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Abstract 

ACU TE GABA-A RECEPTOR MOD U LATION BY DIAZEPAM FOLLOWING 
TRAUMATIC BRAIN INJURY IN THE RAT: AN IMMUNOHISTOCHEMICAL 
STUDY 

Cynthia 1. Gibson, Bachelor of Science 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University . 

Virginia Commonwealth University , 2000 

Major Director: Robert J. Hamm, Ph.D.,  Department of Psychology 

Traumatic brain injury (TBI) disrupts ionic balance and produces acute 

widespread depolarization. Restoration of ionic balance and neuronal function after TBI 

may be achieved by increasing inhibitory neurotransmission (e.g., stimulating GABA-A 

receptors) . This study used antibodies specific for P2/3 subunits to examine changes in 

GABA-A receptors in the rat hippocampus 24 hours following moderate fluid percussion 

TBI. The P2/3 antibody primarily stained dendritic processes. No injury related changes 

were found in the CA 1 but extensive morphological dendritic alterations were found in 

the CA3 region of the hippocampus. Analysis revealed decreased length of 

immunoreactive processes in CA3 apical dendrites of injured animals . These changes 

may represent a sublethal cytoskeletal response to excessive neuroexcitation . 
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Administration of diazepam 15 minutes prior to injury augmented IR P213 processes 

compared to injured/vehicle and sham groups. This study illustrates that GAB A-A 

receptors are altered following TBI and these alterations may be attenuated by increasing 

inhibitory neurotransmission .  



Chapter I: Traumatic Brain Injury 

Human Traumatic Brain Injury 

Incidence 

Traumatic brain injury (TBI) affects approximately two million people per year in 

the United States , resulting in 500,000 hospitalizations ( Ommaya, Ommaya, Dannenburg, 

& Salazar , 1996). The 10% overall mortality rate (Pope & Tarlov , 199 1) translates into 

TBI as the third leading cause of death (Sleet, 1987) . This represents 2% of all deaths and 

26 . 1  % of all injury-related deaths . Overall estimates indicate that approximately 4% of 

the population will suffer a TBI by the age of 19. TBI may affect children's intellectual 

capabilities, with about 33% of children who remain unconscious greater than one week 

having IQs less than 70 (Poper & Tarlov , 199 1) . Overall, 4% (75,OUO) of TBI patients 

will be left with long-tenn neurological deficits (Cole & Edgerton, 1990). 

Public concerns regarding the costs of TBI have become apparent in recent years . 

In 1987, The US Department of Education, National Institute on Disability and 

Rehabilitation Research funded the TBI Model Systems of Care, for the development of a 

comprehensive model care system for TBI patients and their families. This ongoing 

project is a longitudinal, multi-center study, continuously updated in a standardized 

national database (Harrison-Felix, Newton, Hall, & Kreutzer, 1996) . In 1996, the 



2 

Traumatic Brain Injury (TBI) Act (Public Law 104- 166) was adopted by Congress in 

order to expand studies and establish new TBI-oriented programs . By 1999, Health 

Resources and Services Administration, Maternal and Child Health Bureau required 

implementation of TBI State Demonstration grant programs for TBI patients and families 

to improve health and community services in the areas of planning and implementation 

grants to states (Traumatic brain injury state demonstration grants, 1998 & 1999). 

Children and the elderly are at high risk for TBI but the peak risk lies between 15 

and 24 years . Males represent up to 70% of TBIs, and nonwhite, urban populations are at 

the greatest risk (Pope & Tarlov, 199 1). Fatality rates are three times higher for males 

than for females (Sosin, Sacks, & Smith, 1989) . Demographics indicate that the average 

age for a TBI patient is 35. Patients less than 15 years tend to have the shortest hospital 

stays, those 15-24 have the longest stays, and those over 45 have relatively long hospital 

stays. More than 50% of TBI patients have a positive blood alcohol level (BAL) at 

admission, with 39% greater than 0. 1 BAL .  More than half of all TBls occur on weekends 

between 8 p .m .  and 4 a.m. (Harrison-Felix et ai., 1996). 

In 1996, automobile crashes, the leading cause of TBI, accounted for 56% of all 

cases, with falls representing 10% and violence/ intentional injuries also a major 

contributor (30%) (Harrison-Felix et ai., 1996). Compared to falls, more severe injuries 

are likely to be associated with auto crashes, resulting in higher incidence of concussion 

and lower incidence of hematoma ( Kalsbeek, McLaurin, Harris, & Miller, 1980). Auto 

crashes account for 57% of TBI-related mortality (Sosin, Sacks, & Smith 1989) and 
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hospital stays twice as long as other causes ( Kalsbeek et al., 1980) . TBI due to motor 

vehicle crashes is 39% higher for Caucasians than for African Americans (Sosin, Sacks, 

& Smith 1989), is more likely to be associated with diffuse injuries (Pope & Tarlov, 

1991), and accounts for approximately 49% of the total costs of TBI. This is likely due to 

the more severe nature of the injuries (Grabow, Offord, & Reider, 1984). 

Epidemiology - Mild, Moderate and Severe Injury 

Many discrepancies have been noted in the classification of injury severity . On 

average, 60% of injuries are mild, 20% are moderate and 20% are severe (Frankowski, 

1986) . The Glasgow Coma Scale ( GCS) is the most accepted rating scale for measuring 

injury severity . Mild injury is generally classified as a GCS score of 13-15, moderate 

injury is represented by a score of 9- 12 and severe injury receives a score of 3-8. These 

are general categories and do not represent a strict definition. Various hospital emergency 

rooms and research studies may define the cut-off points differently. Many other factors 

are considered that may influence the severity judgement. Because so many variables are 

involved, and the GCS score is subject to each doctor's interpretation, there is much 

controversy in the literature regarding the reliability of the scale. The GCS score factors 

include eye, verbal and motor reactions. Also taken into account are length of 

unconsciousness, duration of amnesia or confusion, surgical requirements (such as 

removing blood clots), secondary insults such as seizures or ischemia, skull fractures and 

computerized tomography (CT) scan results (Colohan & Oyesiku, 1992) . Mild, moderate, 

and severe injuries have varied pathologies and neuropsychological consequences . 



Mild TBI 

Mild injuries generally do not include a period of unconsciousness, yet the 

average cost of treatment is $44,0 14 ( Lehmkuhl, Hall, Mann, & Gordon, 1993). 

4 

Cognitive impairments following mild head injury have not received much attention 

because the deficits may be subtle . Many patients complain of post-concussive symptoms 

such as dizziness, headache, nausea, and confusion. Links between posttraumatic 

headaches and cognitive deficits were examined in one retrospective study, designed to 

evaluate symptoms such as concentration, memory and thinking deficits . In a sample of 

patients with post traumatic headaches, 65% reported cognitive problems (62% of these 

were confirmed by a doctor). The cognitive areas least affected by a mild injury included 

overall intelligence, language, perceptual and motor functions. The most prevailing 

cognitive deficits included problems with memory, attention, and information processing. 

Attention (concentration) was the most affected, followed by memory. Information 

processing problems typically diminished within three months of injury, whereas memory 

problems were not always noticeable during the first three months following injury. Age 

and gender did not seem to be significant factors in mild injury, although females tended 

to have more symptoms . Most cognitive impairments diminished gradually over the 

course of the first year post injury (Packard, Weaver, & Ham, 1993). Memory, attention 

and information processing deficits were likely to have an impact on the patient's lifestyle 

and job performance ability. 

Moderate TBI 
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Moderate TBI tends to result in an average of five days of unconsciousness, and a 

mean treatment cost of $85,682 (Lehmkuhl et aI., 1993). The outcome from moderate 

TBI varies widely. GCS scores of nine or ten have a 7-9% mortality rate and a much 

slower recovery compared to GCS scores of 1 1  or 12, which rarely result in death and are 

often moved to the mild category within 24 hours. Failure to return to work is estimated 

at 69%, a substantial increase over the estimated 34% for mild injuries ( Rimel, Giordani, 

Barth, & Jane, 1982). Moderate injury often results in more impairment than mild injury 

does, with 49% retaining a moderate disability, 10% a severe disability, and a 3% 

mortality rate from injury related complications. This leaves only 38% who are classified 

as 'good recovery . '  Memory problems, which effect 90% of moderate injury patients, are 

the primary reason for unemployment. Predominating impairments tend to be in areas 

related to higher-level cognitive skills such as problem-solving, attention, visual reaction 

times, and memory for auditory and visual tasks . Overall intelligence does not seem to be 

greatly affected. The location and size of brain lesion resulting from the injury are related 

to the type and severity of the impairments (Colohan & Oyesiku, 1992) . 

Severe TBI 

Severe TBI is represented by 12-34 days of unconsciousness, with an average cost 

between $ 1 1 1,000 and $ 154,000 ( Lehmkuhl et aI., 1993). Severe head injury is more 

complicated and life-threatening than dther mild or moderate injury. In one study of 

severely injured patients, 68% died during their hospital stay, 13.3% died shortly after 

discharge, and 6 . 1  % remained in a vegetative state six months later . Only 12.5% were 
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classified as functional survivors. Older patients ( 100% of those over 50) were the most 

likely to die . Functional recovery was only seen in patients less than 30 years of age . Low 

GCS scores and abnormal pupil responses were strong indicators of mortality (Quigley et 

ai., 1997). 

Functional survivors of severe head injury are likely to face a lifetime of 

neuropsychological and physical disabilities . Only 3% return to comparable employment 

levels (Wehman et ai., 1993) . Several pilot programs are in place across the country to 

provide supported employment to victims of severe brain injury. One such study, 

conducted in Richmond, V A, accepted 1 15 clients who had suffered a severe injury ( GCS 

score less than eight for more than six hours), resulting in severe impairments. Clients 

were placed in payed, real-work positions and all vocational intervention, job training and 

behavioral modification were provided at the job site. Most of the clients had deficits of 

attention, motor speed, verbal learning, verbal memory and .visual memory. Average 

scores on the Wide Range Achievement Test-Revised showed deficiencies in arithmetic, 

spelling and problem solving (scores less than the 20th percentile). After five years of this 

program, 70% had been placed in competitive employment for an average of 45 weeks . 

The mean annual income of these 80 clients was $7079 per year (Wehman et ai ., 1993). 

The Costs of TBI 

The monetary costs of TBI are staggering. In 1985, direct costs from mortality and 

morbidity totaled $37.8 billion (Ommaya et ai ., 1996) . According to a 1985 report to 

Congress on the incidence of injuries in the U.S., although only 13% of injuries are due 



to TBI, they account for 25% of injury-related mortality and 29% of the total injury costs 

( Rice, Mackenzie, & Associates, 1989) . Fatal cases (6.3%) account for 84% of the total, 

including funeral costs and loss of revenue (Grabow, Offord, & Reider, 1984). Gunshots 

( $ 164,250) and motorcycles ( $ 165,294) account for the highest mean charges, while 

assaults ( $89,940) account for the lowest charges ( Lehmkuhl et ai., 1993). 
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In 1995, the average acute care cost was approximately $ 105,800 and the average 

rehabilitative care was $58,400 (Harrison-Felix et ai., 1998). A large portion of these 

costs are paid for by public funds. In 1992, military hospitals paid almost 42 million 

dollars for TBI-related injuries, the median cost per patient being $35,400 (Ommaya et 

ai ., 1996). Estimates indicate that 29-3 1 % of acute care and 3 1-39% of rehabilitative care 

are paid for by Medicare or Medicaid (Harrison-Felix et ai, 1996; Lehmkuhl et ai., 1993). 

In one year in the US, more than 40,000 patients are estimated to have spent three weeks 

or more in the hospital due to TBI. Further costs to the public include loss of 

employment .  Approximately 39% of those employed at the time of injury are unable to 

return to work one year later (Harrison-Felix et ai., 1996) . The indirect costs of TBI 

include short term intellectual, motor, and learning impairments and long term 

rehabilitation, revenue loss, and intellectual limitations such as memory and 

concentration deficits. 

Injury Pathology 

Types of Injuries 
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The mechanism of injury detennines the type of injury and the resulting 

pathology. There are two main types of brain injuries. First, injuries are classified as 

either penetrating or non-penetrating. A penetrating injury, from a bullet or other object, 

may cause brain lacerations and hemorrhage. Non-penetrating injuries usually result from 

blunt impact of the brain with the inside of the skull. These closed head injuries are 

known as acceleration-deceleration and may occur either linearly or rotationally within 

the skull. The second major injury type refers to focal or diffuse injuries. A focal injury is 

limited to a specific region of the brain, resulting in contusion, laceration, hemorrhage, 

and/or infarction. Focal injuries may result from penetrating or non-penetrating blows to 

the head. The frontal and temporal lobes are especially vulnerable to focal injuries. 

Diffuse injury is most likely due to non-penetrating acceleration-deceleration or rotational 

type injuries but may also include axonal injury and secondary loss due to hypoxia or 

ischemia. Secondary insults often result from increased intracranial pressure (ICP) or 

cardiovascular collapse following a closed head injury. Diffuse injuries typically lead to 

specific patterns of necrosis in the cortex and infarctions of the hippocampus and basal 

ganglia (Selzer, 1995) . 

Primary and Secondary Injuries 

Primary brain injury occurs due to the mechanical forces involved at the moment 

of impact. Primary damage includes surface contusion and laceration, diffuse axonal 

injury (DAI) and intracranial hemorrhage . Primary (mechanical) damage affects blood 

vessels, axons, neurons and glia and may represent a focal, multi-focal or diffuse pattern 



of injury. DAI, focal contusions and intracranial hematomas due to hemorrhage provide 

the potential for secondary damage such as ischemia, hypoxia, cerebral swelling/edema, 

increased ICP, hypotension, and seizures (Alessandri & Bullock, 1998). 
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Primary methods of injury include contact of the skull with a foreign object or 

unrestricted head movement due to acceleration-deceleration forces of the brain within 

the skull. Contact injuries primarily result from falls and result in focal damage such as 

local or regional lesions, skull fracture (with or without extradural hematoma), surface 

contusions and intracranial hemorrhage. Acceleration-deceleration injuries primarily 

result from motor vehicle crashes and produce diffuse types of injuries. Shear, tensile and 

compressive strains often occur following diffuse injuries and may result in subdural 

hematomas (SOH) and widespread axonal damage (McIntosh et ai., 1996). 

Secondary damage involves changes that are initialized at the time of impact. The 

biochemical cascade of events that follows involves changes .leading to neuronal damage. 

Please see Table 1 for a summary of primary and secondary consequences of TBI. 

Neuronal cell body injury in the gray matter occurs in stages. Neurons in direct 

contact with an object or the skull die immediately and form a core of primary damage. 

Damaged neurons release excessive excitatory amino acids (EAA), resulting in further 
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Table l. Common types of primary and secondary damage following TBI. 



1 1  

Common Forms 0.( Primary and Secondary Damage 
Type of Injury Type of Damage 

Laceration (cuts) Primary 

Contusion (bruising) Primary 

Disturbed ion gradients Primary 

Edema (swelling) Primary I Secondary 

Hematoma (due to hemorrhage) Secondary 

Ischemia (decreased blood flow) Secondary 

Hypoxia (decreased oxygen) Secondary 

Diffuse Axonal Injury (DAI) 
Secondary 
(Prim<llY at membrane) 



depolarization and calcium entry into nearby neurons . Secondary changes are more 

complicated and prolonged. 
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Further complicating the injury potential ,  delayed secondary damage may be more 

severe than the initial loss. Secondary damage may include ischemia, swelling (edema), 

and alterations of normal neurochemical functions and mechanisms . Secondary damage 

may not present clinically for hours or even days providing a potential window for 

intervention. Recovery begins with neurons that may have been damaged but not killed . 

The initial core of immediate damage, therefore,  often spreads to a secondary "penumbra" 

of neuronal damage and then to a potentially reversible "outer zone" of neuronal 

dysfunction (Selzer, 1995) . 

Excitotoxicity and Excitatory Amino Acids 

Glutamate is the most widely distributed excitatory neurotransmitter in the brain. 

High concentrations of glutamate are toxic . High levels (10 to 200 flM) are released into 

the extra-cellular fluid (ECF) following injury (Alessandri & Bullock , 1998). The 

excitotoxicity hypothesis , as it relates to TBI, postulates that activation of muscarinic 

cholinergic and/or N-methyl-D-aspartate (NMDA) type glutamate receptors is probably 

due to excessive neurotransmitter release following TBI-induced depolarization of 

neurons. This over-excitation then contributes to resulting TBI pathophysiology (Hayes, 

Jenkins, & Lyeth, 1992b) . GlutamatergiC receptor antagonists administered before injury 

have been shown to reduce histological, functional and behavioral consequences in 

animal models of TBI (Alessandri & Bullock, 1998). Neurochemical alterations 



following TBI are related to excitotoxic processes and abnormal agonist-receptor 

interactions. Treatment potential lies in the possibility that neurochemical processes 

which mediate brain pathophysiology associated with TBI may respond to 

pharmacological therapies (Hayes, Jenkins, & Lyeth, 1992b). 

13 



Chapter II: Experimental Traumatic Brain Injury 

Animal Models of TBI 

Biomechanics of Experimental Injury 

It is important that models of TBI mimic the mechanical forces, causes, and 

consequences which occur in human patients . The mechanical loading forces include 

impact forces and inertial (acceleration) forces . Brief (usually < 50 msec) mechanical 

deformation results in brain injury. The type and extent of brain injury is dependent on 

the location, magnitude and direction of the loading forces. 

The most common mechanical causes of TBI are due to impact loading forces . 

Impact loading refers to direct contact between the head and a solid object. These contact 

effects result in local deformation of the skull, overall brain movement within the skull, 

and potentially devastating tissue strain to the underlying neuronal tissue. Inertial loading 

refers to indirect head movements resulting from an impact to other areas of the body. 

Inertial acceleration effects produce an overall pressure distortion and neuronal tissue 

strain which results in primary tissue damage (McIntosh et ai., 1996) . 

Contact Effects and their resultinl;! Neuropathologic Sequella 

Impact loading forces may result in skull fracture due to focally distributed forces. 

Local skull depression produces distinctive stress zones caused by waves of distortion 

14 
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radiating from the point of impact . These waves disperse and meet at places within the 

skull, causing additive pressure and potential skull fracture in areas other than the impact 

site. Local skull distortion may also occur without overt fracture . The amount of local 

skull displacement is an indication of the pressure and distortion experienced by 

underlying tissue and the tissue affected by stress waves radiating from the point of 

contact. 

Impact forces produce contact effects such as skull bending, intracranial pressure 

(ICP), and focal lesions due to contusions, laceration and hematomas. An intracranial 

hematoma is often considered a more extensive form of contusion and a subdural 

hematoma is due to vascular damage underlying the impact site. Epidural hematoma is 

more likely caused by tom vessels due to fracture (85%) than to ICP ( 15%) (McIntosh et 

ai., 1996). 

Inertial Cacceleration)Eeffects and their resulting Neuropathological Sequella 

Acceleration due to impact or impulsive loading produces a different type of 

injury with different mechanical effects . There are two primary types of inertial effects: 

translational acceleration (acceleration-deceleration movement along a straight path) and 

rotational acceleration (brain rotation within the skull) . Translational acceleration 

produces movement of the brain within the skull and increased ICP. The magnitude of 

peak ICP is directly due to the level of tninslational acceleration. Rotational acceleration 

produces widespread tissue strain within the brain and the shear strain is directly related 



to the level of rotational acceleration, direction of motion, and potential intracranial 

impact with dural compartments such as the tentorium cerebri (McIntosh et aI., 1996). 

Assumptions and Hypotheses in Animal Modeling 
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Animal models rely on the hypothesis that human injury can be duplicated in 

nonhumans. Some assumptions must be made in order to allow generalization from a 

model to human conditions. Species differences are assumed to be of minimal 

consequence, and the injury production mechanism is not considered as important as the 

resulting sequella. Knowing the injury mechanism in humans is, however , important for 

safety measure development and prevention. 

There are several important aspects of injury that should be represented in a good 

animal model. These include: the mechanism of injury, the location of brain damage, the 

type of damage produced, the severity and time course of injury, and long term and short 

term changes. The model should also be able to effectively assess morphological changes, 

cerebrovascular changes, metabolic receptor changes, and behavioral changes 

( Gennarelli, 1994). 

Overview of the models by Injury Classification 

Acceleration Concussion and Percussion Concussion 

Denny-Brown and Russell ( 1941) distinguished two categories of injury: (a) 

acceleration concussion and (b) percussion concussion. Acceleration concussion is 

modeled by inertial injury models. These models produce acceleration without impact or 

with diffuse loading and have been used in primates , cats , and swine. Another 
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acceleration concussion model is impact acceleration, which is also referred to as the 

weight drop model . Impact acceleration involves an impactor such as a piston or weight, 

which is dropped directly on the skull or onto a steel plate covering the skull. The latter 

minimizes localized skull loading and fracture. This model has been demonstrated 

effectively in primates, cats, and rats ( Gennarelli , 1994). 

Fluid percussion (FP) injury is a widely used model of percussion concussion . 

This model was used in cats until 1987, when it was modified for use in rats due to their 

compatibility with behavioral tasks. The central, lateral, or lateral with contralateral dura 

opening variations of the model have also been used in dog, rabbit, and swine . In this 

model, a small fluid volume is injected into subdural or supradural space . Impact is 

provided via a fluid column or rapid pump infusion . 

Another model of percussion concussion is rigid indentation, also known as 

controlled cortical impact (CCI). In this model, a piston strikes the brain directly through 

a large craniotomy hole. Impact is controlled at about 2 to 3 mlsec and penetrates 2 to 3 

mm deep. Variations of this model include central, lateral , or lateral with contralateral 

open dura injuries. 

Other models of injury that have very specific usefulness include injection 

models, where a small amount of fluid or blood is injected into epidural, subdural ,  or 

intracerebral brain locations. Local tensile models produce injury under pressure or 

suction of the open dura (Gennarelli, 1994). 



The most frequently used animal models ofTBI include central or lateral FP, 

central or lateral CCI, weight drop, and injection models (for subdural hematoma 

injuries). Areas of particular interest to the excitotoxicity hypothesis of injury include: 
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DAI, contusion, fracture, acute subdural ,  epidural, or intracerebral hematoma, and brain 

swelling (Alessandri & Bullock, 1998) . Animal models have done well in their attempts 

to model morphological changes following TBI but areas that are less well characterized 

include neurological changes such as cognition, memory and long-term outcome; 

physiology as in cerebral metabolism; and biochemistry, such as gene expression and 

ionic changes ( Gennarelli , 1994). 

Excitotoxicity 

Models that involve glutamate infusion have been shown to activate all glutamate 

receptor subtypes. Glutamate is then removed from the synapse by astrocytes. Other 

excitotoxic infusions such as kainic acid, N-methyl-D-aspartate (NMDA), or a-amin-3-

hydroxy-5 methyl-4 isoxazale proponic acid (AMPA) do not have this property 

(Alessandri & Bullock, 1998). Excitotoxicity of glutamate has been demonstrated to 

produce hypermetabolism ,  which is neuro-protected with NMDA and AMP AlKainate 

(AMPNKA) receptor antagonists such as D-CPPene, M K-80 1 ,  and NBQX, as well as 

with the free radical and lipid peroxidase inhibitor 174006F and D-amphetamine 

(Fujisawa, Landolt, & Bullock, 1996; Hovda et aI., 1995; Sutton, Hovda, Chen, & 

Feeney, 2000) . These in-vivo models of excitotoxicity provide support for the potential 

damage of excessive glutamatergic activity . Glutamate infusion damages cortical tissue 
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synergistically following FP injury, likely due to the increased vulnerability of neurons to 

glutamate following injury (Bullock & Di, 1997). Although glutamate is the best 

characterized excitotoxin, ACh and kainic acid also have excitotoxic properties that have 

been demonstrated both in vitro and in vivo ( Regan & Choi, 199 1). The concentrations 

needed to kill cortical neurons are lowest for NMDA, then AMPA, and kainic acid, 

respectively. The strongest excitotoxic effects are produced by glutamate which binds to 

the NMDA receptor subtype ( Regan, 1996). 

Experimental Models of Focal and Diffuse Brain Injury 

Physical, computer and cell culture models have all contributed to the 

understanding of specific aspects of head injury . However, animate models are the only 

true representations of the complex changes that occur within a living organism in 

response to brain trauma . Two distinctions have been made in model type: focal and 

diffuse (McIntosh et aI . ,  1996). Each of these types of injuries. have their own sequence of 

changes and cascades of events , some of which are similar and some of which are 

distinctively different . 

Focal injury models describe the pathology concerning contact effects from 

impact forces . Cortical contusion is common to focal injuries and has been well­

characterized in rats (Dixon et aI., 1987; Dixon, Glifton, Lighthall, Yaghamai, & Hayes, 

199 1; Feeney, Boyeson, Linn, Murray, &'Dail, 198 1; McIntosh et aI., 1989; Nilsson, 

Ponten, & Voight , 1977; Shapira et aI . ,  1988; Toulmond,  Duval, Serrano, Scatton, & 

Benavides, 1993), mice, cats ferrets , pigs, and other primates ( Lighthall, 1988; Lindgren 



20 

& Rinder, 1965; Ornrnaya, Hirsch, & Flamm, 1966; Smith et ai., 1995; Sullivan et ai . ,  

1976). Primary skull displacement lasting approximately 10-30 msec occurs due to 

contact (focal) loading forces (McIntosh et ai., 1996) . TBI with contusion may be 

analogous to ischemic focal forebrain infarction (Hayes, Jenkins & Lyeth, 1992b). TBI 

models that produce cortical contusion may also cause damage to areas remote from the 

injury site (McIntosh et ai . ,  1996) . 

Several models are available that can produce a focal injury (see Table 2) , 

including weight drop (Feeney et ai, 198 1; McIntosh et ai., 1989; Nilsson, Ponten, & 

Voight , 1977), fluid percussion (Dixon et ai . ,  1987; Lindgren & Rinder , 1965; McIntosh 

et ai ., 1989; Toulmond et ai., 1993), and rigid indentation (Dixon et ai., 199 1; Soares, 

Thomas, Cloherty, & McIntosh, 1992; Smith et ai . ,  1995) . A common feature of each of 

these models is that the head is held steady in one position as the injury occurs (McIntosh 

et ai., 1996) . The weight drop model often produces contusion at the injury site, neuronal 

loss of the hippocampi, thalamus and brain stem nuclei, and may produce skull fracture, 

prolonged coma, DAI and seizures (Beaumont et ai ., 1999; Foda & Marmarou, 1994; 

Gennarelli, 1994; Marmarou et ai., 1994; Povlishock, Hayes, Michel & McIntosh, 1994). 

The rigid indentation model (CCI) normally produces a focal contusion at the injury site, 

axonal damage, and lower mortality due to less brain stem damage, compared to the 

cortical weight drop model (Povlishock et ai., 1994). Central rigid percussion produces 

coma, contusion to the parasagital cortex under the impact site and non-diffuse axonal 
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Table 2. The injury characteristics of animal models of TBI. 



22 

Current Uses of Animal Models 
Animal Model Focal/ Diffuse Injury Uses- Injury Type Species Studied 

Cortical weight drop/ Focal contusion rat 
Impact Acceleration neuronal loss 

potential seizures 
impaired motor ability 

Cortical impact (CCI) Focal contusion rat, ferret 
axonal damage 

Fluid Percussion (FP) Both Lateral and behavioral dysfunction rat, cat, micropig, non-
Central effects: brief coma human primates 

impaired motor ability 
axonal injury 
vascular abnormalities 
neurochemical changes 
possible contusion' 

Focal (Lateral) neuronal cell loss 
unilateral damage 

Diffuse (Central) brain stem involvement 
bilateral damage 

Inertial injury Diffuse Full spectrum of human micropigs and non-
head injury, morbidity, human primates 
and coma 



damage. Lateral CCI injuries produce a brief coma, a small amount of diffuse axonal 

damage and contusion at impact site ( Gennarelli, 1994). 
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In the FP model, fluid is injected through a sealed cannula-type hub into the 

closed cranium. This model has been well characterized. It has been associated with 

behavioral detriments, transient coma, impaired motor function, and altered learning and 

memory (Povlishock et ai., 1994). Structural abnormalities have been noted, including 

subarachnoid hemorrhage and axonal injury. Cell loss in the cortices and hippocampi is 

common in moderate severity injuries, with contusion likely at higher severities, 

especially in lateral injuries ( Gennarelli, 1994). Cerebral vascular abnormalities in blood 

flow and BBB permeability, neurochemical changes controlling ionic homeostasis, and 

metabolic alterations have also been documented (Povlishock et ai., 1994) . For focal 

injuries, the lateral FP model is preferable, with central FP model producing a more 

diffuse type of injury Gennarelli, 1994; Povlishock et ai ., 1994) . 

Lateral FP injuries (FPI) are more likely to result in focal contusion and cortical 

changes are often unilateral to the side of injury, sparing the contralateral cortex and brain 

stem. Ipsilateral changes in white matter axons and occasional deep tissue tears at gray­

white matter junctions may occur . Unilateral hippocampal damage has been well 

characterized ( Gennarelli, 1994) . 

Central FP injuries are less likely to produce contusion and overt cell loss at the 

impact site . Bilateral cortical responses and brain stem involvement (including axonal 

injury) are common features of the central FP model (Gennarelli, 1994; Mcintosh et ai., 
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1996, Povlishock et aI ., 1994) . FP injury, however, provides only limited biomechanical 

control and does not represent the full human TBI spectrum of injury (e.g., prolonged 

unconsciousness). Higher severity levels of injury are often complicated by brain stem 

involvement and rats are more susceptible to the confound of pulmonary edema 

(Povlishock et aI., 1994). Diffuse TBI-induced depolarization without contusion has 

similar neuropathological consequences to diffuse forebrain ischemia, resulting in 

selective neuronal deficits without overt cell loss (Hayes, Jenkins & Lyeth, 1992b) . 

Species Studied 

The choice of species in TBI modeling is important. There may be different 

patterns and distribution of receptors between humans and various other species . This 

must be weighed against the societal and financial expenses involved in using 

phylogenetically closer species. Rodent animal models, particularly rats, have been well­

characterized and have the benefit of providing extensive normative data . Their small size 

and availability permits exhaustive structural and functional studies to be performed 

(Povlishock et aI., 1994). Their age, genetic background, and environment can all be 

controlled to reduce experimental variability, and their high infection resistence and 

compatibility with neurochemical and neuropharmacological techniques have made them 

a popular choice in animal models . Central fluid percussion injuries in rats have been 

shown to be reliable at mild to moderate revels, without the complications of focal tissue 

damage (Dixon et aI ., 1987) . Important similarities between humans and rodents include 

impact depolarization and a high correlation between rodents' receptor pharmacology and 
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neurochemical changes and humans ' TBI-induced behavioral deficits (Hayes, Jenkins & 

Lyeth, 1992b). Rodents ' physiologic responses may differ from humans, however , and 

they do not provide complete modeling of complex human changes due to their smaller 

neocortex and their lack of complex gyri and sulci (Povlishock et aI., 1994) . 

Links Between Fluid Percussion Injury and Human TBI 

The pressure forces exerted on the brain during experimental FP injuries are 

similar to those recorded from human cadaver skulls upon impact (Lindgren & Rinder,  

1966). Acute neurological symptoms and suppression of behavioral reflexes mimic 

human unconsciousness/coma ( Teasdale, 1976) . Dixon et al . ( 1987) characterized the FP 

model in rats, using neurological and histopathological endpoints following various injury 

severity levels. Acute neurological evaluations indicated that mortality was positively 

correlated with injury severity, with an average mortality for moderate injury around 30-

35%. A primary cause of mortality was pulmonary edema, which was not significantly 

correlated with injury severity. Convulsions were only seen at higher injury levels (>2 . 1  

A TM) and a positive correlation was found between injury magnitude and apneic 

episodes (respiration cessation and resumption > I 0 sec) . Acute somatomotor responses 

were developed to be similar to human reflexes on which GCS scores are based. 

Somatomotor nonpostural responses correlated to injury magnitude included corneal and 

pinna reflexes. Somatomotor postural responses, also correlated to injury magnitude, 

included paw flexion, tail flexion, startle reflex, and righting reflex. Sham animals were 

normal within one minute of removal from the injury device . Systemic cardiovascular 
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variables included: increased mean arterial blood pressure (MABP), which peaked within 

10 sec and was not graded by injury severity level; brief bradycardia (5- 10 sec), with the 

heart rates of all injury levels lowered to 50% of baseline, and decreases in pO] and pCO] 

at high severity levels only. Plasma glucose increased at 5 min for all injury groups and 

pulmonary edema ("pink fulminating exudate") increased carbon dioxide, lowered 

oxygen and produced 100% mortality. Most of the measures documented in this study 

(and others) show similarities to moderate human head injury, as measured by the GCS 

(Dixon et aI . ,  1994). 

The Hippocampus 

Subsectors of the Hippocampus 

The hippocampal formation is an elongated, C-shaped structure that wraps around 

the diencephalon from the septal nuclei of the forebrain to the temporal lobe. The 

hippocampal formation consists of four primary structures: the dentate gyrus (DG), the 

entorhinal cortex (EC), the hippocampus proper, and the subicular complex. The 

hippocampus proper is further divided into CA 1 ,  CA2 and CA3 regions. The structures of 

the hippocampus have a distinctive laminar orientation. Although most of the 

hippocampal connections are feed forward, GABAergic intemeurons also provide 

feedback information to the original structure. The EC provides the major hippocampal 

input via the perforant pathway, terminating primarily in the DG. The DG projects mossy 

fibers to the CA3 fold of the hippocampus proper, which in tum projects to the CA 1 

region. The subiculum receives the primary output from the hippocampus proper. 



Hippocampal structures communicate ipsilaterally via associational projections and by 

commissural projections to the contralateral structures (Amaral & Witter, 1 995) (See 

Figure 1 ) . 

Entorhinal Cortex 
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Information from cortical structures such as the perirhinal cortex, the tetrosplenial 

cortex and the medial frontal cortex are relayed to the hippocampus via the EC. Feed­

forward projections from the EC innervate the DG and the CA 1 and CA3 regions of the 

hippocampus. The EC receives feedback information from the CA 1 and from the 

subiculum. Projections from the EC to the hippocampal regions are collectively referred 

to as the perforant pathway. The perforant pathway consists of projections from many EC 

cell types, including stellate, pyramidal, GABAergic, and others (Amaral & Witter, 

1 995). 

The EC has two main subdivisions: the lateral entorhinal area (LEA) and the 

medial entorhinal area (MEA) (Amaral & Witter, 1 995). The primary perforant pathway 

projections are to the outer two-thirds of the molecular layer of the DG, where terminals 

synapse on dendritic spines of granule cells. There are also some synapses on GABAergic 

intemeurons. The LEA projects to the outer one-third of the molecular layer of the DG 

and the MEA projects to the middle one-third of the DG (Hjorth-Simonsen, 1 972; 

Nafstad, 1 967; Steward, 1 976; Witter, 1 993; Wyss, 1 98 1 ). The inner one-third of the DG 

receives mossy cell projections from the polymorphic layer (Amaral & Witter, 1 995). The 

perforant pathway also has some feed-forward projections to the CAl and 
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Figure 1 .  A diagram of a coronal section of the mid-dorsal hippocampal formation of the 

rat. The primary connective pathways are shown: Schaffer collaterals (S), mossy fibers 

(M), and the perforant pathway (P). The hippocampus proper is subdivided into CA 1 ,  

CA2, and CA3 regions and the dentate gyrus (DG) is also shown. 

Key: SO = stratum oriens 

SP = stratum pyramidal (pyramidal cell layer) 

SR = stratum radiatum 

SLM = stratum lacunosum moleculare 
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CA3 regions of the hippocampus proper, although only the CA 1 reciprocates these 

projections (Amaral & Witter, 1 995; Nafstad, 1 967; Steward & Scoville, 1 976). 

Dentate Gyrus 
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The laminar structure of the DG consists of the molecular layer, the granule cell 

layer, and the polymorphic layer. The molecular layer primarily contains apical dendrites 

of granule cells as well as some smaller stellate cell bodies. The granule cell layer, 

consists primarily of granule cell bodies, although GABAergic basket cells are found 

nestled between the granule and polymorphic layers (Amaral & Witter, 1 995). There is 

approximately one basket cell to every 1 80 granule cells (Amaral, Ishizuka, & Claiborne, 

1 990). The polymorphic layer, commonly referred to as the hilus, contains mossy cells as 

well as basal dendrites and axonal projections of the granule cells. 

Although relatively cell-free, the molecular layer does contain some basket cells 

and axo-axonic interneurons known as chandelier cells (Amaral & Witter, 1 995). These 

interneurons are primarily GABAergic, providing pre-synaptic input to the perforant 

pathway and synaptic input to dendrites of the granule cells in the granule cell layer. 

GABAergic chandelier cells may contribute to regulation of granule cell excitatory input 

from the EC (Somogyi et aI . ,  1 985; Soriano & Fotscher, 1 989). 

The granule cell layer consists primarily of granule cell somata which extend their 

axons to the CA3 region. The stratum lucioum layer, found only in the CA3 region of the 

hippocampus, consists of mossy fiber projections from the granule cells of the DG. 

Mossy fibers bend temporally, forming an "end bulb," which demarcates the CA3 and 



3 1  

CA2 regions of the hippocampus. Besides axo-axonic feedback from interneurons, 

granule cells also receive synaptic input from basket cells, which are also primarily 

GABAergic. Because of the wrapped orientation of the hippocampus, the molecular and 

granule cell layer meet and form a 'V'  shape. The suprapyramidal blade refers to the 

layered portion closest to the CA 1 and the infrapyramidal blade is furthest from the CA 1 .  

Between the blades of this region, basal to the granule cell layer, is the polymorphic layer 

(Amaral & Witter, 1 995). 

Mossy cells are the most common cell type in the polymorphic cell layer. Mossy 

cells have large triangular or multipolar shaped bodies with proximal dendrites covered in 

spines or "thorny excrescences", which are termination sites of mossy fiber axons (Ribak, 

Seress, & Amaral, 1 985;  Frotscher, Seress, Schwerdtfeger, & Buhl, 1 99 1 ). These spines 

are also seen in proximal dendrites of CA3 pyramidal cells. Primarily glutamatergic, 

mossy cell projections may form as many as 37 synapses with.a single CA3 pyramidal 

cell dendrite (Amaral & Witter, 1 995; Chicurel & Harris, 1 992). 

Hippocampus Proper 

The hippocampus proper consists of CA l ,  CA2, and CA3 regions. CA2 and CA3 

areas contain primarily large pyramidal cells, whereas pyramidal cells of the CAl are 

noticeably smaller. The narrow CA2 differs in poorly characterized connectional and 

functional ways from CA 1 and CA3 regions. The border of CA2 and CA3 is marked by 

the termination of the stratum lucidum, which is found only in the CA3 and consists of 

mossy fiber projections from the DG. 
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Hippocampal laminar organization is similar in all areas of the hippocampus 

proper. The pyramidal cell layer is the main cellular layer. Basal dendrites extend into the 

stratum oriens (SO) layer. Apical dendritic trees extend through the stratum radiatum 

(SR) and stratum lacunosum-moleculare (SLM) layers. The SR layer receives input from 

CA3 to CAl Schaffer collaterals. CA3 to CA3 associational (ipsilateral) and commissural 

(contralateral) terminals are also located in the SR layer. Some EC perforant pathway 

fibers travel and terminate in the SLM layer of the CA 1 ,  although the majority of 

perforant pathway input is to the DG (Amaral & Witter, 1 995). 

Although not well characterized, there is a variety of primarily GABAergic local 

interneurons located throughout the layers of the hippocampus proper. The pyramidal cell 

layer consists primarily of pyramidal cells but GABAergic basket cells are also present, 

located along the SPI SO border (Seress & Ribak, 1 984). These basket cells are the most 

common type of interneuron in the CA 1 .  Basket cells of the SPI SO border directly 

inhibit pyramidal cells in this region (Thompson, 1 994). The dendrites of the basket cells 

appear beaded and have few dendritic spines. In contrast to the basket cells at the SPI SO 

border, the interneurons at the SRI SLM border do not receive CA 1 input. These 

interneurons terminate on the distal dendrites of the SO layer in the CAl (Amaral & 

Witter, 1 995). Interneurons of the DG and CA3 receive direct cortical input from septal 

projections (Amaral & Witter, 1 995; Freund & Antal, 1 988). CA3 interconnections to 

both CA3 and CAl are divergent and extensive. As many as 6000 CA3 neurons ( 1 .9% of 

the CA3 cell population) may innervate a single CA3 neuron. Also, a single CA 1 neuron 
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may be innervated by as  many as 5500 CA3 neurons ( 1 .8% of the CA3 cell population). 

CA3 projections may, therefore, play important roles in hippocampal inter­

communication (Amaral, Ishizuka, & Claiborne, 1 990) . .  

Subiculum 

The primary output from the hippocampus proper originates in the CA 1 and is 

relayed to the subiculum. The subiculum projects to the EC and also has minor 

projections to other cortical areas, including the limbic cortex, the nucleus accumbens and 

the lateral septal region. The aforementioned cortical connections to the subiculum in tum 

project to the hypothalamus and the amygdala. The SR layer is not as prominent in the 

subiculum and the SO and molecular layers widen to accommodate the enlarged 

pyramidal cells (Amaral & Witter, 1 995). 

Histopathology of TBI 

The hippocampus is known to be vulnerable to ischemia, seizures and brain 

trauma. Cognitive deficits are the most common long-term consequence of TBI in human 

patients (McIntosh et aI . ,  1 996). Unlike ischemia, which produces damage in the CA 1 

region, lateral TBI results in damage primarily in the CA3 and the hilus of the DG. Focal 

models often result in cell loss in these areas (Cortez, McIntosh, & Noble, 1 989; Hicks, 

Smith, Lowenstein, SaintMarie, & McIntosh, 1 993; Soares, Hicks, Smith, & McIntosh, 

1 995; Smith, Okiyama, Thomas, Claussen; & McIntosh, 1 991). Loss of CA3 dendritic 

processes is common in focal models of TBI (Hicks, Smith, & McIntosh, 1 995; Taft, 

Yank, Dixon, & Hayes, 1 992). Axonal damage throughout the hippocampus and thalamus 
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is often found, even in the absence of DAI (McIntosh et ai ., 1996). Also, receptor binding 

properties are disrupted and the seizure threshold within the hippocampus is lowered 

(Dixon et ai., 1 99 1 ;  Feeney et ai . ,  1 98 1). 

Focal models of TBI have distinctive patterns of histopathological changes, 

including: focal contusion, hemorrhagic contusions, necrosis, cavitation at injury site, 

short unconsciousness, BBB disruption (primarily in the contused region), cerebral 

edema, decreased CBF, and increased metabolism, mircoglial and macrophage 

proliferation and recruitment, and the potential for delayed secondary insults (McIntosh et 

ai . ,  1 996). Histopathological studies have shown that the presence of subarachnoid blood 

may be the only observable pathology at low injury levels. Moderate and severe injuries 

are likely to produce acute and chronic changes such as bilateral intraparenchymal 

hemorrhage in the hippocampi. At post-acute survival times (PID 4-7), necrosis and 

cavitation become evident at the site of injury (Dixon et ai., 1 987). Lateral injuries 

produce radial contusion, structural damage, and cortical and hippocampal cell loss which 

correlate with specific behavioral deficits (Delahunty, Jiang, Gong, Black, & Lyeth, 

1 995). 

Diffuse models of TBI are less likely to result in overt cell loss. Using the FP 

model of injury, Delahunty et ai . ( 1 995) showed that central injuries produced muscarinic 

and metabotropic dysfunction without any overt cell loss. Small or no contusions were 

observed. 

TBI and Ischemia: Similarities and Differences 
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Models ofTBI and cerebral ischemia both produce injuries that involve 

neurotransmitters (NTs). The same excitotoxic hypothesis is applied to both types of 

injury. Ischemia, unlike TBI, however, is associated with ATP energy stores depletion, as 

well as changes in brain temperature and pH (Hayes, Jenkins, & Lyeth, 1 992). 

TBI models with focal contusions are analogous to ischemia models with focal 

cerebral infarction, both producing overt structural damage. Diffuse models ofTBI 

without contusion produce injuries similar to diffuse forebrain ischemia models. Some 

differences in histopathology exist between the two types of eNS injuries, and TBI does 

not produce the brain temperature reductions that are associated with ischemia. Although 

ischemia may be present in many severely injured TBI patients, TBI models must 

distinguish between damage caused by TBI and damage caused by ischemia (Hayes, 

Jenkins, & Lyeth, 1 992). 

Experimental TBI :  Time points and the Biphasic Model 

Experimental TBI initiates a cascade of events that alters normal cell signaling 

and neuronal over-excitation (Hayes, Jenkins, & Lyeth, 1 992). Excessive neuronal 

excitation produces large measurable increases in extracellular potassium, which result in 

further neurotransmitter (NT) release, leading to further depolarization (Faden, 

Demediuk, Panter, & Vink 1 989; Gorman, O'Beirne, Regan, & Williams 1 989; 

Katayama, Becker, Tamura, & Hovda, 1 990). Excessive depolarization and NT release 

may produce changes to the intracellular signaling mechanisms, resulting in irreversible 

or long-lasting alterations in cell functioning (Hamm, Temple, Buck, Floyd, & DeFord, 
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1 999). Following the acute excessive excitation of neurons, a chronic phase of functional 

neuronal depression begins (Hubschmann, 1985). 

The biphasic hypothesis (see Figure 2) posits that there is an acute phase « 24h in 

rats) of excessive neuronal depolarization. Increased levels of excitatory NTs and cerebral 

metabolism have been demonstrated. During the acute phase, methods of intervention 

that may be useful include excitatory NT antagonists, reductions in glutamate and ACh 

levels, and decreased elevations in metabolism during the first six hours following injury. 

Inhibitory agonists may also help reduce neuronal excitation (Hamm et aI . ,  1 999). 

Massive ionic fluxes and EAA release following TBI require high metabolic energy, 

measurable by increased glucose utilization (Alessandri & Bullock, 1 998). This 

hypennetabolism may last for minutes or hours in rat animal models and is fol lowed by a 

hypometabolism lasting days or weeks (Yoshino, Hovda, Kawamata, Katayama, & 

Becker, 1 99 1 ). 

The chronic phase (>  24h in rats) of depressed neuronal activity has a duration 

that is dependent on the severity level of injury. Decreases have been demonstrated in 

cerebral metabolism, choline uptake, scopolamine-evoked release, and choline 

acetyltransferase (ChAT) and acetylcholinesterase (AChE) immunoreactivity (lR). 

Excitatory NT antagonists have been shown to be detrimental during the chronic phase, 

although drugs that attenuate the depressed activation of the cholinergic and metabolic 

systems may be of some usefulness (Hamm et aI . ,  1 999). 
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Figure 2. Acute and chronic neuronal activity according to the Biphasic Hypothesis. 
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Impact depolarization and BBB alterations 

Ionic Flux 

As demonstrated in Figure 3, impact is followed by injury-induced ionic flux 

across the cellular membrane, leading to widespread neuronal depolarization and 

indiscriminate NT release (Selzer, 1 995). Ionic homeostasis changes fol lowing TBI are 

related to delayed neuronal death and degeneration. Calcium levels increase after injury, 

especially in damaged regions, and may persist for 48 hours fol lowing FP TBI in rats. 

Increased calcium activates proteases such as calpain, which may ultimately lead to 

cytoskeletal degradation and neuronal death. 

Excitotoxicity: Lethal and Sublethal Cellular Changes 

Indiscriminate NT release includes the inhibitory opioids and GABA, which may 

help to modulate the excitotoxicity induced by release of excitatory neurotransmitters and 

amino acids. Pathologically high levels of excitatory neurotransmitters (ACh) and 

excitatory amino acids (EAA) (glutamate and aspartate) are released, leading to 

excitotoxicity within the cells (McIntosh et aI . ,  1 996). 

Glutamate can produce powerful neurotoxic effects following CNS injuries such 

as ischemia, hypoxia, and trauma (Regan & Choi, 1 994). Direct exposure can kill neurons 

(Rothman, 1 985) and intermittent excessive exposure can produce delayed cell death 

(Choi, 1 985;  Choi, Maulucci-Gedde, & Kriegstein, 1 987). Excitotoxicity has been 

documented acutely for many different types of brain injury. The resulting cascade may 

produce deficits due to either sublethal cell signaling disruptions or overt cell death. 
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Figure 3. A flow-chart of the neuronal cascade of events following TBI. 
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Sublethal excitotoxic injury has been documented in mild to moderate TBI, due 

partly to processes which depend on muscarinic and NMDA receptors. Dysfunctional cell 

changes due to excitotoxicity, neurological deficits, hippocampal disturbances in 

cholinergic circuits (which mediate spatial memory) and increased vulnerability to 

secondary insults may occur in the absence of overt cellular death or axonal injury 

(Hayes, Jenkins, & Lyeth, 1 992b). Areas of selective vulnerability to CNS insult have 

been demonstrated in ischemia, hypoxia, hypoglycemia, epilepsy, and TBI (Brierly, 

1 976). Selective vulnerability to sublethal cellular injury following non-contusional TBI 

include the CA 1 ,  CA3 and dentate gyrus areas of the hippocampus and specific layers of 

the neocortex (Hayes, Jenkins, & Lyeth, 1 992b). 

Neurotransmitter Changes Following TBI 

Indiscriminate EAA release (i.e., glutamate) activates NMDA and AMPNKA 

type ionotropic receptors as well as metabotropic receptors. Receptor activation leads to 

opening of ion channels and subsequent calcium and sodium influx. Additional calcium is 

released from intracellular stores via second messenger pathways. Ultimately, the cascade 

results in alterations in gene expression and increased energy demand from high-affinity 

glutamate carriers in neurons and astrocytes (Alessandri & Bullock, 1 988). 

Increases in glutamate following FPI in rats peak within minutes and may last up 

to one hour (Faden et aI. ,  1 989). These increases may be 7-8 fold in the cortex and 3-4 

fold in the hippocampus of humans following TBI (Bullock, Maxwell, Graham, Teasdale, 

& Adams, 1 99 1 ). Experimental FPI in rats produces increases in glutamate in the 
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extracellular space that exceed 1 00% of nonnal within the first few minutes following 

injury. Katayama et al. ( 1 990) found a 90% increase in glutamate in the hippocampus 

within two minutes following moderate FPI in rats. Glutamate levels in the 

aforementioned study returned to baseline within four minutes. Once released, 

extracellular glutamate binds to a ligand-gated receptor (i.e., NMDA or AMPAIKA) and 

produces a large potassium influx (Kawamata et aI ., 1 992). 

Blood Brain Barrier Alterations 

Alterations in the BBB introduce exogenous sources ofNTs to the brain (Hayes, 

Jenkins, & Lyeth, 1 992a). Moderate TBI without contusion in the rat leads to BBB 

opening in the cortex and hippocampus (Povlishock & Lyeth, 1 989; Jiang et aI ., 1 99 1 a). 

Injury allows greater penneability to exogenous (blood-borne) NTs and neuromodulators 

(Koide, Wieloch, & Siesjo, 1 986). Acute BBB penneability in the cortex and 

hippocampus have been documented for moderate FP TBI in rats (Povlishock & Lyeth, 

1 989; Jiang et aI . ,  1 992). BBB penneability may last up to 1 5  hours (Ellis, Chao, & 

Heizer, 1 989). Blood plasma ACh levels are 7-fold greater than CSF ACh levels 

(Robinson et aI . ,  1 990) and may contribute up to 39% of ACh levels found in the CSF 

following TBI (Robinson et aI . ,  1 990). BBB changes allow blood plasma constituents 

(e.g., ACh) to access and influence the brain after injury, exacerbating excitotoxic effects 

and receptor dysfunction. 

Receptor Changes 
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Several receptor mechanisms exist which may mediate and propagate acute post-

injury excitotoxicity. Muscarinic cholinergic and ionotropic NMDA glutamate receptors 

show decreased binding following injury (Hayes, Jenkins, & Lyeth, 1 992b). Muscarinic 

cholinergic binding decreases 30-40% in the CAl and DG of the hippocampus by 3 hours 

post-injury (Oleniak et ai . ,  1 988). The NMDA glutamate receptor subtype has a voltage 

dependent magnesium (Mg) blockade. The Mg blockade determines the extent ofNMDA 

receptor involvement in TBI pathology following injury and excessive glutamate release. 

NMDA receptor binding has been shown to decrease 1 2- 1 5% within three hours in the 

CAl of the hippocampus following moderate TBI in rats. Most changes in glutamatergic 

binding affinity occur in the NMDA-type receptors (Hayes, Jenkins, & Lyeth, I 992b). 

NMDA and nonNMDA (AMP NKA) receptors are directly correlated to selective 

patterns of vulnerability and damage in specific brain areas following TBI. Acute 

decreases in receptor binding for NMDA-type receptors in the inner and outer layers of 

the neocortex and the CAl striatum radiatum and molecular layer of the DG in the 

hippocampus three hours post-injury, are not seen in AMPNKA or quisqualate-type 

glutamate receptors (McIntosh et ai . ,  1 996; Miller et ai . ,  1 990). 

Muscarinic and NMDA receptor interactions (via G proteins and the IP3 pathway) 

have been implicated in aberrant intracellular effector cascades following TBI (e.g., 

changes in intracellular effectors, coupling efficiency, and early effector genes). The 

above interactions may play an important role in sublethal TBI pathology. Sublethal 

injury has been associated with decreased CA I muscarinic and NMDA receptor binding, 



increased CA l sensitivity to forebrain ischemia (first 24 hours), EEG spike frequency 

from the affected CA 1 region, spatial memory deficits in the intact hippocampus and 

Schaeffer-collateral CA 1 L TP suppression (Hayes, Jenkins, & Lyeth, 1 992b). 
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Receptor antagonists have been shown to have some limited usefulness in 

attenuating the detrimental effects of TBl pathophysiology. NMDA antagonists such as 

MK-80 1 ,  phencyclidine (PCP) and dextrorphan have been shown to have some 

effectiveness in rat TBl models. Another potentially beneficial treatment is the muscarinic 

ACh receptor antagonist scopolomine. These drugs are unlikely to be highly effective in a 

clinical setting, however, due to their potential toxicity and the very short therapeutic 

window (maximum 1 5-30 minutes in rats) associated with attempts to reduce 

excitotoxicity due to NT release (Hayes, Jenkins, & Lyeth, 1 992b; Mcintosh et aI ., 1 996; 

Faden et aI., 1 989). 

Treatment of the inhibitory system has been studied using chronic endpoints, 

although the effects are less well characterized than the excitatory NT and receptor 

antagonists. Chronic injections of pentylenetetrazol (PTZ), a GABAaR antagonist, 

following injury induced seizure activity, which enhanced injured and harmed sham 

cognitive performance in the MWM (Hamm, Pike, Temple, O'Dell, & Lyeth, 1 995). 

Treatment with MDL 26,4791 Suritozole, a GABA-A receptor inverse agonist, was found 

to be effective on MWM improvement (O'Dell & Hamm, 1 995). A single acute injection 

of Diazepam within 1 5  minutes of injury has also been shown to effectively improve 

MWM performance (O'Dell, Gibson, Wilson, DeFord, & Harnm, 2000). Collectively, 



these findings would indicate that acute modulation of the GABAergic system has 

beneficial effects on attenuating TBI-induced chronic cognitive deficits. 
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Chapter III: The GABA-A Receptor 

The Balance Between Excitation and Inhibition 

Understanding Inhibitory Neuroprotection 

The overexcitation induced by TBI is also characteristic of other types of CNS 

insults. Simply identifying excessive excitation is unlikely to present the entire cascade of 

events that occurs following injury. It is more likely that the normal balance between 

excitation and inhibition has been disrupted, resulting in neurotoxicity. Alternative to 

decreasing excitation, balance may also be restored by increasing inhibition. Impaired 

inhibition of neocortical pyramidal neurons is found following hypoxia combined with 

lowered brain temperature (Fuj isaki, Wakatsuki, Kodoh, & Shibuki, 1 999). 

Inhibitory agonists have been studied extensively in ischemia and are 

neuroprotective when administered within the first four hours following injury (Cross, 

Jones, Baldwin & Green, 1 99 1 ;  Inglefield, Wilson & Schwartz-Bloom, 1 997; Li, Siegel, 

& Schwartz, 1 993; Schwartz, Huff, Yu, Carter, & Bishop, 1 994; Schwartz et aI . ,  1 994; 

Shauib & Kanthan, 1 997). Diazepam and other GABA-A receptor (GABAaR) agonists, 

when administered before or shortly after
. 
ischemic injury, have been shown to be 

protective against morphological cell damage (Nishikawa, Takahashi, & Ogawa, 1 994) 

and CA l pyramidal cell loss (Cross et aI . ,  1 99 1 ;  Fujisaki, Wakatsuki, Kudoh, & Shibuki, 
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1 999; Inglefield, Wilson, & Schwartz-Bloom, 1 997; Johansen & Diemer, 1 99 1 ;  

Schwartz-Bloom et aI., 1 998; Wahlgren, 1 997), as well as attenuating GABAaR binding 

detriments (Arika, Kanai, Murakami, Kato, & Kogure, 1 993; Inglefield, Wilson, & 

Schwartz-Bloom, 1 997) and injury-induced decreases in chloride ion (Cl-) channel 

currents (Sigel, Baur, Trube, Mohler, & Malherbe, 1 990). Diazepam has also 

demonstrated its effectiveness in cognitive protection in TBI (O'Dell et aI., 2000). 

A majority of the research regarding GABAaR agonist-mediated neuroprotection 

has been done in ischemia. TBI and ischemia share similar pathologies. Both injuries 

culminate in excitotoxic consequences affecting selectively vulnerable brain regions. 

Important differences exist between the two types of CNS injuries. Global ischemia 

lowers MABP and brain temperature (Inglefield, Wilson, & Schwartz-Bloom, 1 997) but 

moderate diffuse TBI does not significantly alter either of these measures (O'Dell et aI., 

2000). The most studied brain region in ischemia research is the hippocampus (Shauib & 

Kanthan, 1 997), where an important morphological difference between injury types is 

evident. The CAl region of the hippocampus shows delayed degeneration at three to four 

days post-ischemia (Li, Siegel, & Schwartz, 1 993), whereas diffuse TBI does not tend to 

exhibit overt cell loss and lateral TBI selectively destroys CA3 and hilar neurons (Hayes, 

Jenkins, & Lyeth, 1 992). 

The excitatory input in the hippocampus is balanced by inhibitory processes, often 

on the same cell. Pyramidal neurons receive synaptic input from both glutamate and 

GABA receptors (Li, Siegel, & Schwartz, 1 993). Glutamate is a precursor to GABA. 



GABA is fonned when glutamic acid decarboxylase (GAD), which is only found in 

neurons, removes a carboxyl group from glutamate (see Figure 4) (Luddens, Korpi, & 

Seeburg, 1 995). GABA is the most prevalent inhibitory neurotransmitter in the brain, 

exerting its effects primarily through the GABAaR complex. The GABAaR acts to 

increase membrane hyperpolarization via modulation of a Cl- channel. The GABA-B 

receptor differs from the GABAaR in both mechanism of action and neuroprotective 

potential. The GABA-B receptor acts primarily through a G-protein-coupled second 

messenger system to reduce the presynaptic release of various neurotransmitters 

(Karlsson & Olpe, 1 989). 
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The GABAaR is potentiated by ligands which bind to sites specific for 

benzodiazepines (BZs), barbiturates, alcohol, steroids, zinc ions (Zn+), or various 

anesthetics (Marrow, 1 995; Roberts, 1 974). As many as 20-50% of all synapses in the 

CNS use GAB A as a neurotransmitter (Bloom & Iversen, 1 97 1 ). Other estimates contend 

that GABAaRs may be present on all neurons in the brain (Wahlgren, 1 997). 

Specific areas of the hippocampus, such as the SO and SR layers of the 

hippocampus proper, have been estimated to use GABA in 80-95% of the synapses. 

Although the pyramidal cell layer represents a much lower percentage of GAB A-positive 

cells (5-8%), approximately 1 1 % of the general hippocampal neuronal population is 

GABAergic (Woodson, Nitecka, & Ben-Ari, 1 989). The prominent expression of 

GABAaRs in hippocampal intemeurons indicates that inhibition is an important 

mechanism for maintaining the excitatory balance in neurons (Gao & Fritschy, 1 994). 



Figure 4. A diagram of the transfonnation of glutamate into GAB A by the enzymatic 

action of GAD. 
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Relationship Between EAA and GAB A-A 

The relationship between excitatory and inhibitory processes is complex. ACh is 

closely associated with GABA, and GABAergic inhibition decreases ACh levels. The 

mechanism involved in the ACh-GABA relationship is poorly understood, but it is 

believed to be mediated via GABA receptors on cholinergic neurons (DeBoer & 

Westerink, 1 994). GABA and muscimol (a GAB A-A agonist) enhance cholinergic release 

and this effect is blocked by biciculline (a GABA-A antagonist), indicating that the 

GABA-A receptor complex plays a modulatory role in ACh release (Supavilai & 

Karobath, 1 985). 

Group I metabotropic glutamate receptors (mGluRs) have been implicated in the 

excitation of neurons in the CA l of the hippocampus. Classified by their pharmacological 

profiles, Group I mGluRs include mGluRI and mGluR5. The Group I mGluRs not only 

excite neurons via depolarization by glutamate release, but they also play a role in 

regulating GABA release. GABAergic intemeurons in the hippocampus are activated by 

mGluRs either pre- or post-synaptically. Group I mGluRs increase neuronal excitation by 

co-localizing on neurons which also contain GABAaRs. Group II mGluRs are located on 

inhibitory terminals and act to reduce GABA release. In the CA l of the hippocampus, 

Group I mGluRs modulate pyramidal cell input from GABAergic intemeurons. 

Activation of Group I mGluRs on inhibitory intemeurons in the hippocampus contributes 

to the overexcitation which is associated with epilepsy and may play other important roles 

in disrupting the excitatory- inhibitory balance (Bordi & Ugolini, 1 999). 
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As would be expected by the importance of mGluRs in GABAergic balance, 

NMDA-type glutamate receptors and GABAaRs are co-localized in hippocampal neurons 

(Craig, Blackstone, Huganir, & Banker, 1 994). Modulation ofNMDA glutamate 

receptors by MK-80 1 antagonism decreases GABAaR-mediated Cl- uptake by 44% in the 

hippocampus (Matthews, Dralic, Devaud, Fritschy, & Marrow, 2000). Stimulation of 

GABAaRs has been shown to be protective against neuronal injury induced via NMDA 

receptor activity. GABA-A agonists block NMDA-induced damage and this protection 

can be reversed by GABA-A antagonists such as biciculline (Ohkuma, Chen, Katsura, 

Chen, & Kuriyama, 1 994). 

The GAB A-A Receptor 

The GABAaR is part of a superfamily of neurotransmitter-gated ion channels 

which includes nicotinic ACh receptors, glycine receptors and glutamate receptors (Sigel 

& Buhr, 1 997; Schwartz, 1 988). GABAaRs mediate the majority of CNS inhibitory 

neurotransmission (Mohler et aI., 1 996). The fast-acting GABA-A ion channel reacts 

within milliseconds to receptor activation by ligand-binding, initiating the opening or 

gating of a Cl- channel (Stephenson, 1 995). GABAaRs help regulate anxiety, vigilance, 

memory, convulsive activity and muscle tension (Mohler et aI ., 1 996). Although the 

binding sites are distinct, through ligand-mitigated action they initiate complex 

interactions with each other (Kandel, Schwartz, & Jessell, 1 99 1 ;  Sieghart, 1 995). The 

binding of one ligand increases the affinity for other ligands (e.g., benzodiazepine binding 

increases receptor binding affinity for GABA). Activation of the GABA binding site 
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produces a confonnational change in the receptor, increasing the binding capabilities of 

other ligands and ultimately increasing CI- flux and neuronal hyperpolarization (Li, 

Siegel, & Schwartz, 1 993 ; Lyden, 1 997; Sieghart, 1 995). GABAaR activation also 

reduces glucose metabolism and mediates cerebral blood vessel dilation, improving blood 

flow (Lyden, 1 997). 

GABAaR Subunits 

The GABAaR has a pentameric structure (Lyden, 1 997). The heterogeneity of the 

fonnation of the receptor by its constituent subunits has prompted it to be referred to as a 

"heterool igomeric complex" (Matthews et aI . ,  2000; Backus et aI . ,  1 993), which is a 

common subunit composition for ligand-gated ion channels (Backus et aI . ,  1 993). Five 

subunits, each with several isofonns have been identified, including: a l �' PI-4' Y 1 -3' 0, and 

P I-3 (Luddens & Wisden, 1 99 1 ;  Pritchett, Luddens, & Seeburg, 1 989a; Pritchett et aI ., 

1 989b; Schofield, 1 989; Sieghart, 1 995; Smith & Olsen, 1 995). Each subunit is encoded 

by a different gene (Sieghart, 1 995), and contains both a hydrophilic NH2 (N) tenninal 

and a cystine (C) tenninal domain. Subunits consist of f our transmembrane helices (M I ­

M4) and a large intracellular loop located between M3 and M4 (Burt & Kamatchi, 1 99 1 ;  

MacDonald, Saxena, & Angelotti, 1 996; Olsen & Tobin, 1 990). The N-tenninal lies 

between the M l  and M3 domains and the M2 domain lines the inside of the Cl- channel 

(Kandel, Schwartz, & Jessell, 1 99 1 ;  Stephenson, 1 995). The M2 domain is positively 

charged and believed to be responsible for anion selectivity of the CI- pore (Kandel, 

Schwartz, & Jessell, 1 99 1 ). 
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Each type of subunit (e.g., a and P)  shares 30-40% of their amino acid sequence. 

Within a subunit type, the different isoforms (e.g., a l  and (2) have 70% identical amino 

acid sequences. Amino acid GABAaR sequences are conserved approximately 90% 

across mammalian species (Stephenson, 1 995). Each type of subunit is distinctively 

different in its encoded sequence and its function. However, due to the similarity between 

the subunit constituent sequences, changes to a single amino acid residue can drastically 

change receptor stoichiometry and binding properties (Buhr & Sigel, 1 997). Although 

recombinant receptors containing one, two, three, four, or five subunits have been 

identified, the most common form in vivo contains three subunits (Persohn, Malherbe, & 

Richards, 1 992; Wisden et ai . ,  1 992). Of the five identified subunits, a, p, and y are 

considered the "main" subunit types, while 0 and p are considered "minor" subunit types 

(Lyden, 1 997; Mohler et ai . ,  1 996). The 0 and p subunits are considered minor because 

they are rare and not widely distributed. The remaining three subunits (a, p, and y) have 

several isoforms, each of which combines to form a wide array of receptor types. 

GABAaRs with specific subunit combinations confer specific functions and distributions 

within neuronal tissue. The most abundant subunits are a I ,  a2, a3, P2, P3, and y2 

(Stephenson, 1 995). 

GABAaRs with apy subunit combinations are the most widely distributed type 

receptor type and this combination is important for proper benzodiazepine (BZ) binding 

(Sieghart, 1 995). The most abundant GABAaRs in the rat brain consist of 2a, 1 p and 2y 

subunits, although 2a, 2P, and 1 y is also a common subtype (Backus et ai . ,  1 993) (See 
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Table 3). Specific brain regions, such as the hippocampus, contain more or less abundant 

populations of GABAaR subtypes. One of the most expressed receptor subtypes in the 

hippocampus is a2p3y2, although in other areas of the brain the a I P2y2 GABAaRs are 

most abundant (Sieghart, 1 995). Overall, 75% of all GABAaRs are made up of three 

receptor subtypes: a 1 P2y2, a2p3y2, and a3 p3y2 (Mohler et aI . ,  1 996). 

The relative abundance of subtypes and heterogenous clustering of certain types of 

receptors in different brain areas has increased the understanding of the role that each 

subunit plays in the overall function of the GABAaR. The binding site for BZs lies on the 

y subunit at the a junction (Sieghart, 1 995) (See Figure 5). The BZ binding site location 

determines its function, indicating that although a contributes to binding specificity, the 

presence of either y2 or y3 is required for proper BZ action (Luddens, Korpi, & Seeburg, 

1 995; Persohn, Malherbe, & Richards, 1 992; Somogyi, Fritschy, Benke, Roberts, & 

Sieghart, 1 996; Stephenson, 1 995; Wisden et aI, 1 992). The widespread action of BZs 

may be explained by the relative abundance of y2 subunits (40-50% of GABAaRs) in rat 

brains (Benke, Mertens, Trzeciak, Gillessen, and Mohler, 1 99 1 ) . Similarly, the GABA 

binding site's location on the p subunit explains the presence of p in nearly every known 

receptor subtype. Since the GABA binding site is near the ap junction (Refer to Figure 5), 

it also follows that a plays an important role in GABA binding affinity, although this 



57 

Table 3 .  The characteristics of each of the known subunits of the GABAaR. 
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II Important to BZ ligand binding 
Tends to co-localizes with P2 or p3 and y2 or y3 

a, Most abundant a subunit in rat brain 
Found in 90% of cortical and 40% of hippocampal GABAaRs 

Co-localizes with P2 or p3 and y2 in 70-75% of GABAaRs with a I 
a2 Second most abundant a subunit in rat brain 

Tends to co-localize with p3 and y2 
a3 Tends to co-localize with P2 or p3 and y2 
a. Rarest form of a 
as Low abundance (but is found in CA I and CA3 of hippocampus) 

a6 Only found in cerebellar granule cells 

p Found in all in vivo GABAaRs investigated 
Contains binding site for GABA (on p, at a p junction) 

p, Low distribution, not much in the hippocampus 

P2 Most abundant p subunit in rat brain 
Tends to co-localize with a I and a y to form BZ Type I receptors 

P3 Tends to co-localize with a2 and a y to form BZ Type II receptors 

P. Only found in chick brains 

1 Contains binding site for BZ (on y, at ay junction) - Y2 and y 3 only 

1, BZ-lnsensitive receptors 

12 Most abundant y subunit in rat brain 
BZ-sensitive receptors 

13 Rare 
BZ-sensitive receptors 



Figure 5. A diagram of a common composition of the GABAaR identifying GABA and 

BZ binding sites. 
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I = GABA binding site 

• = Benzodiazepine binding site 



remains to be definitively determined (Huh, Delorey, Endo, & Olsen, 1 995; Huh, Endo, 

& Olsen, 1 996; Stephenson, 1 995). 

Modulation of the GABAaR by Ligand Binding 

6 1  

The numerous binding sites on the GABAaR translate into complex 

pharmacological potential. Modulation of the GABA-B receptor does not show 

neuroprotection in ischemia (Araki, Kato, & Kogure, 1 99 1 ;  Ito, Watanabe, Isshiki, & 

Uchino, 1 999). GABAaR agonists, however, have consistently demonstrated their 

effectiveness in several types of CNS insults (Arika et aI . ,  1 993 ; Cross et aI., 1 99 1 ;  

Inglefield, Wilson, & Schwartz-Bloom; Ito et aI ., 1 999; Johansen and Diemer, 1 99 1 ;  

Matthews et aI ., 2000; O'Dell and Hamm, 1 995; O'Dell et aI ., 2000; Schwartz et aI . ,  

1 994; Schwartz-Bloom et  aI . ,  1 998; Shauib and Kanthan, 1 997; Wahlgren, 1 997) while 

antagonists are likely to exacerbate injury-related deficits (Hernandez, Heninger, Wilson, 

& Gallager, 1 989; Ito et aI . ,  1 999; O'Dell et aI ., 20000; Ohkurna et aI ., 1 994). 

Although GABAaR binding sites interact, they have unique pharmacological 

qualities, and some provide greater neuroprotection than others against CNS injury. 

Barbiturates such as pentobarbital are ineffective in preventing neuronal degradation 

following ischemia (Araki, Kato, & Kogure, 1 99 1 ;  Ito et aI . ,  1 999). Partial GABA-A 

agonists such as Ro 1 6-6028 and imidazenil show l imited protection in ischemia 

(Hernandez et aI . ,  1 989; Schwartz-Bloom et aI ., 1 998). Drugs that act to increase GABA 

(muscimol) or prevent GABA-T from removing GABA from the synapse (gamma-vinyl 

GAB A, No-328) also provide effective neuroprotection after injury (Ito et aI . ,  1 999; 
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Johansen & Diemer, 1 99 1 ; Katoh, Shima, Nawashiro, Wada, & Chigasaki, 1 998; Shauib 

& Kanthan, 1 997; Wahlgren, 1 997). Other GABAaR modulators such as chlormethiazole 

and MDL 26,479 (Suritozole) are at least partially neuroprotective (Cross et ai . ,  1 99 1 ;  

Fujisaki et ai . ,  1 999; Johansen & Diemer, 1 99 1 ;  Shauib & Kanthan, 1 997; Wahlgren, 

1 997). The most widely used and most demonstrably effective drugs in neuroprotection 

are the benzodiazepines (BZs), diazepam (DZ) in particular. DZ has consistently 

demonstrated its effectiveness in providing neuroprotection following CNS insult 

(Hernandez et ai . ,  1 989; Inglefield et ai . ,  1 997; Johansen & Diemer, 1 99 1 ;  O'Dell et ai., 

2000; Schallert, Hernandez, & Barth, 1 986; Schwartz et ai ., 1 994; Schwartz-Bloom et ai., 

1 998; Sigel et ai . ,  1 990). Working memory enhancement (Moran, Kane, & Moser, 1 992) 

and cognitive deficit attenuation following TBI (O'Dell et ai., 2000) have also been 

attributed to DZ treatment. 

Benzodiazepines such as DZ bind to the GABAaR, instigating a conformational 

change that allows GABA to bind more readily and more tightly. Increased GABA 

stimulation of the receptor increases the potency and frequency of Cl- channel opening. 

Each receptor may have a BZ binding site located on each of the constituent y subunits, 

and an additive effect may occur when combined with barbiturates or GABA agonists. 

The presence of GABA is required for proper BZ action (Kandel, Schwartz, & Jessell, 

1 99 1 ;  Sieghart, 1 995). 

Immunoreactivity in the Hippocampus 
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The hippocampus has been well-characterized with regards to GABAergic 

immunoreactivity (IR). Anti-GAD and anti-GABA antibodies have demonstrated that 

dendritic fields and intemeurons in the CA 1 ,  CA3 and hilar regions of the hippocampus 

are GABAergic (Garnrani, Onteniente, Seguela, Gefferd, & Calas, 1 986; Nishikawa, 

Takahashi, & Ogawa, 1 994; Terai, Tooyama, & Kimura, 1 998; Woodson, Nitecka, & 

Ben-Ari, 1 989). GABA and GABAaR staining are not always co-localized, however. The 

neurotransmitter GABA is likely to be found in the nucleus, cytoplasm and in the 

synapses, especially of the intemeurons (Gamrani et aI . ,  1 986; Somogyi et aI., 1 996; 

Terai, Tooyama, & Kimura, 1 998). Subunit-specific antibodies that stain the GABAaR 

demonstrate that GABA-A is most often located along the membranes of somata and on 

the axonal and dendritic processes (Gao & Fritschy, 1 994; Inglefield, Wilson, & 

Schwartz-Bloom; Li, Siegel, & Schwartz, 1 993; Mizuhami et aI ., 1 997; Somogyi et aI ., 

1 996; Terai, Tooyama, & Kimura, 1 998). In an in situ hybridization characterization of 

ex l  and P2 in the hippocampus, Li, Sigel and Schwartz demonstrated in 1 993 that 

GABAaR subunits reside predominantly on non-pyramidal cells. y2 subunits, which tend 

to co-localize with ex l  and P2 or P3, are highly expressed in dendritic layers and on 

intemeurons (Somoygi et aI., 1 996). 

One of the best-known and most often used antibodies in GABAaR 

immunohistochemical staining is bd 1 7  (Boehringer Mannheim), which recognizes both 

GABAaR P2 and p3 (P2/3) subunits (Benke et aI., 1 99 1 ;  Ewert et aI . ,  1 990; Pesold et aI . ,  

1 997). The least expressed of the p subunits is P I (Stephenson, 1 995). Although all p 
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subunits are present in the hippocampus, P I  IR is rare and p3 is much less abundant than 

P2 (Huh et ai . ,  1 995). Since p subunits are important for GABA binding and have been 

found in nearly all GABAaR types in vivo (Stephenson, 1 995), the bd 1 7  antibody is 

likely to stain nearly all of the GABAaRs in the hippocampus. Development of P2- and 

P3- isofonn-specific antibodies has introduced difficulties not found in other subunit 

types. The P2 and p3 subunits both lie within the 50-58 kDa weight range (Matthew et ai ., 

2000). To further complicate matters, the p intracellular loops are identical and p subunits 

do not have the hydrophilic C-tenninus which is present in other subunits (Stephenson, 

1 995). 



Chapter IV: Acute GABA-A Receptor Modulation by Diazepam Following 

Traumatic Brain Injury in the rat: An Immunohistochemical Study 

Introduction 

As demonstrated in the previous chapter, inhibitory agonists are effective in 

counter-acting ischemia-induced excitotoxicity. Although ischemia and TBI produce 

similar injuries, there are some important differences (see Chapter II). It is unknown 

whether treatments that show neuroprotection in ischemia will be effective in attenuating 

TBI-induced deficits. 

Although the primary focus in acute TBI treatment has been to reduce excessive 

neuroexcitation, restoring the normal excitatory/ inhibitory balance by increasing 

inhibition may also be beneficial. In a model of mild weight drop-induced closed head 

injury followed by hypoxia, Katoh et al. ( 1 998) measured glutamatergic and GABAergic 

changes in the hippocampus using microdialysis and autoradiography methods. 

Elevations in glutamate and GABA were observed in the CAl and CA3 regions of the 

hippocampus. Autoradiography revealed increased binding to NMDA-type glutamate 

receptors and decreased binding of muscimol to GABAaRs in the CA I at 1 and 24 hours 

following ischemia (Katoh, Shima, Nawashiro, Wada, & Chigasaki, 1 998). Increased 

glutamatergic and decreased GABAergic binding in the hippocampus during the first 24 
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hours following injury indicates a disruption in excitatory/ inhibitory homeostasis may be 

occurring. 

The hippocampus, which is selectively vulnerable to TBI, may be better able to 

maintain an appropriate excitatory/ inhibitory balance post-injury if the overexcitation of 

neurons is attenuated by increasing GABAergic neurotransmission. O'Dell ( 1 99S) 

investigated three GABAaR agonists following moderate FPI in rats. Although little 

benefit was found following muscimol or midazolam treatment, pre-injury injections of S 

mg/kg of diazepam effectively attenuated TBI-induced morris water maze (MWM) 

deficits. Using anti-GABA antibodies, O'Dell ( 1 99S) also found that DZ significantly 

increased GABA-positive IR in the hippocampus 24 hours following TBI. Cognitive 

deficits and cell loss following ischemia, which produces a similar excitotoxic pathology, 

have also been shown to be attenuated by DZ and other inhibitory agonists. 

Although the specific mechanism mediating various behavioral effects of 

GABAergic drugs is unknown, stimulation of GAB A-induced CI- channel opening by DZ 

during the acute phase of TBI may help to reduce excitotoxic damage. Acute DZ 

treatment has been shown to attenuate TBI-induced MWM deficits in a study of central 

FPI in rats. The central FPI produces a diffuse injury with sublethal morphological 

alterations. Both pre- and post- injury DZ (Smg/kg) treatment effectively attenuated TBI­

induced MWM deficits I S  days following TBI in rats. The benefits of GABAaR agonist 

activity by DZ were in direct contrast to the exacerbation of deficits by administration of 

the GABAaR antagonist biciculline (O'Dell et ai . ,  2000). Although 1 0  mg/kg is the 
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standard DZ dose for ischemia (Inglefield, Wilson, & Schwartz-Bloom, 1 997; Li, Siegel, 

& Schwartz, 1 993; Schwartz et aI ., 1 994), this dose has not been found effective in 

attenuating TBI-induced deficits (O' Dell, 1 995). However, 5 mglkg has been shown to be 

effective in TBI, without significantly lowering brain temperature (O'Dell et aI . ,  2000). 

DZ has been shown to be neuroprotective when administered within 72 hours following 

ischemia in the rat (Johansen & Diemer, 1 99 1 )  and up to four hours following ischemia in 

the gerbil (Schwartz et aI . ,  1 998). In TBI, 5 mglkg DZ was equally effective in cognitive 

attenuation when administered either 1 5  minutes prior to or 1 5  minutes following FPI 

(O'Dell et aI . ,  2000). 

Cognitive deficits following injury may be preceded by morphological changes in 

selectively vulnerable areas such as the hippocampus. Ischemia literature has shown that 

a l  and P2 mRNA decreases in the CA l ,  CA3 and DG of the hippocampus by four hours 

following reperfusion. mRNA returns to normal in the CA3 and DG by twelve hours, 

although the CAl continues to decrease steadily over the next three days, ultimately 

decreasing by 85% of normal values. The CA3 and DG do not characteristically show 

changes following ischemia, whereas, the CA 1 region shows delayed degeneration and 

cell death by four days post-injury (Li, Siegel, & Schwartz, 1 993). GABAaR a 1 subunit 

immunoreactive changes do not become apparent until three to four days following 

ischemic insult, coinciding with cell loss in the CA 1 (Inglefield, Wilson, & Schwartz­

Bloom, 1 997). 
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The pathological morphology of ischemia is likely to differ from other types of 

CNS insults. In a study of TBI in the rat, Reeves et al . ( 1 997) found that two days post­

injury population spike inhibition was reduced in the CA3 commissural pathway to the 

CA 1 and GABAergic immunobinding increased in the SLM and SP layers of the CA 1 .  

Perforant pathway lesions produce changes in interneurons positively labeled for P2/3 

subunits in the molecular layer of the DG by 24 hours post-lesion (Mizukami et aI ., 

1 997). In TBI, changes in neurons stained with anti-GABA antibodies also become 

apparent by 24 hours following injury (O'Dell, 1 995). The 24 hour time point allows 

initial impact depolarization and excessive neurotransmitter changes to occur, but still 

falls within the acute time period for TBI in rats. The excitatory/ inhibitory ratio is likely 

to be disrupted and changes in receptor binding (Katoh et aI . ,  1 988) and GABAergic 

immunoreactivity (O'Dell, 1 995 ; Reeves et aI . ,  1 997) are evident. 

GABAaRs are present on nearly all CNS neurons and mediate the majority of 

inhibition. Changes in GABAergic neurotransmission following injury would indicate 

that receptor changes may also occur. Changes in GABAaR a; 1 subunits in the CA 1 have 

been demonstrated following ischemia (Inglefield, Wilson, & Schwartz-Bloom, 1 997) 

and sub-laminar-specific changes in P2/3 subunits in the molecular layer of the DG have 

been found following perforant pathway lesion (Mizukami et aI . ,  1 997). It would follow 

that TBI-induced GABAaR changes may also occur. 

Since the bd 1 7  antibody has been shown to specifically stain the P2/3 subunits of 

the GABAaR (Matthew et aI . ,  2000) and since P subunits are constituent parts of all 
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known GABAaRs, it would follow that the bd 1 7  antibody would stain virtually all of the 

GABAaRs in the hippocampus (p 1 is rare in the hippocampus - See Chapter III). 

The current study was designed to further investigate the role of inhibition 

following TBI. GABAaR IR may be altered following FPI and acute treatment with DZ 

should attenuate these alterations. Injury-induced changes in GABAaR P2/3 subunit IR 

were expected 24 hours following TBI, since GABAergic changes have previously been 

documented for this time point (O'Dell, 1 995). 

Methods 

Subjects 

Adult male Sprague-Dawley rats were divided into four groups of 5 animals (4 

groups x 5 animals = 20 animals total): sham/vehicle, shamlDZ-treated, injured/vehicle, 

and injuredIDZ-treated. The number of subjects per group was chosen because previous 

immunohistochemical studies have found 4-5 animals to be sufficient for statistical 

significance (Inglefield, Wilson, & Schwartz-Bloom, 1 997; Li, Siegel, & Schwartz, 1 993; 

Neumann-Haefelin et aI . ,  1 998). Animals were individually housed in a vivarium on a 

1 2 :  1 2  hour light/dark cycle and received food and water ad libitum. 

Pharmacological Manipulation 

Diazepam (5 mg/kg) was obtained from the local hospital pharmacy and 

administered to animals in one bolus injection (intra-peritoneal) 1 5  minutes prior to injury 

or sham-injury. This dose has been shown to be effective in attenuating cognitive deficits 

in the MWM without significantly altering MABP or brain temperature after injury 
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(O'Dell et aI ., 2000). The pre-injury injection was chosen as appropriate for analyzing 

morphological changes to the GABAaR following injury. Also, no significant differences 

were found in cognitive endpoints between pre- and post-injury injections. The pre-injury 

injection did, however, attenuate immediate post-injury mortality (O'Dell et aI . ,  2000). 

Surgical Preparation 

Subjects were surgically prepared under sodium pentobarbital (54 mg!kg), 24 

hours prior to injury. While under anesthesia, animals were placed in a stereotaxic frame 

and a sagittal incision was applied to the scalp. A craniotomy hole was made over the 

central suture, midway between bregma and lambda. Burr holes were drilled to hold two 

nickel plated screws (2-56 x 6 rom) 1 rom rostral to bregma and 1 rom caudal to lambda 

along the central suture. A modified Leur-Loc syringe hub (2.6 rom interior diameter) was 

placed over the exposed dura and sealed with cyanoacrylate adhesive. Dental acrylic was 

applied over the entire device (leaving the hub accessible) to secure the hub to the skull. 

The incision was sutured and bacitracin applied to the wound. Animals were kept warm 

and continuously monitored until they had fully recovered from the anesthesia. Upon 

recovery, animals were returned to the vivarium where food and water were available. 

Fluid Percussion Injury 

The fluid percussion injury device has been described in detail elsewhere (Dixon 

et aI . ,  1 987; McIntosh, Noble, Andrews, & Faden, 1 987) and is shown in Figure 6. 
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Figure 6 .  A picture of the fluid percussion injury device. 
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Briefly, a Plexiglass cylinder 60 cm long and 4.S cm in diameter is filled with saline. A 

rubber-covered piston at one end of the device is mounted on O-rings. On the other end, 

metal housing contains a pressure transducer (Entran Devices, Inc., model EPN-0300*-

1 00A). A S-mm syringe with an interior diameter of 2.6 mm terminates in a male Leur­

Loc vehicle is located on the end of the pressure transducer. The male fitting is connected 

to the modified female Leur-Loc hub implanted over the open dura of the rat. A metal 

pendulum (4.S4 kg) is released from a pre-determined elevation, impacting the piston of 

the injury device. The impact delivers a pressure pulse through the continuous water­

filled cylinder into the closed cranium of the rat. Brief displacement and deformation of 

brain tissue results and the pressure pulse is measured by the pressure transducer in 

atmospheres (atm) and displayed on a storage oscilloscope (Tektronix S i l l :  Beaerton, 

OR). 

Animals were anesthetized under 4% isofluorane in a carrier gas consisting of 

70% Np and 30% O2, twenty-four hours following surgical preparation. The previous 

incision was re-opened and the animals were connected to the fluid percussion device via 

the female-to-male connection described above. Animals in the injury groups received a 

moderate fluid pulse (2. 1 ± . 1  atm). Sham animals were attached to the injury device but 

no fluid pulse was delivered. The incision was sutured and bacitracin was applied. 

Neurological assessments including cornea, pinnae, toe, tail and righting reflexes were 

monitored. The animals were closely monitored until they had sufficiently recovered and 

were then transferred back to the vivarium where food and water was available. 
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GABAaR Immunohistochemistry 

Twenty-four hours following injury, brain tissue was fixed via cardiac perfusion. 

A solution of 4% paraformaldehyde and 1 5% of a solution of picric acid in 0. 1 M 

phosphate buffer followed a 50 mL rinse with PBS. Immediately following perfusion, the 

brain was removed and placed in the paraformaldehyde solution for three hours. Blocked 

sections, 1 0  to 1 5  mm thick, were incubated overnight in a 0. 1 M citric phosphate buffer, 

pH 4.5.  The blocked sections were then boiled in the same solution in a 650 Watt 

microwave oven for two to three minutes. After the tissue cooled, it was incubated in 

PBS containing 1 0% Dimethyl Sulfoxide (DMSO) (Sigma) for three hours. 

Consecutive coronal vibratome sections (40 f.Lm thick) were taken from the mid­

dorsal hippocampus. Four mid-dorsal sections per animal, 200 f.Lm apart, were selected 

and incubated overnight at room temperature in primary antibody solution. The GABAaR 

P2/3 specific antibody bd1 7  (Boehringer Mannheim) was diluted 1 :500 in Tris-saline (pH 

7.4), as determined by preliminary concentration tests. Normal serum (2%) made in horse 

(anti-mouse) was added to the primary antibody incubation solution. Sections were then 

rinsed 3 x 1 0  minutes in 50 mM Tris-saline buffer with 0.05% Triton X- I 00, pH 7.4. 

Rinsed sections were incubated in biotinylated antibody (anti-mouse) diluted in a 50 mM 

solution of Tris-saline, pH 7.4 for 30 minutes at room temperature. Following the 

incubation period, tissue was rinsed 3 x 1 0  minutes in Tris-saline with Triton and 

incubated for 1 5-20 minutes in ABC Reagent (Vector ABC Kit). Then, sections were 

washed 3 x 1 0  minutes in Tris-saline with Triton and incubated in 0. 1 % 3 ,3'-
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diaminobenzidine dihydrochloride (DAB) diluted in 50 mM Tris-saline, pH 7.7. The 

reaction took place in a Tris-saline solution (PH 7.7) containing 0.05% DAB, 0.2% nickel 

(II) sulfoxide, 2% P-D-glucose, 0.04% ammonium chloride and 0.0005% glucose oxidase 

(Sigma, type VII). The reaction was stopped by a quick rinse in Tris-saline, pH 7.4 at 4°C. 

Sections were washed 3 x 1 0  minutes in Tris-saline with Triton and mounted on gel 

coated slides. This procedure was selected for use based on reports that it can decrease 

background staining and enhance details of immunostained GABAaRs (Fritschy et aI., 

1 996). One of the unique features of the immunohistochemistry (IHC) method described 

above is the microwave antigen retrieval. This method was shown in preliminary studies 

to be effective in reducing background and increasing the signal-to-noise ratio. Tissue 

shrinkage which may occur due to boiling should be uniform across groups, since all 

sham and injured tissue was subjected to the same protocol. Detailed 

immunohistochemical protocols are available at 

www.unizh.ch/phar/neuromorpho/Protocois.htm. The final visualization process used 

was modified from the original protocol, utilizing glucose oxidase rather than peroxide to 

drive the reaction. Preliminary studies indicated that the glucose oxidase reaction was 

longer-lasting and produced more consistent results than peroxide. 

Image Analysis 

The hippocampal CA I and CA3 sectors were examined for the presence of 

GABAaR-IR cells. The CAl region was chosen based upon data presented in the 

ischemia literature, which shows selective vulnerability in this area. Also, GABAergic 
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changes have been found in specific laminae of the CAl following TBI (O'Dell, 1 995). 

The CA3 region was chosen for analysis because of its potential for change following 

TBI and since qualitative observations in preliminary studies indicated injury-induced 

changes in this area. GABAaRs primarily stained pyramidal and interneuron dendritic 

processes, ruling out the possibility of counting cell bodies (profile count). Due to the 

non-uniform orientation of the dendrites and the variation in staining intensity, standard 

optical density measures (relative optical density x area) were not a viable option for 

analysis. For these reasons, number and length of IR dendritic processes in three laminae 

of the CAl and CA3 fields, including the pyramidal cell layer, SR and SLM were 

quantified. The SO layer was not included because it was too densely stained to 

effectively assess individual processes and no qualitative differences were observed in 

that layer. The remaining three layers (pyramidal cell, SR and SLM) were analyzed by an 

MCID image analysis system, which was calibrated specifically for the 20x objective 

used to capture the images. 

Sections included in the analysis were coronal slices (2-3 per animal), separated 

by a minimum of 200 �m. These sections were from the mid-dorsal hippocampus and 

were analyzed in both the CAl and CA3 regions (see Figure 7). Since the central FPI 

does not show significant morphological differences in the hippocampal formation 



77 

Figure 7. A picture of the mid-dorsal hippocampus of a sham animal immunolabeled with 

the bd l 7  antibody. Areas in red boxes represent CAl and CA3 regions selected for 

analysis. 
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between hemispheres, only one hippocampus (randomly chosen) was analyzed per tissue 

section .. Images were captured at 20x magnification, and were then enlarged by 50% in 

the CA3 in order to allow for a representative cross-selection of the SP, SR, and SLM 

fields. Due to the increased length of the CAl apical dendritic trees in the above­

mentioned layers, images were enlarged 33%. The image magnification and sample area 

were held constant for all sham and injured groups. Each IR process within the pre­

designated area was traced, allowing for the analysis of both number and length of 

processes. In order to insure random sampling of stained tissue, all visible processes had 

an equal chance of inclusion (Coggeshall, 1 999). Since the width of individual dendrites 

varied due to proteins embedded in the membrane, processes were traced along the 

external edge of one side, following the contours of the process (see Figure 8). The area 

of analysis was standardized per 1 0,000 Iim2 to account for group differences and 

potential variation in area demarcation. Since injury may result in shrinkage of tissue, in 

order to determine that changes were due to injury-induced alterations rather than a 

change in the reference space itself (Coggeshall & Lekan, 1 996), CA 1 sham and injured 

lamina were measured and compared. Injured tissue was slightly shrunken in the SR and 

SLM layers (0.4%) and in the SP layer (7.5%). The majority of IR processes were 

analyzed in the SR and SLM layers, therefore, injury-induced alterations between sham 

and injured tissue in excess of 0.4% were considered valid. The mean length and number 

of processes for each animal were obtained for both the CA 1 and CA3 regions by first 

averaging the tissue section results for each subject and then analyzing group differences. 



Figure 8. An enlarged example ( 1 00%) of an analyzed CA3 dendrite (captured at 20x 

magnification). The red line is an example of a measurement of the distribution of 

GABAaRs along the length of the dendrite, following the outer contours of the process. 
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Statistical Analysis 

The study was arranged as a 2 x 2 completely randomized design. The two 

variables were injury level (injured or sham) and drug treatment (saline or 5 mglkg OZ). 

A Chi-Square test of homogeneity was used to analyze mortality rates between groups. 

Two factor ANOV As were used to analyze potential injury and treatment differences in 

number and length of IR processes in both the CA 1 and CA3 regions. The number of 

processes were analyzed by number per 1 0,000 square IJ.m to account for potential 

differences in areas selected for analysis. A simple effect analysis was used to compare 

groups when interaction effects were found and a significance level of p<.05 was used for 

all tests. 

Results 

Post-Injury Reflexes 

A two-way ANOV A (injury x treatment) indicated that injury significantly 

suppressed reflexes. Toe pinch (measured in minutes), was suppressed in injured groups 

(M = 4.974) compared to sham groups (M = 1 .885), F ( 1 . 1 5 ) = 5 .506, P < .05. Corneal 

reflex (measured in minutes) was also suppressed in injured groups (M = 6.43 1 )  

compared to sham groups (M = 1 .780), F ( 1 .  1 5 )  = 8.084, P < .05. Neither the toe pinch nor 

the corneal response, both of which are simple reflexes, demonstrated significant 

treatment effects. The more complex righting reflex (measured in minutes) was delayed 

following injury (M = 24.682), compared to sham groups (M = 6.444), F ( 1 . 1 5 )  = 3 1 .785, P 

< .000 1 .  The pre-injury injections also produced significant suppression of reflexes for 
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DZ-treated (M = 23.602) compared to saline-treated (M = 5 .6 1 8) animals, F ( 1 . 1 5 ) = 

33.852, p < .000 1 .  A significant interaction was found between injury and treatment 

groups for righting latency, F ( I .  1 5 )  = 5 .276, P < .05. A simple effects analysis revealed that 

saline-treated groups had significantly longer righting latencies following injury (M = 

1 1 . 1 78) than following sham treatment (M = 1 . 1 70), F ( 1 . 7) = 6 . 1 89, P < .05. DZ-treated 

animals also had delayed righting latencies following injury (M = 35 .486), compared to 

sham treatment (M = 1 1 .7 1 8), F ( 1 , 8) = 29.605, P < .0 1 .  Although both saline-treated and 

DZ-treated animals demonstrated significant injury effects on righting reflex, DZ 

extended the righting latency in both injured and sham animals. Therefore, although pre­

injury DZ treatment did not significantly effect simple reflexes, the more complex 

righting response was altered due to treatment. 

Mortality Rates 

Mortality rates for animals in each group are shown in Table 4. A Chi-Square test 

of homogeneity revealed a marginally significant difference in mortality between groups, 

X
2 

(3, !:! = 22) = 7.444, P = .059. The only group that experienced mortality over the course of 

this experiment was the injured-saline group (43% mortality). DZ effectively prevented 

injury-related death (0% mortality). The primary cause of mortality in injuredlsaline­

treated animals was pulmonary edema. 

Qualitative Tissue Evaluation 

As expected, GABAaR P2/3 subunit IR was located primarily in the dendritic 

processes of pyramidal cells and intemeurons. In the hippocampus proper, the SP layer 



was mostly devoid of staining, although the membranes of some pyramidal cell somata 

were IR. Positively labeled receptors were extremely dense in the SO layer, and the SR 

and SLM layers were also heavily stained. In the DG, only the molecular layer showed 

discemable IR, although it was not as profusely labeled as the dendritic layers of the 

hippocampus proper (See Figure 9). 
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Evaluation of processes in the CA3 region revealed pervasive dendritic 

segmentation and an overall reduction in stain quality in injured/saline-treated animals 

compared to shamlsaline-, shamlDZ-, and injuredIDZ-treated groups (See Figure 1 0). The 

appearance of segmental beading (varicosities) along processes was specific to the 

injured/saline group and was only found in the CA3 region. 

GABAaR Distribution in CA 1 Dendritic Processes 

Although injury-induced alterations were expected in the CAl of the 

hippocampus, two factor ANOVAs (injury x treatment) did not reveal a significant injury 

effect on number (F ( 1 . 9) = 0 . 1 54, p >  .05) or length (F ( 1 , 9) = 0.027, P > .05) of GABAaR 

P2/3 IR dendrites (see Figure 1 1  for photomicrographs of the CA 1 ) .  Since no significant 

injury-induced changes were found, alterations could not be attenuated by DZ, and 

treatment effects were not revealed for either number (F ( 1 , 9) = 0,004, P > .05) or length of 

IR dendritic processes (F ( 1 , 9) = 0.0 1 5, p >  .05). Also, no significant interaction effect for 

number (F ( ! . 9) < 0.00 1 ,  p >  .05) or length (F ( I ,  9) = 0.242, P > .05) of processes were found 

in the CAL Collectively, these analyses indicate that no significant GABAaR P2/3 

subunit alterations are evident in the CA 1 region of the hippocampus 24 hours following 



TBI. Figure 1 2  shows the mean number and Figure 1 3  shows the mean length of IR 

processes per group in the CA l region of the hippocampus. 

GABAaR Distribution in CA3 Dendritic Processes 
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A two factor ANOV A (injury x treatment) revealed that the overall number of 

dendritic processes in the CA3 was not altered by injury (F ( 1 , 10) = 0.820, p >  .05) .  Drug 

treatment also did not significantly effect the number of processes in this region (F ( 1 , 10) = 

1 .727, P > .05). An interaction effect between injury and treatment was not found (F ( 1 .  10 ) 

= 0.068, P > .05). Qualitative evaluation of the CA3, however, indicated changes in this 

region (see Figures 1 0  and 1 4). Figure 1 5  shows the mean number of CA3 processes per 

group. 

Although the mean number of dendrites in the CA3 was not significantly altered, 

a two factor ANOVA (injury x treatment) revealed that TBI did significantly reduce the 

length of P2!3 IR processes, F ( 1 . 1 0) = 37.4 1 8, P < .000 1 .  The apical dendrites of injured 

animals (M = 1 9.639) were significantly shorter than those of sham animals (M = 

22.772). Analysis also revealed that DZ attenuated these alterations in IR dendritic length, 

F ( 1 ,  10 )  = 3 1 .032, P < .000 1 .  Dendritic processes in the CA3 were significantly shorter for 

saline-treated animals (M = 1 9.822) than for DZ-treated animals (M = 22.588). An 

interaction between injury level and treatment effect was found, F ( I , 10) = 1 7.594, P < .0 I ,  

and a simple effect analysis indicated that injured animals treated with saline (M = 

1 6.470) had significantly shorter CA3 dendritic processes than the injured animals treated 

with DZ (M = 22.0 1 5), F ( 1 . 5 ) =  57. 1 64, P < .0 1 .  Sham animals did not significantly differ 
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in CA3 dendritic length (F ( 1 .5)  = 1 .2 1 3 , p >  .05) whether they were treated with saline (M 

= 22.337) or DZ (M = 23.352). Positively labeled GABAaRs along the dendrites of the 

CA3 (lR length), therefore, was similar for all groups, except the injured/saline-treated 

group, in which mean length was reduced (see Figure 1 6). 

Discussion 

The current study was designed to investigate potential alterations to GABAaR 

P2/3 subunit IR in the hippocampus of rats 24 hours following TBI. The only injury­

related alteration found was decreased length of IR dendritic processes in the CA3 region 

of the hippocampus. The ' length' of the dendrite in this study refers to the IR distribution 

of P2/3 proteins along the process. Positively labeled dendrites of the CA3 formed 

varicose beading along their length. This response to injury was probably a sublethal 

cytoskeletal rearrangement driven by a calcium-based mechanism which was induced by 

excessive neuroexcitation. Restoration of an appropriate balance between excitation and 

inhibition may be achieved by either decreasing NMDA-mediated excitation with an 

antagonist (e.g., MK -80 1 )  or by increasing GABAergic inhibition with an agonist such as 

DZ. Restoration of balance between excitation and inhibition in the hippocampus 

attenuated injury-induced changes, including dendritic cytoskeletal alterations. 

Surprisingly, there were no changes in the CA 1 region in number, length, or 

appearance of IR processes between groups. There may be several reasons why no 

qualitative or quantitative changes were found in this area. First, previously documented 

changes in anti-GABA IHC 24 hours following TBI were found in the SLM layer but not 



87 

Table 4. The mortality percentages per group. A chi-square test of homogeneity was not 

significant, X
2 (3) = 7.44, p > .05 . 
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Group Subjeds Died % Mortality 

Sham/saline 5 0 0 

ShamlDZ 5 0 0 

Injured/saline 7 3 43 

InjuredIDZ 5 0 0 



Figure 9. A representative photomicrograph of a hippocampus stained with the bd 1 7  

antibody. 
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Figure 1 0. Representative photomicrographs of hippocampal CA l sections 24 hours 

following TBI (magnification = 20x). 

A = Sham/Saline 

B = ShamJDZ-treated 

C = Injured/Saline 

D = InjuredIDZ-treated 

9 1  

No significant injury or treatment effects were found between groups on either number or 

length of IR processes in the CAl at 24 hours following injury. 
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Figure 1 1 .  Mean IR number of processes (and S.E.M.) per group in the hippocampal CAl 

region 24 hours following TBI. No significant treatment or injury effects were found for 

number of CA 1 processes. 
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Figure 1 2. Mean IR length of processes (and S.E.M.) per group in the hippocampal CAl 

region 24 hours following TBI. No significant treatment or injury effects were found for 

IR length of CA 1 processes. 
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Figure 1 3 .  Representative photomicrographs of hippocampal CA3 sections 24 hours 

following TBI (magnification = 20x). 

A = Sham/Saline 

B = ShamlDZ-treated 

C = Injured/Saline 

0 =  InjuredIDZ-treated 
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A: The sham/saline group had significantly longer CA3 processes than the injured/saline 

group at 24 h. B: ShamlDZ-treated animals were not significantly different from 

sham/saline animals in number or length of IR processes. C: The injured/ saline group 

had significantly shorter processes than all other groups at 24 hours following injury. 

Overall number of processes did not differ between groups. 0: InjuredIDZ-treated 

animals had significantly longer processes than the injured/saline group. There were no 

significant differences between the injuredIDZ-treated group and the sham/saline or 

shamlDZ-treated groups in number or length of processes at 24 hours following injury. 
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Figure 1 4. Mean IR number of processes (and S.E.M.) per group in the hippocampal CA3 

region 24 hours following TBI. No significant treatment or injury effects were found for 

number of CA3 processes. 
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Figure 1 5 . Mean IR length of IR processes (and S.E.M.) per group i n  the hippocampal 

CA3 region 24 hours following TBI. The injured/saline group had significantly shorter 

processes than the injuredIDZ-treated, sham/saline, or sham/DZ-treated groups. No other 

group differences were revealed. 
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Figure 1 6. An enlarged (33%) example of beaded dendrites found in the hippocampal 

CA3 region 24 hours following injury (40x magnification). Only the injured/saline group 

demonstrated dendritic beading. 

A = Injured/saline 

B = Sham/saline 



1 04 

Sham 

I njured 



1 05 

the SR layer of the hippocampal CA l region (O' Dell, 1 995). GABAaR staining of 

processes did not allow for recognizable laminar demarcation between the SR and SLM 

regions, therefore, collapsing across lamina may have reduced the sensitivity of analysis. 

This is unlikely, however, since no qualitative changes in number or appearance 

of CAl processes were evident, and all quantitative counts were extremely close between 

all groups (refer to Figures 1 1 , 1 2  and 1 3) .  Another reason for lack of alterations in the 

CA 1 may be that the 24 hour time point was not sensitive to changes in GABAaR IR. 

Receptor changes may be delayed, as in ischemia, or may already have normalized by 24 

hours. This is also unlikely, however, since GABAergic changes have been documented 

with anti-GABA IR in the CA l at 24 hours (O'Dell, 1 995). A third possibility, which is 

the most likely explanation, is that P2/3 protein expression was not altered in the CA 1 24 

hours following injury. 

Although the length of IR processes in the CA3 region was altered following 

injury, the number of processes were not significantly different between groups. The 

number of processes in this area may have been artificially inflated due to extensively 

varicose and segmented dendritic appearance. This would, however, only have affected 

the injured! saline-treated animals since varicosities were not found in any other group. 

Similar findings have been demonstrated in CA 1 dendrites stained with GABAaR a 1 

antibody following ischemia. Although processes were found to be beaded ("string of 

beads"), the overall number of processes did not differ between ischemia and control 

groups (Inglefield, Wilson, and Schwartz-Bloom, 1 997). 
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Significant decreases in IR dendritic length were found in the CA3 of the 

hippocampus for the injured-saline group. There may be several explanations for this 

finding. TBI-induced impact depolarization is followed by a surge of synaptic release of 

neurotransmitters, including GABA (Selzer, 1 995). Post-injury GABAaR down­

regulation may occur due to excessive activation, altering expression preferentially in the 

distal portions of dendrites. Alternatively, the number of receptors may remain constant 

but the conformation of the receptor may be altered. Conformational alterations may 

result in decreased expression of some subunits and increased expression of others. The 

differential expression of these subunits may be due to altered subunit composition of the 

GABAaR or a positional alteration that unmasks certain subunits more than other 

subunits. There was, however, no change in the number of P2/3 IR processes and 

differential subunit expression does not sufficiently account for the reduction in length of 

CA3 apical dendrites. 

Another explanation may be dendrotomy, which refers to the complete separation 

of the proximal and distal portions of the dendrite. Axotomy has been well documented 

following TBI (Maxwell, Wyatt, Graham, & Gennarelli, 1 993; Povlishock, 1 992; 

Povlishock, Becker, Cheng, & Vaughan, 1 983; Yaghmai & Povlishock, 1 992). In DAI, 

compaction of cytoplasm and neurofilaments occurs, producing pathologically altered 

axonal transport (Povlishock, 1 992; Yaghmai & Povlishock, 1 992). Eventually, the 

buildup of molecular material in the axon forms a retraction ball that separates from the 

remaining distal portion of the axon (Povlishock et aI ., 1 983; Yaghmai & Povlishock, 
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1 992). Ultrastructural changes have been documented for dendrites as well as axons 

(Posmantur et aI . ,  1 996; Posmantur et aI . ,  1 997; Saatman, Graham & Mcintosh, 1 998). 

Immunolabeling of neurofilaments (NF68 and NF200) and microtubule associated protein 

2 (MAP2), which is only found in somata and dendrites, revealed cytoskeletal protein 

alterations in the apical dendrites of cortical pyramidal cells 3 and 24 hours fol lowing 

lateral CCI (Posmantur et aI . ,  1 996; Posmantur et aI ., 1 997). Fragmented swellings of 

microtubule and neurofilament IR were also found in the CA3 region of the hippocampus 

and in the DG 24 hours following lateral FPI in the rat (Saatman, Graham & Mcintosh, 

1 998). In both models of TBI, microtubule and neurofilament fragmentation within 

dendrites occurred in areas remote from the injury site and did not always precede cell 

death, indicating that these changes may represent a sublethal cytoskeletal disruption 

(Posmantur et aI ., 1 996; Saatman, Graham, & Mcintosh, 1 998). Unlike injury-induced 

axotomy, dendritic varicosities and alterations are more likely to be associated with 

sublethal cytoskeletal rearrangements than with complete separation of proximal and 

distal dendrites. Therefore, alterations in TBI-induced CA3 apical dendritic length are 

probably not due to dendrotomy. Retraction of dendrites from degenerating pre-synaptic 

neurons has been well documented in the DG following deafferentation of the perforant 

pathway (Mizukami et aI . ,  1 997; Nitsch & Frotscher, 1 992; Phillips et aI . ,  1 997; Phillips, 

Lyeth, Hamm, Reeves, & Povlishock, 1 998). The most likely explanation for the 

shortening of injured dendrites is that ultrastructural fragmentation of microtubules and 



neurofilaments occurs within the varicosities, producing compaction of cytostructural 

components along the process and thereby reducing the overall length. 
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Inglefield, Wilson, and Schwartz-Bloom ( 1 997) found similar beading of 

interneuron dendritic processes IR for the GABAaR subunit a 1 following ischemia. The 

formation of varicosities in ischemia, however, was delayed until three to four days post­

injury and corresponded with delayed degeneration of CA 1 pyramidal cells. GABAaR 

subunit IR appears to be sensitive to morphological dendritic pathology, and similar 

dendritic alterations have also been found in microtubule and neurofilament 

immunohistochemistry (Matesic & Lin, 1 994; Posmantur et ai . ,  1 996; Posmantur et ai., 

1 997; Saatman, Graham & McIntosh, 1 998), electron microscopy (Fekuda, Nakano, 

Yoshiya, & Hashimoto, 1 993; Petito & Pulsinelli, 1 984; Yamamoto, Hayakawa, Mogami, 

Akai, & Yanagihara, 1 990), autoradiography (Johansen, Jorgensen, Ekstrom von Lubitz, 

& Diemer, 1 984) and tissue cultures (Adamec, Beermann, & Nixon, 1 998; Baar, 2000; 

Emery & Lucas, 1 995; Ochs & Jersild, 1 987; Park, Bateman & Goldberg, 1 996). The 

connection between all of these markers of ultrastructural change is that they were all 

induced by some sort of exCitotoxic neuronal insult (e.g., TBI, ischemia, hypoxia). 

Emery and Lucas ( 1 995) produced dendritic varicosities in cultured neurons 

exposed to hypothermia, NMDA or A23 1 87 (a calcium ionophore). All three injuries 

produced identical dendritic pathology. Fractured microtubules and swollen mitochondria 

and vacuoles were found densely packed within the varicosities. The diameter of the 

varicosities, however, was within normal dendritic range. The interconnecting portions of 
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the dendrite (between the varicosities) were found to contain densely packed (mostly 

unfragmented) microtubules with no large organelles present. This region was constricted 

and the diameter was less than normal dendritic range. The somata of neurons with 

beaded dendrites also showed nuclear changes, chromatin clumping, and cytoplasm 

containing dilated vacuoles and dark mitochondria. In the hypothermic cultures, 

rewarming eliminated the varicosities, indicating that this response to injury can be 

reversed, at least in some cases (Emery & Lucas, 1 995). 

Although the exact mechanism driving dendritic cytoskeletal alterations is 

unknown, Mattson, Wang, and Michaelis ( 1 99 1 )  found that proteins associated with 

hippocampal NMDA receptors are located in clusters along dendritic membranes. The 

varicosities, therefore, may be associated with discontinuous receptor distribution. 

Although NMDA involvement is likely, this does not explain the dose-dependent 

expression of varicose dendrites following A23 1 87 calcium ionophore exposure. 

Exposure to low doses of A23 1 87 showed no significant ultrastructural alterations in 40% 

of cells, although higher doses resulted in necrosis, swollen or collapsed mitochondria 

and nuclear changes similar to neurons exposed to NMDA. Rate-dependent beading of 

dendrites was found in 47% of neurons. Therefore, a likely explanation for dendritic 

beading would be a calcium-mediated mechanism induced by excessive neuroexcitation 

(Emery & Lucas, 1 995). 

It is well known that TBI-induced neuroexcitation is mediated by NMDA receptor 

activation. NMDA receptor activation leads to the opening of ion channels and 
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subsequent calcium influx (Alessandri & Bullock, 1 988; Mcintosh et aI . ,  1 996). NMDA 

receptor- mediated calcium elevation is associated with protease activation (e.g., calpain), 

which may be involved in the cascade that leads to dendritic cytoskeletal fragmentation 

(Alessandri & Bullock, 1 988; Kampfl et aI . ,  1 997; Posmantur et aI . ,  1 997; Seubert, Lee, 

& Lynch, 1 989; Siman, Noszek, & Kegerise, 1 989). Protease activation by calcium has 

been shown to facilitate varicosities and interconnecting organelle loss and membrane 

shrinkage (Ochs & Jersild, 1 987). 

Lankiewicz et al . (2000) demonstrated that calcium activation of cal pain I was 

detectable in cultured rat hippocampal neurons that were briefly exposed to NMDA. 

Mediated by the NMDA receptor, glutamate activates cal pain, which breaks down 

spectrin, a protein that links membrane proteins to the actin cytoskeleton (Adamec, 

Beermann, & Nixon, 1 998). Spectrin has also been shown to selectively interact with the 

C-terminal ofNMDA NR2 subunits (Wechsler & Teichberg, 1 998). Furthermore, 

glutamate mediation of calcium, rather than just an excess of calcium, is necessary for 

calpain activation. Calpain I inhibitors, however, interfere with the normalization of 

varicosities in hippocampal rat neuronal cultures exposed to sublethal levels of glutamate, 

indicating that activation of appropriate levels of cal pain I may play a role in restoring 

normal cytoskeletal organization (Adamec, Beermenn, & Nixon, 1 998). Calpain may 

provide feedback regulation of NMDA receptors by limiting NMDA receptor activation 

via truncation of the C-terminal domain of N2 subunits (Bi et aI ., 1 998). Collectively, 

these data would indicate that NMDA-mediated glutamate activity acts to increase 
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intracellular calcium, which in tum activates calpain. Calpain alters cytoskeietal structure 

by breaking down spectrin, although this may be a sublethal response that ultimately 

restores cytoskeletal organization to normal by decreasing further NMDA receptor­

mediated neurotoxicity 

In TBI and other CNS injuries, NMDA receptor-mediated glutamate activity 

disturbs calcium homeostasis, which then activates a cascade of events that contributes to 

cytoskeietal alterations and neurodegeneration. The role of calcium and cal pain are 

important contributors to this cascade. Calpain inhibitors administered within 24 hours of 

injury have been shown to attenuate structural and functional derangements of neurons 

(Kempfl et ai. ,  1 997). NMDA receptor antagonists such as MK-80 1 reduce glutamatergic 

receptor activation, ultimately altering the neurotoxic cascade. 

The role ofNMDA in dendritic pathology was investigated in mouse neuronal 

cultures exposed to hypoxia. Segmental dendritic beading occurred but was blocked by 

the NMDA antagonist MK-80 I .  Within five minutes ofNMDA or glutamate exposure, 

the varicosities returned and were again normalized with MK-801 treatment. Dendrites 

which received longer exposure ( 1 5  or more minutes) demonstrated more extensive 

beading of distal and proximal dendrites and a loss of dendritic spines. Cells exposed to 

1 5  minutes of hypoxia were normal by 24 hours following injury. Although cell death due 

to hypoxia or NMDA exposure was always preceded by dendritic beading, reduced length 

of exposure resulted in sublethal dendritic cytoskeletal alterations (Park, Bateman & 

Goldberg, 1 996). 
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Similar to NMDA receptor antagonism, GABAaR agonists reduce overall 

excitation, essentially preventing a detrimental cascade of subcellular events. Cultured 

hippocampal pyramidal cells exposed to glutamate showed shortened dendrites and 

inhibited outgrowth at sublethal levels and cell death at higher levels. A combination of 

GAB A and DZ significantly reduced these dendritic alterations and prevented cell death. 

The calcium channel blocker C02+ demonstrated similar neuroprotection, indicating that 

GABAaR-mediated neuroprotection may have calcium-related effects (Mattson & Kater, 

1 989). Indeed, whole-cell patch-clamp recordings from both tracheal smooth muscles 

(Yamakage et al ., 1 999) and neuronal cultures (Akaike, Oyama, & Yakuskij i, 1 989; 

Ishizawa, Furwya, Yamagashi, & Dohi, 1 997) indicate that DZ and other benzodiazepines 

decrease influx of voltage-dependent calcium currents. DZ was more effective than 

midazolam in reducing calcium currents and the response was dose-dependent (lshizawa 

et al., 1 997; Yamakage et al ., 1 999). Conversely, DZ-binding inhibitors produce an 

increase in intracellular calcium (Cosentino et al . ,  2000). Therefore, DZ treatment may 

provide neuroprotection by increasing inhibitory tone and decreasing intracellular calcium 

and subsequent cal pain activation. 

Elimination of dendritic pathology by MK-801 in tissue culture and by DZ in the 

current study are likely both due to restoration of the balance between excitation and 

inhibition, which ultimately reduces glutamatergic neurotoxic cascades. Since the FPI 

used in the present experiment is not associated with overt cell death (Delahunty et al . ,  

1 995) it is likely that injury-induced morphological alterations are a sublethal response to 
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the injury. Sublethal responses in the hippocampus may be associated with long term 

deficits in spatial cognition. MK-80 1 (Hamm, O'Dell, Pike, & Lyeth, 1 993) and DZ 

(O'Dell et aI., 2000) treatment have both been shown to attenuate MWM deficits 1 5  days 

following central FPI. Alterations in the hippocampus have been implicated in producing 

these cognitive deficits (Hayes, Jenkins & Lyeth, 1 992b). Sublethal NMDA receptor­

mediated changes in long term potentiation (L TP) have been linked to cytoskeletal 

alterations. Ca1pain, which is associated with LTP (Lynch & Baudry, 1 987) induces the 

breakdown of spectrin. Interactions between spectrin and NMDA receptors are believed 

to play an important role in LTP, as are glutamate-induced morphological alterations to 

dendritic spines (Wechsler & Teichberg, 1 998). 

Alterations in the CA3 may have been produced by glutamatergic mossy fiber 

input from the DG and may in turn affect L TP associated with CA3 to CA 1 Schaffer 

collaterals. Thus, the normalization by DZ of TBI-induced sublethal alterations in 

hippocampal CA3 apical dendrites may have been due to a reduction in mossy fiber 

glutamatergic neuroexcitation of the this region. Attenuation by DZ of changes in the 

CA3 found at 24 hours may, therefore, be an important precursor to attenuation by DZ of 

MWM deficits at 1 5  days (O'Dell et aI . ,  2000). 

The current study provided evidence that irnmunolabeling of �2/3 subunits of the 

GABAaR was altered following TBI. The pattern of changes in GABAaR IR was 

different from changes found with anti-GABA antibodies. Dendritic pathology visualized 

by GABAaR staining was attenuated by DZ treatment, demonstrating the importance of 



1 14 

acute normalization of the balance between excitation and inhibition in the hippocampus. 

The beaded and segmented appearance of injured apical dendrites in the CA3 was a 

surprising result, which is likely due to cytoskeletal dendritic pathology that needs to be 

further characterized. 

Since this was the initial investigation into GABAaR changes following TBI, 

further studies are needed for a greater understanding of GABAaR alteration and 

manipulation following injury. Immunohistochemical characterization of other GABAaR 

subunits such as Ct I and y2 may provide greater understanding of injury-induced 

alterations of the GABAaR. Correlation of GABAaR IR with microtubule and 

neurofilament changes may show that varicose and segmented portions of CA3 apical 

dendrites coincide with ultrastructural changes. Electron microscopic analysis of dendritic 

cytoskeletal rearrangements could be used to verifY IR alterations. Also, protein 

expression is likely to be preceded by molecular alterations. Subunit specific 

modifications in the DNA encoding for GABAaR proteins may provide further 

understanding of GABAaR changes due to TBI. Another important aspect is the time 

course following injury. A greater understanding of acute ultrastructural dendritic and 

receptor changes may be found in the DG, CA l and/or CA3 regions at earlier time points 

and the persistence of sublethal hippocampal pathology at chronic time points may help 

explain long term cognitive deficits. 

In conclusion, attenuation of TBI-induced GABAaR alterations with DZ may 

provide a viable approach to the normalization of excitatory/ inhibitory balance in the 
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hippocampus. Excessive neuroexcitation produces sublethal pathology that may include 

ultrastructural alterations to hippocampal apical dendrites and these alterations may be 

associated with subsequent cognitive deficits. This study provides further support for the 

hypothesis that the inhibitory system is altered following TBI. 
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