK-IBA43plus Ampicillin resistance, contains 

C-terminal Strep-tag, tet-

promotor expression vector 

IBA 

pASK-IBA15plus Ampicillin resistance, contains 

N-terminal Strep-tag, tet-

promotor expression vector 

IBA 
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Chapter 3:  Characterization of novel Eggerthella lenta strain C592 

 

Introduction: 

 

Significant effort is underway studying the human gut microbiome and how it impacts human 

health.  The first step in this process is to obtain a basic understanding of the makeup of this 

microbial community.  The advent of next generation sequencing, along with advances in 

computational power have provided the ability to assign functional characterization organisms 

based on clusters of orthologous groups (COG) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) databases, allows scientists to gain insight into the effects microbes may have on each 

other and the host (226).  However, the reference genomes that guide predictive annotations of 

novel microbial strains only account for a third of the entire metagenomic data received from 

high-throughput shotgun sequencing of fecal samples (227).  A complementary approach is to 

attempt to assign strains to OTUs based on 16S DNA sequence (2).  However, in doing so it is 

very easy to miss significant differences that may exist among species within a specific OTU.  

These significant differences are evident when studying the gut “sterolbiome”, the genes 

involved in bile acid and steroid metabolism.   For example, within the same species, 

Clostridium scindens strains have been shown to have varying ability to metabolize steroids.  C. 

scindens ATCC 35704 encodes a steroid 17,20-desmolase which is absent from its sister strain 

C. scindens VPI 12708 (217).   Additionally, C. scindens VPI 12708 has been shown to have 

unique 17α−HSDH activity that is not found in C. scindens ATCC 35704 (228).  Understanding 

and characterizing the sterolbiome’s potential to biotransform these molecules in humans is 



 58 

important because even small modifications to the base structure of bile acids and steroids can 

have significant physiological effects, even at nanomolar concentrations (167, 229, 230). 

 

One bacterial strain that has garnered significant attention in the study of the human gut 

sterolbiome is Eggerthella lenta.  Within the classs Actinobacteria and the family 

Coriobacteriaceae, E. lenta is a non-motile, non-sporulating, gram-positive short rod-shaped 

bacterium usually found in pairs or chains (231).  The first isolation of what would later be 

named Eggerthella lenta was from normal adult fecal samples by Arnold H. Eggerth in 1935, 

and classified under the Bacteroides genus, although no type strain was obtained (232).  Soon 

after, the first reported type strain for Eggerthella lenta was isolated from a rectal tumor and 

added to the Prevot collection under the Eubacterium genus classification (231).  It was later 

transferred to the Eggerthella genus after further characterization and phylogenetic analysis (233, 

234). 

 

E. lenta has been proposed as an important gut microbial strain to characterize and potentially 

inhibit in patients undergoing treatment for cardiovascular disease.  Cardiac glycosides, derived 

from Digitalis purpurea, have been used for centuries to treat both heart failure and atrial 

fibrillation (235).  Approximately 10% of those treated with cardiac glycosides harbor an 

intestinal microbiota capable of reducing the α,β-unsaturated butyrolactone ring, thereby 

inactivating the drug (Figure 3.1) (236).  It has been shown that some strains of E. lenta, 

including the type strain, have the ability to reductively inactivate digitoxin (237).  Within these 

active E. lenta strains, a two-gene locus termed the “cardiac glycoside reductase operon” 

(cgrAB) was found that encodes proteins resembling bacterial cytochromes that are associated 
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Figure 3.1:  Diagram of reductive digoxin inactivation by Eggerthella lenta  
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Adapted from (236) 
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with the formation of reduced digoxin products from digoxin (238), although it has yet to be 

proven that this “cgr locus” encodes a digoxin reductase.  These reduced digoxin products have 

reduced cardiac reactivity, likely due to a decreased affinity to the Na+/K+ ATPase in 

cardiomyocytes (239).  The role of E. lenta in the formation of inactivated digoxin products on 

the availability of digoxin is important because of the narrow range at which digoxin is 

therapeutically effective before it becomes toxic (240).  

 

In addition to the metabolism of cardiac glycosides, E. lenta has been shown to metabolize 

endogenous steroid molecules.  Because of their metabolism of endogenous corticosteroids, E. 

lenta has been identified as a candidate to be linked to essential hypertension, although more 

work is necessary to delineate the extent of its involvement.  The initial work of linking the gut 

microbiota to hypertension began in rats, where the development of hypertension could be 

attenuated by treatment with neomycin and vancomycin (241, 242).  However, attempts to 

delineate the specific microbes responsible for this modulation at the time were unsuccessful and 

not pursued further (243).  In the study of adults with 17-hydroxylase insufficiency, a genetic 

defect causing hypertension due to an increased level of deoxycorticosterone leading to renal 

sodium retention (244), it was found in urinary steroid analysis that 21-deoxycorticosterone was 

a major metabolite of corticosterone (245).  Radiolabeled assays showed that 21-

deoxycorticosterone was a direct metabolite of corticosterone, and that its production did not 

occur in germ free rats (245, 246).  Around the same time it was discovered that Eggerthella 

lenta produced a 21-dehydroxylase capable of converting cortisone to 11β-hydroxy-progesterone 

(247, 248). A major regulator of systemic blood pressure is aldosterone, which imparts its action 

by binding to the mineralocorticoid receptor in renal epithelial cells (249).  This leads to the 
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expression of sodium reabsorption mechanisms, ultimately increasing extracellular volume 

(249).  However, cortisol is a much more potent agonist for the mineralocorticoid receptor in 

renal epithelial cells and is in much higher concentrations in serum.  The reason that aldosterone 

is the major systemic modulator of blood pressure is that renal cells also contain 11β-

hydroxysteroid dehydrogenase-2 (11β-HSD2), which can inactivate cortisol once inside the cell, 

forming inactive cortisone (250).  Therefore, 11β-HSD2 acts as a modulator of cortisol activity.  

It has been shown that 11β-hydroxy-progesterone is a competitive inhibitor for the 11β-HSD2 

enzyme (251).  E. lenta is the only gut microbe reported to contain 21-dehydroxylase activity 

capable of converting cortisol to 11β-hydroxy-progesterone, although not all strains harbor 

activity (248).  In a model of hypertension caused by obstructive sleep apnea in rats, it was found 

that the gut microbiome of those with hypertension showed an increase in Coriobacteriaceae, 

which includes E. lenta (252).    

 

Additionally, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) found in the liver and 

responsible for converting cortisone to activated cortisol (the reverse of 11β-HSD2), has been 

shown to be competitively inhibited by oxo-bile acid derivatives of microbial bile acid 

metabolism, such as 7-oxo-lithocholic acid (198, 199), although more oxo-bile acid derivatives 

need to be screened.  E. lenta has been reported to harbor 3α-HSDH, 7α-HSDH, and 12α-HSDH 

activity, varying on the strain, which are involved in the formation of oxo-bile acids (151, 153).  

 

Metabolism of corticosterone and bile acids by E. lenta may also have implications on CRC 

formation.  11β-HSD2 is also found in colonocytes, the disruption of which has been shown to 

rescue APC knockout mice from tumor formation through a Cox-2 dependent mechanism (253).  
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Therefore, the inhibition of 11β-HSD2 activity by E. lenta-derived corticosterone derivatives 

may alter prostaglandin synthesis and reduce colonic inflammation, both factors important to 

CRC development.   

 

In addition, the metabolism of bile acids by E. lenta may lead to the formation of less toxic bile 

acid metabolites and affect CRC progression as well.  As reviewed earlier, secondary bile acids 

DCA and to a lesser degree LCA, formed from primary bile acids CA and CDCA, have been 

associated with the formation of CRC.  However, other secondary bile acids produced by gut 

microbes are less toxic.  Ursodeoxycholic acid (UDCA) is formed by the oxidation and 

subsequent epimerization of the 7α hydroxyl group of CDCA via microbial 7α-HSDH and 7β-

HSDH enzymes (125).  UDCA has been shown to be less toxic to both microbial and host cells, 

and additionally have seen some use as therapeutic agents in liver and biliary disease.  The β-

configuration of the 7-hydroxyl group leads to a more hydrophilic molecule, leading to its 

reduced toxicity (254, 255).  In addition to epimerization of the C7-hydroxyl group on CA, 

CDCA, and UDCA, the C3-hydroxyl group is also subject to isomerization by bacterial enzymes 

in the gut, including some produced by E. lenta.  E. lenta has been found to encode both a 3α-

HSDH and 3β-HSDH necessary to convert DCA to iso-DCA (150).  The same work showed that 

iso-DCA was less toxic to other gut microbes than DCA, indicating it may be a detoxification 

mechanism (150).  The effects of isomerized secondary bile acids on colonocytes remains 

unstudied, but it can be hypothesized that due to their increased hydrophilicity, iso-secondary 

bile acids would be less toxic than secondary bile acids.  What was not established in this 

previous study was whether E. lenta could convert primary bile acids to 3β-epimers.  Removal of 

the C7-hydroxyl group on primary bile acids requires the formation of a 3-oxo-Δ4-intermediate 
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and to date no 7α-dehydroxylating bacteria has been shown to encode a 3β-HSDH.  Therefore, 

we predict that isomerization of primary bile acids would lead to formation of alternate bile acid 

metabolites and prevent 7α-dehydroxylation. 

 

Studies identifying the makeup of the inhabitants of the gut microbiome have shown the two 

major represented phyla being Bacteroidetes and Firmicutes, making up on average 85% of the 

total phylotypes (256, 257).  The next most represented phylum is Actinobacteria, of which E. 

lenta is a member. Even though it is found in lower relative abundance in the gut, E. lenta still 

has significant implications to both gut microbiome and host physiology.  Studies of both germ-

free mice and hamsters have indicated that OTUs identified as or closely related to E. lenta are 

associated with increased hepatic triglycerides, increased synthesis of primary bile acids via the 

alternative pathway, and increased liver cytochrome activity (258, 259).  Interestingly, E. lenta 

and Clostridium scindens, both numerically minor constituents of the gut microbiome, which are 

nevertheless responsible for substantial metabolism of bile acids and steroid molecules, were 

shown to be associated with increased hepatic triglyceride synthesis in conventionalized ex-germ 

free mice (258).  The bile acid composition (a switch to primary bile acids produced via the 

alternative pathway) as well as increased hepatic FXR and PXR signaling, suggesting a 

significant role of E. lenta in gut microbiome-modulated energy homeostasis via bile acid 

signaling pathways (258).  A mechanism by which E. lenta may be exerting these effects is 

through activation of TGR5, leading to glucagon-like peptide-1 (GLP-1) release from 

neuroendrocrine cells, leading to increased insulin release from the pancreas, which stimulates 

production of triglycerides by hepatocytes. However, it has been shown that secondary bile acids 
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DCA and LCA are the most potent activators of TGR-5 (170, 171) and E. lenta has not been 

shown to create these molecules.  

 

Human studies have shown that diet substantially alters the structure and metabolic activity of 

the gut microbiome (226, 256).  One such quantitative study of changes to gut microbial 

diversity based on varying diets showed E. lenta levels can vary in the same individual based 

purely on diet.  A significant increase in E. lenta was observed in human subjects given a diet 

high in non-starch polysaccharides relative to other dietary polysaccharides, including resistant 

starch and a “weight loss” diet high in protein (260).  Similarly, fecal concentrations of SCFAs 

acetate, propionate, butyrate, as well as succinate, were all significantly higher in in the same 

patients eating a diet high in non-starch polysaccharides when compared to other diets (260).  

These results suggest that E. lenta thrives in an environment where anaerobic bacterial 

fermentation is occurring. 

 

Based on the previous literature, it is apparent that E. lenta impacts both gut microbial and host 

physiology.  However, a better understanding of the types of bile acid and steroid products it 

recognizes and the metabolites it creates is necessary.  Furthermore, understanding how bile 

acids and steroids play into the overall metabolism of E. lenta may give insight into why bile 

acids and steroids are utilized in the more complex gut microbial environment.  We set out to 

better understand E. lenta bile acid and steroid metabolism through characterization of a novel 

strain; C592, a human fecal isolate from a Japanese octogenarian.  Comparison of steroid 

metabolism and genome sequence between the type strain E. lenta ATCC 25559 reveals 

important strain-dependent differences in the sterolbiome among E. lenta isolates.  I discovered 
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that both these bacteria make unique patterns of oxidized bile acid and steroid metabolites, 

including a novel ability to metabolize testosterone. I show that the pattern of metabolites made 

can be altered based on the atmospheric gases present during their growth.  Based on these 

observations, the full genome sequencing/annotation of C592, and preliminary fermentative end 

product analysis, I hypothesize that Eggerthella lenta is an acetogen able to link the metabolism 

of bile acids to the formation of acetate in order to maintain intracellular redox equilibrium. In 

addition, I show that the bile acid metabolites made by E. lenta ATCC 25559 and C592 inhibit 

subsequent 7α-dehydroxylation by Clostridium scindens.  
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Results: 

 

Initial screening of C592 primary bile acid metabolism 

 

Strain C592 is a gram-positive, obligate anaerobe isolated from a human fecal sample from Dr. 

Fusae Takamine (University of Ryukyus) in Okinawa, Japan during a screen for fecal bile acid 

7α-dehydroxylating bacteria.  However, the bile acid metabolites derived from whole-cell cholic 

acid-induced 14C-cholic acid metabolism by the C592 strain had unique retardation factor (RF) 

values as compared to known metabolites synthesized by 7α-dehydroxylating bacteria (Figure 

3.2).  In comparison to both high-activity and low-activity 7α-dehydroxylating strains, C592 CA 

metabolites do not comigrate with CA, DCA, or allodeoxycholic acid (ADCA), a 5α-epimer of 

DCA (Figure 3.2).  In addition, numerous secondary metabolites were generated from CA, 

whereas the major product from other 7α-dehydroxylating strains comigrates with the DCA 

standard (Figure 3.2).    These results suggested C592 is producing unique bile acid metabolites 

from CA.  C592 CA metabolism screening was repeated, inducing with either CA or allocholic 

acid (ACA), a 5α epimer of CA. Results showed that both CA and ACA-induced C592 cultures 

metabolized [14C]-CA to secondary products unique from known 7α-dehydroxylated metabolites 

DCA and ADCA (Figure 3.3).  There was no difference in the migration of 14C-CA metabolites 

between CA and ACA-induced C592 metabolism by TLC analysis.   C592 was also screened for 

its ability to metabolize CDCA, the other primary bile acid produced by human hepatocytes.  

C592 CDCA-induced metabolism of [14C]-CDCA showed formation of three secondary products 

(Figure 3.4).  Experiments looking at C592 uninduced whole cell metabolism of [14C]-CA and 
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Figure 3.2:  TLC of whole cell extracts from various fecal bacterial strains induced by 

cholic acid to metabolize [24-14C]-cholic acid 

 

First section of TLC plate includes cholic acid, deoxycholic acid, and allodeoxycholic acid TLC 

standards.  The second section contains organic extracts from whole-cell cholic acid-induced 

[24-14C]-cholic acid metabolism.  I10, SA19, C592, 19BHI, KS11, SO96, SO77 are all human 

fecal isolates previously screened for bile acid metabolizing potential.  Cultures were grown 

overnight with 25µM cholic acid and 1µCi labeled cholic acid and separated on TLC as 

described in Materials and Methods. The major CA metabolite for I10, SA19, 19BHI, KS11, 

SO96, and SO77 comigrates with the DCA standard.  However, the C592 metabolites appear to 

migrate separately with one migrating similarly to ADCA.  
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Figure 3.3:  Conversion of [24-14C]-cholic acid by allocholic acid- and cholic acid-induced 

C592 

 

First section of TLC plate includes cholic acid, deoxycholic acid, and allodeoxycholic acid TLC 

standards.  The second section contains organic extracts from C592 whole-cell bile acid-induced 

[24-14C]-cholic acid metabolism.  C592 was grown in the presence of either 25µM cholic acid or 

25µM allocholic acid, along with 1µCi cholic acid.  Cultures were extracted and run on TLC as 

described in the Materials and Methods.  C592 metabolizes [24-14C]-cholic acid to five 

secondary metabolites, with no apparent difference in the spectrum of metabolites when induced 

with either cholic or allocholic acid.  No C592 CA metabolites comigrate with DCA or ADCA, 

suggesting they are not 7α-dehydroxylated.   
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Figure 3.4:  Conversion of [24-14C]-CDCA by CDCA-induced C592 

 

First spot on the TLC plate is the chenodeoxycholic acid TLC standard.  The second spot 

contains the organic extracts from a C592 whole-cell chenodeoxycholic acid-induced [24-14C]-

chenodeoxycholic acid metabolism.  C592 was grown in the presence of 25µM 

chenodeoxycholic acid along with 1µCi chenodeoxycholic acid.  Cultures were extracted and run 

on TLC as described in the Materials and Methods.  C592 metabolizes [24-14C]-

chenodeoxycholic acid to three secondary metabolites.   
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[14C]-CDCA as well as C592 whole cell protein extract metabolism of [14C]-CA and [14C]-

CDCA showed no significant difference from the induced samples, indicating this was not an 

inducible phenomenon (data not shown).  

 

Next C592 was compared against known bile acid 7α-dehydroxylating and epimerizing bacterial 

whole-cell cultures.  Clostridium scindens VPI 12708 is a known high-activity 7α-

dehydroxylating bacterium known to harbor a bile acid-inducible operon (bai-operon).  The 

products created from CA-induced [14C]-CA metabolism in whole cell cultures are known, 

including 3-oxo-deoxycholic acid, DCA, and 7-oxo-cholic acid (Figure 3.5).  Additionally, when 

induced with ACA, C. scindens VPI 12708 shifts its metabolic profile to create 3-oxo-

allodeoxycholic acid and allodeoxycholic acid, in addition to some trace DCA (143) (Figure 3.5).  

Both whole cell extracts of 12708 [14C]-CA metabolism were used as comparisons to help 

determine possible C592 CA metabolites, although only 7-oxo-cholic acid appeared to 

comigrate, indicating C592 CA metabolites are not 7α-dehydroxylated (Figure 3.5).  In addition, 

C592 CDCA-induced [14C]-CDCA metabolism was compared against two other bacteria known 

to metabolize CDCA.  C. scindens VPI 12708 is known to convert CDCA into several 

metabolites, including LCA, 3-oxo-lithocholic acid, 3-oxo-chenodeoxycholic acid, and 7-oxo-

lithocholic acid (7-oxo-LCA) (Figure 3.6).  Clostridium absonum was also screened, as it has 

been previously shown to harbor both a 7α-HSDH and 7β-HSDH, allowing it to epimerize 

CDCA at the 7-hydroxyl group forming ursodeoxycholic acid (146).  C. absonum whole cell 

CDCA metabolism generated 7-oxo-lithocholic acid as well as ursodeoxycholic acid (Figure 

3.6).   When these known CDCA metabolites were compared to the three C592 CDCA 
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Figure 3.5:  TLC separation of organic extracts from C. scindens VPI 12708 and C592 bile 

acid-induced whole cell conversions of [24-14C]-CA 

 

The first spot on the TLC plate is a cholic acid TLC standard.  The next three spots are organic 

extracts from whole-cell bile acid-induced [24-14C]-cholic acid metabolism screens in C. 

scindens VPI 12708 or C592.  Based on previous literature, C. scindens VPI 12708 is known to 

differentially produce deoxycholic acid or allodeoxycholic acid from cholic acid when induced 

with either cholic acid or allocholic acid, respectively (143).  In addition, C. scindens VPI 12708 

bile acid induced cultures usually generate some 7-oxo-cholic acid and 3-oxo-deoxycholic acid 

(when induced with cholic acid) or 3-oxo-allodeoxycholic acid (when induced with allocholic 

acid), based on Rf (143).  One C592 cholic acid metabolite appears to comigrate with 

allodeoxycholic acid and another with 7-oxo-cholic acid, but the rest have unique migration 

patterns.  
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Figure 3.6:  TLC separation of organic extracts from C. scindens VPI 12708, C. absonum, 

and C592 CDCA-induced whole cell conversions of [24-14C]-CDCA 

 

The first spot on the TLC plate is a chenodeoxycholic acid TLC standard.  The next three spots 

are organic extracts from whole-cell chenodeoxycholic acid-induced [24-14C]-chenodeoxycholic 

acid metabolism screens in C. scindens VPI 12708, Clostridium absonum, or C592.   Previous 

literature has determined LCA as a major product of C. scindens VPI 12708 CDCA metabolism 

(261).  Additionally, C. absonum is known to epimerize chenodeoxycholic acid to 

ursodeoxycholic acid via 7α-HSDH and 7β-HSDH reactions (146, 262).  When whole cell 

conversion of CDCA of these two known CDCA metabolizers is compared to C592, one 

metabolite (7-oxo-lithocholic acid) comigrates while the two others do not.
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metabolites, the only metabolites that shared a similar Rf was 7-oxo-LCA, indicating the other 

two compounds were unique CDCA metabolites. 

 

Determination of C592 phylogeny based on 16S sequencing 

 

C592 was confirmed to be pure through anaerobic BHI agar plate growth, colony isolation, and 

subsequent bile acid metabolism screening.  There was no growth under aerobic BHI agar 

plating.  Purified C592 was grown anaerobically in BHI broth overnight at 37ºC for genomic 

DNA isolation and purification.  Purified C592 genomic DNA was used as template for 16S 

sequence amplification using generic primers (Table 2.2).  The ~1kb PCR product was run on a 

1% agarose gel, isolated, purified, and sequenced.  The resulting C592 16S DNA fragment had 

>99% sequence similarity to the Eggerthella lenta type strain. 

 

Comparison of phenotypic similarities between C592 and E. lenta ATCC 25559 

 

E. lenta ATCC 25559 (25559) was acquired from the American Type Culture Collection, plated 

anaerobically, and colonies picked for further analysis.  Purified 25559 was grown anaerobically 

in BHI media and compared with C592 growth.  Growth of C592 and 25559 was similar 

between both strains both with and without arginine, which has been shown to be stimulatory for 

E. lenta growth in vitro (Table 3.1).  Both showed similar Gram-positive bacillus morphology 

(data not shown). 

 

Comparison of C592 and 25559 metabolism of primary and secondary bile acids 
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Table 3.1:  Overnight growth comparison between C592 and E. lenta ATCC 25559 
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Since E. lenta is known to epimerize primary and secondary bile acids, we screened the ability of 

C592 and 25559 to metabolize numerous bile acids.  Grown overnight in BHI broth under inert 

N2 gas, C592 and 25559 both metabolize 25µM CDCA into three metabolites; CDCA-A, 

CDCA-B, and CDCA-C (Figure 3.7).  CDCA-A has a similar Rf to 7-oxo-LCA, however, 

CDCA-B and CDCA-C do not share Rf values with previously described CDCA metabolites 

generated by bile acid 7α-dehydroxylating bacteria. Both strains metabolize CDCA to 

completion, leaving no remaining CDCA after 24 hours.  In a time course experiment, CDCA 

metabolism begins in early-log phase, with no detectable CDCA remaining by mid-log phase 

(data not shown).  In addition, both C592 and 25559 can grow in higher concentrations of CDCA 

(50µM and 500µM) as well as completely metabolizing the increased CDCA concentrations to 

the same three secondary metabolites (data not shown).  C592 and 25559 also completely 

metabolize CA to six metabolites (Figure 3.8).  One CA metabolite has a similar Rf value to 7-

oxo-CA, however the rest do not match known CA metabolites based on Rf values. 

 

E. lenta has been previously shown to isomerize secondary bile acids, so the ability for C592 to 

metabolize DCA and LCA was tested.  In order to test secondary bile acid metabolism, 14C-

secondary bile acids were synthesized biologically.  C. scindens VPI 12708 was grown with CA 

and 14C-CA or CDCA and 14C-CDCA overnight and the resulting bile acid metabolites were 

separated on TLC, isolated, and quantified via liquid scintillation spectrometry.  The resulting 

[14C]-secondary bile acids were used for whole cell metabolism assays.  Both C592 and 25559 

fully metabolize 25µM DCA to secondary metabolites, DCA-A and DCA-B (Figure 3.9).  C592 

also recognizes LCA, fully metabolizing it to a single secondary metabolite (data not shown).   
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Figure 3.7:  TLC separation of CDCA-induced C592 and Eggerthella lenta ATCC 25559 

whole cell metabolism of [24-14C]-CDCA 

 

The first frame is a chenodeoxycholic acid TLC standard.  The next two frames are organic 

extracts from whole-cell chenodeoxycholic acid-induced [24-14C]-chenodeoxycholic acid 

metabolism screens in C592 and E. lenta ATCC 25559.  Both C592 and E. lenta ATCC 25559 

metabolize CDCA to three metabolites; CDCA-A which comigrates with 7-oxo-lithocholic acid, 

CDCA-B and CDCA-C, which do not comigrate with known CDCA metabolites.  CDCA 

metabolites CDCA-A, CDCA-B, and CDCA-C were isolated from TLC plates and used for 

further characterization  
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Figure 3.8:  TLC separation of CA-induced C592 and Eggerthella lenta ATCC 25559 whole 

cell metabolism of [24-14C]-CA 

 

The first frame is a cholic acid TLC standard.  The next two frames are organic extracts from 

whole-cell cholic acid-induced [24-14C]-cholic acid metabolism screens in C592 and E. lenta 

ATCC 25559.  Both C592 and E. lenta ATCC 25559 metabolize CA to a similar pattern of 

metabolites.  
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Figure 3.9: TLC separation of DCA-induced C592 and Eggerthella lenta ATCC 25559 

whole cell metabolism of [24-14C]-DCA 

 

The first frame is a deoxycholic acid TLC standard.  The next two frames are organic extracts 

from whole-cell deoxycholic acid-induced [24-14C]-deoxycholic acid metabolism screens in 

C592 and E. lenta ATCC 25559.  Deoxycholic acid was made biologically via metabolism of 

CA by C. scindens VPI 12708, as described in the Materials and Methods.  Both C592 and E. 

lenta ATCC 25559 metabolize DCA to in a similar pattern to two distinct metabolites, DCA-A 

and DCA-B.  These two metabolites were isolated from the TLC plate and used for further 

analysis.  



 87 

 



 88 

C592 and 25559 metabolism of CDCA was also tested in the presence of varying molecules 

which were hypothesized to alter the pattern of bile acid metabolism.  Arginine, at a 

concentration of 0.5% wt/vol, did not inhibit formation of CDCA metabolites (data not shown).  

Neither pyruvate nor glutamate (100µM final concentration) altered C592 metabolism of CDCA 

(data not shown). 

 

Mass spectrometry characterization of C592 CDCA and DCA metabolites 

 

C592 metabolism of CDCA and DCA was repeated in a larger volume in order to obtain enough 

of each metabolite to perform MS analysis. 100mL C592 BHI cultures were grown anaerobically 

overnight under inert N2 gas in the presence of 25µM CDCA.  The metabolites were separated 

on TLC alongside C592 14C-CDCA whole cell metabolism extracts and the corresponding bands 

for unlabeled CDCA-A, CDCA-B, and CDCA-C were isolated.  MS analysis on the resulting 

bands was performed.  MS analysis of authentic CDCA was performed resulting in a 

mass/charge of 392.57m/z.  CDCA-A and CDCA-B metabolites saw a loss of two mass units 

(390m/z) on MS analysis, indicating oxidation of a single hydroxyl-group (Figure 3.10).  CDCA-

C was four mass units less than CDCA (388m/z), indicating probable oxidation of two hydroxyl 

groups (Figure 3.10).  CDCA is a dihydroxy bile acid (C3, C7) and a loss of 4 AMU is consistent 

with CDCA-C being identified as 3,7-dioxo-5β-cholanoic acid.  CDCA-A has a similar Rf to 7-

oxo-LCA and shows the expected mass on MS analysis.  Additionally, when CDCA-A was 

treated with purified 3α-HSDH from Pseudomonas testosteroni in the presence of NAD+, a 

single product migrating with the same Rf value of 3,7-dioxo-5β-cholanoic acid is observed.  

Taken together, these results suggest CDCA-A is 3α-hydroxy-7-oxo-5β-cholanoic acid.
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Figure 3.10:  C592 CDCA metabolite separation and subsequent MS characterization 

 

C592 CDCA metabolites were separated as previously described on TLC both with and without 

[24-14C]-radiolabel.  Isolated unlabeled substrates then underwent MS analysis as described in 

the Materials and Methods.  Both CDCA-A and CDCA-B exhibited mass/charge ratios of 

390m/z, suggesting a loss of 2 AMU when compared to CDCA, consistent with the oxidation of 

a single hydroxyl group.  CDCA-C exhibited a loss of 4 AMU (388m/z) when compared to 

CDCA, consistent with the oxidation of two hydroxyl groups.  Correlating this data with TLC 

and 3α-HSDH treatment data, the putative identities of these metabolites are:  CDCA-A - 3α-

hydroxy-7-oxo-5β-cholanoic acid, CDCA-B - 3β-hydroxy-7-oxo-5β-cholanoic acid, CDCA-C - 

3,7-dioxo-5β-cholanoic acid.  
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CDCA-B has the same mass as CDCA-A. However, the Rf matches neither 7-oxo-LCA nor 3-

oxo-CDCA.  In addition, when treated with purified 3α-HSDH in the presence of NAD+, there is 

no product formed.  These results suggest that CDCA-B is 3β-hydroxy-7-oxo-5β-cholanoic acid. 

 

The same procedure was used to perform MS analysis on the C592 DCA metabolites.  MS 

analysis for DCA has been performed previously with a resulting mass of 392.57m/z.  When 

compared to the mass of DCA, C592 DCA metabolite DCA-A shows a loss of two mass units 

(390m/z), indicating the oxidation of a single hydroxyl group (Figure 3.11).  DCA-B shows a 

loss of four mass units (388m/z), indicating the oxidation of two hydroxyl groups (Figure 3.10).  

Similarly to CDCA, DCA only contains two hydroxyl groups, one at the 3rd and 12th carbons.  

Therefore, DCA-B can be identified as 3,12-dioxo-5β-cholanoic acid.  DCA-A is likely either 3-

oxo-DCA or 12-oxo-DCA, the specific oxidized hydroxyl group was not determined. 

 

Comparison of steroid metabolism by C592 and 25559 

 

Since E. lenta type strain has previously been shown to metabolize neutral steroids such as 

deoxycortisone, deoxycortisol, and dehydrocorticosterone (248), we determined substrate 

specificity for C592 and 25559 metabolism of numerous compounds sharing the steroid 

backbone.  C592 and 25559 were grown overnight anaerobically in BHI broth in the presence of 

25µM androstenedione and its 17α/β-reduced end products, epitestosterone and testosterone, 

respectively.  Cultures were extracted and the metabolites separated on reverse phase column 

HPLC and monitored at 240nm. Neither androstenedione nor epitestosterone were metabolized 

to a secondary metabolite (data not shown).  However, both C592 and 25559 metabolized
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Figure 3.11: C592 DCA metabolite separation and subsequent MS characterization 

 

C592 DCA metabolites were separated as previously described on TLC both with and without 

[24-14C]-radiolabel.  Isolated unlabeled substrates then underwent MS analysis as described in 

the Materials and Methods. DCA-A exhibited mass/charge ratio of 390m/z, suggesting a loss of 

2 AMU when compared to DCA, consistent with the oxidation of a single hydroxyl group.  

DCA-B exhibited a loss of 4 AMU (388m/z) when compared to DCA, consistent with the 

oxidation of two hydroxyl groups. DCA-A is hypothesized to be either- 3α-hydroxy-12-oxo-5β-

cholanoic acid or 12α-hydroxy-3-oxo-5β-cholanoic acid. DCA-B is predicted to be 3,12-dioxo-

5β-cholanoic acid.  
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testosterone to a secondary metabolite that comigrated with androstenedione (Figure 3.12).  The 

data indicates that C592 and 25559 recognize the 17β-hydroxyl group on testosterone and 

preferentially oxidize it.  This is the first report of 17β-HSDH activity in E. lenta.  C592 and 

25559 were also tested for their ability to metabolize hydrocortisone and cholesterol, however no 

products were detected under N2 gas (data not shown).  Taken together, it appears that under 

inert N2 anaerobic growth, both C592 and 25559 preferentially oxidize bile acid and steroid 

hydroxyl groups (Figure 3.13). 

 

Whole genomic sequencing of C592 and comparison to E. lenta type strain 

 

In order to get a more comprehensive comparison of novel strain C592 and E. lenta 25559, the 

genome C592 was sequenced.  Genomic DNA was isolated from C592 was sheared and 

converted to a Nanopore library.  The library was then sequenced on SpotON Flowcell MK 1 for 

48 hours using a MinION MK 1B sequencer.  Poretools and FastQC was used to determine 

quality scores of the data set and reads from E. coli were removed via a Perl script.  SPAdes-

v3.9.0 was then used for de novo hybrid assembly of the reads.  This resulted in five contigs 

>500bp, the top five of which were blasted to the NCBI NT database (Table 3.2).  NODE_1 

indicates the C592 genomic DNA, while four smaller contigs were also picked up likely 

indicating the presence of plasmids (Table 3.2). MUMmer v-3.23 was used to perform nucleotide 

level comparisons between the C592 NODE_1 contig and the E. lenta type strain closed genome 

(Table 3.3).  This comparison showed that C592 and 25559 share approximately 88% base pair 

identity, however over 400k base pairs (>10%) were unaligned (Table 3.3).  Mauve alignment
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Figure 3.12:  C592 metabolizes testosterone to androstenedione under inert N2 gas 

 

C592 was grown the presence of 25mM testosterone and then extracted as described in the 

Materials and Methods.  The organic extract was run on HPLC, monitoring at 240nm for 

absorption via UV-Vis.  Based on both androstenedione and testosterone controls, C592 

metabolizes testosterone to a product that comigrates with the androstenedione control yet 

maintains the 4-ene-3-oxo moiety required for 240nm absorption.  This suggests the 17β-

hydroxyl group on testosterone is being oxidized by C592.  Similar experiments run with 

epitestosterone did not show production of a secondary metabolite, suggesting this activity is 

specific to the β-configuration of the C17-hydroxyl group.  
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Figure 3.13:  Summary of C592 and 25559 bile acid and neutral steroid metabolic potential 

 

This diagram shows C592 bile acid and steroid metabolic potential.  Based on the data presented 

so far, C592 has shown the potential for numerous biotransformations of the three hydroxyl 

groups found on primary and secondary bile acids, including 3α-, 3β-, 7α-, 12α-HSDH activity.  

Additionally, C592 has been shown to exhibit 17β-HSDH activity.  



 98 

  



 99 

Table 3.2:  De novo hybrid assembly of the five largest contigs from C592 genomic 

sequencing 

 

SPAdes-v3.9.0 Hybrid Assembly 

Contig Name Length Coverage BLAST Top Hits (NT database) 

NODE_1 3,593,230 71x Eggerthella lenta DSM 2243, complete genome 

NODE_2 45,419 148x Gordonibacter pamelaeae 7-10-1-b draft genome 

NODE_3 3,947 864x 

Uncultured prokaryote from Rat gut metagenome 

metamobilome, plasmid pRGRH0595  
 

NODE_4 2,749 1663x 

Uncultured prokaryote from Rat gut metagenome 

metamobilome, plasmid pRGRH0074  
 

NODE_5 2,231 1780.77 

Uncultured prokaryote from Rat gut metagenome 

metamobilome, plasmid pRGRH0074  
 

Total 3,647,576   
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Table 3.3: Nucleotide level comparisons between C592 NODE_1 contig and the E. lenta 

type strain closed genome 

 

                    Eggerthella lenta DSM 2243 
genome 

C592 NODE_1 

Sequences   
TotalSeqs 1 1 
AlignedSeqs 1(100.00%) 1(100.00%) 
TotalBases 3,632,260 3,593,230 
AlignedBases 3,196,021(87.99%) 3,188,117(88.73%) 
UnalignedBases 436,239(12.01%) 405,113(11.27%) 
Alignments   
1-to-1  220 220 
TotalLength 3,172,629 3,172,428 
AvgIdentity 98.66 98.66 
[Feature Estimates]   
Breakpoints 554 554 
Relocations 26 35 
Translocations 0 0 
Inversions 14 14 
InsertionSum  466,071 434,221 
InsertionAvg 2,118.50 1,929.87 
TandemIns 0 2 
TandemInsSum 0 255 
TandemInsAvg 0.00 127.50 
[SNPs]   
TotalSNPs 35,383 35,383 
TotalGSNPs 8,237 8,237 
TotalIndels 4,555 4,555 
TotalGIndels 99 99 
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of the C592 and 25559 genomes was performed, showing significant rearrangement but high 

similarity between the two genomes (Figure 3.14).  Comparison of annotations were performed 

between C592 and the E. lenta type strain and showed that C592 encodes 3047 proteins, while 

25559 encodes 3110 proteins (Table 3.4).  Taken together, although C592 and 25559 appear to 

have similar bile acid metabolic profiles and highly conserved genomic regions, their genomes 

also harbor significant differences. 

 

Searching the C592 genome for an explanation for the production of oxo-bile acid 

derivatives under anaerobic conditions 

 

The production of oxo-bile acids under anaerobic condition is unique, since most anaerobic 

bacteria scavenge for electron accepters to regenerate their oxidized metabolic cofactors, such as 

pyridine nucleotides and ferredoxin.  Conversely, the oxidation of bile acids would generate 

reduced pyridine nucleotides.  Therefore, we sought to determine a reason C592 would be 

carrying out such a reaction in an anaerobic environment.  Using the genetic information gained 

from C592 genomic sequencing, KEGG maps were populated with enzymes annotated to be 

present in C592 based on KEGG gene ontology using BlastKOALA and pathway mapping tools.  

Of the entirety of encoding sequences in C592, only 1340 (42%) matched KEGG annotations 

(Figure 3.15).  Sixty-one enzymes were annotated to be involved in carbon metabolism.  C592 

contains genes for the glycolysis pathway, an incomplete TCA cycle (missing succinyl-CoA 

synthetase), and a pyruvate:ferredoxin oxidoreductase capable of creating acetyl-CoA from 

pyruvate.  Interestingly, annotation of the complete genome sequence of C592 and comparative 

genomics against E. lenta ATCC 25559 suggests that both
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Figure 3.14:  Mauve alignment of C592 and E. lenta type strain genomes 

 

Mauve gene alignment was performed between the longest C592 contig from sequencing and the 

E. lenta type strain closed genome and visualized using Circos as described in the Materials and 

Methods.  There are some gaps in this alignment both within the localized collinear blocks 

(LCB) and in between LCBs.   
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Table 3.4:  CDS protein annotation comparison between C592 and Eggerthella lenta type 

strain 

  

 
Eggerthella_lenta_DSM_2243	 New	Assembly	

contig	 contigs:	1	 contigs:	1	
bases:	 3,632,260	 3,593,230	
tmRNA:	 1 1	
tRNA:	 54	 54	
rRNA:	 6	 6	
Repeat	region:	 1	 1	
CDS:		 3110	 3047	
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Figure 3.15:  Overall C592 BlastKOALA results 

 

Annotated sequences from the C592 genomic data in FASTA format were further analyzed using 

the KEGG Orthology and Links Annotation (BlastKOALA) (223).  C592 KEGG maps were 

generated using KEGG mapping software.  42.1% of the total C592 annotated genes were 

recognized by the BlastKOALA algorithm and populated to relevant KEGG maps.  Overall 

breakdown of the recognized C592 sequences shows that the two largest groups represented by 

KEGG maps were environmental information processing and genetic information processing, 

with numerous other groups represented as well.  
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 strains encode a near complete Wood-Ljungdahl pathway for generation of acetate from CO2 

(Figure 3.16).  Of the nine enzymes in this pathway, KEGG annotation located six of the genes 

in C592.  Further searching of C592 genomic data showed putative genes for two of the 

remaining three genes in the pathway (Table 3.5).  These results gave a possible explanation for 

the requirement of reducing equivalents from bile acids, as the fixation of CO2 to acetate requires 

multiple reducing equivalents. 

 

In addition to carbon metabolism, C592 was shown to have numerous other metabolic pathways 

of interest.  Of note, it contains genes required for the metabolism of arginine, as the E. lenta 

type strain is reported to have (263).  C592 is annotated to have genes allowing it to convert 

arginine to form ornithine, ammonia, and CO2 while generating ATP from ADP (Figure 3.16).  

In addition, it has genes allowing it to interconvert arginine and fumarate, likely depending on its 

energetic needs (Figure 3.17).  This shows energy conservation gene pathways in E. lenta are 

maintained in C592. 

 

Identifying gene clusters of interest in C592 and 25559 

 

Work on the characterization of genes in the E. lenta type strain encoding bile acid isomerization 

enzymes has been done previously (150).  Devlin et al. screened numerous E. lenta short-chain 

dehydrogenase/reductase enzymes (SDR) for bile acid 3α-HSDH and 3β-HSDH activity, 

focusing on their ability to isomerize DCA.  However, of all ten genes tested, only three were 

found to be active.  Six of the seven tested were found in high homology in C592, including the 

two confirmed 3β-HSDH and one 3α-HSDH (Table 3.6).  Additional SDR, oxidoreductases,
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Figure 3.16: C592 encodes genes annotated to be involved in the Wood Ljungdahl pathway  

 

C592 KEGG annotated data generated from BlastKOALA was used with the KEGG Mapper 

Reconstruct Pathway tool, utilizing data from the KEGG Atlas (264).  Green lines indicate genes 

present in C592 that match the relevant annotation in the pathway.  C592 has genes annotated to 

be part of the Wood-Ljungdahl pathway.  These include formate dehydrogenase, formyl-

tetrahydrofolate synthetase, formyl-tetrahydrofolate cyclohydrolase, methylene-tetrahydrofolate 

reductase, phosphotransacetylase, and acetate kinase.  Three genes in this pathway were not 

annotated via KEGG mapping, but two had similar candidates found through searching the C592 

genome for similar enzymes.  These include a methylene-tetrahydrofolate reductase, and the 

carbon monoxide dehydrogenase.  A methyltransferase/acetyl-CoA synthase was not located in 

the C592 genome.  All of these identified C592 genes are also highly conserved in the E. lenta 

ATCC 25559 type strain.  Table 3.6 contains the ascension numbers for the relevant Wood-

Ljungdahl pathway genes in C592 and their corresponding genes in E. lenta ATCC 25559.   
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Table 3.5:  Wood Ljungdahl Pathway Homologous Genes in C592 and E. lenta ATCC 25559 
 

Wood-Ljungdahl	Pathway	Homologous	Genes	
Formate-tetrahydrofolate	synthetase	

C592:	 Type	Strain:	

Name	 db_xref	 Length	 Name	 db_xref	 Length	

Formate--tetrahydrofolate	ligase	(EC	6.3.4.3)	CDS	 SEED:fig|6666666.209054.peg.396	 1,668	
formate--tetrahydrofolate	
ligase	CDS	 GI:506241661	 1,668	

Formyl-tetrahydrofolate	cyclohydrolase	/	methylene-tetrahydrofolate	dehydrogenase	

C592:	
	 	

Type	Strain:	
	 	Name	 db_xref	 Length	 Name	 db_xref	 Length	

Methylenetetrahydrofolate	dehydrogenase	(NADP+)	
(EC	1.5.1.5)	/	Methenyltetrahydrofolate	
cyclohydrolase	(EC	3.5.4.9)	CDS	 SEED:fig|6666666.209054.peg.400	 870	

tetrahydrofolate	
dehydrogenase	CDS	 GI:497294816	 870	

Methylene-tetrahydrofolate	reductase	

C592:	
	 	

Type	Strain:	
	 	Name	 db_xref	 Length	 Name	 db_xref	 Length	

bifunctional	homocysteine	S-methyltransferase/5,10-
methylenetetrahydrofolate	reductase	protein	CDS	 SEED:fig|6666666.209054.peg.677	 903	 methionine	synthase	CDS	 GI:497295229	 903	

Carbon	monoxide	dehydrogenase	

C592:	
	 	

Type	Strain:	
	 	Name	 db_xref	 Length	

	 	 	Xanthine	dehydrogenase,	molybdenum	binding	
subunit	(EC	1.17.1.4)	CDS	 SEED:fig|6666666.209054.peg.1780	 2,298	 (Did	not	show	up	in	Mauve	alignment)	

	Phosphate	acetyltransferase	and	acetate	kinase	

C592:	
	 	

Type	Strain:	
	 	Name	 db_xref	 Length	 Name	 db_xref	 Length	

Phosphate	acetyltransferase	(EC	2.3.1.8)	CDS	 SEED:fig|6666666.209054.peg.1464	 999	
phosphate	acetyltransferase	
CDS	 GI:496664653	 999	

Acetate	kinase	(EC	2.7.2.1)	CDS	 SEED:fig|6666666.209054.peg.1463	 1,215	 acetate	kinase	CDS	 GI:496664654	 1,215	
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Figure 3.17:  KEGG map of C592 arginine metabolism genes and the link to Kreb’s cycle 

 

C592 KEGG annotated data generated from BlastKOALA was used with the KEGG Mapper 

Reconstruct Pathway tool, utilizing data from the KEGG Atlas (264).  Green lines indicate genes 

present in C592 that match the relevant annotation in the pathway.  C592 encodes genes allowing 

it to metabolize arginine to ammonia while generating ATP, CO2, and ornithine.  This pathway 

of ATP generation in the E. lenta type strain, outlined in the box, was first described by Sperry et 

al and was described as necessary for optimal E. lenta growth (263).  C592 additionally encodes 

enzymes that allow it to generate fumarate from arginine, which can then be utilized as an 

electron acceptor to form succinate.  C592 encodes numerous redundant fumarate reductases 

throughout its genome.  
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Table 3.6:  Annotated reductases in C592 and E. lenta ATCC 25559 genomes 
 
Reductase	genes	tested	in	Devlin	et.	al	2015	
C592:	 E.	lenta	type	strain:	

Name	 db_xref	 Name	 db_xref	
Confirmed	
activity?	

3-oxoacyl-[acyl-carrier	protein]	reductase	
(EC	1.1.1.100)	CDS	

SEED:fig|6666666.
209054.peg.735	 short-chain	dehydrogenase	CDS	 GI:496664150	 Elen_2515	

	Sorbitol-6-phosphate	2-dehydrogenase	(EC	
1.1.1.140)	CDS	

SEED:fig|6666666.
209054.peg.1846	 3-ketoacyl-ACP	reductase	CDS	 GI:506240750	 Elen_1325	 3β-HSDH	

Dehydrogenases	with	different	specificities	
(related	to	short-chain	alcohol	
dehydrogenases)	CDS	

SEED:fig|6666666.
209054.peg.1011	 short-chain	dehydrogenase	CDS	 GI:496663880	 Elen_2188	

	3-oxoacyl-[acyl-carrier	protein]	reductase	
(EC	1.1.1.100)	CDS	

SEED:fig|6666666.
209054.peg.879	 short-chain	dehydrogenase	CDS	 GI:496663981	 Elen_0690	 3α-HSDH	

3-oxoacyl-[acyl-carrier	protein]	reductase	
(EC	1.1.1.100)	CDS	

SEED:fig|6666666.
209054.peg.1230	 beta-ketoacyl-ACP	reductase	CDS	 GI:496661655	 Elen_1987	

	
Glucose	1-dehydrogenase	(EC	1.1.1.47)	CDS	

SEED:fig|6666666.
209054.peg.3084	 glucose-1-dehydrogenase	CDS	 GI:506240102	 Elen_0198	 3β-HSDH	

?	Gap	in	Mauve	Alignment	
	

short-chain	
dehydrogenase/reductase	SDR	CDS	 GI:506240693	 Elen_1208	

	Other	reductases	in	C592	and	E.	lenta	type	strain	genome	
C592:	 E.	lenta	type	strain:	
Name	 db_xref	 Name	 db_xref	
2,4-dienoyl-CoA	reductase	[NADPH]	(EC	1.3.1.34)	CDS	 SEED:fig|6666666.209054.peg.377	 NADH:flavin	oxidoreductase	CDS	 GI:497294813	
putative	Fe-S	oxidoreductase	CDS	 SEED:fig|6666666.209054.peg.412	 hypothetical	protein	CDS	 GI:506241657	

oxidoreductase	FAD/NAD(P)-binding	CDS	 SEED:fig|6666666.209054.peg.516	
ferredoxin-NADP+	reductase	subunit	
alpha	CDS	 GI:506241633	

3-oxoacyl-[acyl-carrier	protein]	reductase	(EC	1.1.1.100)	
CDS	 SEED:fig|6666666.209054.peg.735	 short-chain	dehydrogenase	CDS	 GI:496664150	
Short-chain	dehydrogenase/reductase	SDR	CDS	 SEED:fig|6666666.209054.peg.851	 short-chain	dehydrogenase	CDS	 GI:496664009	
oxidoreductase	of	aldo/keto	reductase	family,	subgroup	
1	CDS	

SEED:fig|6666666.209054.peg.149
2	

2,5-diketo-D-gluconic	acid	reductase	
CDS	 GI:506240950	

FIG00624394:	hypothetical	protein	CDS	
SEED:fig|6666666.209054.peg.169
2	 FAD-dependent	oxidoreductase	CDS	 GI:497294359	
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Periplasmic	aromatic	aldehyde	oxidoreductase,	FAD	
binding	subunit	YagS	CDS	

SEED:fig|6666666.209054.peg.177
9	 Gap	in	Mauve	Alignment	

Xanthine	dehydrogenase,	molybdenum	binding	subunit	
(EC	1.17.1.4)	CDS	

SEED:fig|6666666.209054.peg.178
0	 Gap	in	Mauve	Alignment	

Periplasmic	aromatic	aldehyde	oxidoreductase,	iron-
sulfur	subunit	YagT	CDS	

SEED:fig|6666666.209054.peg.178
1	 Gap	in	Mauve	Alignment	

Fe-S	oxidoreductase,	related	to	NifB/MoaA	family	with	
PDZ	N-terminal	domain	CDS	

SEED:fig|6666666.209054.peg.183
5	 hypothetical	protein	CDS	 GI:506240759	

predicted	NADPH-dependent	reductase	CDS	
SEED:fig|6666666.209054.peg.189
8	 FMN	reductase	CDS	 GI:496662103	

FIG092679:	Fe-S	oxidoreductase	CDS	
SEED:fig|6666666.209054.peg.191
4	

B12-binding	domain-containing	
radical	SAM	protein	CDS	 GI:506240718	

Heterodisulfide	reductase,	cytochrome	reductase	subunit	
CDS	

SEED:fig|6666666.209054.peg.192
3	 oxidoreductase	CDS	 GI:496662126	

Sarcosine	oxidase	alpha	subunit	(EC	1.5.3.1)	CDS	
SEED:fig|6666666.209054.peg.194
4	 FAD-dependent	oxidoreductase	CDS	 GI:497294180	

Flavin	reductase-like,	FMN-binding:Rubredoxin-type	
Fe(Cys)4	protein	CDS	

SEED:fig|6666666.209054.peg.205
2	 flavin	reductase	CDS	 GI:496662252	

Aldo/keto	reductase:4Fe-4S	ferredoxin,	iron-sulfur	
binding	CDS	

SEED:fig|6666666.209054.peg.212
2	 Fe-S	oxidoreductase	CDS	 GI:506240601	

NAD(FAD)-utilizing	dehydrogenase,	sll0175	homolog	CDS	
SEED:fig|6666666.209054.peg.216
4	 FAD-dependent	oxidoreductase	CDS	 GI:506240573	

Fe-S	OXIDOREDUCTASE	(1.8.-.-)	CDS	
SEED:fig|6666666.209054.peg.242
4	 YgiQ	family	radical	SAM	protein	CDS	 GI:506241324	

Fe-S	oxidoreductase	CDS	
SEED:fig|6666666.209054.peg.265
4	 radical	SAM	protein	CDS	 GI:497295255	

putative	NADH-dependent	flavin	oxidoreductase	CDS	
SEED:fig|6666666.209054.peg.282
3	 NADH:flavin	oxidoreductase	CDS	 GI:506240206	

FMN-dependent	NADH-azoreductase	CDS	
SEED:fig|6666666.209054.peg.288
3	

NAD(P)H	dehydrogenase	(quinone)	
CDS	 GI:496663491	

Aldo/keto	reductase:4Fe-4S	ferredoxin,	iron-sulfur	
binding	CDS	

SEED:fig|6666666.209054.peg.305
7	 Fe-S	oxidoreductase	CDS	 GI:497293772	

Gap	in	Mauve	Alignment	
	

oxidoreductase	CDS	 GI:496664037	
Gap	in	Mauve	Alignment	

	
FAD-dependent	oxidoreductase	CDS	 GI:496661933	

Gap	in	Mauve	Alignment	
	

NADH:flavin	oxidoreductase	CDS	 GI:496661830	
Gap	in	Mauve	Alignment	

	
short-chain	dehydrogenase	CDS	 GI:506240690	
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and dehydrogenases were identified in both C592 and 25559, totaling 26, although not all are 

identified in both genomes via the Mauve alignment (Table 3.6).  Of interest, Devlin et al. 

identified a “bai-like” operon in the E. lenta type strain containing numerous SDR enzymes 

reductases in an operon (150). C592 contains the same operon in high homology, but is missing a 

key enzyme in the pathway, directly downstream of the three SDR enzymes (Figure 3.18).   It 

has been hypothesized that this missing gene directly downstream of three SDR enzymes is the 

gene for the 21-dehydroxylase enzyme, indicating that C592 may not 21-dehydroxylate 

corticoids. 

 

In the determination of cardiac glycoside reductase activity in the E. lenta type strain, a putative 

gene cluster responsible for this activity was identified based on RNAseq results (238).  

However, when searching the aligned genome of C592, this two-gene cluster is absent (Figure 

3.19).  This suggests that C592 should not exhibit digoxin reductase activity.  Alternatively, if 

digoxin reductase activity is measured, it is likely this two-gene cluster in the type strain is not 

responsible for producing the enzymes responsible. 

 

When searching the KEGG maps based on C592, it was found that many genes in the Wood-

Ljungdahl acetogenesis pathway are present.  These same genes are also present in the E. lenta 

type strain genome.  In addition, both genomes encode membrane-energization gene clusters 

responsible for producing multi-subunit hydrogenases capable of functioning as an electron 

transport chain while generating a proton or Na+ gradient.  A Rhodocbacter nitrogen fixation 

(RNF) complex, found in acetogens as a means of coupling ATP generation to the Wood-

Ljungdahl pathway (95-97), is also found in both C592 and 25559 (Figure 3.20).  Not all
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Figure 3.18:  Gene cluster alignment of “bai-like” operon from C592 and 25559 

 

A. Alignment of a gene cluster in C592 and 25559 that contains numerous reductases.  Within 

this series of reductases in the type strain is a gene annotated as a scytalone dehydratase.  It 

shares that annotation to the 7α-dehydratase from C. scindens (265).   We hypothesize that this 

gene encodes the enzyme responsible for the 21-dehydroxylase enzyme.  B.  E. lenta type strain 

has been reported to have 21-dehydroxylase activity previously (247, 248).  Interestingly, this 

putative gene is missing from C592 while the two flanking genes remain with high homology.  

C592 is currently being tested for its ability to 21-dehydroxylate deoxycortisone.  
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Figure 3.19:  Gene cluster alignment of the putative cardiac glycoside reductase operon 

from C592 and 25559 

 

Gene cluster identified by Haiser et al to encode the cardiac glycoside reductase in Eggerthella 

lenta ATCC 25559 is missing from C592. Homologous genes are not found elsewhere in the 

genome.  C592 is currently being tested for cardiac glycoside reductase activity, although based 

on the absence of the genes predicted to encode activity, it is hypothesized it will not exhibit the 

phenotype.  
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Figure 3.20:  Gene cluster alignment of RNF complex operon from C592 and 25559 

 

Gene clusters in C592 and 25559 annotated to encode an RNF complex are similar to those 

found in acetogens (95-97).  Green bar above the mauve alignment indicates level of homology.  

Green indicates >90% homology, yellow indicates 30-90% homology, red indicates >30% 

homology.  The operon encoding the RNF complex is highly conserved between the two strains. 
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acetogens harbor genes for an RNF complex, others instead encode “energy conserving 

hydrogenase” (Ech) complexes that similarly generate a proton gradient while generating H2 

from reduced ferredoxin (266).  Both C592 and 25559 also harbor a putative Ech gene cluster 

(Figure 3.21).  In addition, both strains harbor ATP synthase transmembrane complexes, able to 

utilize this proton gradient generated from RNF and Ech complexes to generate ATP from ADP 

(Figure 3.22).  Taken together, these results strongly suggest that both C592 and 25559 share 

many genetic similarities to acetogens, especially with regard to redox balancing and ATP 

generating processes. 

 

One important molecule for acetogenesis is CO2, which can be quickly utilized in anaerobic 

environments.  Therefore, the ability to form CO2 independently would be evolutionarily 

advantageous for an acetogen.  C592 has genes to metabolize arginine and agmatine to form a 

carbamoyl phosphate intermediate and carbamate kinases to ultimately generate ATP, CO2, and 

ammonia (Table 3.7).  In addition, C592 appears to harbor multiple amino acid decarboxylases.  

A gene encoding a putative glutamate decarboxylase was located next to a glutamate/gamma-

aminobutyric acid (GABA) antiporter, indicating C592 could metabolize glutamate to GABA + 

CO2 and then use CO2 as an electron acceptor (Table 3.8).  In addition, C592 is annotated to 

have a histidine decarboxylase, which would yield histamine and CO2 from histidine (Table 3.8).  

Taken together, it is apparent that C592 has numerous avenues for generating its own CO2 via 

intracellular processes, depending on substrate availability.  Additionally, C592 appears to have 

the ability to make biogenic amines, such as GABA and histamine, which could have significant 

effects on host physiology. 
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Figure 3.21:  Gene cluster alignment of energy-conserving hydrogenase operon from C592 

and 25559 

 

Gene clusters in C592 and 25559 annotated to encode an Ech complex are similar to those found 

in acetogens not harboring an RNF complex (98, 266).  Green bar above the mauve alignment 

indicates level of homology.  Green indicates >90% homology, yellow indicates 30-90% 

homology, red indicates >30% homology.  The operon encoding the Ech complex is highly 

conserved between the two strains. 
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Consensus	identity 
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Figure 3.22:  Gene cluster alignment of ATP synthase operon from E. lenta strains C592 

and 25559 

 

Gene clusters in C592 and 25559 annotated to encode an ATP synthase operon. This 

transmembrane protein would be able to utilize a putative proton gradient generated from either 

Ech- or RNF-complexes to generate ATP (93, 266). 
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Table 3.7: Annotated arginine and agmatine metabolism genes in E. lenta strain C592 
 
Name	 db_xref	
Arginine	deiminase	(EC	3.5.3.6)	CDS	 SEED:fig|6666666.209054.peg.3131	
Agmatine	deiminase	(EC	3.5.3.12)	CDS	 SEED:fig|6666666.209054.peg.2844	
Arginine	deiminase	(EC	3.5.3.6)	CDS	 SEED:fig|6666666.209054.peg.1265	
Agmatine	deiminase	(EC	3.5.3.12)	CDS	 SEED:fig|6666666.209054.peg.866	
Agmatine	deiminase	(EC	3.5.3.12)	CDS	 SEED:fig|6666666.209054.peg.857	
Ornithine	carbamoyltransferase	(EC	2.1.3.3)	CDS	 SEED:fig|6666666.209054.peg.2843	
Aspartate	carbamoyltransferase	(EC	2.1.3.2)	CDS	 SEED:fig|6666666.209054.peg.1518	
Ornithine	carbamoyltransferase	(EC	2.1.3.3)	CDS	 SEED:fig|6666666.209054.peg.1266	
Putrescine	carbamoyltransferase	(EC	2.1.3.6)	CDS	 SEED:fig|6666666.209054.peg.864	
Putrescine	carbamoyltransferase	(EC	2.1.3.6)	CDS	 SEED:fig|6666666.209054.peg.855	
Ornithine	carbamoyltransferase	(EC	2.1.3.3)	CDS	 SEED:fig|6666666.209054.peg.593	
Carbamate	kinase	(EC	2.7.2.2)	CDS	 SEED:fig|6666666.209054.peg.1267	
Carbamate	kinase	(EC	2.7.2.2)	CDS	 SEED:fig|6666666.209054.peg.867	
Carbamate	kinase	(EC	2.7.2.2)	CDS	 SEED:fig|6666666.209054.peg.858	
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Table 3.8: Annotated glutamate and histidine decarboxylationg genes in E. lenta strain 
C592 
 

Name db_xref 
Probable glutamate/gamma-aminobutyrate 
antiporter CDS SEED:fig|6666666.209054.peg.3136 
Glutamate decarboxylase (EC 4.1.1.15) CDS SEED:fig|6666666.209054.peg.3135 
histidine decarboxylase, pyruvoyl type( 
EC:4.1.1.22 ) CDS 

SEED:fig|6666666.209054.peg.753 
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Within the realm of carbon metabolism, C592 has genes encoding an incomplete TCA cycle 

(Table 3.9).  Of particular interest, C592 appears to encode duplicate genes for fumarate 

reductase, a mechanism by which anaerobic bacteria are able to deposit reducing equivalents 

onto fumarate to generate succinate.  Additionally, the C592 genome encodes genes for 

generating fumarate from arginine, including an arginosuccinate synthase and arginosuccinate 

lyase (Table 3.10).  Fumarate is widely utilized anaerobically as a potential electron acceptor, 

leading to the formation of succinate (36).  Previous work with the type strain of E. lenta as well 

as preliminary fermentative end product analysis (data not shown) suggest that both C592 and 

25559 generate succinate as well as acetate as their major fermentative end products.  The 

incomplete TCA cycle of C592 (ending at succinate), the multitude of fumarate reductases, and 

the ability to shift arginine to fumarate, suggests fumarate is a major electron acceptor in E. 

lenta.  C592 also has genes that encode various other electron-accepting reactions, such as 

dimethyl sulfoxide reduction and nitrogen reduction (data not shown).  Acetogens are described 

as being a heterogenous group of organisms, specifically with regard to their utilization of 

various electron donors and electron acceptors (93).  These results correlate with those findings 

in other acetogenic bacteria, as both C592 and E. lenta appear to utilize numerous bile acids and 

steroids as electron donors and various other molecules as electron acceptors. 

 

  Varying atmospheric gases changes C592 and 25559 bile acid and steroid metabolism 

 

Since both 25559 and C592 appear to be acetogens based on genetic composition and previous 

fermentative end product analysis, next we tested the effects altered atmospheric gases would 

have on bile acid metabolism.  It was hypothesized since hydroxyl groups on bile acids were 
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Table 3.9: Annotated genes from the Kreb’s cycle in E. lenta strain C592 
 
Gene	Name	 db_xref	
Citrate	synthase	(si)	(EC	2.3.3.1)	CDS	 SEED:fig|6666666.209054.peg.20	
Aconitate	hydratase	(EC	4.2.1.3)	CDS	 SEED:fig|6666666.209054.peg.2429	
Isocitrate	dehydrogenase	[NAD]	(EC	1.1.1.41)	
CDS	 SEED:fig|6666666.209054.peg.2430	
Isocitrate	dehydrogenase	[NADP]	(EC	1.1.1.42)	
CDS	 SEED:fig|6666666.209054.peg.1697	
2-oxoglutarate	oxidoreductase,	gamma	subunit	
(EC	1.2.7.3)	CDS	 SEED:fig|6666666.209054.peg.1488	
2-oxoglutarate	oxidoreductase,	beta	subunit	
(EC	1.2.7.3)	CDS	 SEED:fig|6666666.209054.peg.1487	
2-oxoglutarate	oxidoreductase,	alpha	subunit	
(EC	1.2.7.3)	CDS	 SEED:fig|6666666.209054.peg.1486	
2-oxoglutarate	oxidoreductase,	delta	subunit,	
putative	(EC	1.2.7.3)	CDS	 SEED:fig|6666666.209054.peg.1485	
Malate	dehydrogenase	(EC	1.1.1.37)	CDS	 SEED:fig|6666666.209054.peg.2038	
fumarate	hydratase	CDS	 SEED:fig|6666666.209054.peg.2035	
Fumarate	hydratase	class	I,	aerobic	(EC	
4.2.1.2);	L(+)-tartrate	dehydratase	beta	subunit	
(EC	4.2.1.32)	CDS	 SEED:fig|6666666.209054.peg.2034	
Succinate	dehydrogenase	flavoprotein	subunit	
(EC	1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3027	
Succinate	dehydrogenase	iron-sulfur	protein	
(EC	1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3026	
fumarate	reductase/succinate	dehydrogenase	
flavoprotein	domain	protein	CDS	 SEED:fig|6666666.209054.peg.2659	
Succinate	dehydrogenase	flavoprotein	subunit	
(EC	1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.36	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3180	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3162	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3118	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3101	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3100	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.3074	
Fumarate	reductase	flavoprotein	subunit	(EC	 SEED:fig|6666666.209054.peg.2904	
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1.3.99.1)	CDS	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2860	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2775	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2772	
putative	fumarate	reductase	flavoprotein	
subunit	CDS	 SEED:fig|6666666.209054.peg.2742	
putative	fumarate	reductase	flavoprotein	
subunit	CDS	 SEED:fig|6666666.209054.peg.2736	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2731	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2727	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2679	
fumarate	reductase/succinate	dehydrogenase	
flavoprotein	domain	protein	CDS	 SEED:fig|6666666.209054.peg.2659	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2633	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2449	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2385	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2353	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2301	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2227	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.2195	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.1967	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.1768	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.1642	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.1095	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.1084	
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putative	fumarate	reductase	flavoprotein	
subunit	CDS	 SEED:fig|6666666.209054.peg.875	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.695	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.656	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.613	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.606	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.561	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.545	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.522	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.480	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.472	
putative	fumarate	reductase	flavoprotein	
subunit	CDS	 SEED:fig|6666666.209054.peg.471	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.364	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.243	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.217	
Fumarate	reductase	flavoprotein	subunit	(EC	
1.3.99.1)	CDS	 SEED:fig|6666666.209054.peg.19	
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Table 3.10:  Annotated genes for arginine biosynthesis in E. lenta strain C592  
 
Name	 db_xref	
Argininosuccinate	synthase	(EC	6.3.4.5)	CDS	 SEED:fig|6666666.209054.peg.2435	
Argininosuccinate	lyase	(EC	4.3.2.1)	CDS	 SEED:fig|6666666.209054.peg.2434	
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being used as electron donors, if a more energetically favorable electron donor was present then 

C592 and 25559 would shift to utilizing that electron donor and the oxidation of bile acids would 

be inhibited.  Both C592 and 25559 encode membrane-associated and cytoplasmic ferredoxin 

hydrogenases (including and Ech complex described above) capable of utilizing hydrogen to 

reduce oxidized ferredoxin.  The RNF complex, as well as other electron-bifurcating enzymes 

not yet identified in C592 or E. lenta, can then move electrons from reduced ferredoxin to 

oxidized NAD+, thereby generating reduced NADH, which would ultimately inhibit bile acid 

oxidation. C592 and 25559 metabolism of CDCA was tested under inert nitrogen, carbon 

dioxide, and hydrogen gas to mimic gases that might be present to varying degrees in the human 

intestinal tract to see if any changes in bile acid or steroid metabolism occurred. Under inert N2 

gas, C592 and 25559 completely metabolize CDCA into mostly CDCA-A and CDCA-C, 

although the relative amount is different between strains (Figure 3.23).  When grown in the 

presence of CO2 gas, CDCA was completely metabolized to the same three CDCA metabolites 

found under N2 gas culture conditions, although CDCA-A is the major metabolite for both strains 

(Figure 3.24).  When grown in the presence of H2 gas, CDCA metabolism by both C592 and 

25559 is significantly inhibited (Figure 3.25).  While there was some production of 7-oxo-CDCA 

and 3-oxo-CDCA, the majority of the CDCA remains unutilized in the cell cultures.  These 

experiments were repeated for both C592 and 25559 metabolism of testosterone.  Under H2, both 

C592 and 25559 have their metabolism of testosterone completely inhibited (data not shown). 

These results show that C592 and 25559 are able to shift their electron donors, and ultimately 

bile acid and steroid metabolism, based on substrate availability, preferring to use the most 

energetically favorable substrate possible.  Such an ability to be flexible with redox balancing is 

beneficial for any microbe living in the competitive environment of the human intestinal tract.  
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Figure 3.23:  Quantitation of C592 and 25559 metabolites of CDCA when grown overnight 

under inert N2 gas 

 

C592 and E. lenta ATCC 25559 were grown overnight in the presence of 25µM CDCA and 

1µCi [24-14C]-CDCA under inert N2, extracted, and run on TLC as previously described.  Bands 

corresponding to CDCA metabolites were scraped and the relative amounts of each were 

determined through liquid scintillation spectrometry.  Representative TLC on left.  Top right 

indicates relative amount of each of the metabolites with pie charts to show amounts relative to 

total radioactivity detected from lane, experiment run in triplicate.  The major product for 25559 

under N2 is 7-oxo-3α-chenodeoxycholic acid, whereas for C592 it is 3,7-dioxo-

chenodeoxycholic acid.    
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Figure 3.24:  Quantitation of C592 and 25559 metabolites of CDCA when grown overnight 

under CO2 gas 

 

C592 and E. lenta ATCC 25559 were grown overnight in the presence of 25µM CDCA and 

1µCi [24-14C]-CDCA under CO2, extracted, and run on TLC as previously described.  Bands 

corresponding to CDCA metabolites were scraped and the relative amounts of each were 

determined through liquid scintillation spectrometry.  Representative TLC on left.  Top right 

indicates relative amount of each of the metabolites with pie charts to show amounts relative to 

total radioactivity detected from lane, experiment run in triplicate.  The major product for 25559 

and C592 CDCA metabolism under CO2 is 7-oxo-3α-chenodeoxycholic acid. 
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Figure 3.25:  Quantitation of C592 and 25559 metabolites of CDCA when grown overnight 

under H2 gas 

 

C592 and E. lenta ATCC 25559 were grown overnight in the presence of 25µM CDCA and 

1µCi [24-14C]-CDCA under CO2, extracted, and run on TLC as previously described.  Bands 

corresponding to CDCA metabolites were scraped and the relative amounts of each were 

determined through liquid scintillation spectrometry.  Representative TLC on left.  Top right 

indicates relative amount of each of the metabolites with pie charts to show amounts relative to 

total radioactivity detected from lane, experiment run in triplicate.  The major product for 25559 

and C592 CDCA metabolism under CO2 is 7-oxo-3α-chenodeoxycholic acid. 
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C592 oxo-bile acid derivatives inhibit 7α-dehydroxylation in vitro 

 

Since C592 and 25559 both exhibited significant changes in bile acid metabolism based on 

atmospheric gas composition, we first wanted to test if a similar effect occurred with 7a-

dehydroxylating bacteria.  We performed the same bile acid metabolism test as above using the 

7α-dehydroxylating bacteria Clostridium scindens VPI 12708 (12708).  There was no significant 

effect of CO2 or H2 gas atmosphere on CA or CDCA 7a-dehydroxylation by 12708 (Figure 

3.26).  Next we tested the impact of the formation of oxo-bile acids on the 7α-dehydroxylation 

of primary bile acids by 12708.  We isolated [14C]-labeled CDCA metabolites (CDCA-A, 

CDCA-B, CDCA-C) and introduced them into a growing culture of 12708.  After 24 hours, 

12708 was able to reduce CDCA-A back to CDCA and subsequently 7α-dehydroxylate a portion 

of the newly formed CDCA (Figure 3.27).  Over the same time course, 12708 metabolized 7-

oxo-3β-chenodeoxycholic acid (CDCA-B) to a product whose Rf matched iso-CDCA (3β-

CDCA), but was unable to subsequently 7α-dehydroxylate (Figure 3.26). C. scindens VPI 12708 

is known to have 3α-HSDH and 7α-HSDH activity (148) but has never reported to have 3β-

HSDH activity, possibly explaining the lack of 7α-dehydroxylation of the 3β CDCA-B 

metabolite.  When CDCA-C was added to growing cultures of 12708, it was only partially 

reduced back to a mixture of CDCA and 3-oxo-CDCA (Figure 3.27).  These results suggest in 

vitro, two of the three major bile acid products from C592 and 25559 metabolism of CDCA 

prevent effective 7α-dehydroxylation by 12708.  When C592 and 12708 were grown in a mixed 

culture containing CDCA, the pattern of CDCA metabolites suggested a significant decrease in 

7α-dehydroxylation when compared to the results of a 12708 pure culture (Figure 3.28).  Likely  
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Figure 3.26:  C. scindens VPI 12708 metabolism of CA and CDCA does not change under 

anaerobic CO2 or H2 atmospheric gas 

 

Clostridium scindens VPI 12708 was grown overnight in anaerobic BHI in the presence of 

25mM CA or CDCA and 1µCi CA or CDCA under varying atmospheric conditions (N2, CO2, or 

H2).  Cultures were extracted and run on TLC plates as described in Materials and Methods.  C. 

scindens VPI 12708 did not alter its metabolism of CA or CDCA under any of the varying 

atmospheric gases.  
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Figure 3.27:  C. scindens VPI 12708 recognizes C592 CDCA metabolites but is unable to 

effectively 7α-dehydroxylate 

 

A.  First spot is a CDCA TLC standard.  Next two spots are C592/12708 overnight cell culture 

conversions of CDCA.  C592 generates three products as described above.  12708 generates one 

major metabolite, lithocholic acid (LCA), indicated by the black star.  B.  The three CDCA 

metabolites were isolated, concentrated, and added to 12708 overnight cultures at approximately 

25µM final concentration. 7-oxo-3α-CDCA (red star) was reduced back to CDCA by 12708.  

Some trace LCA is formed, but not as significant as 12708 + CDCA cell culture.  C.  12708 

reduces 7-oxo-3β-CDCA (green star) to a band that does not comigrate with CDCA.  This band 

has a similar Rf to 3β-CDCA (iso-CDCA), suggesting 12708 reduces this metabolite back to iso-

CDCA.  However, 7α-dehydroxylation does not appear to occur, suggesting 12708 is unable to 

7α-dehydroxylate the 3β-epimer.  D.  12708 recognizes 3,7-dioxo-CDCA (yellow star) and 

produces two major metabolites.  One metabolite comigrates with CDCA, while the other 

comigrates with 3-oxo-CDCA.  There does not appear to be any metabolite formed that 

comigrates with LCA.  
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Figure 3.28:  Coculture of C. scindens VPI 12708 and C592 inhibits 7α-dehydroxylation of 

CDCA 

 

A.  C. scindens VPI 12708 whole cell conversion of CDCA.  B.  C592 whole cell conversion of 

CDCA.  C.  10mL anaerobic BHI broth under N2 was inoculated with 1% overnight culture of 

both 12708 and C592 along with 25mM CDCA and 1mCi [24-14C]-CDCA.  This coculture was 

grown overnight at 37ºC and then extracted and run on TLC as described above.  The coculture 

CDCA pattern of metabolites matches neither the C592 nor 12708 patterns.  A significant 

amount of CDCA remains, while the other major product comigrates with 7-oxo-3α-CDCA.  

This suggests that in coculture, C592 and 12708 cycle CDCA back and forth between an 

oxidized and 3α-reduced C7-oxo group.  
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these two gut bacteria cycle between oxidation and reduction of hydroxyl groups on the bile 

acids regulating secondary bile acid formation. 
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Discussion: 

 

E. lenta is a normal inhabitant of the human intestinal microbiome.  It has been studied due to its 

propensity to metabolize bile acids and steroids, including the isomerization of primary and 

secondary bile acids at the 3-hydroxyl group (150) and the 21-dehydroxylation of corticoids 

(248).  The effects of these biotransformations are significant for both the gut microbiome as a 

whole and the host. E. lenta-derived glucocorticoid metabolites can inhibit renal cells ability to 

modulate response to cortisol, ultimately leading to fluid retention and hypertension (251).  

Isomerized secondary bile acids, such as iso-DCA, have been shown to be less toxic to other 

members of the gut microbiome at physiological concentrations (150).  Additionally, isomerized 

secondary bile acids have been hypothesized to be less toxic to colonocytes.  However, the 

pattern of isomerization requires what would at the surface appear to be an energetically 

unfavorable oxidation of a hydroxyl group in an anaerobic environment.  Oxidized bile acids 

(oxo-BA), or bile acids with a ketone hydroxyl moiety, were thought to be intermediates in the 

ultimate bile acid metabolism profile. However, oxidized bile acids are known to be present in 

significant amounts in serum, portal blood, fecal water, and fecal pellets (158-163, 267).  

Cholecystectomized patients are reported to have increased oxo-BA in portal circulation, likely 

due to more primary bile acids escaping into the large intestine and undergoing metabolism by 

gut microbes (165).  Oxo-BA have been shown to have differing agonistic properties than their 

fully reduced counterparts for host nuclear and G-protein coupled receptors.  For instance, 3-

oxo-LCA is the most potent bile acid VDR receptor agonist (175).  However, oxo-BA receptor 

activation remains to be fully tested for other known receptors that respond to bile acids.  

Additionally, how the oxidation of the hydroxyl groups of bile acids by E. lenta plays into its 
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general host metabolism is not known, instead the studies focused on the effects of the fully 

reduced end products.  Additionally, the effects of oxidation or epimerization of hydroxyl groups 

on other gut microbes, specifically those that are known to metabolize bile acids, had not been 

previously studied. 

 

In the current study, a novel strain of Eggerthella lenta, C592, was characterized, with an 

emphasis on the composition of its genome as well as its steroid and bile acid metabolism 

profile.  C592 was originally isolated from the fecal sample from Okinawa, Japan. Initially 

suspected to be a 7α-dehydroxylating bacterium, C592 was shown to create both mono- and di-

keto bile acid metabolites from CDCA.  Additionally, it was shown to completely metabolize 

secondary bile acids DCA and LCA to numerous secondary metabolites.  When compared to 

high activity and low activity 7α-dehydroxylating bacteria, most are not able to completely 

convert CA and CDCA to secondary metabolites.  Conversely, C592 was shown to convert 

concentrations of CDCA that can inhibit the growth of other bacteria (500µM) to secondary 

metabolites.  This pattern of metabolites initially suggested an irreversible conversion of primary 

bile acids, such as 7α-dehydroxylation.  However, MS analysis confirmed the CDCA and DCA 

C592 metabolites lost two or four mass units, indicating oxidation of one or two hydroxyl 

groups, respectively. 

 

C592 was subsequently determined to have high 16S sequence similarity to the Eggerthella lenta 

type strain.  Various E. lenta strains had been shown previously to have 3α-HSDH, 7α-HSDH, 

and 12α-HSDH activity (151, 153).  However, complete oxidation of primary and secondary bile 

acids by E. lenta was not noted in the literature.  Additionally, the accumulation of dioxo-
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primary or secondary bile acids in E. lenta whole cell extracts, such as 3,7-dioxo-CDCA or 3,12-

oxo-DCA, was not reported.  This study also shows that both C592 and the E. lenta type strain 

have 17β-HSDH activity, capable of converting testosterone to its precursor, androstenedione.  

While E. lenta has been reported to metabolize some steroids, 17β-HSDH activity has never 

before been reported.  Testosterone and other androgens are known to be excreted in the bile and 

become substrates for metabolism by gut microbes (268). Additionally, androgens may undergo 

passive diffusion across colonocytes.  The effects of bacterial inactivation of androgens on host 

physiology is not known, however the conservation of these genes in numerous strains of E. 

lenta indicate they give some evolutionary advantage. 

 

In this study, a full, closed genomic sequence for the novel C592 E. lenta strain was determined.  

Impressively, it maintains high genomic and metabolic similarities to the Eggerthella lenta type 

strain isolated from a patient in Europe in the 1930s.  This strong homology over both temporal 

and geographical differences emphasizes the importance of its set of genes, especially those for 

bile acid metabolism, in its ability to grow in the niche environment of the human intestinal tract.  

However, some differences between C592 and the type strain arose.  For instance, the cgr gene 

locus reported to encode the gene for digoxin reductase was not found in C592.  Current testing 

of C592 is underway in order to ascertain its ability to reduce digoxin in vitro.  The results of 

these future experiments will be important, as the clear lack of the described “cgr locus” from the 

type strain should indicate C592 would not have the ability to reduce digoxin.  However, if it is 

able to successfully reduce digoxin, it is likely this gene cluster does not in fact encode the 

enzymes responsible for catalyzing this reaction 
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Additionally, a bai-like operon in E. lenta was identified in the Devlin et al. study describing the 

enzymes responsible for 3α-hydroxyl epimerization of bile acids (150).  Within this operon and 

downstream of three SDR family enzymes is a gene that is currently being analyzed by 

collaborators as the putative 21-dehydroxylase, the enzyme responsible for 21-dehydroxylation 

of glucocorticoids.  The gene responsible for the production of this enzyme has not been 

previously reported.  However, this gene is conspicuously absent from C592.  In fact, both genes 

flanking this putative 21-dehydroxylase are there with high similarity.  This suggests that C592 

may not have 21-dehydroxylase activity in vitro.  Experiments to ascertain C592’s ability to 

perform the 21-dehydroxylase reaction are ongoing, although preliminary results suggest it does 

not have the activity (data not shown). 

 

Whole genome sequencing of C592 allowed for better determination of the reasoning behind the 

formation of these oxo-bile acid derivatives.  The anaerobic environment in the colon has a very 

low redox potential, therefore the oxidation of bile acid hydroxyl groups would appear to be 

energetically unfavorable.  However, numerous previous observations gave us direction, 

including E. lenta production of acetate and succinate as its only fermentative end products (VPI 

Anaerobe Laboratory Manual) and its propensity to utilize CO2 gas from its headspace during 

growth (VPI Anaerobe Laboratory Manual, past laboratory observations).  It was found that 

C592, along with the type strain, harbor genes encoding the majority of the enzymes in the 

Wood-Ljungdahl pathway.  This pathway of fixing CO2 to produce acetate requires 

numerousreducing equivalents, including reduced ferredoxin and NADH (93) and is an 

explanation as to why C592 was preferentially oxidizing bile acids (Figure 3.29). Under inert 

nitrogen gas, C592/25559 oxidation of bile acids would generate reduced pyridine nucleotides.
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Figure 3.29:  Illustration of C592 whole cell redox balancing with bile acids under low H2 

partial pressure 

 

C592, under low H2 partial pressure, preferentially oxidizes bile acids.  This would lead to an 

increased level of reduced pyridine nucleotides, which could either be cycled through the RNF 

complex to generate reduced ferredoxin or be used in other metabolic processes, such as the 

Wood-Ljungdahl pathway.    
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These reduced pyridine nucleotides could then be transferred to oxidized ferredoxin while 

utilizing a H+ or Na+ gradient via the putative RNF complex, also located in C592 and E. lenta 

type strain. Reduced ferredoxin could then be used in the Wood-Ljundahl pathway to generate 

acetate.  Additionally, the reduced ferredoxin could be used to generate a H+ gradient via the 

putative Ech complex located in both C592 and E. lenta type strain genome.  Ultimately, under 

inert gas, C592 and 25559 use bile acids as electron donors for various other metabolic 

pathways. 

 

This study showed that the tendency of E. lenta strains to oxidize bile acids is sensitive to the 

atmospheric gases present.  When the atmospheric gas in the headspace was changed to 100% 

hydrogen, oxidation of bile acids was significantly inhibited.  The reasoning behind this shift 

gives further insight into why C592 and 25559 oxidize bile acids.  C592 and 25559 encode 

numerous genes annotated to be ferredoxin oxidoreductases.  This family of enzymes is able to 

utilize H2 to reduce ferredoxin.  Additionally, the membrane-bound Ech complex, also present in 

both C592 and 25559, can perform a similar reaction while utilizing a proton gradient.  The RNF 

complex can utilize reduced ferredoxin to generate a proton gradient and reduced NADH.  

Reduced NADH can be utilized in various metabolic pathways, including the Wood-Ljungdahl 

pathway to create acetate.  The proton gradient generated from the RNF complex can be used to 

generate ATP via ATP synthase.  Energetically, the oxidation of H2 to form reduced ferredoxin 

is a more favorable reaction than the oxidation of bile acid hydroxyl groups, as H2 has a redox 

potential (Eº’) of -0.421 V while NADH is -0.315 V (41).  Therefore, when H2 is abundant, C592 

is able to switch to the higher energy electron donor to regenerate both reduced ferredoxin and 

NADH, while generating a H+ gradient for ATP generation (Figure 3.29).  More 
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experimentation about this putative link between bile acid metabolism and acetogenesis in E. 

lenta should be performed, including the confirmation of acetate generation from CO2 utilizing 

radiolabeled CO2 gas.  Collaborators are currently testing the fermentative end products 

produced by both C592 and 25559 under the various gas atmospheres used to screen bile acid 

metabolism.  Additionally, the presence or absence of bile acids will be tested to see its impacts 

on the amount of fermentative end products, as we hypothesize if E. lenta has more access to 

electron donors, then it will produce quantitatively more acetate. 

 

Another important observation was the effect that oxo-bile acid production by E. lenta strains 

has on other bacteria that metabolize bile acids.  The ability for high-activity 7α-dehydroxylating 

bacteria to produce LCA from oxo-CDCA metabolites was impaired.  Additionally, co-culturing 

of C592 and 12708 prevented formation of LCA, even though in pure cultures C592 grows to 

only two tenths the optical density of 12708 in the same time frame (data not shown).  The two 

major bands from the coculture assay were CDCA and 7-oxo-CDCA, indicating both strains 

cycle the bile acid hydroxyl groups between oxidation and reduction.  Taken together, these 

results suggest that in the human colon, under conditions of low available H2, that E. lenta strains 

could prevent 7α-dehydroxylation of primary bile acids (Figure 3.29).  

 

This has significant implications for C592 and E. lenta bile acid metabolism in vivo.  The 

composition of gas in the colon, specifically with regard to H2, can vary significantly.  Both 

methanogens and sulfidogens utilize H2 and have higher affinity to H2 than acetogens. However, 

the amount of methanogens found in colonic samples can vary on individuals to be undetectable 

to over 109 CFU/g stool (47). Additionally, even if hydrogen sulfide producing bacteria are 
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present, sulfidogenesis requires the presence of sulfate or sulfite to occur.  Some patients who 

have a very high level of bacterial fermentation occurring in their colon, such as native Africans 

eating a diet rich in complex carbohydrates, can have additional H2 in their colon above what is 

already being utilized by methanogens and sulfidogens (14, 269).  Therefore, E. lenta strains’ 

ability to oxidize bile acids, if solely determined by availability of H2, could be altered based on 

the amount of bacterial fermentation, presence of methanogens, presence of sulfidogens, and 

presence of sulfate/sulfite in the colon (Figure 3.30).  This ability to metabolize primary bile 

acids would then affect the ability for 7α-dehydroxylating bacteria to product more toxic 

secondary bile acids.   

 

Current metrics for measuring the “metabolic potential” of an individual’s gut microbiome relies 

on OTUs, or groups of bacteria able to carry out specific metabolic reactions.  However, this 

method lacks the resolution to see both differences between members of the same OTUs, such as 

C592 vs. other strains of E. lenta.  Additionally, it cannot adequately take into account other 

variables that may affect microbial metabolism in vivo more than whether or not the genes are 

present, demonstrated by C592 and E. lenta bile acid oxidation reliance on a lack of available 

higher-energy electron donors. 

 

Since secondary bile acids have been shown to be toxic molecules involved in many 

pathophysiological gastrointestinal disorders, E. lenta may turn out to be a very desirable 

bacterium in the colon, under the right circumstances.  However, not all E. lenta strains were 

created equal.  A strain such as C592, which does not contain the cardiac glycoside reductase 

operon nor the putative 21-dehydroxylase gene, may be a better probiotic candidate.  
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Figure 3.30:  Illustration of C592 whole cell redox balancing with bile acids under high H2 

partial pressure 

 

C592, under high H2 partial pressure, significantly cuts back on its metabolism of bile acids.  

This is likely due to the fact that H2 is able to directly reduce oxidized ferredoxin via cytoplasmic 

and membrane bound ferredoxin oxidoreductases.  Reduced ferredoxin could then either be 

cycled through the RNF complex to generate reduced pyridine nucleotides or be used in other 

metabolic processes, such as the Wood-Ljungdahl pathway.  Increased concentration of 

intracellular reduced pyridine nucleotides would inhibit the oxidation of bile acids.  
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Additionally, it has been shown that metabolism of primary bile acids has been associated with a 

resistance to antibiotic-induced C. difficile infection (209).  However, the effects of oxo-bile acid 

derivatives have not been studied.  Future experiments are warranted to look at the possible 

protective effects oxo-bile acids could have to prevent C. difficile spore germination. 

 

The major products of C592 and E. lenta bile acid metabolism determined in this study, oxo-bile 

acids, may be the explanation behind previous studies involving E. lenta.  In a study of 

conventionalized ex-germ free mice, Claus et al. found that both the C. scindens and E. lenta 

OTUs were correlated with significant increases in hepatic triglyeride levels.  The authors 

hypothesized that secondary bile acids DCA and LCA, produced by gut microbes such as C. 

scindens, were responsible for this increase since they are the most potent bile acid activators for 

TGR-5, which can ultimately lead to GLP-1 production, pancreatic insulin release, and hepatic 

triglyceride synthesis.  However, E. lenta is not shown to make secondary bile acids DCA or 

LCA, which was also confirmed by this study.  This suggests that other bile acid derivatives 

made by E. lenta, such as oxo-bile acids, have a significant role in modulating host physiology.  

More studies are needed to see the effects of varying oxidation states of the various hydroxyl 

groups on primary bile acids CA and CDCA to further understand this interaction.   

 

The studies described in this report give insight into how E. lenta and novel strain C592 are able 

to link bile acid metabolism to redox balancing.  It is the first report of acetogenic gene clusters 

in E. lenta and asserts its role as an acetogen in the gut microbiome.  The formation of oxo-bile 

acid derivatives is also shown to inhibit microbial 7α-dehydroxylation.  More studies, like those 

outlined above, are needed to understand the complex interactions between E. lenta, other gut 
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microbes, and the host under varying conditions which might alter its bile acid and steroid 

metabolic profile.  However, it is apparent that oxo-bile acids, often overlooked as metabolic 

intermediates, are important molecules both for gut microbial physiology and for host 

physiology. 
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Chapter 4:  Clostridium scindens ATCC 35704 Δ4,6 reductase gene discovery 

 

Introduction: 

 

The human liver synthesizes two primary bile acids from cholesterol, cholic acid (3α, 7α, 12α-

trihydroxy-5β-cholan-24-oic acid; CA) and chenodeoxycholic acid (3α, 7α-dihydroxy-5β-cholen-

24-oic acid; CDCA). Bile acids are conjugated to either taurine or glycine and secreted into the 

gallbladder where they form a major constituent of bile. Meal induced hormonal stimulation of 

the gallbladder results in secretion of bile into the small bowel where bile salts function to 

solubilize lipids and lipid-soluble vitamins. When bile salts reach the terminal ileum, they are 

actively transported across the epithelium and return to the liver in the portal circulation. This 

process is termed the enterohepatic circulation and is 95% efficient (113). However, roughly 

400-800 mg of bile salts escape into the large bowel where they encounter a population of 

microbes whose functional gene capacity dwarfs that of the host. Indeed, 99% of functional 

genes in the human are microbial and most of these reside in the gut microbiome (132).  Of these 

functional genes, there are two classes of enzymes that have the capacity to alter bile salt 

structure and thereby change the composition of the bile acid pool (270). 

 

When bile salts encounter the gut microbiome, they are rapidly deconjugated to free bile acids 

and taurine or glycine by an enzyme encoded by the bile salt hydrolase (BSH) gene. BSH is 

widespread among members of the gut microbiome (116). Once the free bile acid is liberated, it 

becomes a substrate for bile acid 7α-dehydroxylation (BA7). BA7 is a multi-enzyme biochemical 

pathway that results in the removal of the 7α-hydroxy group through a series of oxidation 
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reactions (Figure 4.1). Unlike BSH, BA7 is found in only a few species within the genus 

Clostridium (125).  Studies in numerous Clostridia strains led to the discovery of an eight-gene 

operon that was upregulated in the presence of primary unconjugated bile acids (262, 265, 271-

277).  Work on determining the enzymes in this bile acid-induced operon (bai operon) and the 

genes responsible for their production has yielded significant insight into the inner workings of 

this process (Figure 4.2).  Primary bile acids are transported into the bacterial cell by a proton-

dependent bile acid transporter encoded by the baiG gene (275).  Once inside the cell, the first 

step of BA7 of primary bile acids is their ligation to CoA in an ATP-dependent fashion (273, 

274, 276).  After CoA ligation, the C3-hydroxyl group undergoes oxidation via the baiA gene 

(278), which is specific for CoA conjugates.  Next, a C=C bond is formed between the fourth 

and fifth carbon by a NADH:flavin-dependent oxidoreductase encoded by the baiCD gene (262).  

The rate-limiting, non-reversible step of the reaction occurs next, the bile acid 7a-dehydration. 

The gene encoding the enzyme for the 7α-dehydratase is baiE (265), and the resulting bile acid 

products are 3-dehydro-Δ4,6-deoxycholyl-CoA or 3-dehydro-Δ4,6-lithocholyl-CoA, based on the 

starting metabolite (279).  The 3-dehydro-Δ4,6 bile acid intermediates then undergo three 

successive reductive steps leading to LCA or DCA.  The genes responsible for the production of 

these enzymes have yet to be determined.  Secondary bile acids are then exported from the cell, 

although the gene encoding the bile acid exporter has not yet been identified. 

 

Our lab recently reported the structure and catalytic mechanism of the rate-limiting enzyme, the 

bile acid 7α-dehydroxylase, encoded by the baiE gene, that converts 7α,12α-dihydroxy-5β-3- 

dehydro-chol-4-en-24-oic acid to 12α-dihydroxy-5β-3-dehydro-chol-4,6 dien-24-oic acid (279). 

The bile acid reaction product of the BaiE undergoes three reductions at C4- C5, C6-C7 and 
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Figure 4.1:  Schematic of 7α-dehydroxylation pathway in Clostridium scindens ATCC 

35704. 

 
This multi-step enzymatic process to remove the C7α-hydroxyl group contains an oxidative arm, 

an irreversible 7α-dehydration step, and a reductive arm that ultimately forms deoxycholic acid 

from cholic acid.  The enzymes that constitute the reductive arm of this pathway are currently 

unidentified, although a Δ4 and a Δ6 reduction are two of the three proposed reaction steps in the 

pathway.  
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Adapted from (125) 
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finally the 3-oxo-group is converted to a 3α-hydroxy forming DCA, a major secondary bile acid 

produced in the vertebrate gut. Genes in the “oxidative” arm have been identified and 

characterized (113), while genes in the “reductive” arm have yet to be identified. Here, we report 

the identification and initial characterization of a recombinant flavoprotein involved in the 

metabolism of 3-dehydro-DCA. Our phylogenetic analysis identified this gene in other bile acid 

BA7 bacteria. Mass spectrometric analysis of the product revealed a loss of four atomic mass 

units (amu) suggesting the formation of two double bonds. We suggest likely end products 

generated by this novel enzyme.



 167 

Results 

 

Previous work in our laboratory identified bile acid intermediates in the “reductive arm” of the 

bile acid pathway including a 3-oxo-4 and a 3-oxo-4,6-intermediate (143). We also showed that 

oxidation of 3-dehydro-CDCA (7α-hydroxy) and 3-dehydro-UDCA (7β-hydroxy) prior to bile 

acid 7α-dehydroxylation is catalyzed by stereo-specific NAD-dependent flavin oxidoreductases 

encoded by the baiCD and baiH genes, respectively (262). Therefore, we searched the annotated 

genome of C. scindens ATCC 35704 for “flavin oxidoreductase”. Our search identified 24 genes 

annotated as containing flavin-binding domains (Table 4.1). The BaiCD and BaiH proteins were 

identified in the search, previously demonstrated to oxidize the C4-C5 of primary bile acids prior 

to 7α-dehydration (262). One ORF in particular, EDS08212.1, was selected for further analysis. 

The deduced amino acid sequence is in the HpnE squalene-associated FAD-dependent 

desaturase domain family, an enzyme involved in the mammalian cholesterol biosynthesis 

pathway (Figure 4.2). Taken together, this suggests that EDS08212.1 is a flavoprotein similar to 

those that metabolize sterols and may be involved in bile acid metabolism.  

 

We overexpressed EDS08212.1 as a C-terminal streptavidin-tagged recombinant protein 

(rEDS08212) in E. coli BL21 (DE3) RIL. The predicted amino acid sequence is 44.5 kDa, and 

we observed a single band by SDS-PAGE after streptactin affinity chromatography at 46.5±2 

kDa (Figure 4.3). After binding crude E. coli extracts overexpressing rEDS08212.1 and washing 

with binding buffer (see Materials and Methods), we observed a bright yellow protein that eluted 

during the desthiobiotin elution step (Figure 4.3). The rEDS08212.1 was stable only for <12 hrs 
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Table 4.1:  Flavin reductases identified in the genome of Clostridium scindens ATCC 35704 
 

  

EDS06786.1 flavin reductase-like protein Pyridoxine 5'-phosphate oxidase-like and flavin reductase-like proteins 24.2 
EDS08212.1 flavoprotein family protein squalene-associated FAD-dependent desaturase 45.5 
EDS07700.1 flavin reductase-like protein NADH-FMN oxidoreductase RutF, flavin reductase(DIM6/NTAB) family 21.1 
EDS08305.1 flavin reductase Multimeric flavodoxin WrbA 28.7 
EDS06663.1 flavin reductase NAD(P)H dehydrogenase, quinone family 19.8 
EDS08737.1 pyridine nucleotide-disulfide oxidoreductase  Uncharacterized NAD(FAD)-dependent dehydrogenases 70.8 
EDS08749.1 rubredoxin rubredoxin 23.7 
EDS07050.1 Nitroreductase Nitro_FMN_reductase 20.3 
EDS06718.1 rubredoxin rubredoxin_SM 79 

EDS06682.1 
oxidoreductase, 2-nitropropane dioxygenase family 

protein Dioxygenases related to 2-nitropropane dioxygenase 
38.4 

EDS05114.1 4Fe-4S binding domain protein NAD(P)H-flavin oxidoreductase 30.1 
EDS08567.1 Rubrerythrin rubredoxin_SM 23.4 
EDS08382.1 pyridine nucleotide-disulfide oxidoreductase Uncharacterized NAD(FAD)-dependent dehydrogenases 69.5 
EDS08369.1 nitroreductase family protein NAD(P)H-flavin oxidoreductase 21.7 
EDS07342.1 hypothetical protein NADH-FMN oxidoreductase RutF, flavin reductase(DIM6/NTAB) family 19.7 
EDS07048.1 hypothetical protein Nitroimidazol reductase NimA or a related FMN-containing flavoprotein 19.6 
EDS06690.1 putative enoyl-[acyl-carrier-protein] reductase II  Dioxygenases related to 2-nitropropane dioxygenase 33.2 
EDS06281.1 rubredoxin Rubrerythrin 19.8 
EDS06280.1 Rubrerythrin Rubrerythrin 22.2 
EDS06153.1 NADH oxidase OYE_like_FMN_family 70.1 
EDS05767.1 pyridine nucleotide-disulfide oxidoreductase (BaiCD) ADH oxidase (NoxB-2) 70.1 [13] 
EDS05762.1 pyridine nucleotide-disulfide oxidoreductase (BaiH) noxB-1; NADH oxidase 72 [13] 

WP_004604785.1 flavin reductase rubredoxin 23.6 
WP_039909174.1 2,4-dienoyl-CoA reductase OYE_like_FMN_family 72.5 

Table&1:&Flavin&Reductases&iden3fied&in&the&genome&of&Clostridium+scindens&ATCC&35704&&
Accession 

Number Annotation  Regions/folds 
Deduced Mr 

(kDa) Reference 
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Figure 4.2:  Schematic representation of the reaction catalyzed by squalene-desaturase and 

the oxidation of 3-dehydro-4-DCA to 3-dehydro-DCA in the 7α-dehydroxylation pathway. 

 

A gene encoding a putative flavoprotein (EDS08212.1) in the FAD-dependent squalene-

desaturase family is hypothesized to be involved in the “reductive arm” of the bile acid 7α-

dehydroxylating pathway.  
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Figure 4.3:  Overexpression and purification of rEDS08212.1 from C. scindens ATCC 

35704 

 

 A: Lane “M” is the protein marker, lane “1” is the soluble crude extract (30 µg), lane “2” is the 

eluent following streptavidin affinity chromatography (2 µg). B: rEDS08212.1 bound to 

streptavidin column after thorough washing displaying distinctive yellow pigmentation.   
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after which visible precipitation was evident. Storage at -20°C in 50% glycerol did not improve 

solubility. 

 

We detected formation of a single product on TLC after incubation with rEDS08212.1 (0.5 µg) 

in the presence of 3-dehydro-DCA, but not DCA, at pH 7.0 (Figure 4.4). We did not observe 

formation of this product with heat-killed enzyme (70°C 1 min). This reaction occurred in the 

presence or absence of pyridine nucleotides (NAD+, NADH, NADP+, NADPH), suggesting that 

this reaction proceeds by bile acid-dependent flavin reduction followed by regeneration of FAD+ 

via chemical oxidation via molecular oxygen (data not shown).  

 

Next, the reaction substrate (Rf =0.78) and product (Rf =0.40) were scraped from the TLC plate, 

extracted from the silica gel by ethyl acetate, and dried under nitrogen gas for mass spectrometry 

analysis. The substrate had a retention time of 25 minutes and a major mass ion was detected in 

positive mode at 391.2878 m/z and 389.2559 m/z in negative mode, as predicted (Figure 4.5). 

The product retention time was 22.5 minutes with a major mass ion in positive mode of 387.1681 

m/z and 385.1739 m/z in negative mode. These data suggest that the substrate lost four atomic 

mass units (amu) and may potentially be involved in the metabolism of two carbon-carbon 

double bonds. This observation was repeated in three separate reactions and confirmed.  

 

In order to investigate the most likely origin of the C. scindens ATCC 35704 EDS08212.1 gene, 

we have performed a wide-scale maximum-likelihood phylogenetic analysis involving all protein 

sequences from the public databases displaying a reasonable level of similarity to the protein 
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Figure 4.4:  Autoradiograph of thin layer chromatography separation of rEDS08212.1 

reaction products from [24-14C] 3-dehydro-DCA. 

 

A. [24-14C] DCA TLC standard, B. [24-14C] 3-dehydro-DCA TLC standard, C. [24-14C] 3-

dehydro-DCA + rEDS08212.1 +150µM NAD+ , D. 3-dehydro-DCA + rEDS08212.1 + 150 µM 

NAD+ biological replicate, E. [24-14C] DCA standard, F. [24-14C] 3-dehydro-DCA + heat-killed 

rEDS08212.1, G. [24-14C] 3-dehydro-DCA + heat-killed rEDS08212.1 + 150 µM NAD+.  
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Figure 4.5:  LCMS-IT-TOF analysis of rEDS08212.1 reaction products. 

 

Substrate and product were separated from TLC, scraped and bile acids extracted from silica, 

concentrated and analyzed by LCMS. A. From top-bottom, UPLC profile with major peak 

identified at RT 25 minutes (substrate), Positive mode analysis of RT 25 minutes peak, Negative 

mode analysis of RT 25 minutes peak. B. From top-bottom, UPLC profile with major peak 

identified at RT 22.5 minutes (product), Positive mode analysis of RT 25 minutes peak, Negative 

mode analysis of RT 22.5 minutes peak.   
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characterized herein. Our final alignment involved 1,273 protein sequences from a diverse 

assemblage of bacterial groups, as well as some eukaryotic sequences. 

 

A previously determined sequence, from Clostridiales bacterium VE202-26 (280), is identical to 

the one for C. scindens VPI 12708, at the nucleotide as well as the amino acid level. Thus, as 

expected, they group in the tree with branch lengths of zero and bootstrap support of 100. The 

sequence for C. scindens ATCC 35704 clusters very closely to these two other sequences, also 

with the highest bootstrap support. The other Clostridium sequence nearest in the tree belongs to 

C. hylemonae DSM 15053, a bacterium previously shown to harbor the bai pathway (272). 

 

The EDS08212.1 gene and homologous genes from the strains analyzed here grouped deep 

within a large group of Firmicutes bacteria (Figure 4.6) and, as seen in Figure 4.6-B, group with 

a number of bacteria from the Lachnospiraceae and Ruminococcaceae families, as seen 

previously in a phylogenomic analysis of 20 single-copy protein-coding genes that were present 

in 99 Firmicutes genomes (217). Thus, the EDS08212.1 gene in C. scindens strains does not 

seem to have been derived from a horizontal gene transfer event, since its phylogeny agrees 

closely with the species phylogeny. 
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Figure 4.6:  Maximum likelihood phylogenic tree of EDS08212.1 from Clostridium scindens 

ATCC 35704. 

 

A. Wide-scale phylogeny (1,273 protein sequences). B. Details of the region of the tree 

containing EDS08212.1. Values on nodes represent bootstrap support (only 50 or higher shown).   
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Discussion: 

 

The conversion of primary to secondary bile acids such as DCA and LCA is implicated in 

diseases of the GI tract, including liver (179) and colorectal cancer (67, 281). The bile acid 7α-

dehydroxylation pathway has only been reported in a few species of intestinal clostridia, 

including C. scindens (113, 125). The genes encoding the enzymes for the oxidative half of the 

pathway have been delineated in numerous Clostridium species (113). However, the enzymes 

catalyzing the final three reductive reactions have not yet been identified (Figure 4.1).  

 

In the current study, we identified a likely candidate for the first two reductive steps following 

7α-dehydration. The gene encoding EDS08212.1 in C. scindens ATCC 35704 is predicted to 

encode a flavin-dependent squalene desaturase, a reaction that is analogous to the 

oxidation/reduction of secondary bile acids. We cloned and overexpressed rEDS08212.1 in E. 

coli and purified the enzyme to apparent electrophoretic homogeneity. The enzyme yielded a 

bright yellow color, indicative of flavin-binding. The enzyme was active against 3-dehydro-DCA 

but not DCA, suggesting specificity for the A-ring. We observed a loss of 4 amu from the 

substrate after purification of the reaction products by TLC and then UPLC-IT-TOF-MS. This 

suggests that two oxidations are occurring, strongly indicating the formation of the 3-dehydro-

4,6-DCA intermediate. Alternatively, the aerobic degradation of cholic acid to carbon dioxide by 

soil microorganisms, particularly by Comamonas testosteroni, results in the formation of a 3-

dehydro-1,4-intermediate, which also requires two oxidations (282).  
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Further work is underway to confirm the specific activity of EDS08212.1, although the lack of 

commercial availability of substrates makes this further characterization difficult. However, we 

are currently testing the utilization of 3-dehydro-Δ4,6-LCA by EDS08212.1 as a substrate for 

reduction under anaerobic conditions.  If EDS08212.1 is confirmed to make 3-dehydro-LCA 

from this substrate, it will confirm the enzyme acts on the Δ4,6 double bonds in bile acids 

formed during the 7α-dehydroxylation pathway.  Additionally, EDS08212.1 is being tested for 

its pyridine nucleotide specificity, as we predict that under anaerobic conditions, NADH would 

be required to reduce the bound FAD/FMN. 
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Chapter 5:  Clostridium scindens VPI 12708 RNAseq and 17α-HSDH gene discovery 

 

Introduction: 

 

Bile acids are not the only steroidal compounds excreted by the liver that undergo enterohepatic 

circulation.  Sharing the same four cycloalkane rings as bile acids, endogenously produced 

steroid hormones are conjugated to glucuronate or sulfate and then can be excreted into bile 

(283).  The levels of excreted steroid hormones in bile are higher in females, as estrogen 

secretion into bile is a major mechanism used to modulate host serum levels (284). Once inside 

the lumen of the intestines, conjugated steroid hormones are deconjugated via hydrolysis by both 

host epithelial and bacterial deconjugating enzymes, such as glucuronidases and sulfatases, and 

deconjugated hormones can then be reabsorbed or enter the large intestine (268).  Glucuronidase 

activity is found in some of the most abundant microbes in the gut microbiome, including 

Bacteroides species (285).  After deconjugation, most steroid hormones reenter the circulation 

where they are eventually permanently excreted in urine.  Studies have shown that treatment 

with broad-spectrum antibiotics increased fecal secretion of steroid hormones and decreased 

renal excretion, likely due to the lack of deconjugation and subsequently increased loss of steroid 

hormones in the feces (286). Interestingly, dietary changes such as increased fiber or decreased 

dietary fat have also been associated with increased fecal excretion and decreased levels of 

circulating androgenic steroid hormones (284).  Both increased fiber and a vegetarian diet low in 

fat have been shown to be associated with reduced fecal bacteria β-glucuronidase activity, which 

would results in a decreased reuptake of excreted steroid hormones (287, 288).   
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Once deconjugated, steroid hormones that escape reabsorption in the intestines, similarly to bile 

acids, become substrates for various bacterial biotransformations.  In the anaerobic environment 

of the large intestine, the majority of bacterial steroid conversions are hydrolytic and reductive in 

nature.  On C21 and C17 steroid hormones, the 4-ene-3-keto moiety can be reduced to either 

3α/β and 5α/β, leading to a variety of differing metabolites (289-291).  The reduction of this 

moiety generally leads to less biologically active molecules (268).  The majority of bacteria 

shown to have this activity are within the Clostridium genus. 

 

Other bacterial conversions target the side-chain of glucocorticoids (Figure 5.1).  As discussed 

previously, Eggerthella lenta has been shown to have 21-dehydroxylase activity (247, 248, 292).  

This bacterium is able to convert deoxycortisone to progesterone.   Other bacterial species within 

the genus Clostridia have been shown to have 17,20 desmolase activity capable of performing 

side-chain cleavage of glucocorticoids to form androgens.  A recent study identified a gene 

cluster in Clostridium scindens ATCC 35704 encoding the steroid-17,20-desmolase, which is 

inducible by cortisol (217).  In C. scindens, it was shown through RNAseq analysis that the 

17,20-desmolase may feed the two carbons released from cortisol into the pentose-phosphate 

pathway for cellular growth and maintenance (217). 

 

The product of 17,20-desmolase metabolism of cortisol, 11β-hydroxy-androstenedione, and 

endogenously produced androgens such as testosterone and its precursor androstenedione harbor 

a C17-hydroxyl group that can undergo bacterial metabolism in the colon. The C17-keto group 

of androstenedione and 11β-hydroxy-androstenedione can be reduced by Bacteroides fragilis to 

testosterone and 11β-hydroxy-testosterone, respectively (291).  Additionally, the same C17-keto
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Figure 5.1:  Biotransformations of cortisol by gut microbes. 
 
Cortisol can undergo numerous biotransformations.  Numerous strains of bacteria have been 

shown to 3α/β and 5α/β reduce the 4-ene-3-keto moiety of cortisol.  Clostridium scindens ATCC 

35704 has been shown to harbor 20α-HSDH activity on cortisol.  Eggerthella lenta has been 

shown to have 21-dehydroxylase activity on cortisol.  Clostridium scindens ATCC 35704 

encodes a 17,20 desmolase able to convert cortisol to 11β-hydroxy-androstenedione.  

Clostridium scindens VPI 12708 has been shown to have 17α-HSDH activity on C17 steroid 

molecules.  Bacteroides fragilis and, in this work, Eggerthella lenta has been shown to have 

17β-HSDH activity on C17 steroids.
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Adapted from (217)  
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group on androstenedione can be reduced to epitestosterone by Clostridium scindens VPI 12708 

(228).  Unpublished results from our lab have also shown that C. scindens VPI 12708 recognizes 

11β-hydroxy-androstenedione.  Since both of these bacterial strains are present in the colon, it is 

possible that strains would be able to epimerize the C17-hydroxyl group on these molecules, 

interconverting these molecules between androgenically active (testosterone) and inactive 

(epitestosterone) compounds.  The physiological purpose behind these biotransformation 

reactions is still unknown, but both interkingdom signaling and microbe-microbe signaling are 

valid hypotheses for why the enzymatic potential to interconvert these androgenic compounds 

persists in the colon. 

 

The androgenic steroid molecules that are excreted in bile, become unconjugated and substrates 

for further bacterial metabolism can be physiologically active on host tissue even at nanomolar 

concentrations.  This physiological activity can vary based on the presence, stereospecificity, and 

reductive state of the functional groups on the steroid core (293). It is important therefore to find 

the genes responsible for encoding enzymes that recognize androgens in the microbes that are 

known members of the gut microbiome.  Clostridium scindens VPI 12708 has been shown to 

have 17α-hydroxysteroid dehydrogenase activity, but the gene responsible for its production has 

never been found (de Prada 1994). Additionally, a very similar strain, Clostridium scindens 

ATCC 35704 was recently shown to metabolize endogenous steroid compounds, but not have 

17α-HSDH activity (217).  I therefore set out to locate the gene in Clostridium scindens VPI 

12708 responsible for the production of the 17α-HSDH enzyme. 
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Results: 

 

Previous work in Clostridium scindens VPI 12708 suggested that its 17α-hydroxysteroid 

dehydrogenase activity was inducible by androstenedione (228).  We therefore set out to confirm 

that C. scindens 12708 had androstenedione-inducible 17α-HSDH activity.  C. scindens VPI 

12708 was grown overnight and induced with 100µM androstenedione.  Overnight cultures were 

then centrifuged, the pellets washed with buffer, and then incubated with radiolabeled 11β-

hydroxy-androstenedione (11β-OHAD).  Results showed that over the course of two hours, 

androstenedione-induced C. scindens VPI 12708 generated reduced 11β-OHAD (Figure 5.2). 

Uninduced C. scindens VPI 12708 did not form a product from 11β-OHAD over the same time 

period (Figure 5.2).  This suggested that metabolism of androstenedione was an inducible trait in 

this bacterium. 

 

We also wanted to confirm that the product of androstenedione metabolism was epitestosterone, 

a 17α-reduced compound.  Overnight cultures of C. scindens VPI 12708 were inoculated with 

100µM androstenedione and allowed to grow overnight.  Cultures were then extracted with ethyl 

acetate and the resulting organic layer was concentrated and run on HPLC using a reverse-phase 

C18 column.  The formation of a secondary product was monitored at 240nm and fractionally 

collected (Figure 5.3).  This isolated metabolite of androstenedione was then sent for NMR 

analysis.  The resulting NMR structure confirmed that C. scindens VPI 12708 produced 

epitestosterone from androstenedione (Figure 5.4).
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Figure 5.2:  Clostridium scindens VPI 12708 exhibits inducible 17α-HSDH activity 
 
 
Clostridium scindens VPI 12708 was grown in the presence of 100µM androstenedione 

(induced) or without androstenedione (uninduced) overnight and then cells pelleted, washed, and 

exposed to fresh radiolabeled 11b-hydroxyl-androstenedione.  Conversion was tracked overtime 

with 1mL aliquots taken out and quenched with ethyl acetate.  Organic extracts were run on TLC 

and the formation of a secondary metabolite was visualized over time only in the induced whole 

cell samples.  
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Figure 5.3:  Clostridium scindens VPI 12708 produces a secondary metabolite from 

androstenedione that maintains the 4-ene-3-keto moiety 

 
Clostridium scindens VPI 12708 was grown overnight in 10mL BHI in the presence of 100mM 

androstenedione and then extracted with ethyl acetate.  20% of the total organic extract was run 

on HPLC to separate androstenedione from its metabolite.  Other than the injection peak, which 

is visible on all injections and corresponds with an influx of 100% methanol, the two peaks 

absorbing at 240nm correspond to the two steroids.   Androstenedione, based on control data, 

elutes around 30 minutes.  The secondary metabolite eluted at approximately 52 minutes.  This 

elution also matched that of commercially obtained epitestosterone.  The collected sample was 

subsequently sent for NMR analysis.  
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Figure 5.4:  NMR analysis of the Clostridium scindens VPI 12708 androstenedione 

metabolite confirms epitestosterone formation 

 

NMR analysis confirmed epitestosterone was being formed by Clostridium scindens VPI 12708. 

NMR analysis was performed on the fractionally collected C. scindens VPI 12708 

androstenedione metabolite (see Figure 5.3).  NMR analysis was performed as described 

previously (217).  Table on left denotes hydrogen positioning.  Table on right compares chemical 

shift, in ppm, as compared to two previous NMR spectrums of epitestosterone from literature 

(294, 295).  Both findings are congruent with the C. scindens VPI 12708 metabolite being 

identified as epitestosterone.  
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After confirming C. scindens VPI 12708 has inducible 17α-HSDH activity, we next set out to 

find the gene encoding the respective enzyme.  RNA-seq had been used previously to great effect 

in identifying the cortisol-induced 17,20 desmolase operon in a highly similar strain of 

Clostridium scindens (ATCC 35704) (217).  Therefore, we set out to use the same technique for 

the identifying the C. scindens VPI 12708 17α-HSDH. Additionally, RNAseq could be used 

simultaneously to study the changes in the overall transcriptome when certain steroid hormones 

and bile acids are present.  In this aim, C. scindens VPI 12708 cultures were grown to mid-log 

phase under varying inducing conditions, including cortisol, androstenedione, cholic acid, and 

allocholic acid.  The cells were pelleted and frozen at -80ºC and the supernatants were extracted 

and run on TLC to confirm substrate metabolism (data not shown).  Total RNA was then isolated 

from cell pellets following methods derived from Ridlon et al., including the enrichment of 

mRNA using custom designed biotinylated polynucleotides (217). rRNA depleted samples were 

used to generate libraries for sequencing using NEBNext Ultra RNA Library Prep Kit for 

Illumina and sequenced using the MiSeq 2 x 300 bp protocol.  Reads were then populated to a 

previously sequenced Clostridium scindens VPI 12708 genome (unpublished).  Results indicated 

that in the cholic acid-induced and allocholic acid-induced samples, the bile acid operon (bai-

operon) was significantly induced versus uninduced control (Table 5.1).  These results 

functioned as a positive internal control, showing the quality of the RNA in these samples was 

high enough to determine induction of various genes against uninduced controls.  Interestingly, 

although cortisol, androstenedione, cholic acid, and allocholic acid all share a similar steroidal 

backbone, their effects on the overall transcriptomic pattern in C. scindens VPI 12708 are 
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Table 5.1:  Induction of bile acid inducible operon in Clostridium scindens VPI 12708 by cholic acid (CA) and allocholic acid 
(ACA) 
 
  

Cholic acid-induced vs. uninduced “bai operon” Illumina MiSeq Reads 

locus 
Uninduced 
Reads CA-induced reads log2(fold_change) p_value q_value significant 

Cs12708_c00003_00018 8.28709 924.929 6.80233 0.0167 0.0894583 no 
Cs12708_c00003_00019 8.4592 1268.97 7.22892 0.0018 0.0176897 yes 
Cs12708_c00003_00020 0 1624.22 inf 5.00E-05 0.000844444 yes 
Cs12708_c00003_00021 12.077 1433.27 6.8909 0.0654 0.210908 no 
Cs12708_c00003_00022 12.5373 1431.1 6.83476 0.0167 0.0894583 no 
Cs12708_c00003_00024 8.97984 1240.13 7.10958 0.0167 0.0894583 no 
Cs12708_c00003_00026 12.2184 1535.93 6.97392 0.00025 0.00367742 yes 
Cs12708_c00003_00027 42.0197 2020.16 5.58726 0.0167 0.0894583 no 

Allocholic acid-induced vs. uninduced “bai operon” Illumina MiSeq Reads 

locus 
Uninduced 
Reads ACA-induced reads log2(fold_change) p_value q_value significant 

Cs12708_c00003_00018 8.31544 140.121 4.07474 0.0019 0.0156222 yes 
Cs12708_c00003_00019 8.48946 135.107 3.99229 0.00035 0.00390943 yes 
Cs12708_c00003_00020 0 174.78 inf 5.00E-05 0.000700592 yes 
Cs12708_c00003_00021 12.1164 109.976 3.18216 0.11395 0.283439 no 
Cs12708_c00003_00022 12.5816 132.8 3.39987 0.001 0.00935968 yes 
Cs12708_c00003_00024 9.01056 89.4478 3.31136 0.00625 0.0396766 yes 
Cs12708_c00003_00026 12.2606 119.024 3.27915 5.00E-05 0.000700592 yes 
Cs12708_c00003_00027 42.1566 133.286 1.6607 0.0541 0.17104 no 
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striking (Figure 5.5).  Cholic acid-induced C. scindens VPI 12708 transcriptomic pattern appears 

to cluster separately from allocholic, androstenedione, and cortisol induced transcriptomic 

patterns (Figure 5.5).  This observation is interesting, as the only difference between cholic acid 

and its epimer allocholic acid is the position of the hydrogen on the fifth carbon.  With hydrogen 

in the α-configuration, the steroid backbone of allocholic acid more closely resembles a planar 

steroid hormone than a bile acid.  Therefore, it appears that because of this change, C. scindens 

VPI 12708 responds to it more as a steroid hormone than a bile acid, although the bai-operon is 

still induced, although to a lower level than what is seen from cholic acid induction (Figure 5.4). 

 

From previous studies and unpublished data, we knew that the 17α-HSDH should have the 

following characteristics:  be annotated to be within the SDR family or alcohol polyol 

dehydrogenase family; encode a polypeptide sequence around 40kDa; be induced by 

androstenedione and cholic acid; should have a metal binding and pyridine nucleotide binding 

site; not be found in similar strain Clostridium scindens ATCC 35704 (de Prada 1994).  In 

contrast to the cholic acid-induced sample, there were not very many significantly induced genes 

in the androstenedione-induced sample (Table 5.2).  Putative genes that matched the 17α-HSDH 

criteria were chosen for further analysis (Table 5.3). 

 

Genes that were chosen based on the RNAseq analysis were successfully cloned into expression 

vectors, overexpressed in E. coli, purified, and tested for their 17α-HSDH activity.  Constructs 

were made with either a C- or N-terminal streptavidin tag for column purification, or no tag in 

the case of whole cell extract assays, and constructs were checked for nucleotide fidelity by 

sequencing.  Purified enzymes, whole cell extracts, and induced whole cell transformed E. coli
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Table 5.2:  Genes upregulated in Clostridium scindens VPI 12708 in response to 
androstenedione induction 

Locus	
Uninduced	
Reads	

Androstenedione	
induced	reads	

log2	(fold	
change)	 p	value	 q	value	 significant	

Cs12708_c00002
_00026:0-663	 225.526	 969.11	 2.10337	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00043
_00034:0-1050	 114.12	 391.381	 1.77803	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00073
_00017:0-1962	 180.598	 393.201	 1.12249	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00056
_00017:0-1014	 222.157	 460.616	 1.05198	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00163
_00001:0-657	 2456.39	 4786.56	 0.962446	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00001
_00068:0-1086	 211.009	 409.538	 0.956696	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00117
_00003:0-840	 641.622	 1184.81	 0.884863	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00060
_00011:0-888	 3375.83	 6031.37	 0.837242	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00002
_00029:0-543	 12527.7	 21981.3	 0.811153	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00064
_00002:0-2043	 354.865	 622.498	 0.810802	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00022
_00007:0-1275	 257.052	 449.644	 0.806724	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00005
_00015:0-1062	 442.204	 760.787	 0.782782	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00005
_00016:0-1014	 411.663	 705.56	 0.777307	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00005
_00013:0-759	 555.471	 951.575	 0.776607	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00065
_00020:0-1551	 628.777	 1056.69	 0.748936	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00119
_00005:0-1446	 273.459	 459.123	 0.747557	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00039
_00001:2-2760	 94.0148	 157.74	 0.746587	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00060
_00013:0-657	 603.456	 1004.75	 0.735521	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00038
_00001:0-1506	 2022.81	 3350.23	 0.727895	 5.00E-05	

0.0011
0607	 yes	
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Cs12708_c00214
_00001:0-555	 1403.85	 2300.25	 0.712406	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00043
_00033:0-1422	 242.143	 383.461	 0.663222	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00002
_00028:0-537	 5594.94	 8752.84	 0.645628	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00131
_00003:0-1344	 405.984	 628.224	 0.629855	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00060
_00010:0-771	 2460.73	 3740.22	 0.604038	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00144
_00011:0-627	 1277.69	 1914.51	 0.583437	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00146
_00003:0-1326	 766.735	 1145.99	 0.57979	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00007
_00064:0-2184	 1370.67	 2031.96	 0.567989	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00075
_00015:0-936	 717.297	 1050.21	 0.550039	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00001
_00016:0-1740	 886.114	 1295.91	 0.548396	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00103
_00014:0-2139	 1801.65	 2626.09	 0.543598	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00060
_00012:0-1533	 583.929	 850.414	 0.542371	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00202
_00002:0-1311	 661.761	 963.585	 0.542102	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00149
_00007:0-1335	 444.439	 643.149	 0.533168	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00195
_00007:0-828	 658.498	 936.879	 0.508683	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00076
_00015:0-1035	 5197.37	 7209.73	 0.472162	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00023
_00037:0-657	 4351.25	 5896.36	 0.438396	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00013
_00036:0-1314	 642.023	 860.493	 0.422539	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00059
_00020:0-375	 32471.2	 43056.3	 0.407062	 5.00E-05	

0.0011
0607	 yes	

Cs12708_c00114
_00009:0-768	 32.2213	 422.962	 3.71444	 0.0001	

0.0019
8908	 yes	

Cs12708_c00194
_00002:0-489	 233.608	 598.168	 1.35646	 0.00015	

0.0027
9567	 yes	
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Cs12708_c00064
_00017:0-1359	 44.4706	 112.038	 1.33307	 0.00015	

0.0027
9567	 yes	

Cs12708_c00008
_00038:0-396	 1091.75	 1948.95	 0.836058	 0.0002	

0.0035
594	 yes	

Cs12708_c00058
_00001:0-492	 271.411	 517.127	 0.93004	 0.0031	

0.0320
424	 yes	

Cs12708_c00166
_00003:0-786	 124.227	 229.998	 0.888637	 0.00405	

0.0389
689	 yes	

Cs12708_c00151
_00009:0-924	 101.621	 182.081	 0.841384	 0.00405	

0.0389
689	 yes	

Cs12708_c00022
_00038:0-501	 199.674	 412.743	 1.0476	 0.00465	

0.0435
042	 yes	

Cs12708_c00081
_00005:0-624	 83.9893	 208.062	 1.30874	 0.00495	

0.0457
682	 yes	

Cs12708_c00005
_00027:0-1767	 26.5059	 55.6576	 1.07027	 0.005	

0.0460
506	 yes	
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Figure 5.5:  Overall transcriptomic heatmap of Clostridium scindens VPI 12708 induced 

with numerous bile acid and steroid molecules 

 

C. scindens VPI 12708 was grown in the presence of 50µM cortisol, androstenedione, allocholic 

acid, or cholic acid.  mRNA was isolated, purified, and then sequenced for each sample.  

RNAseq results were used to generate heat maps of induction using a distance metric of 1-

(abs(pearson correlation)).  Results show that the C. scindens VPI 12708 transcriptomic pattern 

in response to cortisol, androstenedione, and allocholic acid cluster together and separately from 

the cholic acid induced transcriptomic pattern. 
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Table 5.3:  Putative 17α-HSDH genes from Clostridium scindens VPI 12708 screened for activity 
 
Locus Annotation 

based on blastp 
results 

Size Presence 
in 35704 
strain 

Metal 
binding 
site 

NAD(P) 
binding site 

Induction by 
androstene-
dione 

Induction by 
cholic acid 

17α-
HSDH 
activity 

Other information 
of interest 

Cs12708
_00064_
00018 

Glycerol 
dehydrogenase 

39.1 
kDa 

No Yes Yes Yes Yes No Part of operon, 
including 
membrane-
spanning protein, 
that is upregulated 
by androstenedione 
and cholic acid 

Cs12708
_00005_
00084 

“Old yellow 
enzyme”, 
NADH flavin 
oxidoreductase 

70.5 
kDa 

No Not 
annotated 

Yes Yes No No Alignment with 
previously 
characterized 12708 
baiCD (262) shows 
conservation of 
catalytically 
necessary cysteine 
residues 

Cs12708
_00124_
00009 

Short chain 
dehydrogenase
/reductase 
(SDR) 

31.3 
kDa 

No Not 
annotated 

Yes Yes No No Has bacterial 3α-
HSDH conserved 
domain (via NCBI 
protein blast, 
ascension = 
cd05328) 

Cs12708
_00114_
00009 

Short chain 
dehydrogenase
/reductase 
(SDR) 

27.6 
kDa 

No Not 
annotated 

Yes Yes No No  
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cultures were tested for 17α-HSDH activity.  Assays were performed both aerobically and 

anaerobically (under N2 stream). Reduction of androstenedione or oxidation of epitestosterone 

was measured spectrophotometrically for the change in NAD+/NADH oxidation state or via 

organic extraction and HPLC separation of products.  Under all these experimental conditions, 

none of the tested enzymes exhibited 17α-HSDH activity.  At this point, there were no more 

candidate genes left from the RNAseq analysis. 
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Discussion: 

 

Gaining a better understanding of our gut microbiome’s ability to metabolize numerous 

endogenous and exogenous molecules to secondary molecules of varying physiological 

relevance is an important area of study.  Bacterial bile acid and steroid metabolites have been 

shown on numerous occasions to have important physiological effects on the host.  Finding the 

genes responsible for the production of genes that encode steroid/bile acid metabolizing enzymes 

is important in order to get a better understanding of why microbes utilize these substrates in 

vivo. Of equal importance, as the era of “personalized medicine” approaches, it is becoming 

more important to be able to predict metabolic potential of an individual’s gut microbiome as it 

may pertain to other pathophysiological disorders.  In this aim, it is important to have more a 

more robust understanding of specific enzymes in the “sterolbiome”, as it makes predictive 

annotation and therefore the prediction of an individual’s gut microbiome’s “metabolic 

potential” more accurate.  Therefore, we set out to find the gene in Clostridium scindens VPI 

12708 responsible for the synthesis of a 17α-HSDH enzyme able to interconvert 

androstenedione and epitestosterone.  In concert with other bacteria known to have 17β-activity 

such as B. fragilis (291), this would allow the gut microbiota to interconvert active testosterone 

to anti-antrogenic epitestosterone, and vice versa.   

 

We were able to confirm that C. scindens VPI 12708 has inducible 17α-HSDH activity, able to 

convert androstenedione to epitestosterone in vitro.  We performed RNAseq analysis on 

differentially induced C. scindens VPI 12708 samples and showed interesting differences in 

whole transcriptomic changes under these varying conditions.  After finding candidate genes, we 
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tested them for their 17α-HSDH activity using numerous experimental conditions.  Ultimately 

the gene responsible for the production of the C. scindens VPI 12708 17α-HSDH was not found.   

 

There are numerous potential explanations for this outcome.  One explanation is that the C. 

scindens VPI 12708 genomic data used as reference for the RNAseq data was not a closed 

genome.  Therefore, if the gene for the 17α-HSDH was not sequenced in the genomic 

sequencing, it would not have been identified through RNAseq analysis. Alternatively, it is 

possible that any of the putative 17α-HSDH purified enzymes lost activity at some stage in their 

production or purification.  However, we took every precaution to prevent this including using 

various expression vectors, confirming fidelity of the inserts, confirming production of protein, 

testing whole cell extracts and transformed cell cultures for activity, testing enzymes activity 

aerobically and anaerobically using two separate metrics for screening, and testing both the 

oxidation of epitestosterone and reduction of androstenedione.  

 

It is possible that in producing these Clostridial proteins in a different genus (Escherichia) that 

an additional component, such as differing molecular chaperones, are necessary for the proper 

maturation of the 17α-HSDH.  A way of getting around this difficulty would be to knock out 

genes of interest directly in C. scindens.  Unfortunately, a mechanism for directly knocking out 

genes in Clostridium scindens has not been developed, however not for a lack of effort.  Most 

recently, work on developing a Crispr-Cas9 knockout system in Clostridium scindens is 

underway in a collaborating lab.  Such a system in Clostridium scindens would be a huge 

accomplishment and widely utilized.  The production of secondary bile acids by Clostridium 

scindens have been differentially implicated to be associated with CRC (67, 281) as well as with 
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protection against post-antibiotic Clostridium difficile infection (209).  If one was able to knock 

out the bai-operon responsible for producing secondary bile acids in Clostridium scindens, the 

contributions of secondary bile acids to these disease processes could be more accurately 

determined. 

 

Until either more cost-effective means of screening transcriptomic data for prokaryotes or a 

genetic knockout system for Clostridium scindens is developed, the gene encoding 17α-HSDH 

will continue to elude us.  A future direction may be to screen other fecal isolates for 17α-HSDH 

activity on androstenedione and then comparing the genomic data to more accurately search for a 

putative gene.  This experiment would be interesting, as the prevalence of microbial 17α-HSDH 

activity in human fecal samples is unknown.   

 

The work on identifying the 17α-HSDH gene in C. scindens VPI 12708 did provide some 

interesting results.  It showed how differently C. scindens VPI 12708 recognizes steroid 

compounds with the same steroidal backbone.  Additionally, based on the clustering of heat 

maps of the four treatment groups, C. scindens VPI 12708 appears to recognize cholic acid 

differently from allocholic acid, androstenedione, and cortisol (Figure 5.4).  Since allocholic acid 

is a 5α-epimer of cholic acid, these results suggest that the planar orientation of the A ring on the 

steroid backbone on these molecules is an important regulator of its molecular function.  To 

make better use of this data, I recommend the resequencing of C. scindens VPI 12708 genome 

using more up to date annotation techniques.  That way, the transcriptomic data from the 

RNAseq analysis we performed can give more insight into how these steroid molecules impact 

the overall cell metabolism.  Additionally, it could test one of the possible reasons for the 
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inability to identify the 17α-HSDH gene.  Ultimately, this work gives interesting preliminary 

data for future studies, as well as a list of genes not to screen for 17α-HSDH activity in 

subsequent studies. 
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Chapter 6:  Summary and Perspectives 

 

The human gut microbiome is a diverse ecosystem of microbial organisms that inhabit our 

gastrointestinal tract.  The concentration of living cells, approximately 1011/g feces, is of the 

highest density found in nature.  The study of the human gut microbiome has undergone a 

renaissance in the past decade with the advent of next-generation sequencing techniques (2).  

High-throughput analysis of the constituents of the gut microbiome has given significant insights 

into human health and changed how we study the general makeup of the gut microbiome.  

Changes to certain characteristics of the gut microbiome, such as the quantities of specific 

bacterial species or changes in the presence and levels of microbial-derived metabolites, have 

been associated with a wide range of pathophysiological conditions.  Obesity (226, 256, 296), 

cardiovascular disease (297), hypertension (242, 252), inflammatory bowel disease (66, 84), 

colorectal cancer (67, 281), liver cancer (179), cirrhosis (298, 299), and post-antibiotic C. 

difficile infection (209) have all been associated with changes to the gut microbiome or the 

various metabolites it produces.  There are, however, limitations to the conclusions we can draw 

from 16S, COG, and KEGG DNA and transcriptomic analysis.  16S screens of fecal bacteria do 

not delineate differences that may exist within different strains of the same species.  The 

reference genomes that guide the predictive annotation for shotgun sequencing, such as COG and 

KEGG, account for only a third of all genomic data that is obtained (227).   

 

This problem is evident when looking at specific aspects of gut microbial metabolism such as the 

“sterolbiome”, or the prokaryotic genes that encode enzymes metabolizing bile acids within the 

gut microbiome.  Numerous bacterial strains within the Firmicutes and Actinobacteria phyla, two 
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of the three most prevalent phyla present in the GI tract, encode enzymes responsible for 

biotransformations of both bile acids and other steroid molecules.  A small subset of bacteria 

within the Clostridium genus have been shown to have genes encoding enzymes in a multi-step 

7α-dehydroxylation pathway, making them capable of turning endogenously produced primary 

bile acids CA and CDCA into secondary bile acids DCA and LCA, respectively (113).  

Production of secondary bile acids have been reported to be qualitatively the most common 

bioconversion of bile acids in the colon, as the majority of primary bile acids that escape 

enterohepatic circulation end up 7α-dehydroxylated in the large intestine (133). The genes 

encoding enzymes in the oxidative arm of the 7α-dehydroxylation pathway have been 

characterized in numerous Clostridium species (113).  However, the genes encoding the enzymes 

for the three successive reductive steps have not been identified.  In the current study, evidence is 

presented that the Clostridium scindens ATCC 35704 gene EDS08212.1 encodes a Δ4,6 

reductase that catalyzes the two reductive steps immediately following 7α-dehydration.  This 

gene is closely related to genes found in other 7α-dehydroxylating strains.  It is unique in its 

ability to catalyze two reductive reactions on both the A and B ring of bile acids (both the C4=C5 

and C6=C7 bonds).  Ultimately this work helps to further characterize a very important 

biochemical pathway within the “sterolbiome” and will ultimately serve to help us better 

understand the entirety of the 7α-dehydroxylation pathway. 

 

While 7α-dehydroxylation of primary bile acids is the most studied bacterial bile acid metabolic 

pathway, other biotransformations do occur.  One such set of reactions is the oxidation and 

epimerization of bile acid hydroxyl groups.  Oxidation of the α-hydroxyl groups on the 3rd, 7th, 

and 12th carbon of bile acids leads to the formation of an oxo-moiety.  Microbial oxidation of 
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bile acids occurs regularly in the large intestine, as previous analysis of fecal samples and portal 

circulation show the accumulation of oxo-bile acids to varying degrees (158-163, 165, 267)  

 

Once epimerized, these oxo-bile acids can undergo further biotransformations.  They can be 

reduced back to an α-configuration by bacterial or host hepatic α−HSDHs.  Alternatively, they 

can be epimerized to the β-configuration.  Numerous gut-associated microbes have been shown 

to harbor bile acid C3- and C7-hydroxyl-β-HSDHs (146, 150, 157).  Epimerized bile acids have 

been shown to be less toxic to other gut microbes that inhabit the large intestine (150).  As such, 

if an individual harbors gut microbes that can epimerize bile acids, the makeup of their gut 

microbiome may be different from an individual who does not, although that has not been 

experimentally proven.  Additionally, epimerized bile acids pose a problem for bacteria that 

otherwise utilize primary bile acids.  These 7α-dehydroxylating bacteria were not induced to 7α-

dehydroxylate primary bile acids by ursodeoxycholic acid, although they are capable of 7β-

dehydroxylation if induced by 7α-bile acids (261).  Additionally, urosdeoxycholic acid has been 

shown to inhibit the germination and vegetative growth of Clostridium difficile spores and be 

protective against recurrent infection (216).  It is clear that the epimerization of bile acids forms 

less toxic secondary metabolites.  However, the role of oxo-bile acids, the “intermediate” 

molecule in this process, is less well characterized. 

 

In the current study, we show evidence that 7α-dehydroxylation can be inhibited by the 

formation of oxo-bile acid derivatives.  Clostridium scindens VPI 12708 (12708) was unable to 

effectively 7α-dehydroxylate the three CDCA metabolites produced by E. lenta C592.  Two of 

the metabolites (7-oxo-3α-hydroxy-CDCA and 3,7-dioxo-CDCA) were partially reduced back to 
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CDCA, although 7α-dehydroxylation did not occur to the same extent as fully reduced CDCA.  

Additionally, the 7-oxo-3β-hydroxy-CDCA metabolite was reduced by C. scindens VPI 12708 

back to isoCDCA, but was not 7α-dehydroxylated. Taken together, this shows that C. scindens 

VPI 12708 does not recognize isoCDCA as a substrate for 7α-dehydroxylation, possibly due to 

the absence of a 3β-HSDH.  Additionally, the oxidation of hydroxyl groups appears to inhibit the 

7α-dehydroxylation of primary bile acids, even if C. scindens is able to reduce the oxo-bile acid 

metabolites back to the original primary bile acid.  One potential explanation for these findings is 

that oxo-bile acids do not induce the “bai” operon, similar to ursodeoxycholic acid (261).  

Therefore, in the C. scindens VPI 12708 oxo-bile acid metabolism analysis, the oxo-bile acids 

are reduced but 7α-dehydroxylated products do not form because they require induction of the 

bai operon. Further experimentation should be done to test C. scindens “bai” gene expression via 

qPCR when induced with the various oxo-bile acid derivatives made by C592.   

 

In coculture experiments, E. lenta C592 and C. scindens 12708 appear to cycle CDCA back and 

forth between 7α-CDCA and 7-oxo-CDCA, but LCA does not appear to accumulate. This 

experiment gives insight into what might happen if both C. scindens 12708 and E. lenta C592 

were in the large intestine under low H2 partial pressure and suggests a mechanism by which 

secondary bile acid formation may be inhibited in vivo by another member of the gut 

microbiome (Figure 6.1). Future experimentation on this point is warranted.  In vivo experiments 

of humanized mice (mice designed to have a humanized gut microbiome), could be designed to 

include supplementation with E. lenta strains to see if secondary bile acid formation is inhibited.  

Additionally, the effect of diet, such as the supplementation of complex carbohydrates that could 

lead to an excess of H2 gas in the colon and thus inhibit E. lenta bile acid metabolism, could be  
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Figure 6.1:  Model of Eggerthella lenta C592 bile acid metabolism in vivo. 
 
 
In the lumen of the large intestine, both Clostridium scindens and Eggerthella lenta would be 

competing for the same pool of primary bile acids.  C. scindens preferentially 7α-dehydroxylates 

primary bile acids to secondary bile acids.  At the same time, E. lenta would be competing for 

the same primary bile acids to use as electron donors.  These oxidized bile acids would be 

reduced by C. scindens back to primary bile acids, leading to a cycle of oxidation-reduction 

between the two strains.  This cycle would inhibit the build up of secondary bile acids in the 

colon.  However, the ability for E. lenta to oxidize bile acids would be dependent on the 

availability of H2 gas.  The availability of H2 gas in the lumen of the colon is dependent on two 

factors; the rate of production via anaerobic fermentation and the rate of utilization by H2 

utilizers.  Other gut microbial H2 utilizers, sulfidogens and methanogens, have higher affinity to 

H2 than acetogens.  Therefore if sulfidogens or methanogens were present and their preferred 

substrates for reduction were available, the amount of H2 for utilization by E. lenta would be 

low.  With a paucity of available H2, E. lenta would use bile acids as electron donors, leading to 

the formation of oxo-bile acids.  Alternatively, if H2 production outpaces the H2 utilization or if 

methanogenesis and sulfidogenesis are not occurring, E. lenta would switch to utilizing H2 as an 

electron donor and cease to oxidize bile acids.  This would allow C. scindens to properly 7α-

dehydroxylate primary bile acids, leading to an accumulation of secondary bile acids.   
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tested in this model.  Within this framework, other strains could be added as well, such as 

hydrogen sulfide gas producing bacteria (both with and without sulfate substrates) or 

methanogens, to see if their presence with E. lenta impacts the formation of secondary bile acids.  

Given the in vitro data generated in this work, it would be expected that E. lenta might inhibit 

7α-dehydroxylation by C. scindens strains and that excess H2 formation could counteract this 

inhibition.  However, given recent studies showing that secondary bile acids are directly linked 

to resistance against post-antibiotic CDI, the question arises as to whether limiting the formation 

of secondary bile acids should be viewed as a therapeutic target. 

 

Recent literature has suggested that C. scindens, specifically the formation of secondary bile 

acids, is protective against post-AB CDI in both human patients and animal models (209).  

However, little data is available showing a mechanism linking secondary bile acids to the 

inhibition of either C. difficile spore germination or vegetative growth.  Perhaps the most 

promising link is the study identifying the C. difficile germination receptor CspC is specifically 

activated by 12α-hydroxyl bile acids (214).  Work presented in this study shows that the 

12α−hydroxyl group on DCA is oxidized during E. lenta C592 DCA metabolism.  Future 

experimentation should look to the effects that 12-oxo-DCA has on both C. difficile growth and 

spore germination, as well as its ability to be recognized by the CspC receptor.   

 

The effects these oxo-bile acid metabolites have are not limited to other members of the gut 

microbiome.  Host tissues are significantly affected by numerous bacterial metabolites, 

particularly bile acids.  Oxo-bile acid derivatives have been shown to have varying effects, 

although they have not been thoroughly tested as well as their fully reduced counterparts.  7-oxo-
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CDCA, coincidentally a major product of E. lenta C592 CDCA metabolism, has been shown 

previously to be a competitive inhibitor for hepatic 11β−HSDH1 (198, 199).  This inhibition 

prevents effective reduction of inactive cortisone to cortisol.  The extent to which this inhibition 

affects overall host physiology has not been tested.  Additionally, bile acids are known to 

activate host G-protein coupled and nuclear receptors to varying extents based on the regio and 

stereo positioning of the functional groups attached to their steroid cores and side chains.  3-oxo-

LCA, the most likely product of E. lenta C592 LCA metabolism, has been shown to be the most 

potent vitamin D receptor agonist (175).  Additionally, 7-oxo-CDCA and 3,7-oxo-CDCA have 

both been shown to be less potent agonists for FXR than their α-reduced counterparts, but more 

potent than β-reduced epimers (167).  Oxo-bile acids, therefore, already have an established role 

in host physiology unique from their α- and β-reduced sister molecules.  However, the full 

spectrum of primary and secondary oxo-bile acid derivatives has not been tested for agonist 

properties on various bile acid-sensitive receptors.  Of particular interest would be to determine 

oxo-bile acids’ ability to activate TGR-5, as this is implicated in significantly altering host 

metabolism.  Previous literature has suggested C. scindens is associated with increased hepatic 

triglyceride levels (258), which is a downstream effect of secondary bile acid activation of TGR-

5 (173). Secondary bile acids DCA and LCA are the most potent activators of TGR-5 (170).  E. 

lenta was also shown to be associated with increased hepatic triglyceride levels (258), but they 

do not perform 7α-dehydroxylation. Therefore, this suggests that oxo-bile acid derivatives made 

by E. lenta are performing similar activities to secondary bile acids, potentially through the 

activation of TGR-5. 

 



 217 

Epimerized bile acids, such as ursodeoxycholic acid, have been shown to be less toxic to 

colonocytes (254, 255).  The toxicity of oxo-bile acid derivatives has not been studied, but would 

likely be different from fully reduced bile acids.  Previous studies have shown that varying the 

configuration of hydroxyl groups on bile acids directly affects their hydrophobicity (254), which 

is a major contributor to bile acid toxicity.  However, the hydrophobicity of oxo-bile acid 

derivatives has not been assessed. 

 

The formation of oxo-bile acids by E. lenta strains could have many effects, both to other gut 

microbes and to various host tissues.  The extent of these effects have yet to be fully elucidated, 

likely owing to the fact that oxo-bile acids have been seen as intermediates in the epimerization 

of bile acids.  However recent published studies, as well as the work presented here, suggest that 

oxo-bile acids could be key actors in modulating host and gut microbial physiology.  Evidence 

has been presented that E. lenta strains share many qualities with acetogens, and how bile acid 

oxidation play into their whole cell redox balancing and energy production.  Additionally, our 

studies show that atmospheric gases play a key role in determining the extent of E. lenta bile acid 

metabolism.  Both the E. lenta strains and oxo-bile acids warrant further exploration as possible 

therapeutic agents.  However, this comes with a warning, since recent studies have suggested an 

important role of secondary bile acids in the prevention of CDI.  Therefore, it is important to 

acquire a better understanding of the mechanism by which secondary bile acids prevent CDI 

before suggesting for their diminution in patients.  Ultimately, this work makes a case for E. 

lenta strains to be considered acetogens, for the formation of oxo-bile acids as a means to 

prevent 7α-dehydroxylation, and serves as a baseline to direct future study of oxo-bile acid 

formation in vivo.  
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