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Abuse of prescription opioids has become epidemic and oxycodone is among the 

most frequently abused of these drugs. Opioid misuse is a risk factor for HIV infection 

and its chronic use by HIV-infected individuals can be accompanied by worsened 

progression to AIDS, cellular damage, and behavioral deficits collectively termed 

“neuroAIDS”. This toxicity is likely attributable, in part, to the interaction of opioids with 

the neurotoxic HIV-1 Tat protein. The ultimate objective of this dissertation was to 

characterize the interaction of HIV-1 Tat expression with the abuse-related effects of 

oxycodone. 

Physical dependence, drug self-administration, and sensitization are three 

classes of phenomena observed in laboratory animals suggested to have relevance to 

opioid dependency. There have been few reports of oxycodone's physical dependence, 

self-administration, or its sensitization effects in mice; therefore, the initial objective of 



 
 

 

the present studies was to establish methodologies in the mouse to characterize these 

effects. Subsequently, these methodologies would be applied to examine the effects of 

HIV-1 Tat expression on these abuse-related phenomena.  

 A novel escalating dosing regimen (9-33 mg/kg, s.c.) of oxycodone was 

developed to induce physical dependence in which naloxone dose-dependently (0.1-10 

mg/kg, s.c.) increased somatic signs of withdrawal. In other mice administered a similar 

regimen, precipitated withdrawal effects were observed using the acoustic startle 

response and its related measure, habituation. These oxycodone regimens also 

produced evidence of locomotor sensitization. Using a novel oral operant self-

administration procedure, C57BL/6J mice volitionally consumed oxycodone solutions 

(0.056-1.0 mg/ml) under post-prandial conditions to behaviorally-active levels (i.e., 

produced hyperlocomotion and Straub tail). Subsequently, HIV-1 Tat-expressing mice 

were examined under these behavioral conditions. HIV-1 Tat-expressing mice showed 

altered oxycodone abuse-related effects relative to non-expressing mice in that they: (i) 

increased oral oxycodone self-administration, (ii) had attenuated oxycodone physical 

dependence-related effects as measured by acoustic startle and habituation, and (iii) 

had blunted expression of oxycodone locomotor sensitization. Together, these effects 

are consistent with previous findings of reduced morphine efficacy and dependence in 

Tat-expressing mice, and suggest that opioid sensitivity is reduced by HIV-1 Tat. 

Further studies are needed to determine the rate at which opioid sensitivity is altered by 

HIV-1 Tat expression.
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 Chapter I: Introduction 

  
  
  

 

1. Prescription Opioid Abuse 

The use of opium extends over thousands of years but it was not until the early 

1800s when Friedrich Sertürner isolated the poppy plant’s active ingredient, morphine, 

which has since been largely used for the treatment of pain (Brownstein, 1993). 

Through technological developments and refinement of methodologies for chemical 

synthesis and purification, more potent and efficacious opioids have been synthesized 

or semi-synthesized. The growing number of opioids, such as oxycodone, hydrocodone, 

and fentanyl, has provided alternatives for the treatment of pain but not without possible 

consequences, such as respiratory depression, constipation, antinociceptive tolerance, 

and dependence. In more recent decades, the non-medical use and abuse of 

prescription opioids has dramatically increased, where between the years 1999-2008, 

the Centers for Disease Control and Prevention found the overdose deaths due to 

prescription opioids surpassed those due to cocaine and heroin combined (Centers for 

Disease Control and Prevention, 2011). In 2014, it was estimated that approximately 1.9 

million Americans met criteria for prescription painkiller use disorder (Center for 

Behavioral Health Statistics and Quality, 2015). Another study found the availability as 

well as the rate of abuse of prescription opioids increased between the years 2002 and 
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2010 but plateaued from 2010 to 2013, possibly due to the introduction of abuse 

deterrent reformulations and more stringent rules to limit the number of prescriptions 

(Dart et al., 2015). These increased opioid abuse patterns undoubtedly poses an 

increased risk of Human Immunodeficiency Virus (HIV) infection. Despite stronger 

regulations and physician monitoring of prescription opioid use, national surveillance 

programs have reported an increase in the rates of heroin abuse and heroin overdose-

related deaths which, although correlative, also coincided with the release of extended-

release oxycodone in August 2010 (Compton et al., 2016; Dart et al., 2015). 

Several demographic features, including geographic regional differences and 

sex, regarding prescription opioid abuse have been characterized. In the United States, 

the non-medical use of prescription opioids has been heavily reported in rural areas as 

opposed to urban areas (Havens et al., 2007; Keyes et al., 2014; Wang et al., 2013; 

Wunsch et al., 2009). Clinical studies and meta-analyses have reported sex differences 

in both the opioid analgesic response and the subjective effects of opioids in which 

females exhibit greater efficacy for treating pain but also experience greater adverse 

side effects than males (Niesters et al., 2010; Zacny and Drum, 2010). The Nationwide 

Emergency Department Sample showed that from 2006 through 2010 the majority of 

emergency room visits due to prescription opioid overdoses were females, further 

suggesting an important sex difference in opioid response which may in part be 

attributable to the influence of hormonal variability (Tadros et al., 2015). Mechanisms 

behind these sex differences, such as the influence of hormones as well as 

pharmacokinetic and pharmacodynamic differences are being further examined in 

preclinical research. 
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2. Oxycodone 

2.1. General Pharmacology 

Prescription opioids, such as oxycodone, primarily act on the mu opioid receptor 

to exert antinociceptive and subjective effects (Beardsley et al., 2004; Zacny and 

Gutierrez, 2003). Mu opioid receptors are located in both the central and peripheral 

nervous systems and on various cell types, including neurons and glial cells. Mu opioid 

receptors are one of the three classical opioid receptors (mu, delta, and kappa) and are 

distributed throughout the brain, including the mesolimbic dopaminergic system which is 

implicated in food and drug reinforcement, with higher density than other subtypes in 

certain regions such as the amygdala and thalamus (for review, Le Merrer et al., 2009). 

Due to their wide distribution, these receptors actively play a role in many physiological 

processes including stress and immune responses. Mu-opioid receptors (MORs) are 

seven-transmembrane G protein-coupled receptors (GPCRs) of the Gi/o subtype which, 

once activated by either endogenous peptides, such as beta-endorphin, or by 

exogenous MOR agonists, lead to downstream signaling effects including inhibition of 

adenylyl cyclase and decreased neuronal excitability and neurotransmitter release. 

However, MORs can be present on interneurons that release gamma-aminobutyric acid 

(GABA), therefore, by disinhibiting interneurons through MOR activation a downstream 

increase in dopaminergic activity (Johnson and North, 1992). 

 MOR agonists, such as morphine and oxycodone, can differ in their 

pharmacological profile. For example, in in vivo studies, oxycodone is reportedly two to 

three times more potent than morphine for antinociceptive effects and is equipotent to 

heroin (Beardsley et al., 2004; Curtis et al., 1999; Zacny and Lichtor, 2008; Zhukovsky 
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et al., 1999). This potency difference is also conserved between controlled-release 

formulations of oxycodone and morphine (Curtis et al., 1999). In in vitro studies, 

however, oxycodone has a lower binding affinity to the MOR than morphine as well as 

lower efficacy as determined by the [35S]GTP-γS assay (Peckham and Traynor, 2006; 

Thompson et al., 2004). These various pharmacological effects support the claim that 

no two opioids are functionally alike, and may have a large difference in their abuse 

liability thereby warranting further investigation of their individual abuse-related effects. 

First synthesized from thebaine for clinical use in 1917, oxycodone is primarily 

metabolized via N- and O-demethylation by the cytochrome P450 enzymes, CYP3A and 

CYP2D6, into noroxycodone and oxymorphone, respectively (Kalso, 2005; Lalovic et 

al., 2004). The active metabolite oxymorphone has a greater affinity for the MOR than 

oxycodone; however, the antinociceptive effects of oxycodone are largely mediated by 

the parent compound rather than its metabolites which may be advantageous for 

patients with renal impairment (Cleary et al., 1994; Thompson et al., 2004). A greater 

abundance of the parent compound rather than its metabolites in the brain further 

supports that oxycodone is responsible for the centrally-mediated effects (Lalovic et al., 

2006). The therapeutic actions of the parent compound in oxycodone formulations along 

with oxycodone’s higher oral bioavailability (~60-87%) than morphine (~20%) may, in 

part, play into the popularity and diversion of oxycodone (Hoskin et al., 1989; Leow et 

al., 1992; Poyhia et al., 1992). The terminal elimination half-life of oral oxycodone is 

reported to be approximately 3.5-h in humans as well as in rats, although a lower oral 

bioavailability is reported in the rat possibly due to a greater first-pass metabolism in the 

rat as compared to humans (Chan et al., 2008; Lalovic et al., 2006). 
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2.2. Abuse Liability 

As seen with other opioids, in addition to antinociceptive effects, oxycodone use 

produces positive subjective effects and may result in the development of 

antinociceptive tolerance, physical dependence, and abuse. As measured by clinical 

assessments, positive subjective effects of this drug include dose-dependent increases 

in drug-liking, “feeling high”, and drug-wanting (Comer et al., 2008; Zacny and 

Gutierrez, 2003). The oral route of administration is the most widely used and favored 

among prescription opioid abusers, although other common routes include intravenous 

as well as insufflation (Gasior et al., 2016; Kirsh et al., 2012). Oxycodone is similar to 

other opioids, including morphine and hydrocodone, in producing positive subjective 

effects and there is reportedly little difference in their ability to do so (Stoops et al., 

2010; Zacny and Gutierrez, 2009). Moreover, oxycodone can also similarly produce 

unpleasant side effects including constipation, dysphoria, and respiratory depression. 

However, oxycodone may differ from morphine in its effect on expression of various 

genes in hippocampal and striatal regions that may facilitate synaptic plasticity and 

abuse-related behaviors (Mayer-Blackwell et al., 2014; Zhang et al., 2009). It has also 

been suggested that oxycodone differs from morphine in rodents by differentially 

altering D2-like dopamine receptor responses as well as dopamine transmission as 

measured by fast-scan cyclic voltammetry in the nucleus accumbens (Emery et al., 

2015a; b; Vander Weele et al., 2014). Additionally, unlike morphine, naloxone has been 

shown to precipitate similar degrees of withdrawal in both wildtype and beta-arrestin-2 

knockout mice made dependent on oxycodone via osmotic minipumps (Raehal and 
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Bohn, 2011). Together, these observations suggest that MOR agonists can differ and 

these differences may influence their abuse-related effects. 

Chronic opioid exposure and withdrawal from opioids affects the individual 

across multiple biological levels.  Upon precipitating withdrawal in morphine-dependent 

rats via intracerebroventricular administration of methylnaloxonium, a derivative of the 

mu-opioid antagonist naloxone, symptoms of physical withdrawal were most robust 

when the antagonist was administered to the locus coeruleus and the periaqueductal 

gray region (Maldonado et al., 1992). The ventral tegmental area (VTA) and the nucleus 

accumbens, which are part of the mesolimbic dopaminergic pathway, have also been 

strongly implicated in drug reinforcement (Koob, 1992). After chronic morphine 

exposure to the VTA in rats, a reduction in neuronal area was found in only 

dopaminergic neurons despite a lack of change in total number of dopaminergic 

neurons in the VTA (Sklair-Tavron et al., 1996). In prescription opioid-dependent 

humans, volumetric loss in the amygdala, decreased anisotropy in axonal pathways of 

the amygdala as measured by diffusion tensor imaging, and decreases in functional 

connectivity in the amygdala as well as the nucleus accumbens have all been found 

(Upadhyay et al., 2010; Younger et al., 2011).  

In the dorsal striatum of adult C57BL/6J mice, extended access (4-h) to 

intravenous (i.v.) oxycodone self-administration resulted in a significant decrease in 

mRNA levels of GABAA, subunits beta 2 and alpha 1, but a significant increase in 

GABA, subunits rho 1 and 2 mRNA levels (Zhang et al., 2014). These effects were 

found in conjunction with escalated oxycodone consumption levels across 14 days of 

extended access to i.v. self-administration. The dopaminergic system in the VTA and 
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striatal regions has been found to be altered in mice by chronic oxycodone exposure 

(specifically for dopamine release, D1 and dopamine transporter mRNA expression) 

and varied depending on if exposure occurred during adolescence or adulthood 

(Sanchez et al., 2016; Zhang et al., 2009). Together, these biological changes after 

chronic opioid administration and withdrawal may be important biological factors that 

influence further misuse.  

3. Preclinical Assessment of Abuse-related Effects 

 To assess the potential abuse-related effects of a drug, preclinical researchers 

can use certain procedures that have been shown to have high reliability and face 

validity: (i) self-administration, (ii) physical dependence, and (iii) locomotor sensitization. 

Together, these assays provide a profile for a drug’s abuse-related effects and the 

environmental and biological determinants of these reinforcing effects can then be 

evaluated. Preclinical assessment of oxycodone’s abuse-related effects using these 

procedures is limited in the mouse, but the current literature is reviewed below. 

3.1. Self-administration 

Self-administration can be defined as the volitional intake or consumption of a 

drug, and can be measured via different routes of administration such as the 

intravenous or oral routes. Oxycodone has been demonstrated to serve as a positive 

reinforcer in intravenous self-administration studies in rats and mice (Beardsley et al., 

2004; Mavrikaki et al., 2017; Neelakantan et al., 2017; Zhang et al., 2015b; Zhang et al., 

2014; Zhang et al., 2009) in which an operant response was required for its delivery, 

although the oral route has not yet been investigated. In fact, the oral self-administration 
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of any opioid in the mouse in which an operant contingency was required to obtain drug 

delivery has been confined to the potent benzimidazole opioid, etonitazene (Elmer et 

al., 1995). Previous preclinical studies using the oral route have examined oxycodone’s 

antinociceptive properties or other behaviors, such as in learning and memory tasks, in 

which oxycodone was administered to laboratory mice or rats via oral gavage (Davis et 

al., 2010; Nozaki et al., 2006). Gavage techniques to study oral oxycodone’s effects on 

behavior, pharmacokinetics, or dopamine receptor responses (e.g., Chan et al., 2008; 

Emery et al., 2015b) have been useful as they precisely control the level of oxycodone 

exposure across subjects. However, the use of volitional oral consumption entailing an 

operant response (i.e., oral self-administration) is imperative to assess oxycodone’s 

effects related to its abuse liability because, unlike experimenter-administered 

oxycodone, the response requirement to obtain oxycodone access can be manipulated 

to examine motivational levels, the neuropharmacological and genetic effects produced 

by self-administered versus experimenter-administered opioid can markedly differ 

(Jacobs et al., 2003), and self-administered oxycodone would likely be better predictive 

of actual oxycodone abuse. 

3.1.1. The use of post-prandial conditions in oral self-administration 

In preclinical studies of oral self-administration, one technique to induce 

consumption of the liquid delivery uses food-induced (i.e., post-prandial) conditions in 

typically food-restricted subjects, which amounts to the feeding of a daily allotment of 

chow to the subject prior to the operant self-administration session (Campbell and 

Carroll, 2000). This method is used to induce thirst which consequentially assists in 

shaping behavior of the animal to allocate behavior (i.e., responding on an “active” 
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operant lever) to obtain a liquid delivery. After acquisition of self-administration 

behavior, the drug is thought to be reinforcing if it: (i) maintains self-administration after 

removal of post-prandial conditions (i.e., chow is given after operant sessions) and (ii) 

achieves greater levels of deliveries than those of water. The oral route is particularly 

unique, however, insofar as the consumption of a drug can be influenced by other 

factors such as the taste and palatability of the drug-containing drinking solution as well 

as the thirst and hunger state of the subject prior to operant session. This makes for 

interpreting the reinforcing efficacy of a drug in oral self-administration studies 

particularly challenging. Other tests, such as progressive ratio tests, can be used in 

conjunction to examine the oral reinforcing efficacy of a drug. Progressive ratio tests 

measure the degree to which a laboratory animal or human will “work” for a delivery or 

dose of a drug (Richardson and Roberts, 1996) and has been used previously for 

measuring abuse liability of oral oxycodone in humans (Babalonis et al., 2013). In 

preclinical studies, this is done by progressively increasing the ratio requirement (e.g., 

the number of active lever presses) needed to receive a single liquid delivery. The 

“breakpoint” is referred to as the final ratio requirement completed by the subject to 

receive at least one liquid delivery, prior to the subsequent ratio step in which no 

deliveries were obtained. By comparing the breakpoint averages for drug versus water, 

the drug is thought to serve as a positive reinforcer if it maintains a higher breakpoint 

average than water. 

3.2. Physical Dependence 

In addition to self-administration, physical dependence is another abuse-related 

phenomenon that can be measured preclinically. Here again few preclinical reports 
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have characterized the physical dependence effects of oxycodone, especially in the 

mouse. Oxycodone has been reported to dose-dependently suppress somatic signs of 

withdrawal in morphine-dependent rhesus monkeys suggesting cross-dependency to 

morphine (Beardsley et al., 2004). In addition, characteristic somatic signs of opioid 

withdrawal (e.g., jumping, body shakes, and diarrhea) have been reported in ICR mice 

administered a subcutaneous slow-release emulsion mixture of oxycodone to a similar 

degree as those produced by morphine (Mori et al., 2013). Oxycodone delivered to rats 

via osmotic minipumps resulted in substantial weight loss upon termination of drug 

administration after pump removal indicative of physical dependence (Hutchinson et al., 

2009). The authors reported that they did not analyze the somatic signs of oxycodone 

withdrawal because of the "severity of … withdrawal" it produced (Hutchinson et al., 

2009). Disruption of operant behavior can also be used to infer a type of “behavioral 

dependence” even when not accompanied by somatic signs of withdrawal (Schuster 

and Thompson, 1969). Naloxone-precipitated withdrawal disruption of lever pressing 

maintained by intracranial self-stimulation in rats indicative of behavioral dependence 

has also been reported (Wiebelhaus et al., 2016). Disruption of another behavior, the 

acoustic startle response, has been characterized to be an additional measure of opioid 

dependence, specifically morphine, as discussed below. 

3.2.1. Acoustic Startle as Measure of Dependence 

The acoustic startle response (ASR) is the whole-body reflexive response to a 

loud acoustic stimulus, typically in preclinical studies will be a brief (millisecond) 

exposure to a 120 dB sound. A special advantage of this non-invasive procedure is its 

translational value across species in addition to not requiring pre-training and can be 
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tested repeatedly, although conflicting reports suggest the possibility of some 

habituation with repeated testing (Abel et al., 1998; Braff et al., 2001; Cadenhead et al., 

1999; Geyer and Dulawa, 2003; Plappert et al., 2006). Moreover, the ASR and its 

related measures, habituation and prepulse inhibition, is a useful laboratory preclinical 

assay as it is fairly predictive of clinical startle effects to drugs (for review, Braff et al., 

2001).  

The ASR has been shown to be altered by opioids, specifically morphine. 

Chronic morphine administration to rats resulted in increases in ASR, and naloxone-

precipitated withdrawal resulted in significant decreases in ASR (Mansbach et al., 

1992). Other studies have found naloxone-precipitated withdrawal from morphine in rats 

resulted in significant increases in ASR (Harris and Gewirtz, 2004). Interestingly, in rats 

trained to self-administer morphine, ASR measured one week after withdrawal was 

inversely correlated with the amount of morphine self-administered in that low intake 

rats showed increased ASR, and high intake rats showed reduced ASR (Le et al., 

2014). These differences in withdrawal effects on startle have also been noted in 

preclinical ethanol studies (Chester and Barrenha, 2007; Rassnick et al., 1992; 

Slawecki et al., 2006). In rats, cessation of cocaine self-administration or withdrawal 

from nicotine did not affect ASR (Mansbach et al., 1994; Wilmouth and Spear, 2006), 

although the related measure prepulse inhibition has shown complex nicotine 

withdrawal effects in mice (Semenova et al., 2003; Stoker et al., 2008), suggesting ASR 

is not sensitive to the dependence-related effects of all drugs of abuse. Together, these 

results converge to the conclusion that the acoustic startle procedure may be 
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advantageous to use for measuring opioid dependence-related effects that bypass the 

observer subjective effects found in measures of somatic signs of withdrawal. 

In addition to startle, sensorimotor gating, defined as the process of filtering out 

excessive stimuli, can be evaluated using the startle apparatus. Prepulse inhibition of 

the startle reflex (PPI) is an operational measure of sensorimotor gating that is mediated 

by cortico-striato-pallido-pontine circuitry and can be defined as the inhibition of a 

whole-body motor startle reflex when a small acoustic stimulus (prepulse) is presented 

before (usually in milliseconds ) a loud acoustic stimulus (STIM/pulse). PPI has been 

widely used for preclinical models of schizophrenia and Alzheimer’s disease; moreover, 

drugs of abuse such as amphetamine and ketamine which alter dopamine 

neurotransmission decrease PPI, suggesting a role of the dopaminergic system in 

information processing, however not all drugs of abuse have been fully characterized 

(Geyer et al., 2001). Opioids are reported to have negligible acute effects on PPI; 

however, pretreatment of naloxone, an opioid antagonist, blocks amphetamine’s PPI-

impairing effects and, depending on the length of exposure, morphine has diverse 

effects on both startle and PPI, suggesting the complexity the role the opioid system 

has in sensorimotor gating that warrants further characterization (Harris and Gewirtz, 

2004; Meng et al., 2010; Swerdlow et al., 1991). 

3.3. Locomotor Activity 

In addition to self-administration and physical dependence, locomotor activity and 

its sensitization is another procedure to assess a drug’s preclinical abuse-related 

effects. Locomotor sensitization has been shown to correspond to the reinforcing 

properties of multiple drugs of abuse (Robinson and Berridge, 1993). The endogenous 
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opioid system has been implicated in the expression of locomotor sensitization of 

various drugs of abuse, such as cocaine, nicotine, and methamphetamine (Chiu et al., 

2006; Hummel et al., 2004; Shen et al., 2010; Yoo et al., 2004). Administration of MOR 

agonists results in increased locomotor activity and repeated exposure results in further 

increases in locomotion, or locomotor sensitization. Oxycodone has previously been 

shown to increase locomotor activity in rats and mice and its repeated exposure results 

in locomotor sensitization (Collins et al., 2016; Leri and Burns, 2005; Liu et al., 2005; 

Niikura et al., 2013; Zhang et al., 2016). The active component of the herb Corydolis 

yanhusuo, l-tetrahydropalmatine, was reported to block both the development and 

expression of oxycodone locomotor sensitization in mice (Liu et al., 2005). In 

conjunction with unpublished findings of l-tetrahydropalmatine reducing oxycodone-

induced increases of striatal extracellular dopamine in the rat, the authors suggested 

that l-tetrahydropalmatine was blocking oxycodone’s effects via a D1- or D2-linked 

mechanism although this compound has also shown to inhibit pro-inflammatory cytokine 

expression (Oh et al., 2010; Zhang et al., 2015a). Thus, further characterization of MOR 

agonist-induced locomotor sensitization can assist determining its underlying 

determinants. 

4. Mouse Models to Investigate Opioid Interactions 

The use of mouse models in preclinical research allows for the investigation of a 

plethora of opioid interactions to characterize mechanisms of opioid dependence and 

tolerance. Genetic manipulations in mice have been carried out to examine the role of 

beta-arrestin-2, alpha3beta4* neuronal nicotinic receptors, and AMPA-type glutamate 

receptors in opioid tolerance and dependence (Bohn et al., 2003; Muldoon et al., 2014; 
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Raehal and Bohn, 2011; Vekovischeva et al., 2001). Typically for these studies, the 

C57BL/6J mouse strain is utilized as a background strain for its large breadth of 

genomic data and its popularity in knockout studies.  This strain of mice is particularly 

sensitive to opioids as compared to DBA counterparts as shown by greater potentiation 

by morphine in intracranial self-stimulation, greater intravenous morphine self-

administration, and a higher preference for morphine in saccharin solution over tap 

water (Elmer et al., 2010; Horowitz et al., 1977). Additionally, this strain has been 

observed to consistently display characteristic effects of opioid dependence (e.g., 

naloxone-precipitated jumping) across various methods of morphine physical 

dependence, although at times with less intensity than some other strains such as 

Swiss-Webster mice (Kest et al., 2002).  

One laboratory technique of genetic manipulation in the mouse is the use of the 

tetracycline (“Tet”)-On system of expression, in which a gene is activated to produce 

gene products of interest via exposure to a tetracycline or its derivatives such as 

doxycycline. The Tet-On system is advantageous over murine knockout techniques as it 

is a reversible, conditional expression system thereby allowing the normal development 

of the mouse without potential genetic compensation as well as having the ability to 

parametrically control gene expression. The use of this system allows the investigation 

of neurological diseases and the interaction with potential pharmacotherapies or drugs 

of abuse. One mouse model of interest is a mouse model of neuroAIDS through 

doxycycline-inducible expression of the neurotoxic HIV-1 transactivator of transcription, 

“Tat”, protein.  In this mouse model, there is overwhelming evidence to show opioids 
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have a worsening effect of Tat-induced consequences at multiple biological levels, as 

discussed below. 

4.1. NeuroAIDS 

NeuroAIDS is the culmination of symptoms that affect the CNS after systemic 

HIV-1 infection. The result in a subset of patients is the development of HIV-associated 

neurocognitive disorders, or HAND. HAND can range in severity, with the most severe 

form called HIV-associated dementia, and is characterized by motor and/or behavioral 

impairments leading to difficulties in daily functioning which may result in impairments 

in: attention-concentration, information processing, as well as learning and memory 

(Antinori et al., 2007). The advent of highly active antiretroviral therapy in the 1990s led 

to a reduction of the incidence of HIV-associated dementia from 16% to 5%; however, 

the prevalence of the development to HAND persists (Harezlak et al., 2011; Heaton et 

al., 2010; Nath and Sacktor, 2006). The challenge of treating HAND persists as co-

morbidities with drug abuse and other mental disorders may exist, as well as a high 

incidence rate of progression to more severe subtypes of HAND in previously 

asymptomatic individuals (Alfahad and Nath, 2013; Robertson et al., 2007; Sacktor and 

Robertson, 2014).  

It has been suggested that the expression of neurotoxic viral proteins are the 

underlying cause of the impairments observed. The two proteins that have garnered the 

most evidence for these effects are the envelope glycoprotein gp120 and the 

transactivator of transcription, Tat, protein. These viral proteins have received attention 

as their expression or circulating levels in the bloodstream are not affected by 

antiretroviral treatment. Moreover, the ability for these proteins to form reservoirs in the 
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brain, where antiretrovirals are mostly unable to penetrate, may allow for further 

damage to be caused. The focus of certain studies within this dissertation surrounds 

HIV-1 Tat protein expression. 

4.1.1. HIV-1 Tat 

The HIV-1 transactivator of transcription, or Tat, protein is a viral neurotoxic 

protein that regulates HIV-1 transcription and replication. Tat can be secreted by intact, 

infected cells, circulate in the bloodstream at nanomolar concentrations, bind to various 

target cells, cross the plasma membrane to affect host gene expression and trigger 

various responses (for review, Debaisieux et al., 2012). HIV-1 Tat protein exposure 

causes damage to dopaminergic neurons, increases pro-inflammatory cytokine 

production potentially through an NF-κB-mediated pathway, and disrupts the integrity of 

the blood-brain barrier (Andras et al., 2003; Buonaguro et al., 1992; El-Hage et al., 

2008; Kim et al., 2003; Nath et al., 2000; Nookala and Kumar, 2014). Additionally, Tat 

can induce: apoptosis, gray matter density reductions in various brain regions in mice, 

and increases in excitability of enteric neurons (Carey et al., 2013; New et al., 1997; 

Ngwainmbi et al., 2014). 

HIV-1 Tat expression in rodents has demonstrated effects on behavioral 

measurements as well. HIV-1 Tat exposure in rodents has been shown to impair 

learning, memory, and motor ability, as well as increase anxiety and alter drug effects, 

such as from cocaine and morphine (Carey et al., 2012; Fitting et al., 2012; Hahn et al., 

2013; Harrod et al., 2008; Li et al., 2004; Paris et al., 2013). HIV-1 Tat expression in 

female and male mice has shown to decrease locomotor activity, albeit to a greater 

degree in males, as well as disrupt cocaine-induced sensitization in ovariectomized rats 
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receiving intra-accumbal microinjections of Tat (Hahn et al., 2015; Harrod et al., 2008). 

Additionally, deficits in PPI have been reported in HAND patients (Minassian et al., 

2013). HIV-1 proteins have been studied in sensorimotor gating procedures using 

preclinical rodent models. For example, PPI deficits have been observed in female HIV-

1 transgenic rats generated to express seven of the nine viral proteins, in neonatal or 

adult rats that received intra-hippocampal Tat injections, and in Tat-expressing mice 

(Fitting et al., 2006a; Fitting et al., 2006b; Moran et al., 2013; Paris et al., 2015). 

Moreover, neonatal gp120 intra-hippocampal injections in rats altered other 

sensorimotor gating-related measurements such as reduced latency to the peak of the 

acoustic startle response (Fitting et al., 2007). As mentioned previously, HIV-1 Tat has 

been shown to directly alter behavioral effects of drugs of abuse and the focus of this 

dissertation is Tat’s interactions with opioids. 

4.1.2. HIV-1 Tat interacts with opioids 

There is evidence linking HIV-1 infection and the modulation of the opioid system 

to translate to changes in behavioral outcomes, such as antinociception and abuse-

related behaviors. It is known that opioid abuse can increase the risk of HIV-1 infection 

through needle-sharing, but opioids have also been reported to accelerate HIV-1 

infection to AIDS and worsen associated impairments (Arora et al., 1990; Donahoe and 

Vlahov, 1998). In non-human primates infected with simian immunodeficiency virus 

(SIV), chronic morphine was found to worsen performance on behavioral measures 

such as motor skill (Marcario et al., 2016). Despite this, opioids are still considered as a 

major line of therapy for treating HIV-associated neuropathic pain. This is concerning 

considering in healthy human volunteers who received administration of antiretroviral 
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medication, ritonavir or the combination of ritonavir and lopinavir, increased oxycodone 

plasma concentrations and an increased elimination half-life of oral oxycodone was 

observed, which may lead to accidental overdose or undertreatment of pain in HIV-

infected individuals receiving both opioids and antiretroviral therapy (Nieminen et al., 

2010). Moreover, through the synthesis and characterization of bivalent ligands, there is 

evidence to suggest the existence of dimerization of MORs with others such as the 

chemokine receptor 5 (CCR5), an important co-receptor for HIV-1 infection, which may 

subsequently affect pain modulation, opioid sensitivity, as well as  HIV-1 

neuropathology (Akgun et al., 2015; Arnatt et al., 2016; Yuan et al., 2013). 

The worsened impairments by opioids are suggested to be due to exacerbation 

of neurotoxic effects of the viral proteins gp120 or Tat leading to microglial activation, 

neuroinflammation, and neuronal damage which may accelerate neurocognitive deficits 

(El-Hage et al., 2005; Fitting et al., 2010; for review, Hauser et al., 2012; Hauser et al., 

2009; Hu et al., 2005; Zou et al., 2011). Tat expression and morphine co-exposure 

worsens oligodendrocyte survival, increases cellular expression of opioid receptors, and 

prevents down regulation of cell surface opioid receptors in microglia (Hauser et al., 

2009; Turchan-Cholewo et al., 2008). Moreover, morphine exposure significantly 

worsens Tat-mediated reduction of spine density in striatal medium spiny neurons, 

increases glial activation, increases neuronal loss, and increases pro-inflammatory 

chemokine/cytokine production (Bruce-Keller et al., 2008; El-Hage et al., 2008; El-Hage 

et al., 2005; Fitting et al., 2010; Gurwell et al., 2001). Similar effects have been 

observed with the MOR agonists methadone and buprenorphine, but to varying degrees 

to where morphine showed the most robust effects (Fitting et al., 2014). Finally, HIV-1 
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Tat has been shown to interact with cocaine to potentiate its abuse-related behavioral 

effects and alter morphine efficacy as measured by antinociception and rotarod 

performance assays (Fitting et al., 2012; Harrod et al., 2008; Paris et al., 2014a). 

Despite this, there are no studies examining the abuse-related behavioral effects of 

HIV-1 Tat expression with the clinically relevant MOR agonist, oxycodone. Moreover, 

given oxycodone’s different pharmacological profile than that of morphine, 

characterization of Tat’s effects on oxycodone’s abuse-related effects is needed to 

better clarify its interactions with opioids.  

5. Rationale 

Drug self-administration, physical dependence, and locomotor sensitization are 

effects pertinent to the abuse-related properties of drugs that can be studied in 

laboratory animals. Oxycodone’s preclinical abuse-related effects have been minimally 

characterized, and in order to investigate potential interactions of HIV-1 Tat protein with 

this opioid's effects, development of new methodologies and further characterization of 

oxycodone's effects are needed. New methodologies would also facilitate future 

evaluation of potential pharmacotherapies and mechanisms of oxycodone dependence. 

The establishment of oxycodone oral self-administration methodology is critical 

for evaluating determinants of oxycodone's abuse through the oral route especially 

considering the use of this route clinically. Self-administration requires volitional drug 

consumption. HIV-1 Tat-expressing mice have not been examined under conditions 

involving the volitional consumption of any opioid. Therefore, developing oxycodone oral 

self-administration methodologies would enable examinations of the interactions of 

oxycodone and mouse models of diseases, such as neuroAIDS. 
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There have been few published reports describing regimens to examine 

oxycodone physical dependence in the mouse and most have used invasive 

techniques, such as implantation of osmotic mini-pumps. Moreover, in previous studies 

physical dependence upon oxycodone has been inferred by subjective measurements 

such as by observer counts of somatic signs of withdrawal. Disruptions of the acoustic 

startle response has been used previously to measure withdrawal effects indicative of 

morphine dependence in rodents, but has not been explored with other opioids, 

including oxycodone. Use of this objective, quantifiable dependent measure to infer 

oxycodone dependence-related effects would eliminate potential observer variability 

and bias, and facilitate analysis. Moreover, this would provide a rapid procedure to 

examine the interactions of HIV-1 Tat on oxycodone dependence-related effects as well 

as for other applications such as to screen potential pharmacotherapies.  

Locomotor activity is typically increased in rodents after mu-opioid agonist 

administration and opioids can generate locomotor sensitization. Locomotor 

sensitization has been associated with motivational sensitization and the abuse liability 

of drugs. Further investigation of oxycodone’s effects on locomotor activity and its 

sensitization is needed to better understand determinants of its use. Importantly, 

characterization of the effects of HIV-1 Tat expression on oxycodone-induced locomotor 

sensitization is important to determine how they interact. This might then assist in 

determining the underlying mechanisms behind opioid’s deleterious effects in HAND-

related impairments and serve as guidance for physicians to express further caution 

when prescribing opioids as a line of therapy for pain in HIV-infected individuals. 
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6. Hypothesis 

There are two major objectives of this dissertation. One objective is to establish 

methodologies in order to further evaluate oxycodone's abuse-related effects in the 

mouse. A second major objective is to use these methodologies to investigate 

oxycodone’s interactions with HIV-1 Tat expression in the doxycycline-inducible, HIV-1 

Tat-expressing mouse. Opioid misuse is a risk factor for HIV infection and its chronic 

use by HIV-infected individuals is accompanied by worsened progression to AIDS, 

cellular damage and behavioral deficits. HIV-1 Tat has been shown to alter the abuse-

related effects of other drugs, such as cocaine, and morphine has shown to interact with 

HIV-1 Tat to worsen neuronal pathology. Therefore, the central hypothesis of this 

dissertation is that long-term co-exposure to oxycodone and HIV-1 Tat in mice will 

augment the abuse-related behavioral effects of oxycodone. 

7. Research Approach 

1) Establish oxycodone's oral self-administration in C57BL/6J mice 

2) Identify regimens of oxycodone administration that will induce physical 

dependence in C57BL/6J mice 

3) Evaluate the acoustic startle response as a measure of oxycodone 

dependence in C57BL/6J mice 

4) Evaluate the effects of HIV-1 Tat expression on oral oxycodone self-

administration and dependence as measured by acoustic startle 

5) Determine the effect of HIV-1 Tat expression on acute and chronic 

oxycodone-induced hyperactivity and opioid locomotor sensitization
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 Chapter II: Oxycodone physical dependence and its oral self-administration in 

C57BL/6J mice1 

  
  
  

 

1. Introduction 

 The oral route of administration is the most commonly used route for the use and 

misuse of the highly abused prescription opioid oxycodone (Kirsh et al., 2012). 

Oxycodone differs in its pharmacological profile from morphine in several manners, 

including its high oral bioavailability, and therefore the mechanisms behind oxycodone 

dependence may differ. At present, the only known report of an oral opioid self-

administration procedure in mice lies with the highly potent opioid etonitazene (Elmer et 

al., 1995). Therefore, the purpose of the present study was to establish an oral 

oxycodone operant self-administration procedure in C57BL/6J mice to enable further 

investigations of oxycodone’s abuse-related effects and their treatment using a route of 

administration that coincides with a popular medical and nonmedical route of its 

administration. Another objective of this study was to establish a regimen for reliably 

and efficiently inducing physical dependence upon oxycodone in C57BL/6J mice, and to 

determine the sensitivity of dependence to precipitated withdrawal. Together, these 

novel procedures and regimens would define critical methodology in which to later lead 

                                            
1
 Some content in Chapter II is adapted from Eur J Pharmacol, 2016,789:75-80  
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to the investigation of abuse-related behavioral interactions of HIV-1 Tat expression and 

oxycodone. 

2. Methods 

2.1. Subjects 

 Male C57BL/6J mice were obtained at approximately 8 weeks of age (The 

Jackson Laboratory, Bar Harbor, ME) and were allowed to acclimate to the vivarium for 

at least one week prior to commencement of training and testing. Mice were housed in 

an AALAC-accredited animal facility, kept on a 12-h/12-h light/dark cycle (lights on from 

06:00 to 18:00 hours), and given water ad libitum. Mice in oral self-administration 

studies were provided daily allotments of chow (7012 Teklad LM-485 Mouse/Rat 

Sterilizable Diet, Harlan Laboratories Inc., Indianapolis, IN), sufficient to maintain them 

at 85% of their free-feeding weight, whereas mice in physical dependence procedures 

were given ad libitum access throughout the study. All procedures were conducted 

during the light phase and were in accordance with the “Guide for the Care and Use of 

Laboratory Animals” (Institute of Laboratory Animal Resources, National Academy 

Press, 2011), and were approved by the Institutional Animal Care and Use Committee 

of Virginia Commonwealth University. 

2.2. Oral operant self-administration 

2.2.1. Apparatus 

Sixteen mouse operant chambers (MED Associates, Inc., St. Albans, VT) 

enclosed in sound- and light-attenuating cubicles equipped with a viewing peep hole 
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were used for this study. Each operant chamber contained a house light mounted on 

the rear wall, a Sonalert® tone-generating device, and panels of cue lights mounted 

above two response levers between which was positioned a well into which a drinking 

cup was positioned. Vendor-supplied drinking cups were replaced with fabricated dipper 

cups into which were soldered stainless steel liquid delivery tubes. Attached to each 

stainless steel delivery tube was silicone tubing (0.79 mm ID/ 3.99 mm OD; Helix 

Medical, Carpinteria, CA) that was routed behind the operant chamber and attached to 

a syringe that when compressed by a Razel Model R-ES syringe infusion pump (Razel 

Scientific Instruments, St. Albans, VT), delivered 20 ul of liquid. Recording of lever 

presses, activation of house and cue lights, sonalerts, and syringe pumps were 

accomplished via computer-controlled circuitry and software (MED-PC IV, MED 

Associates, Inc., St. Albans, VT). 

2.2.2. Procedure 

The overall procedure was adapted and modified as previously described by 

Meisch and collaborators that had been used to establish the highly potent opioid, 

etonitazene, as an oral reinforcer in rats and mice (Beardsley and Meisch, 1981; Elmer 

et al., 1995; Meisch and Kliner, 1979). Training and testing proceeded according to the 

following phases: 1) Post-prandial induction of water reinforcement; 2) Post-prandial 

induction of increasing concentrations of oxycodone; 3) Maintenance of OXY 

consumption without prandial induction. 
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2.2.3. General training and testing conditions 

Mice were trained and tested daily during 3-h experimental sessions that began 

each day between 11:00 and 11:45 hours. Mice were transported from the vivarium to 

their testing rooms in their home cages, and weighed. During the 1.5-h period 

immediately prior to the experimental session, daily portions of chow or access to water 

bottles were provided or not depending upon the phase of the study (see below). 

2.2.4. Phase I: Post-prandial induction of water reinforcement 

 Daily chow allotments were provided in the home cages during the 1.5-h pre-

session period to induce thirst. Any uneaten chow was placed on the floor of the 

operant chambers during experimental sessions, and any uneaten chow at the end of 

the session was returned to the mice when returned to their vivarium home cages. Mice 

were initially trained to press the right lever reinforced with deliveries of water according 

to a fixed-ratio 1 (FR1) reinforcement schedule, with the ratio requirement progressively 

increasing to a FR4 as individual performance permitted. Presses of the left lever prior 

to completion of the fixed ratio contingency reset the ratio requirement, but otherwise 

were without scheduled consequences. At the initiation of each liquid delivery, the 

Sonalert® sounded and the cue lights above the right-side lever were illuminated for 6 

s. During the 6-s reinforcement period, lever presses were not counted toward 

completing the FR4 contingency, but were recorded. 

2.2.5. Phase II: Post-prandial induction of increasing concentrations of oxycodone 

 After performances of the mice had stabilized in which there were no increasing 

or decreasing trends in the number of water deliveries across three consecutive 
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experimental sessions, water was replaced with increasing concentrations of oxycodone 

aqueous solutions (0.056, 0.1, 0.3, 0.56, and 1.0 mg/ml) under FR4 reinforcement 

contingencies and post-prandial conditions. Five experimental sessions were conducted 

at each concentration before advancing to the next phase. Testing was completed in an 

uninterrupted order up to 0.56 mg/ml that was interrupted by a brief winter holiday (1 

day) after which the mice were put through a re-training period and tested at the highest 

concentration, 1 mg/ml, before moving onto the next phase. 

2.2.6. Phase III: Maintenance of OXY consumption without prandial induction 

 Deliveries of 1 mg/ml oxycodone solutions continued to be available according to 

FR4 reinforcement contingencies. Uneaten pre-session chow was no longer provided 

during experimental sessions, but instead was given post session in the home cages. 

After five experimental sessions had occurred, pre-session feedings were reduced to 

50, 25, and finally 0% of the total daily food allotment with each reduction in effect for 

five consecutive experimental sessions. Any uneaten chow, and the complement to 

provide 100% of their total daily food allotment, was provided after experimental 

sessions in the home cages. Mice were then maintained on 1 mg/ml OXY during test 

sessions without prior prandial induction. 

2.3. Physical dependence 

In separate groups of male C57BL/6J adult mice, oxycodone was administered 

subcutaneously for eight days with increasing doses of oxycodone of 9, 17.8, 23.7, and 

33 mg/kg b.i.d. (~7-h separating injections) on days 1–2, 3–4, 5–6, and 7–8, 

respectively, and then on the morning of the 9th day was administered 33 mg/kg 
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oxycodone followed 2-h later with an injection of either 0.1, 1, 3 or 10 mg/kg s.c. 

naloxone.  A separate group of mice was administered saline instead of oxycodone for 

eight days, and were challenged with 10 mg/kg s.c. naloxone on Day 9. Immediately 

following naloxone injections, mice were individually placed in Plexiglas cages and were 

observed and scored for manifestation of somatic signs of withdrawal including the total 

number of jumps, wet dog shakes, paw tremors, backing, ptosis and diarrhea for 30-min 

using methods previously reported in testing morphine-dependent mice (Muldoon et al., 

2014). Changes in body weight (g) immediately before and 30-min after naloxone 

injections were also recorded. All testing was conducted in a blind manner. 

2.4. Drugs 

Oxycodone HCl (Mallinckrodt Inc., St. Louis, MO) was initially prepared in an 

aqueous sterile stock solution of 10 mg/ml for self-administration studies, which was 

then diluted with deionized water to make working solutions for oral self-administration 

tests of 0.056, 0.1, 0.3, 0.56, and 1.0 mg/ml. For physical dependence studies, 

oxycodone was prepared in a sterile stock solution of 10 mg/ml in non-heparinized 0.9% 

saline before diluting in sterile saline to make working solutions in the following 

concentrations: 0.09, 1.78, 2.37, and 3.3 mg/ml. Naloxone HCl (Sigma-Aldrich, St. 

Louis, MO) was prepared in sterile 0.9% saline to make working solutions in the 

following concentrations: 0.01, 0.1, 0.3, and 1 mg/ml. All injections were given at a 10 

ml/kg injection volume. 
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2.5. Data analysis 

For self-administration tests, numbers of liquid deliveries as well as active and 

inactive lever (i.e., non-reinforced) presses were recorded. A two-tailed, paired t-test 

was used to compare number of liquid deliveries before and after complete removal of 

pre-session feeding. For physical dependence tests, somatic signs and body weight 

changes indicative of withdrawal were scored quantitatively by a blinded research 

assistant and used as dependent measures. Individual one-way ANOVA tests were 

conducted to analyze somatic signs of withdrawal. All data were analyzed and graphed 

using microcomputer software (Prism 6 for Windows, GraphPad Software, Inc., San 

Diego, CA), and all types of comparisons were considered statistically significant if 

p<0.05. 

3. Results 

3.1. Oral operant self-administration 

3.1.1. Post-prandial induction of oxycodone self-administration 

Mice learned to lever press reinforced with water delivery under post-prandial 

conditions before introduction of oxycodone availability (Fig. 1, empty symbols). Little 

change in the number of lever presses (Fig. 1A) or in the number of liquid deliveries (Fig 

1B) occurred when 0.56 and 0.1 mg/ml of oxycodone were available. With further 

increases beyond 0.1 mg/ml in oxycodone concentration, numbers of reinforced lever 

presses and the number of deliveries obtained decreased. Numbers of presses of the 

left-side (unreinforced) lever were low, and unsystematically related to oxycodone 

concentration, and never overlapped with the numbers of right-side (reinforced) lever 
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presses (Fig. 1A). Despite decreases in liquid deliveries with increases in oxycodone 

concentration, estimated OXY consumption (mg/kg body weight) increased (Fig. 2). 

Behavioral signs characteristic of opioid-like effects in mice, such as hyperlocomotion 

and presence of Straub tail, were observed at the two highest oxycodone 

concentrations in routine observations during and after test sessions. In addition, during 

hyperlocomotion events, mice were occasionally observed pressing the reinforced lever 

without liquid consumption before re-commencing rapid, circular movements within the 

test chamber. 

3.1.2. Oxycodone self-administration is maintained after withdrawal of prandial induction 

 After completing concentration-response tests during post-prandial oxycodone 

induction, test solutions were maintained at 1 mg/ml OXY for the remainder of the study. 

Pre-session feedings were then gradually decreased until all daily food allotments were 

given following test sessions in the home cages. As pre-session feeding was reduced, 

self-administration of OXY was maintained, and increased once all pre-session feedings 

were withdrawn (Fig. 3), although this increase was not statistically significant once pre-

session feedings were completely withdrawn (t=2.575, df=4, p=0.0616). 

3.2. Physical dependence 

The ability of naloxone (0.1, 1, 3 and 10 mg/kg) to precipitate signs of 

dependence was examined in groups of mice that were either treated with vehicle or 

oxycodone.  As seen in Figure 4, naloxone precipitated oxycodone somatic withdrawals 

signs such as jumps, paw tremors, and loss of body weight. Near-zero levels of total 

number of withdrawal signs (Fig. 4A), paw tremors (Fig. 4B), and jumps (Fig. 4C) were 
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elicited by the 10 mg/kg naloxone dose in control mice administered the saline dosage 

regimen (empty circles in Fig. 4) and they experienced little change in body weight (Fig. 

4D). In contrast, two or more of the tested naloxone doses significantly elevated these 

measures in oxycodone-treated mice (total number of signs, [F (4,44)=37.15; p<0.0001] 

(Fig. 4A); paw tremors, [F (4, 44)=5.857; p=0.0007] (Fig. 4B); jumps, [F (4,44)=27.37; 

p<0.0001] (Fig. 4C); and loss of body weight, [F (4, 44)=6.066; p=0.0006] (Figure 4D).  

Post-hoc analysis revealed that all four doses of naloxone produced significant 

increases in total number of signs and jumps, whereas 1 and 10 mg/kg naloxone 

produced significant increases in paw tremors, and only the two highest doses tested, 3 

and 10 mg/kg naloxone, significantly decreased body weight. 

4. Summary 

In oral oxycodone self-administration, as the concentration of oxycodone 

increased, the number of deliveries obtained increased before decreasing with higher 

concentrations, whereas the estimated consumption increased reaching an average 

maximum of approximately 40 mg/kg. These levels of oxycodone were sufficient to 

reach behaviorally active levels inducing mu-opioid receptor-like mediated effects in the 

mice including hyperlocomotion and Straub tail (Aceto et al., 1969; Hecht and 

Schiorring, 1979). Oxycodone was later orally self-administered to similar levels without 

the use of post-prandial conditions, suggesting, although does not definitively confirm, 

that oral oxycodone was serving as a positive reinforcer. Limitations of this study, 

including hardships endured in the investigation of reinforcement effects, as well as 

stereotypic behaviors observed in some subjects after reaching behaviorally active 

levels are discussed in depth in Chapter VI. 
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In the oxycodone physical dependence study, physical dependence upon 

oxycodone was induced in C57BL/6J mice after nine days of its b.i.d. subcutaneous 

administration as inferred by naloxone-precipitated somatic signs of opioid-like 

withdrawal syndrome. Using a wide range of naloxone doses (0.1 to 10 mg/kg), a 

naloxone dose-dependent increase in withdrawal severity was observed in number of 

paw tremors, jumps, bodyweight loss, and total number of signs. The regimen used in 

the present study therefore provides an easy novel method to accurately measure 

dependence-related effects on future behavioral endpoints. 

In summary, experimental conditions have been identified in which oxycodone 

was orally self-administered by mice in which an operant response contingency was 

required. This procedure enables future studies examining determinants of its self-

administration heretofore restricted to intravenous self-administration procedures (Wade 

et al., 2015; Zhang et al., 2009). In addition, an oxycodone administration protocol (9-

day) was identified for inducing physical dependence in mice and thus enables future 

studies examining mechanisms of the induction of dependence and the modulation of 

the expression of signs of withdrawal such as in the search for pharmacotherapeutics 

ameliorating the malaise of withdrawal. Both procedures define foundational 

methodology to be used to investigate the unique interactions of HIV-1 Tat expression 

on opioid abuse liability, specifically with the prescription opioid oxycodone. 
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5. Figures 

 

Figure 1. Effects of oxycodone concentration on the number of active and 
inactive lever presses emitted (A) and liquid deliveries obtained (B) by mice under 
post-prandial conditions during 3-h test sessions. N=15-16, with 2-5 test sessions 
per concentration. Data are expressed as mean (± S.E.M.). 
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Figure 2. Estimated consumption of oxycodone (mg/kg body weight) as a 
function of available concentration (mg/ml) under post-prandial conditions. 
Consumption was estimated based on individual subject’s daily body weight and the 
total deliveries of oxycodone obtained. N=15-16, with 2-5 test sessions per 
concentration. Each symbol represents the mean oxycodone consumption (± S.E.M.). 

 

Figure 3. Effects of removing pre-session chow on obtained 1 mg/ml oral 
oxycodone deliveries during 3-h test sessions. N=14. Data represent the mean 
number of deliveries (± S.E.M.) obtained. 
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Figure 4. Naloxone precipitated somatic withdrawal signs in oxycodone 
chronically injected mice.  Behaviors scored were (A) total somatic signs (B) paw 
tremors (C) total numbers of jumps (D) body weight decrease. N=9-10/group. Data 
are expressed as mean (± S.E.M.). *P < 0.05, **P < 0.01, ***P< 0.001, ****P< 0.0001 to 
SAL-treated control mice.
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 Chapter III: The acoustic startle response and habituation, but not prepulse 

inhibition, serves as a measure of oxycodone dependence in C57BL/6J mice 

  

  

  

1. Introduction 

The acoustic startle response (ASR) is an immediate, reflexive response to a 

loud acoustic stimulus and is often used in the initial behavioral phenotypic 

characterization of rodents with genetic manipulations. It has also been used to 

evaluate how drugs of abuse alter sensory excitability and habituation, and has 

previously been found to be sensitive to precipitated withdrawal from morphine (Davis, 

1980; Harris and Gewirtz, 2004; Mansbach et al., 1992). The use of acoustic startle to 

measure dependence-related effects has advantages relative to other measures due to 

its sensitive, quantifiable nature that is not compromised by subjective bias as is 

possible in traditional measurements of somatic signs of withdrawal. At the present 

time, to my knowledge, there are no published reports describing the effects of 

oxycodone on the ASR or its related measures in either the preclinical or clinical 

literature. Therefore, this study was conducted to determine the ability for the ASR to 

reliably measure oxycodone dependence in C57BL/6J mice.  
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Additionally, the nonspecific effects of the tetracycline derivative doxycycline 

were investigated for reasons that are two-fold. First, there is widespread use of 

doxycycline (via injection or infused chow administration) in animal models employing 

the use of the “tet on” system of genetic expression for a protein of interest and its 

nonspecific behavioral effects must be evaluated and reported to better understand 

more sophisticated behavioral effects in these animal models. This method of 

expression, for example, is the basis for the HIV-1 Tat mouse model of neuroAIDS 

discussed in subsequent chapters. Secondly, and also as important, there is growing 

evidence of antibiotics altering characteristics of classical opioids, such as morphine, 

and other drugs of abuse in both preclinical and clinical assessments (Hutchinson et al., 

2008; McIver et al., 2012; Syapin et al., 2016). For example, oral gavage of various 

antibiotics to mice significantly prevented morphine antinociceptive tolerance as 

assessed by warm water tail-immersion and acetic acid stretch assays (Kang et al., 

2017). Moreover, morphine dependence, as inferred by naloxone-precipitated jumping, 

was attenuated by administration of the beta-lactam antibiotic ceftriaxone (Habibi-Asl et 

al., 2014). Therefore, doxycycline’s interactions with the expression of oxycodone 

dependence, as well as its nonspecific effects, were assessed in C57BL/6J mice. These 

tests would provide the critical control measures for subsequently investigating the role 

of HIV-1 Tat expression on oxycodone abuse-related behavioral effects. 

2. Methods 

2.1. Subjects 

Male C57BL/6J (“B6”) mice were obtained at approximately 8 weeks of age (The 

Jackson Laboratory, Bar Harbor, ME) and were allowed to acclimate to the vivarium for 
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at least one week prior to commencement of training and testing. Mice were housed in 

an AALAC-accredited animal facility, kept on a 12-h/12-h light/dark cycle (lights on from 

06:00 to 18:00 hours), and given ad libitum access to water and standard rodent chow 

(7012 Teklad LM-485 Mouse/Rat Sterilizable Diet, Harlan Laboratories Inc., 

Indianapolis, IN). The investigation of doxycycline’s effects were evaluated in separate 

groups of mice fed an ad libitum diet consisting of 6 g of doxycycline (“DOX”) per kg of 

chow (Harlan Industries Inc., Indianapolis, IN) beginning immediately after preliminary 

baseline tests and for the duration of the studies. All procedures were conducted during 

the light phase and were in accordance with the “Guide for the Care and Use of 

Laboratory Animals” (Institute of Laboratory Animal Resources, National Academy 

Press, 2011), and were approved by the Institutional Animal Care and Use Committee 

of Virginia Commonwealth University. 

2.2. Overall procedure 

 The overall procedure for these studies followed our previously established 

methodologies for oxycodone (“OXY”) physical dependence induction as well as 

acoustic startle and locomotor activity testing with minor modifications (Enga et al., 

2016; Enga et al., 2017). Mice were first tested in a preliminary ASR and locomotor 

activity baseline test (i.e., “Baseline I”). Two weeks later, mice were re-tested during 

which an acute saline (“SAL”) injection was administered immediately prior to both 

startle and locomotor tests to establish a second baseline (i.e., “Day 0/SAL”). Chronic 

SAL or OXY b.i.d. subcutaneous injections then began as outlined in Figure 5. Two 

hours after the Day 9 morning (“AM”) injection (33 mg/kg), mice received an acute 

subcutaneous injection of SAL immediately prior to both startle and locomotor tests to 
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determine its effects on behavior that would enable subsequent comparisons to 

naloxone challenge, and which consequentially also captured the effects of chronic 

OXY administration up to that point. The next day on Day 10, 2 h after receiving an AM 

injection of OXY (33 mg/kg) an acute subcutaneous injection of naloxone (“NLX”, 1 

mg/kg) was administered immediately prior to startle and locomotor tests to determine if 

this opioid antagonist would precipitate effects indicative of dependence. Within this 

chapter, the term “naloxone-challenge” on Day 10 is used interchangeably with 

“precipitated withdrawal”, as this regimen demonstrated naloxone dose-dependent 

increases in somatic signs of withdrawal, as discussed in Chapter II. Bodyweights were 

recorded at the beginning of each day, and immediately following behavioral testing on 

Days 9 and 10, as changes in bodyweight has been used to infer dependence upon 

opioids (Aceto et al., 1985; Martin et al., 1963). This chapter discusses results from 

acoustic startle tests; results from locomotor activity tests will be discussed in Chapter 

V. 

2.2.1. Investigation of nonspecific effects of doxycycline and its effects on the 

expression of oxycodone dependence 

To assess the effects of DOX, groups of B6 mice (n=8/group) were tested under 

baseline conditions with REG chow, and then either maintained on REG chow or 

switched to DOX chow and re-tested after 2, 9, 16, 30, and 58 days. To test interactions 

of DOX and oxycodone dependence, the oxycodone dependence and testing regimen 

described earlier in this chapter (shown in Figure 5) was used in DOX-maintained B6 

mice. Here, after baseline I tests, mice were switched to and maintained on a DOX diet 
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to permit the characterization of DOX’s effects on oxycodone dependence expression, 

its interactions with NLX , and its nonspecific effects on acoustic startle.  

2.3. Acoustic startle apparatus 

Startle responses were measured using eight commercially-supplied startle 

chambers (San Diego Instruments, San Diego, CA). Chambers were ventilated and 

illuminated, and contained a clear, nonrestrictive Plexiglas® cylindrical animal enclosure 

secured on a platform. Acoustic stimuli were presented through a loud speaker that was 

located directly above the animal enclosure. Mouse startle movements were transduced 

by a piezoelectric sensor attached to the bottom of the animal enclosure platform, which 

were digitized and recorded by a computer. Beginning with the onset of the startle pulse 

(STIM) for each trial, 1000 readings were taken at 1-ms intervals. To ensure accuracy of 

sound levels and stabilimeter sensitivity, routine (at least monthly) calibrations were 

conducted throughout the study. 

2.4. Procedure 

A test session consisted of 75, 200-ms trials, with five trial types: STIM alone, 

73pp (i.e., "73dB prepulse")+STIM, 77pp+STIM, 85pp+STIM, and NO STIM. Both 

prepulse and pulse stimuli were 20-ms in duration, with an interstimulus interval of 100-

ms between the onset of their presentations, and an intertrial interval average of ~15-s 

across the session (range: 10-20-s). The STIM intensity was set at 119 dB, while 

prepulses were set at 4, 8, and 16 dB above the background level of 69 dB (i.e., 73, 77, 

and 85 dB). During NO STIM trials, mice were subjected to only the background level of 

noise. A test session was initiated with a 5-min acclimation period to the background 
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level of noise before the presentation of five STIM alone trials. Following this, 13 

replicates of all trial types were presented in a mixed sequence to prevent consecutive 

presentation of identical trial types and possible habituation to trial types. Test sessions 

ended with five STIM alone trials. Total session time was approximately 30 min. 

2.5. Drugs 

Oxycodone HCl (Mallinckrodt Inc., St. Louis, MO) was initially prepared in a 

sterile stock solution of 10 mg/ml in non-heparinized 0.9% saline before diluting in 

sterile saline to make working solutions in the following concentrations: 0.09, 1.78, 2.37, 

and 3.3 mg/ml. Naloxone HCl (Sigma-Aldrich, St. Louis, MO) was prepared in sterile 

0.9% saline to make working solution at 0.1 mg/ml.  All injections were given at a 10 

ml/kg injection volume and there was a seven hour period between any AM and PM 

injections. AM injections occurred between 08:00 and10:00 hours and PM injections 

occurred between 15:00 and 17:00 hours. 

2.6. Data analysis 

For analyses of startle response, the startle magnitude for the “STIM alone” trial 

type was averaged across replicates. For PPI, startle magnitude for each trial type was 

averaged across replicates and these averaged magnitudes were used to calculate 

%PPI with the following formula: 100x[(STIM alone-prepulse)/(STIM alone)]. Habituation 

was inferred by measuring the %decrease in startle reactivity where, using the average 

startle magnitudes of the first and last five STIM alone trials of the session, %decrease 

in startle reactivity was calculated using the following formula: 100x[(First STIM alone -

Last STIM alone)/First STIM alone)]. Data were analyzed using a two-way ANOVA, with 
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a within-subject factor of "day" and between-subject factor of "group". Within- and 

between-group comparisons were made using Bonferroni post-hoc tests where 

appropriate. All statistical tests were conducted using microcomputer software (Prism 6 

for Windows, GraphPad Software, Inc., San Diego, CA), and all types of comparisons 

were considered statistically significant if p<0.05. 

3. Results 

3.1. Acoustic startle response serves as a measure of oxycodone dependence 

Baseline I and baseline II (i.e., “Day 0/SAL”) startle responses did not differ 

between SAL and OXY groups (not shown). There was a significant main effect of day 

[F (2, 36)=25.03; p<0.0001] as well as a significant interaction between day and group 

[F (2, 36)=13.95; p<0.0001]. Post-hoc analysis revealed chronic OXY significantly 

increased the ASR as compared to Day 0/SAL (p=0.0004) and NLX-precipitated 

withdrawal significantly decreased startle (p=0.0003 vs Day 0/SAL; p<0.0001 vs Day 

9/SAL) as shown in Figure 6A. There were, however, no significant differences between 

SAL- and OXY-treated groups at any timepoint. In habituation analyses, there was a 

significant main effect of group [F (1, 18)=11.02; p=0.0038] as well as a significant 

interaction of group and day [F (2, 36)=4.197; p=0.0230]. In SAL-treated mice, there 

was no difference across days in habituation (Fig. 6B). In OXY-treated mice, chronic 

OXY did not affect habituation, however its precipitated withdrawal significantly reduced 

habituation (p<0.05 vs Day 0/SAL and Day 9/SAL; p=0.0003 vs SAL-treated mice).  

In PPI analyses, there was a significant main effect of prepulse intensity on all 

days tested [Day 0/SAL: F (2, 36)=56.37; p<0.0001; Day 9/SAL: F (2, 36)=75.29; 
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p<0.0001; Day 10/NLX: F (2, 36)=32.40; p<0.0001]. In SAL-treated mice, PPI increased 

over days tested and was significantly different from Day 0/SAL on Days 9 and 10, but 

only at the 77dB prepulse intensity (Day 9: p=0.0132 vs Day 0/SAL; Day 10: p=0.0044 

vs Day 0/SAL). In OXY-treated mice, PPI did not change as a result of chronically 

administered OXY nor its precipitated withdrawal. There were significant between-group 

differences at Days 9 and 10 at all prepulse intensities (see Table 1 for individual p-

values). 

3.2. Effects of doxycycline on acoustic startle 

At baseline, REG-fed mice had non-significantly higher (p=0.06) startle 

magnitudes relative to DOX-fed mice (Fig. 7A). Over the course of 58 days, only on day 

2 was there a significant difference in startle magnitude between the two groups with 

the REG-fed mice having a greater startle magnitude than the DOX-fed mice. The ASR 

of the mice did not significantly change as a result of time in either the DOX-fed or REG-

fed mice although there was a non-significant decreasing trend in startle magnitude in 

the REG-fed mice that converged towards levels exhibited by the DOX-fed mice. 

Habituation was unaffected over time in either group (Figure 7B). As shown in Figure 8, 

PPI did, however, significantly increase over time in both REG- and DOX-fed groups at 

all prepulses and to similar degrees [73pp: F(5, 70)=11.88, p<0.0001; 77pp: F 

(5,70)=12.27, p<0.0001; 85pp: F (5, 70)=8.997, p<0.0001].  

3.3. Effects of doxycycline on the expression of oxycodone dependence 

Similar to the previously discussed REG-fed groups of C57BL/6J mice, there 

were no statistical differences between DOX-fed SAL- or OXY-designated groups in the 
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baseline I or Day 0/SAL tests on acoustic startle (not shown). After chronic OXY, there 

was a significant main effect of day [F (2, 36)=6.134; p=0.0051], as well as a significant 

interaction of day and group [F (2, 36)=8.232; p=0.0011]. There was a lack of effect of 

DOX alone on startle, as there were no changes across tests in SAL-treated mice. 

Unlike REG-fed mice, post hoc analysis did not reveal a significant difference in 

acoustic startle after chronic OXY administration. Naloxone-precipitated withdrawal, 

however, did result in a significant decrease in startle as shown in Figure 9A (p=0.0006 

vs Day 0/SAL; p<0.0001 vs Day 9/SAL). This decrease was also lower than SAL-treated 

mice, although nonsignificantly so (p=0.057). In habituation, there was a lack of a 

significant main effect of both day (p=0.11) and group (p=0.072). Moreover, there was 

no significant change in habituation in the SAL-treated group. Similar to REG-fed mice, 

chronic OXY did not affect habituation; however, its precipitated withdrawal did 

significantly decrease habituation as shown in Figure 9B (p=0.027 vs Day 0/SAL; 

p=0.023 vs SAL-treated mice).  

There was a significant main effect of prepulse intensity on all days tested [Day 

0/SAL: F (2, 36)=37.18; p<0.0001; Day 9/SAL: F (2, 36)=35.21; p<0.0001; Day 10/NLX: 

F (2, 36)=26.79; p<0.0001]. In SAL-treated mice, there was a lack of change in %PPI 

across days as shown in Table 2, suggesting a lack of an effect of doxycycline alone on 

PPI. Similar to REG-fed mice, there was a lack of an effect of chronic OXY and its 

precipitated withdrawal on PPI in DOX-fed mice. 

In regards to body weight loss measurements as a separate index of physical 

dependence upon oxycodone, body weight was measured at the beginning of Day 9 

and Day 10 as well as at the conclusion of behavioral testing on those days (i.e., a 3.5-h 
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span between body weight measurements). For both REG- and DOX-fed mice, 

bodyweight loss was decreased after testing on both Days 9 and 10, in both SAL- and 

OXY-treated groups. This decrease was to a greater degree in OXY-treated groups 

after naloxone challenge (not shown). However, there was only a significant difference 

between Days 9 and 10 or between SAL and OXY groups in DOX-fed mice (p<0.05). 

That is, body weight loss did not serve as a reliable, additional indicator of physical 

dependence upon OXY in this study, most likely due to the large timespan and 

behavioral testing between measurements. 

4. Summary 

 Nine days of oxycodone administration to C57BL/6J mice fed a REG-chow diet 

produced a significant increase in the acoustic startle response, whereas naloxone-

precipitated withdrawal resulted in a significant decrease in startle. Habituation, on the 

other hand, was only affected by naloxone-challenge as shown by its significant 

decrease shown on Day 10/NLX. PPI was unaltered by either chronic oxycodone 

administration as well as precipitated withdrawal. 

 Doxycycline alone did not affect acoustic startle, habituation, or PPI up to 58 

days of exposure in C57BL/6J mice. Unlike REG-fed mice, feeding doxycycline 

appeared to prevent OXY-induced increases in startle, although naloxone-challenge 

significantly decreased startle as well as habituation in both groups. Also similar in both 

groups, PPI was unaffected after both chronic oxycodone administration as well as 

precipitated withdrawal. 

 In summary, this study demonstrated the ability of the acoustic startle response 

to serve as a sensitive index of oxycodone dependence. Habituation, but not PPI, also 
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was responsive to apparent precipitated withdrawal conditions. These findings support 

the use of the startle response as an objective and quantifiable procedure to evaluate 

oxycodone dependence-related effects. Moreover, the results with doxycycline tests 

support the use of this tetracycline derivative for transgenic mouse models without 

important concerns of its nonspecific effects on abuse-related behavioral measures. 

Therefore, a novel and reliable procedure for the future evaluation of oxycodone 

dependence-related effects in mice expressing the neurotoxic HIV-1 Tat protein was 

established.
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Table 1. Mean %PPI for all prepulse intensities at each test day in REG-fed 
C57BL/6J mice. 

 

a P<0.05 to Day 0/SAL 
b Significant difference was found between SAL- and OXY-treated mice 
 

Table 2. Mean %PPI for all prepulse intensities at each test day in DOX-fed 
C57BL/6J mice. 
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5. Figures 

 

 

Figure 5. Conditions of the oxycodone physical dependence and testing regimen. 
Mice (n=10/group) were first tested in a preliminary behavioral baseline acoustic startle 
and locomotor activity (“LA”) test and then re-tested under similar conditions two weeks 
later before receiving chronic (10-day) administration of saline (SAL) or oxycodone 
(OXY). Bodyweights (g) were measured at the beginning of each day, and after testing 
on Days 9 and 10. 
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Figure 6. Acoustic startle response (A) and habituation (B) after chronic OXY and 
during naloxone challenge (precipitated withdrawal) in adult, male C57BL/6J 
mice. N=10/group. Data represent the mean startle amplitude (± S.E.M.) or the mean (± 
S.E.M.) percent decrease in startle reactivity within a 30-min test session.  *P<0.05, 
***P<0.001 to Day 0/SAL and $P<0.05, $$$$P<0.0001 to Day 9/SAL. 
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Figure 7. Acoustic startle response (A) and habituation (B) across feeding days 
for REG- or DOX-fed C57BL/6J mice. N=8/group. Data represent the mean startle 
amplitude (± S.E.M.) or the mean (± S.E.M.) percent decrease in startle reactivity within 
a 30-min test session. $$P<0.01 to DOX-fed mice. 
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Figure 8. Percent prepulse inhibition over time with 73 dB (A), 77 dB (B), and 85 
dB (C) prepulse level intensities for REG- or DOX-fed C57BL/6J mice. N=8/group. 
Data are represented as the mean %PPI (± S.E.M.).  *P< 0.05, **P<0.01, and 
****P<0.0001 to Day 0/SAL. 
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Figure 9. Acoustic startle response (A) and habituation (B) after chronic OXY and 
its precipitated withdrawal in DOX-fed adult, male C57BL/6J mice. N=10/group. 
Data represent the mean startle amplitude (± S.E.M.) or the mean (± S.E.M.) percent 
decrease in startle reactivity within a 30-min test session.  *P<0.05 to Day 0/SAL or 
SAL-treated mice, ***P< 0.001 to Day 0/SAL and $$$$P<0.0001 to Day 9/SAL. 
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 Chapter IV: HIV-1 Tat transgenic mice readily self-administer oral oxycodone but 

are resistant to physical dependence as measured by acoustic startle and 

habituation  

  
  

 
 

1. Introduction 

HIV-1 Tat expression has previously been shown to interact with opioids, 

primarily morphine, to worsen neuronal damage, increase glial activation, as well as 

dampen morphine antinociceptive responsiveness (Bruce-Keller et al., 2008; Fitting et 

al., 2010). Moreover, Tat has been shown to potentiate the rewarding properties of 

drugs of abuse, such as cocaine and ethanol (McLaughlin et al., 2014; Paris et al., 

2014a). Thus, it was hypothesized that HIV-1 Tat expression in the mouse would also 

facilitate oxycodone abuse-related behavioral effects. At present, the preclinical 

literature surrounding HIV-1 viral protein expression and operant self-administration of a 

drug is limited to two reports using intravenous cocaine or heroin self-administration and 

HIV-1 transgenic rats which express seven of the nine HIV-1 viral proteins (see Chapter 

VI for further discussion). These reports however do not address other routes of 

administration, such as the oral route. While the HIV-1 transgenic rat model may 

possess a greater clinical relevance to the neuropathophysiology of HIV-associated 

neurocognitive disorders (HAND) as a whole, it does not address the individual actions 
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of the various HIV-1 viral proteins. Isolating the individual actions of viral proteins, such 

as Tat, are essential for characterizing and understanding their contribution to the larger 

system, as well as to better understand their interactions with mechanisms of drug 

dependence. Therefore, one objective of the present study was to evaluate the effects 

of HIV-1 Tat expression on the volitional consumption (via oral self-administration) of 

oxycodone.  

 Acoustic startle and prepulse inhibition of the startle response (PPI) are reported 

to be compromised in HAND and have been found to be directly affected by HIV-1 Tat 

(Fitting et al., 2006a; Fitting et al., 2006b; Minassian et al., 2013; Moran et al., 2013). It 

is hypothesized that PPI deficits induced in HAND are attributable to attenuation of 

critical inhibitory systems, which may consequentially promote impulsive and risky 

behavior, such as drug abuse, in some patients (Minassian et al., 2013). Similar to the 

paucity of published self-administration reports, the scientific literature evaluating 

interactions of HIV-1 viral protein expression and drugs of abuse on acoustic startle and 

its related measures is limited. The only published reports involve methamphetamine 

administration and HIV-1 transgenic rats or mice expressing the envelope glycoprotein 

gp120. Although these studies utilized different rodent models, opposing PPI effects 

were found in these studies in which acute methamphetamine administration attenuated 

PPI, and withdrawal from chronic methamphetamine administration increased it (Henry 

et al., 2014; Moran et al., 2012). Using the newly developed oxycodone physical 

dependence regimen and acoustic startle testing protocol described in previous 

chapters, the second objective of the present study was to investigate the effects of 

HIV-1 Tat expression on acoustic startle, its related measures, and the interactions of 
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oxycodone dependence on these measurements. It was hypothesized that acoustic 

startle would be decreased in Tat-expressing, oxycodone-dependent mice after 

precipitating withdrawal. Moreover, it was hypothesized Tat-expressing mice would 

incur PPI deficits and to a greater degree after oxycodone administration. 

2. General Methods 

2.1. Subjects 

Male, doxycycline-inducible Tat1-86 transgenic mice were generated on a 

C57BL/6J and C3H background as described previously (Bruce-Keller et al., 2008; 

Hauser et al., 2009), and backcrossed to the C57BL/6J strain which further serves as 

rationale for the use of this strain as a useful control group for the studies within this 

dissertation. The tat transgene activity was under control of a glial fibrillary acidic protein 

(GFAP) promoter, therefore limiting expression to astroglia in the CNS. Tat protein 

expression was induced in mice positive for the tat transgene, referred to as “Tat(+)”, 

and the reverse tetracycline transactivator (RTTA) gene once placed on a diet 

consisting of 6 g doxycycline (“DOX”) per kg of chow (Harlan Laboratories, Inc., 

Indianapolis, IN). Tat(-) mice were not positive for the tat transgene, but did possess the 

RTTA gene. In oral oxycodone (OXY) self-administration studies, Tat(+) and Tat(-) mice 

(n=8/group) were maintained at an 85% free-feeding weight with daily allotments of 

standard (“REG”) rodent chow (7012 Teklad LM-485 Mouse/Rat Sterilizable Diet, 

Harlan Laboratories Inc., Indianapolis, IN)  or DOX chow, depending on the phase of 

the study as described below. During acute OXY and OXY dependence studies, Tat(+) 

and Tat(-) mice (n=10/group) were allowed ad libitum access to water and either REG 
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or DOX chow. All mice were kept under a 12-h/12-h light/dark cycle (lights on from 

06:00 to 18:00 hours) in an AAALAC-accredited animal facility. All procedures were 

conducted during the light phase and were in accordance with the “Guide for the Care 

and Use of Laboratory Animals” (Institute of Laboratory Animal Resources, National 

Academy Press, 2011), and were approved by the Institutional Animal Care and Use 

Committee of Virginia Commonwealth University. 

2.2. Oral operant self-administration 

2.2.1. Apparatus 

Sixteen mouse operant chambers (MED Associates, Inc., St. Albans, VT) 

enclosed in sound- and light-attenuating cubicles equipped with a viewing peep hole 

were used for this study. Each operant chamber contained a house light mounted on 

the rear wall, a Sonalert® tone-generating device, and panels of cue lights mounted 

above two response levers between which was positioned a well into which a drinking 

cup was positioned. Vendor-supplied drinking cups were replaced with fabricated dipper 

cups into which were soldered stainless steel liquid delivery tubes. A separate stainless 

steel liquid drainage tube was soldered to capture any liquid spillage and was funneled 

to a 1 ml microcentrifuge conical tube. Attached to each stainless steel delivery tube 

was silicone tubing (0.79 mm ID/ 3.99 mm OD; Helix Medical, Carpinteria, CA) that was 

routed behind the operant chamber and attached to a syringe that when compressed by 

a Razel Model R-ES syringe infusion pump (Razel Scientific Instruments, St. Albans, 

VT), delivered 20 ul of liquid. Recording of lever presses, activation of house and cue 

lights, sonalerts, and syringe pumps were accomplished via computer-controlled 

circuitry and software (MED-PC IV, MED Associates, Inc., St. Albans, VT). 
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2.2.2. Procedure 

The overall procedure was as we had described (Enga et al., 2016) with minor 

modifications. Training and testing proceeded according to the following phases: 1) Pre-

DOX post-prandial induction of water and OXY consumption; 2) DOX post-prandial 

induction of water and OXY consumption; 3) Post-DOX post-prandial induction of water 

and OXY consumption. Within each phase, mice were exposed to increasing 

concentrations of OXY with the final concentration of each phase being 1 mg/ml.  

2.2.3. General training and testing conditions 

Mice were trained and tested daily during 2-h experimental sessions, which were 

later shortened to 1-h, which began each day between 09:00 and 11:45 hours. Mice 

were transported from the vivarium to their testing rooms in their home cages, and 

weighed. After, began the "pre-session" period as described below. During the pre-

session period, home-cage water bottles were absent and returned immediately 

following the test session. 

2.2.4. Phase I: Pre-DOX post-prandial induction of water and OXY consumption 

 During the training component of the study, the pre-session and operant test 

session periods had durations of 1.5 and 2 h, respectively. Daily REG-chow food 

allotments were provided in the home cages during the 1.5-h pre-session period to 

induce thirst. Uneaten chow remained in the home cage during the 2-h test session. 

Mice were trained to press the active lever (lever side counterbalanced across mice), 

under a fixed-ratio 1 (FR1) that was progressively increased to a FR10 schedule of 

reinforcement reinforced with deliveries of water. Presses of the inactive lever prior to 
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completion of the fixed ratio contingency reset the ratio requirement, but otherwise were 

without scheduled consequences. At the initiation of each delivery, the Sonalert® 

sounded and the cue lights above the active lever were illuminated for 6 s. During the 6-

s reinforcement period, lever presses were not counted toward completing the FR10 

contingency, but were recorded. 

 Once mice obtained selective pressing of the lever reinforced with water delivery 

(emitted ≥80% of total presses on the active lever during the entire session) under FR10 

conditions for three consecutive sessions, and during which there were no increasing or 

decreasing trends in the numbers of deliveries obtained and deliveries during each 

session were ±20% the average of those sessions, the pre-session and operant test 

session periods were both shortened to 1-h to efficiently capture active drinking 

behavior (for rationale, see Chapter VI for discussion of stereotypic behaviors seen in 

C57BL/6J mice during 3-h test sessions). After satisfying the above criteria, increasing 

concentrations of OXY at 0.1, 0.3, 0.56, and 1 mg/ml were made available for three 

consecutive sessions each. 

2.2.5. Phase II: DOX post-prandial induction of water and OXY consumption 

 After completing the concentration-effect curve in Phase I (i.e., “Pre-DOX”), mice 

were removed from daily testing and placed on a DOX-containing diet for approximately 

two weeks before resuming testing under DOX feeding conditions. As in the Pre-DOX 

phase, testing began with water as the delivered liquid for presses at the active lever 

according to FR10 reinforcement schedules. Once mice satisfied performance criteria 

as described for the Pre-DOX phase, the oxycodone concentration-effect curve was re-

determined. 
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2.2.6. Phase III: Post-DOX, post-prandial induction of water and OXY consumption 

After completing Phase II (i.e. “DOX phase”), mice were removed from daily tests 

and were returned to REG chow feedings for one day before resuming testing under 

REG chow feeding conditions. One day was chosen for the resumption of testing as the 

half-life of doxycycline in the mouse is estimated to be approximately 2.8-h, thus 

providing an estimate of less than 0.5% of doxycycline for its body availability after 24-h 

(Bocker et al., 1981). This phase allowed the characterization of Tat expression alone 

on oral OXY self-administration, as Tat is still expressed in the mouse three weeks after 

removal of DOX chow (Ngwainmbi et al., 2014). As in the Pre-DOX and DOX phases, 

pressing the active lever according to FR10 reinforcement schedules resulted in 

deliveries of water. Once mice satisfied the previously described criteria, the oxycodone 

concentration-effect curve was re-determined. 

2.3. Acoustic startle response 

As mentioned previously, the acoustic startle response (ASR) may serve as an 

additional measure of opioid dependence. Moreover, HIV-1 Tat has been found to 

modulate acoustic startle and its prepulse inhibition. Therefore, the effects of HIV-1 Tat 

expression on acoustic startle and its prepulse inhibition was evaluated in three parts: (i) 

effects of Tat alone, (ii) effects of Tat and acute OXY administration, and (iii) effects of 

Tat and chronic OXY and its precipitated withdrawal. 

2.3.1. Acoustic startle apparatus 

Startle responses were measured using eight commercially-supplied startle 

chambers (San Diego Instruments, San Diego, CA). Chambers were ventilated and 
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illuminated, and contained a clear, nonrestrictive Plexiglas® cylindrical animal enclosure 

secured on a platform. Acoustic stimuli were presented through a loud speaker that was 

located directly above the animal enclosure. Mouse startle movements were transduced 

by a piezoelectric sensor attached to the bottom of the animal enclosure platform, which 

were digitized and recorded by a computer. Beginning with the onset of the startle pulse 

(STIM) for each trial, 1000 readings were taken at 1-ms intervals. To ensure accuracy of 

sound levels and stabilimeter sensitivity, routine (at least monthly) calibrations were 

conducted throughout the study. 

2.3.2. Procedure 

Test session conditions 

A test session consisted of 75, 200-ms trials, with five trial types: STIM alone, 

73pp (i.e., "73dB prepulse")+STIM, 77pp+STIM, 85pp+STIM, and NO STIM. Both 

prepulse and pulse stimuli were 20-ms in duration, with an interstimulus interval of 100-

ms between the onset of their presentations, and an intertrial interval average of ~15-s 

across the session (range: 10-20-s). The STIM intensity was set at 119 dB, while 

prepulses were set at 4, 8, and 16 dB above the background level of 69 dB (i.e., 73, 77, 

and 85 dB). During NO STIM trials, mice were subjected to only the background level of 

noise. A test session was initiated with a 5-min acclimation period to the background 

level of noise before the presentation of five STIM alone trials. Following this, 13 

replicates of all trial types were presented in a mixed sequence to prevent consecutive 

presentation of identical trial types and possible habituation to trial types. Test sessions 

ended with five STIM alone trials. Total session time was approximately 30 min. 
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Effects of HIV-1Tat expression alone 

Tat(-) and Tat(+) mice (n=8/group) were initially tested in a 30-min baseline 

acoustic startle session under REG feeding conditions. Subsequently, mice were either 

maintained on REG chow or switched to DOX chow and re-tested for startle after 2, 9, 

16, 30, and 58 days. 

 
Effects of HIV-1 Tat expression and acute OXY administration 

On Day 1, Tat(-) and Tat(+) mice (n=8/group) maintained on a REG chow diet 

were administered saline (“SAL”) approximately 25-min before being tested in a 30-min 

acoustic startle test session followed by a 1-h locomotor activity test session. Mice were 

then switched to a DOX diet for a week (to induce Tat expression in Tat(+) mice). On 

Day 8, mice were again administered SAL 25-min prior to the initiation of the acoustic 

startle tests. Three days later on day 11, mice were assigned to one of four OXY 

treatment groups (9, 17.8, 23.7, or 33 mg/kg) using a within-subject Latin square 

design. Mice were then again randomized into treatment groups to test remaining OXY 

doses on days 14, 17, and 20 (i.e., a two-day interval between subsequent tests). For 

all OXY tests, mice were administered OXY 25-min prior to startle sessions. 

 
Effects of HIV-1 Tat expression and chronic OXY and its precipitated withdrawal 

Tat(-) and Tat(+) mice (n=10/group) were assigned to groups that received either 

chronic SAL or chronic OXY and were maintained on a REG or DOX-containing diet as 

shown in Table 4. Mice were first tested in a preliminary ASR and locomotor activity 

baseline test (i.e., “baseline I”) under REG-chow conditions. Following baseline I, mice 

were maintained on either REG or DOX chow for two weeks. Two weeks later, mice 
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were re-tested during which an acute saline (“SAL”) injection was administered 

immediately prior to both startle and locomotor tests to re-establish baseline effects (i.e., 

“Day 0/SAL). Following this, chronic SAL or OXY was administered subcutaneously for 

ten days, as described in Chapter III and Fig. 5, with slight changes (i.e. additional 

naloxone doses). Importantly, 2 h after the Day 9 AM injection (33 mg/kg), mice 

received an acute subcutaneous injection of SAL immediately prior to both acoustic 

startle and locomotor activity tests to assess the effects of chronic OXY on behavior. On 

Day 10, 2 h after receiving an AM injection of OXY (33 mg/kg), mice received an acute 

subcutaneous injection of naloxone (“NLX”, 0.1-10 mg/kg) to assess the ability of 

naloxone to precipitate perturbations of the dependent measures. Within this chapter, 

the term “naloxone-challenge” on Day 10 is used interchangeably with “precipitated 

withdrawal”, as this regimen demonstrated naloxone dose-dependent increases in 

somatic signs of withdrawal, as discussed in Chapter II. Bodyweights of mice were 

recorded at the beginning of each day, and immediately following behavioral testing on 

Days 9 and 10. This chapter discusses results from acoustic startle tests; results from 

locomotor activity tests will be discussed in Chapter V. 

2.4. Drugs 

Oxycodone HCl (Mallinckrodt Inc., St. Louis, MO) was initially prepared in an 

aqueous sterile stock solution of 10 mg/ml for self-administration studies, which was 

then diluted with deionized water to make working solutions for oral self-administration 

tests of 0.1, 0.3, 0.56, and 1.0 mg/ml. For acute OXY and OXY dependence studies, 

oxycodone was prepared in a sterile stock solution of 10 mg/ml in non-heparinized 0.9% 

saline before diluting in sterile saline to make working solutions in the following 
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concentrations: 0.09, 1.78, 2.37, and 3.3 mg/ml. Naloxone HCl (Sigma-Aldrich, St. 

Louis, MO) was prepared in sterile 0.9% saline to make working solutions in the 

following concentrations: 0.01, 0.1, and 1 mg/ml. All injections were given at a 10 ml/kg 

injection volume and there was a seven hour period between any AM and PM 

injections. AM injections occurred between 08:00 and10:00 hours and PM injections 

occurred between 15:00 and 17:00 hours. 

2.5. Data analysis 

For self-administration studies, numbers of liquid deliveries and active and 

inactive lever (i.e., non-reinforced) presses were recorded. A Grubbs’ test with an alpha 

level set at 0.05 was conducted to eliminate outliers (see Chapter VI for further 

discussion). Data were then analyzed using a one-way or two-way ANOVA, with a 

within-subject factor of “concentration” and a between-subject factor of “phase” or 

“group” as appropriate.  

For acoustic startle studies, the startle magnitude for the “STIM alone” trial type 

was averaged across replicates and was used to infer the startle response. For PPI, 

startle magnitude for each trial type was averaged across replicates and these 

averaged magnitudes were used to calculate %PPI with the following formula: 

100x[(STIM alone-prepulse)/(STIM alone)]. Habituation was inferred by measuring the 

%decrease in startle reactivity where, using the average startle magnitudes of the first 

and last five STIM alone trials of the session, %decrease in startle reactivity was 

calculated using the following formula: 100x[(First STIM alone -Last STIM alone)/First 

STIM alone)]. Data were analyzed using a two-way ANOVA, with a within-subject factor 

of "day" and between-subject factor of "group". Within- and between-group comparisons 
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were made using Bonferroni post-hoc tests where appropriate. For DOX-fed, OXY-

treated Tat transgenic groups, data were analyzed in separate two-way ANOVAs based 

on genotype to analyze naloxone dose effects; a separate two-way ANOVA was used to 

detect between-genotype effects. All data were analyzed and graphed using 

microcomputer software (Prism 6 for Windows, GraphPad Software, Inc., San Diego, 

CA), and all types of comparisons were considered statistically significant if p<0.05. 

3. Results 

3.1. Oral oxycodone self-administration  

Both Tat(-) and Tat(+) mice  learned to press for water deliveries under post-

prandial conditions with REG or DOX chow in all phases before being introduced to 

increasing concentrations of OXY. As shown in Figure 10, lever discrimination between 

active and inactive levers was maintained for both Tat(-) and Tat(+) mice across all 

phases (i.e., Pre-DOX, DOX and Post-DOX phases). There was a significant main 

effect of concentration on active lever presses for both genotypes [Tat(-): F (4, 

87)=45.55, p<0.0001; Tat(+): F (4, 92)=33.33, p<0.0001], as concentration increased 

the number of active lever presses decreased. There was a significant main effect of 

phase for Tat(+) mice [F (2, 92)=5.389, p=0.0061] with generally the greatest number of 

lever presses emitted during the Post-DOX phase at similar concentrations. There was 

a lack of significant differences in the number of active lever presses between 

genotypes at all concentrations during all phases of the study. Numbers of inactive lever 

presses did not differ across OXY concentration or phase for both genotypes at any 

concentration or phase of the study. 
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During all phases and both genotypes, as OXY concentrations increased, the 

number of deliveries obtained decreased (Fig. 11A and 11B). Separate two-way 

ANOVA analyses revealed a significant main effect of concentration for both genotypes 

[Tat(-): F(4, 87)=50.33, p<0.0001; Tat(+): F (4, 92)=34.58, p<0.0001], and a significant 

main effect of phase for Tat(+) mice [F (2, 92)=3.218, p=0.0446]. Both genotypes 

showed a concentration-dependent increase in estimated “mg/kg” consumed of OXY 

during all phases of the study except for the Tat(+) mice during the DOX phase (Fig. 

11C and 11D) in which there was a decrease in consumption from 0.56 mg/ml to 1 

mg/ml. Consumption estimates were analyzed and both genotype groups had a 

significant main effect of concentration across phases [Tat(-): F (3, 69)=9.539, 

p<0.0001; Tat(+): F (3, 72)=11.79, p<0.0001]; however, there was no main effect of 

phase on consumption.  

Feeding conditions were identical during the Pre-DOX and Post-DOX phases, 

and comparisons were consequentially conducted at 1 mg/ml OXY concentration when 

consumption was generally the highest and behavioral activation was mostly observed. 

Within genotypes, more liquid deliveries and consumption of OXY (mg/kg) occurred 

during the Post-DOX phase (Figure 12A and B). A separate one-way ANOVA analysis 

of OXY deliveries at the 1 mg/ml OXY revealed a significant difference between Tat(-

)/Pre-DOX and Tat(+)/Post-DOX, as shown in Figure 12A [F (3, 23)=3.032, p=0.0498]. 

Although both Tat(-) and Tat(+) groups increased their numbers of deliveries in the 

Post-DOX phase relative to their Pre-DOX phase, there were no significant within-group 

effects. Unlike numbers of OXY deliveries obtained, one-way ANOVA analysis of 

consumption estimates at 1 mg/ml did not reveal significant differences within or 
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between genotype groups (Fig. 12B). Despite similar feeding conditions during the Pre- 

and Post-DOX phases, more 1 mg/ml OXY deliveries occurred, and more consumption 

of OXY (mg/kg) occurred during the Post-DOX phase within each genotype, although 

these differences only obtained statistical significance for deliveries for the Tat (+) mice. 

3.2. Acoustic startle 

3.2.1. Effects of HIV-1 Tat expression alone 

The effects of HIV-1 Tat expression on acoustic startle and its related measures, 

PPI and habituation are shown in Figures 13-15. Tat(-) and Tat(+) mice did not 

significantly differ in acoustic startle responses under baseline conditions, regardless of 

the provided chow type. As shown in Figure 13A and 13B, DOX chow did not affect 

startle in Tat(-) or Tat(+) mice up to 58 days of exposure. There was, however, a 

significant increase in startle response relative to baseline for Tat(-)/REG mice after 16, 

30, and 58 days (p<0.01). Habituation was mostly unaffected by feeding days 

regardless of chow type; however, in Tat(+)/DOX group there was a significant 

(p=0.0268) increase relative to baseline after 58 days of DOX exposure as seen in 

Figure 13C and 13D. In PPI, the three prepulse intensities tested (73pp, 77pp, and 

85pp) were analyzed in separate two-way ANOVA tests and results are summarized in 

Table 3. Within each prepulse intensity, lower %PPI measures occurred on all DOX 

feeding days relative to baseline in the Tat(+) but not Tat(-) mice, and beginning 16 

days after DOX exposure, these decreases were statistically significant at several 

prepulse intensities (Table 3).  
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3.2.2. Effects of HIV-1 Tat expression and acute OXY administration 

The interactions of HIV-1 Tat expression and acute OXY on acoustic startle and 

its related measures, PPI and habituation, were examined in Tat(-) and Tat(+) mice, 

either maintained on ad libitum REG or DOX chow. For acute studies, there was no 

difference in ASR between Tat(-) and Tat(+) mice under baseline REG-chow conditions 

(not shown). After being maintained on DOX for a week, mice were tested under acute 

doses of OXY. There was a significant main effect of dose on acoustic startle [F (4, 

56)=10.43, p<0.0001]. As shown in Figure 14A, acute administration of all OXY doses 

(9-33 mg/kg) significantly decreased acoustic startle in Tat(-) mice, and at most doses 

(17.8-33 mg/kg) in Tat(+) mice. Acute OXY administration in neither genotype affected 

habituation (Fig. 14B). Similarly, PPI at all prepulse intensities was unaffected by acute 

OXY administration in all mice as shown in Figure 15. 

3.2.3. Effects of HIV-1 Tat expression and chronic OXY and its precipitated withdrawal 

The effects of HIV-1 Tat expression and chronic OXY as well as naloxone-

precipitated withdrawal on acoustic startle and its related measures are shown in 

Figures 16-18. Chronic SAL administration followed by NLX (1 mg/kg) challenge on Day 

10 did not significantly affect startle in either REG- or DOX-maintained Tat(-) or Tat(+) 

mice (Fig. 16A and 16B), despite a significant main effect of time [F (2, 70)=5.067, 

p=0.0088]. Importantly, these results essentially replicated the earlier described 

timecourse study with REG and DOX chow in Tat transgenic mice. Habituation was also 

unaffected after chronic SAL and acute NLX in REG- or DOX-fed Tat transgenic mice 

(Fig. 16C and 16D). Chronic SAL and acute NLX challenge did not affect PPI in most 

groups insofar as only mice in the Tat(-)/DOX/SAL group significantly increased PPI 
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over time at the two lower prepulse intensities (Table 5). In REG-fed Tat(-) and Tat(+) 

mice, chronic OXY did not significantly affect startle, PPI, or habituation (see Fig. 17A 

and 17B, and Table 6). Precipitated withdrawal with 1 mg/kg NLX, however, significantly 

decreased startle and nonsignificantly decreased habituation in both REG-fed Tat(-) and 

Tat(+) mice. Similar to results in B6 mice, PPI was unaffected after precipitated 

withdrawal from oxycodone in REG-fed Tat transgenic mice. 

Finally, in DOX-fed Tat transgenic mice, separate groups of mice received 

naloxone (0.1, 1.0 or 10 mg/kg) on Day 10 to characterize a dose-effect curve with 

naloxone. There was a significant main effect of day [F (2, 54)=15.09, p<0.0001] as well 

as a significant interaction of day and group [F (4, 54)=4.792, p=0.0022] on startle 

magnitude in Tat(-) mice. For Tat(+) mice, there was only a significant main effect of day 

[F (2, 54)=8.897, p=0.0005].  As shown in Figure 18A and 18B, chronic OXY decreased 

the ASR relative to Day 0/SAL for most groups and significantly so for mice in the Tat(-

)/OXY/0.1 NLX group (p=0.0002) and the Tat(+)/OXY/1 NLX (p=0.011). Precipitated 

withdrawal with the lowest dose of naloxone tested (0.1 mg/kg) increased startle relative 

to chronic OXY conditions, and significantly so in Tat(-) mice (p=0.0044); however, 

higher doses of naloxone significantly decreased startle in both Tat(-) and Tat(+) mice to 

similar levels.  

There was a significant main effect of day in both genotypes [Tat(-): F (2, 

54)=6.554, p=0.0028; Tat(+): F (2, 54)=6.343, p=0.0034] on habituation of the startle 

response. As shown in Figure 18C and 18D, chronic OXY administration did not affect 

habituation in Tat(-) mice or Tat-expressing mice. Precipitated withdrawal, however, 

decreased habituation in both groups but was only significantly decreased in Tat(-) mice 
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at 1 mg/kg NLX (p=0.0419 vs Day 9/SAL) and 10 mg/kg (p=0.0435 vs Day 0/SAL; 

p=0.0446 vs Day 9/SAL). In Tat-expressing mice, precipitated withdrawal significantly 

decreased habituation at the highest dose of naloxone (10 mg/kg: p=0.0370 vs Day 

9/SAL). In Tat(-) mice, there was a significant main effect of day at all prepulse 

intensities [73pp: F (2, 54)=5.974, p=0.0045; 77pp: F (2, 54)=4.414, p=0.0168; 85pp: F 

(2, 54)=5.381, p=0.0074] for PPI. For Tat(+) mice, there was a significant main effect of 

day only at the 77 dB prepulse [F (2, 54)=3.881, p=0.0266]. In general, there was a lack 

of change in PPI at any prepulse intensity for either Tat(-) or Tat(+) mice after chronic 

OXY administration, although post-hoc analyses revealed several significant differences 

from baseline for the Tat(+)/OXY/0.1 NLX group as shown in Table 7. Moreover, there 

was a general lack of effect by precipitated withdrawal from OXY on PPI in most groups, 

although post-hoc analyses revealed a significant shift from baseline for the 

Tat(+)/OXY/1 NLX group at the 77 dB prepulse intensity.  There were no between-

genotype differences for any condition within each naloxone dose tested. 

In regards to body weight loss measurements as a separate index of physical 

dependence upon oxycodone, bodyweight was measured at the beginning of Day 9 and 

Day 10 as well as at the conclusion of behavioral testing on those days (i.e., a 3.5-h 

span between body weight measurements). For both REG- and DOX-fed Tat transgenic 

mice, bodyweight loss was decreased after testing on both Days 9 and 10, in SAL- and 

OXY-treated groups. This decrease was to a significantly greater degree in all OXY-

treated groups after naloxone challenge (p<0.05). These results did not differ between 

REG- or DOX-fed Tat(-) or Tat(+) mice, suggesting a lack of nonspecific effects of DOX 

as well as Tat expression. Moreover, there was a lack of naloxone dose-dependent 
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effects on bodyweight loss, which is contrary to the naloxone dose-dependent effects on 

bodyweight loss observed in Chapter II and Figure 4. Therefore, bodyweight loss did 

serve as an additional indicator of physical dependence upon OXY in this study, but its 

reliable inference is limited due to a lack of naloxone dose-dependent effects. Moreover, 

as mentioned in Chapter III, the timespan between bodyweight measurements and 

behavioral testing may have had lingering effects to alter this output. 

4. Summary 

During OXY self-administration tests, the number of active lever responses 

decreased as a function of increasing oxycodone concentration while maintaining a 

separation between active and inactive lever presses for both genotypes, as was seen 

in C57BL/6J mice in Chapter II. Moreover, for both Tat(-) and Tat(+) mice, as 

oxycodone concentration increased, the number of deliveries decreased while 

consumption increased. This pattern repeated under all phases, and Tat(+) mice had 

higher levels of liquid deliveries obtained than Tat(-) mice under DOX and Post-DOX 

phases. Further analysis showed a significant difference in numbers of obtained liquid 

deliveries of 1 mg/ml oxycodone between the Pre-DOX phase in Tat(-) mice and the 

Post-DOX phase in Tat(+) mice, which suggests, although does not definitively confirm, 

that Tat expression facilitates oral oxycodone self-administration. Limitations of this 

study and its observations are discussed in depth in Chapter VI.  

Tat expression alone did not affect the acoustic startle response up to 58-d of 

DOX exposure. Tat expression alone significantly increased habituation only after 58-d 

of DOX, but deficits in PPI were observed after 16-d. Acute oxycodone administration 

significantly decreased startle in both Tat(-) and Tat(+) mice fed a DOX diet, while 
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habituation and PPI were left unaffected, suggesting Tat expression does not alter the 

acute behavioral effects of oxycodone. Similar to findings reported in Chapter III with 

C57BL/6J mice, chronic oxycodone, in general, did not affect startle or its related 

measures in Tat(-) or Tat(+) mice, however, naloxone dose-dependently decreased 

startle and habituation but not PPI in both groups. Moreover, there was a lack of 

nonspecific effects of DOX on any measurement. It is important to note that although 

there were no significant differences between Tat(-) and Tat(+) mice under the 

dependence conditions tested, there was an attenuation of severity of the withdrawal 

effects observed in Tat-expressing mice. Limitations of this study and its observations 

are discussed in Chapter VI. 

In summary, the results from this chapter indicate that Tat expression can alter 

some of oxycodone's abuse-related behavioral effects as measured by oral self-

administration, acoustic startle, and habituation. These results and the limitations of 

these studies are further discussed in Chapter VI. The procedures described herein 

further demonstrate that oxycodone is volitionally orally consumed via operant self-

administration and its dependence-related effects may be assessed by the acoustic 

startle response. These procedures allow for further characterization of the underlying 

biological determinants of opioid-Tat interactions as well as screening of potential 

pharmacotherapies to block the behavioral effects observed. 
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Table 3. Mean %PPI over time in REG- or DOX-fed Tat transgenic mice. 

 

a P<0.05 to baseline  
b Significant difference was found between Tat(+)/REG and Tat(-)/DOX at one timepoint 
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Table 4. Summary of test conditions for chronic OXY and dependence-related 
effects on acoustic startle, PPI, and habituation. 
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Table 5. Mean %PPI after chronic SAL treatment in REG- or DOX-fed Tat 
transgenic mice. 

 

a P<0.05 to Day 0/SAL  
b Significant difference was found between Tat(+)/DOX/SAL and Tat(-)/REG/SAL 

Table 6. Mean %PPI after chronic OXY treatment in REG-fed Tat transgenic mice. 
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Table 7. Mean %PPI after chronic OXY treatment in DOX-fed Tat transgenic mice. 

 

a Significant difference as compared to Day 0/SAL  
b Significant difference as compared to Day 9/SAL 
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5. Figures 

 

Figure 10. Effects of available oxycodone concentration on the number of active 
and inactive lever presses during 1-h test sessions emitted by Tat transgenic 
mice during the pre-DOX (A), DOX (B), and post-DOX (C) phases. Each symbol 
represents the mean of three test sessions per concentration (N=6-8/group). Brackets 
through symbols represent ± S.E.M. Filled symbols represent active lever presses, 
whereas unfilled symbols represent inactive lever presses. 
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Figure 11.  Number of liquid deliveries (A and B) obtained and the estimated 
consumption (C and D) of oxycodone (mg/kg body weight) as a function of the 
available concentration (mg/ml) in Tat transgenic mice at all phases. Consumption 
was estimated based on individual subject’s daily body weight and the total deliveries of 
oxycodone obtained. Each symbol represents the mean number of liquid deliveries or 
consumption across three test sessions per concentration (N=6-8/group). Brackets 
through symbols represent ± S.E.M. 
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Figure 12. Comparison between Pre-DOX and Post-DOX phases for Tat transgenic 
mice of number of liquid deliveries (A) obtained and estimated consumption (B) 
of oxycodone at the highest concentration available, 1 mg/ml. Consumption was 
estimated based on individual subject’s daily body weight and the total deliveries of 
oxycodone obtained. Each symbol represents the mean oxycodone consumption (± 
S.E.M.) of 1 mg/ml OXY across three test sessions. *P<0.05 compared to the Tat(-
)/Pre-DOX group. 
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Figure 13. Effects of days fed REG or DOX chow on acoustic startle (A and B) and 
habituation (C and D) in Tat(-) and Tat(+) mice. N=8/group. Data are represented as 
the mean (± S.E.M.) startle amplitude or as the mean (± S.E.M.) percent decrease in 
startle reactivity within a 30-min test session. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001 compared to baseline. 
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Figure 14. Effects of acute OXY and Tat expression on acoustic startle (A) and 
habituation (B). N=8/group. Data are represented as the mean (± S.E.M.) startle 
amplitude or as the mean (± S.E.M.) percent decrease in startle reactivity within a 30-
min test session. *P<0.05, **P<0.01, ***P<0.001 compared to SAL treatment. 
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Figure 15. Effects of acute OXY and Tat expression on prepulse inhibition. 
N=8/group. Data are expressed as mean percent PPI (± S.E.M.) for each prepulse 
intensity level (73, 77, and 85 dB). 
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Figure 16. Effects of chronic SAL, acute NLX, and DOX on acoustic startle (A and 
B) and habituation (C and D) in Tat(-) or Tat(+) mice. N=9-10/group. Data are 
represented as the mean (± S.E.M.) startle amplitude or as the mean (± S.E.M.) percent 
decrease in startle reactivity within a 30-min test session. *P<0.05 compared to Tat(-
)/REG mice. 
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Figure 17. Effects of chronic OXY and NLX-precipitated withdrawal on startle (A) 
and habituation (B) in REG-fed Tat(-) and Tat(+) mice. N=10/group. Data are 
expressed as mean (± S.E.M.) startle amplitude or as the mean (± S.E.M.) percent 
decrease in startle reactivity within a 30-min test session. *P<0.05, ***P<0.001 
compared to Day 0/SAL; $P<0.05 compared to Day 9/SAL. 
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Figure 18. Effects of chronic OXY and NLX-precipitated withdrawal on acoustic 
startle (A and B) and habituation (C and D) in DOX-fed Tat(-) and Tat(+) mice. 
N=10/group. Data are represented as the mean (± S.E.M.) startle amplitude or as the 
mean (± S.E.M.) percent decrease in startle reactivity within a 30-min test session. 
Note: mice in the Tat(-)/OXY/0.1 NLX group had a two-day interruption (i.e., received no 
injections) between Day 3 and 4 of the OXY dosing regimen.*P<0.05, **P<0.01, 
***P<0.001 compared to Day 0/SAL; $P<0.05, $$P<0.01 compared to Day 9/SAL. 
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 Chapter V: HIV-1 Tat expression does not alter acute or chronic oxycodone-

induced hyperactivity, but does alter opioid locomotor sensitization 

 
 
 
 

1. Introduction 

 Locomotor activity and its sensitization has been hypothesized to correspond to 

the reinforcing properties of drugs of abuse, and typically involves the repeated 

administration of a locomotor activating drug (Robinson and Berridge, 1993). 

Oxycodone has previously been shown to increase locomotor activity in mice after 

acute subcutaneous administration and can induce locomotor sensitization (Liu et al., 

2005). Because the previously described dependence regimen in Chapters II-IV 

involves the repeated administration of oxycodone, it was hypothesized that 

sensitization would extend to it. The previously described oxycodone physical 

dependence regimen was thus used to evaluate its effects on locomotor activity, its 

sensitization, and stereotypy in C57BL/6J mice. HIV-1 Tat expression in female and 

male mice has shown to decrease locomotor activity as well as disrupt cocaine-induced 

sensitization in ovariectomized rats receiving intra-accumbal microinjections of Tat 

(Hahn et al., 2015; Harrod et al., 2008). Therefore, it was hypothesized that HIV-1 Tat 

would inhibit oxycodone’s effects on locomotor activity and its sensitization. The effects 
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of HIV-1 Tat expression on oxycodone-induced locomotor hyperactivity, as well as 

morphine and oxycodone locomotor sensitization, were thus additionally evaluated. 

2. Methods 

2.1. Subjects 

Male C57BL/6J (“B6”) mice were obtained at approximately 8 weeks of age (The 

Jackson Laboratory, Bar Harbor, ME) and were allowed to acclimate to the vivarium for 

at least one week prior to commencement of training and testing. Male, doxycycline 

(“DOX”)-inducible Tat1-86 transgenic mice were generated on a C57BL/6J and C3H 

background as described in Chapter IV and in published reports by others, and Tat 

expression was only induced in mice positive for the Tat transgene [“Tat(+)”] via a diet 

consisting of 6 g DOX per kg of chow (Harlan Laboratories Inc., Indianapolis, IN) 

whereas those lacking the Tat transgene [“Tat(-)”] did not express Tat (Bruce-Keller et 

al., 2008; Hauser et al., 2009). 

In all studies, mice were allowed ad libitum access to water and either standard 

(“REG”) rodent chow (7012 Teklad LM-485 Mouse/Rat Sterilizable Diet, Harlan 

Laboratories Inc., Indianapolis, IN) or DOX chow Mice were housed in an AALAC-

accredited animal facility, kept on a 12-h/12-h light/dark cycle (lights on from 06:00 to 

18:00 hours). All procedures were conducted during the light phase and were in 

accordance with the “Guide for the Care and Use of Laboratory Animals” (Institute of 

Laboratory Animal Resources, National Academy Press, 2011), and were approved by 

the Institutional Animal Care and Use Committee of Virginia Commonwealth University. 
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2.2. Overall procedure 

2.2.1. Effects in C57BL/6J mice 

As described in Chapter III and Fig. 5, adult male B6 mice underwent chronic 

subcutaneous saline (SAL) or oxycodone (OXY) administration under REG or DOX 

feeding conditions. On day 9, under chronic OXY conditions, OXY was administered 

approximately 2-h prior to a 30-min acoustic startle test session, and consequentially 

2.5-h prior to locomotor test sessions. Immediately prior to locomotor tests, animals 

received an acute SAL injection. On day 10, OXY was again administered 2.5-h prior to 

locomotor testing and, immediately before testing began, animals received an acute 

naloxone (NLX) injection (1 mg/kg). 

In a separate cohort of adult, male B6 mice, locomotor sensitization was 

evaluated following the regimen outlined in Figure 20. On day 1, mice received a 

subcutaneous AM injection of SAL or 9 mg/kg OXY and were immediately placed in 

locomotor chambers for a 1-h session. Twice-daily injections of SAL or OXY were then 

given over the next seven days. On day 8, mice received a subcutaneous AM injection 

of SAL or 9 mg/kg OXY and immediately tested in a 1-h locomotor activity session. 

2.2.2. Effects in Tat transgenic mice 

To assess the effects of Tat expression alone on locomotor activity, Tat(-) and 

Tat(+) mice (n=8/group) were first tested in a 2-h baseline locomotor session under 

REG feeding conditions. Subsequently, mice were switched to DOX chow and re-tested 

in 2-h locomotor sessions after 2, 9, 16, 30, and 58 days. After 60 days on DOX, these 

mice were used to test morphine locomotor sensitization as described below. 
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In separate Tat transgenic mice, acute OXY effects on locomotor activity were 

assessed following the regimen described in Chapter IV. Briefly, Tat(-) and Tat(+) mice 

(n=8/group) on REG chow were tested in a 1-h baseline locomotor session following 30-

min acoustic startle tests as described in Chapter IV. Mice were then switched to DOX 

for one week and re-tested on day 8 following subcutaneous SAL administration. Using 

a within-subject Latin square design, on days 11, 14, 17, and 20, mice were re-tested 

after acute administration of 9, 17.8, 23.7, or 33 mg/kg OXY (~55-min pre-treatment 

time prior to locomotor tests; s.c.). 

For chronic OXY and dependence effects in Tat(-) and Tat(+) mice, the 

subcutaneous b.i.d. injection and behavioral testing regimen outlined in Chapter III and 

Fig. 5 was utilized, but followed the modifications as described in Chapter IV (i.e., NLX 

dose-response curve added). Here, Tat(-) and Tat(+) mice (n=10/group) were 

maintained on REG or DOX chow and administered chronic SAL or OXY. On day 9, 

OXY and SAL were administered approximately 2.5-h and 0-min, respectively, prior to 

locomotor sessions to assess the effects of chronic OXY on the described behavioral 

measures. On day 10, OXY and NLX (0.1-10 mg/kg) were administered 2.5-h and 0-

min, respectively, prior to locomotor tests activity tests to assess the effects of 

precipitated withdrawal on the described behavioral measures. Within this chapter, the 

term “naloxone-challenge” on Day 10 is used interchangeably with “precipitated 

withdrawal”, as this regimen demonstrated naloxone dose-dependent increases in 

somatic signs of withdrawal, as discussed in Chapter II. 

Finally, locomotor sensitization to morphine and oxycodone were assessed. For 

morphine tests, Tat(-) and Tat(+) mice (n=8/group) that had been on DOX for 12-weeks 
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were first assessed in a 2-h baseline locomotor activity session in which SAL was 

administered (0-min pre-treatment time; i.p.). Over the next four days (i.e., Days 1-4), 

mice were given 32 mg/kg morphine (i.p.) and immediately placed in a 2-h locomotor 

activity session. On Days 5-7, no testing occurred but on Day 8, mice were 

administered 32 mg/kg morphine and re-tested. On Day 9 and 10 no testing occurred, 

but on Day 11, 32 mg/kg morphine was administered and mice were re-tested. For 

oxycodone tests, Tat(-) and Tat(+) mice (n=5-6/group; at least 13 weeks of age) were 

first tested in a cumulative oxycodone dose-response curve under REG-chow 

conditions. After a 30-min habituation period to the locomotor chambers, mice were 

removed and given an acute administration of SAL and placed back in the chamber for 

a 10-min recording period. Subsequently, the mice were removed and administered 0.1 

mg/kg OXY (s.c.) and placed back in the chamber for the 10-min period. This process 

repeated three more times to obtain a complete dose-response curve. Subjects were 

administered acute injections of 0, 0.1, 0.9, 2, and 30 mg/kg OXY to generate 

cumulative doses of 0.1, 1, 3, and 33 mg/kg. After this, mice were switched to DOX 

chow for two weeks, before re-testing the cumulative OXY dose-response curve under 

DOX-chow conditions. 

2.3. Apparatus 

For locomotor activity tests, mice were placed in eight commercially obtained, 

automated activity monitoring devices each enclosed in sound- and light-attenuating 

chambers that recorded distance traveled in centimeters via computer-controlled 

circuitry (AccuScan Instruments, Columbus OH). The interior of each device was 

divided into separate 20×20×30 cm arenas permitting the independent and 
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simultaneous measurement of two mice in diagonally opposite compartments. Sixteen 

photobeam sensors per axis were spaced 2.5 cm apart along the walls of the chamber 

and were used to detect movement.  

2.4. Procedure 

For baseline measurements, mice were placed in locomotor chambers following 

acoustic startle testing for a 1-h or 2-h test session with distance traveled recorded in 

10-min bins, as described below. For stereotypy, the “stereotypy count” variable was 

defined by the software that records the number of times the mouse breaks the same 

beam in succession without breaking an adjacent beam (Tilley and Gu, 2008). 

Additionally, the time a rodent spends in the periphery versus the center area of the 

chamber is regarded as an indirect measure of anxiety-like behavior as it has been 

hypothesized that the center area poses as a threatening environment to the rodent. 

Decreased time spent in the center is reported in rodent models of anxiety-like disorders 

and can be reversed by anxiolytic drugs such as benzodiazepines (Prut and Belzung, 

2003). Therefore, time spent in the center of locomotor chambers was measured for 

acute and chronic OXY effects in Tat transgenic mice as an indirect test for anxiety-like 

behavior. Center time was measured in seconds for each recorded bin. 

For oxycodone locomotor sensitization tests in B6 mice, a 1-h test session was 

conducted with distance traveled recorded in 2-min bins. For morphine locomotor 

sensitization tests in Tat transgenic mice, a 2-h session was conducted with distance 

traveled recorded in 10-min bins. Test session durations for sensitization of oxycodone 

and morphine differed due to reported differences in time to peak effect and possibly 

consequently duration of action of these two MOR agonists (Nielsen et al., 2000; 
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Ordonez Gallego et al., 2007; Ross and Smith, 1997). Finally, for oxycodone locomotor 

sensitization tests in Tat transgenic mice, after a 30-min habituation period an 

oxycodone cumulative dose-response curve was generated over 5, 10-min recording 

periods recorded in 2-min bins. Stereotypy counts were also recorded and analyzed in 

all tests. 

2.5. Drugs 

Oxycodone HCl (Mallinckrodt Inc., St. Louis, MO) was initially prepared in a 

sterile stock solution of 10 mg/ml in non-heparinized 0.9% saline before diluting in 

sterile saline to make working solutions in the following concentrations: 0.09, 1.78, 2.37, 

and 3.3 mg/ml. Naloxone HCl (Sigma-Aldrich, St. Louis, MO) was prepared in sterile 

0.9% saline to make working solution at 0.01, 0.1, or 1.0 mg/ml.  Morphine sulfate 

(Mallinckrodt Inc., St. Louis, MO) was prepared in non-heparinized 0.9% saline at a 

working solution of 3.2 mg/ml. All injections were given at a 10 ml/kg injection volume 

and there was a seven hour period between AM and PM injections in chronic OXY and 

OXY dependence tests. 

2.6. Data analysis 

Total distance traveled (in cm), stereotypy counts, and time in center were 

recorded. Data were analyzed using a two-way ANOVA, with a within-subject factor of 

"day" and between-subject factor of "group". Within- and between-group comparisons 

were made using Bonferroni post-hoc tests where appropriate. For time in center 

analyses, raw data were analyzed but graphically the data are expressed as 

percentages of saline or baseline control tests to better illustrate results. All statistical 
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tests were conducted using microcomputer software (Prism 6 for Windows, GraphPad 

Software, Inc., San Diego, CA), and all types of comparisons were considered 

statistically significant if p<0.05. 

3. Results 

3.1. Effects in C57BL/6J mice 

Figure 19 shows locomotor activity results of REG- and DOX-fed mice. In REG-

fed SAL-treated B6 mice total distance traveled was significantly greater during the 

initial baseline (p<0.0001; not shown) than their second baseline (i.e., Day 0/SAL), 

possibly attributable to adaptation to locomotor activity chambers. This effect was not 

seen in the OXY-treated group. Two-way ANOVA analysis revealed a significant main 

effect of day and group [Day: F (2, 32)=8.20; p=0.0013; Group: F (1, 16)=6.53; 

p=0.0212] as well as a significant interaction [F (2, 32)=7.18; p=0.0026]. Total distance 

traveled did not change significantly in SAL-treated mice on Days 9 or 10 (Fig. 19A). In 

OXY-treated mice, chronic OXY significantly increased locomotor activity (p<0.0001 vs 

Day 0/SAL and vs SAL-treated mice), and was significantly decreased after its 

precipitated withdrawal (p<0.0001 vs Day 9/SAL). Analysis of stereotypy counts 

revealed a significant main effect of day [F (2, 32)=18.95; p<0.0001] as well as a 

significant interaction of day and group [F (2, 32)=13.30; p<0.0001]. Stereotypy was 

unaffected across days in SAL-treated mice (Fig. 19C). In OXY-treated mice, chronic 

OXY significantly increased the number of stereotypy counts (p=0.0002 vs Day 0/SAL; 

p=0.0002 vs SAL-treated mice) whereas precipitated withdrawal significantly decreased 
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stereotypy counts (p=0.0015 vs Day 0/SAL; p<0.0001 vs Day 9/SAL; p=0.0379 vs SAL-

treated mice). 

In DOX-fed B6 mice, there was a significant difference in initial baseline 

locomotor activity between the SAL- and OXY-designated groups (p<0.0001; not 

shown), but not at Day 0/SAL. Moreover, at Day 0/SAL, there was a significant within-

group significant decrease in total distance traveled in the OXY-designated group as 

compared to their preliminary baseline (p<0.0001; not shown). There was a significant 

main effect of both day and group [Day: F (2, 36)=19.56; p<0.0001; Group: F (1, 

18)=28.61; p<0.0001] as well as a significant interaction between the two [F (2, 

36)=15.08; p<0.0001]. There were no significant differences across days in SAL-treated 

mice. Chronic OXY significantly increased locomotor activity (Fig. 19B; p<0.0001 vs Day 

0/SAL and SAL-treated mice) and naloxone-precipitated withdrawal significantly 

decreased locomotor activity (p<0.0001 vs Day 9/SAL). Finally, there was a significant 

main effect of both day and group in stereotypy counts [Day: F (2, 36)=60.87; p<0.0001; 

Group: F (1, 18)=29.09; p<0.0001] as well as a significant interaction between day and 

group [F (2, 36)=22.45; p<0.0001]. As shown in Figure 19D, in SAL-treated mice there 

was no difference in the number of stereotypy counts from Day 0/SAL on Day 9/SAL, 

however, there was a significant decrease from Day 0/SAL on Day 10/NLX (p=0.012). In 

OXY-treated mice, chronic OXY significantly increased the number of stereotypy counts 

as compared to both Day 0/SAL and SAL-treated mice (p<0.0001 vs Day 0/SAL and 

SAL-treated mice). Naloxone-precipitated withdrawal significantly decreased stereotypy 

in OXY-treated mice as compared to Day 0/SAL and to chronic OXY conditions 

(p<0.0001 vs Day 0/SAL and Day 9/SAL). 
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3.1.1. Oxycodone locomotor sensitization in C57BL/6J mice 

Locomotor sensitization after chronic oxycodone administration was also 

evaluated in B6 mice as depicted in Figure 20 and whose results are shown in Figure 

21. Two-way ANOVA analysis conducted on total distance traveled revealed a 

significant main effect of day and group [Day: F (1, 18)=23.89; p<0.0001; Group: F (1, 

18)=167.2; p<0.0001] as well as a significant interaction of day and group [F (1, 

18)=29.38; p<0.0001]. Acute OXY (9 mg/kg) on Day 1 significantly increased locomotor 

activity as shown in Figure 21B (p<0.0001 vs SAL). OXY-treated mice had significantly 

greater distance traveled again on Day 8 as compared to SAL-treated mice (p<0.0001). 

Locomotor activity sensitization occurred in OXY-treated mice as there was a 

significantly greater distance traveled on Day 8 as compared to Day 1 (p<0.0001)., 

There was a significant main effect of group on stereotypy counts [F (1, 18)=14.20; 

p=0.0014]. As shown in Figure 21C, OXY significantly increased stereotypy counts to 

similar levels at Day 1 and Day 8 (Day 1: p=0.0093 vs SAL; Day 8: p=0.0012 vs SAL). 

3.2. Effects in Tat transgenic mice 

Locomotor activity and stereotypy counts decreased over time in both Tat(+) and 

Tat(-) mice, where Tat(+) mice traveled significantly less than Tat(-) mice and to their 

baseline and these effects lasted over time up to 58 days of DOX exposure (Figure 22). 

There was a significant main effect of time [F (5, 70)=13.04, p<0.0001] and group [F (1, 

14)=16.73, p=0.0011] on locomotor activity. For stereotypy counts, there was also a 

significant main effect of time [F (5, 70)=8.442, p<0.0001] and group [F (1, 14)=5.902, 

p=0.0292]. 
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Acute OXY administration (9-33 mg/kg) to Tat transgenic mice resulted in an 

opioid prototypic increase in locomotor activity as well as stereotypy, regardless of 

genotype (Fig. 23A and 23B). There was a significant main effect of dose on total 

distance traveled [F (4, 56)=22.56, p<0.0001] as well as on stereotypy counts [F (4, 

56)=9.136, p<0.0001]. The time subjects spent in the center of the locomotor chamber 

was also measured as an indirect test of anxiety-like behavior. Acute OXY 

administration dose-dependently decreased center time in both Tat(-) and Tat(+) mice 

[Main effect of dose: F (4, 56)=15.01, p<0.0001], but was not significantly different from 

SAL at the lowest dose of OXY (9 mg/kg) for Tat(+) mice (Fig. 23C).  

Chronic OXY administration to REG-fed Tat transgenic mice resulted in a 

significant increase in locomotor activity as well as stereotypy, whereas precipitated 

withdrawal decreased locomotor activity and stereotypy (Fig. 24A and 24B). There was 

a significant main effect of day on total distance traveled [F (2, 36)=23.93, p<0.0001] as 

well as on stereotypy counts [F (2, 36)=67.16, p<0.0001]. There was a significant main 

effect of day as well as group on time spent in the center of the chamber [Day: F (2, 

36)=4.929, p=0.0128; Group: F (1, 18)=8.023, p=0.011]. In both Tat(-) and Tat(+) mice, 

center time was unaffected by chronic OXY administration or during naloxone challenge 

relative to Day 0/SAL, although there a nonsignificant increase in center time occurred 

during the latter condition (Fig. 24C).  

Chronic OXY administration to DOX-fed Tat transgenic mice also resulted in a 

significant increase in locomotor activity and stereotypy, whereas precipitated 

withdrawal decreased locomotor activity and stereotypy in a naloxone dose-dependent 

manner (Fig. 25)., There was a significant main effect of day in Tat(-) mice [F (2, 
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54)=44.97, p<0.0001] and a significant main effect of day and NLX dose group in Tat(+) 

mice [Day: F (2, 54)=67.67, p<0.0001; Group: F (2, 27)=8.119, p=0.0017] in total 

distance traveled. Moreover, there was a significant interaction of day and group in 

Tat(+) mice [F (4, 54)=5.281, p=0.0012]. There was a significant main effect of day in 

Tat(-) mice [F (2, 54)=119.4, p<0.0001] and a significant main effect of day and NLX 

dose group in Tat(+) mice [Day: F (2, 54)=90.31, p<0.0001; Group: F (2, 27)=9.742, 

p=0.0007] in stereotypy counts. There was also a significant interaction of day and NLX 

dose group in Tat(+) mice [F (4, 54)=4.548, p=0.0031]. In general, there was a lack of 

between-group differences under chronic OXY or precipitated withdrawal conditions. In 

center time, chronic OXY administration to DOX-fed Tat transgenic mice did not affect 

center time; however, naloxone dose-dependently increased center time (Fig. 26). 

Importantly, Tat(-) mice were affected by precipitated withdrawal on center time at the 

two highest doses of naloxone (1 and 10 mg/kg), whereas Tat(+) mice were only 

affected at the highest dose of naloxone. As a control to evaluate DOX effects, 

preliminary baseline and Day 0/SAL tests were compared for both genotypes and no 

significant differences were found (not shown). Moreover, SAL-treated Tat transgenic 

mice fed a REG or DOX diet did not show significant changes in total distance traveled 

over time (not shown).Both SAL-treated, REG-fed Tat(-) and Tat(+) mice did have 

significant decreases in stereotypy counts relative to Day 0/SAL at Day 10/NLX (not 

shown). In center time, there was a significant decrease from Day 0/SAL at Day 10/NLX 

for REG-fed, SAL-treated Tat(+) mice (not shown). 
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3.2.1. Interactions of Tat expression and opioid locomotor sensitization 

Locomotor sensitization in Tat-expressing mice was evaluated using the “gold 

standard” mu-opioid, morphine. Tat transgenic mice had been supplied DOX chow for 

approximately 12-weeks before baseline locomotor testing occurred with SAL pre-

treatment. Therefore, there was a significant (p<0.05) difference in total distance 

traveled during a 2-h baseline test session (i.e., see Figure 22A for Tat expression 

timecourse study). In general, there was a significant main effect of morphine day on 

total distance traveled [F (6, 84)=17.78, p<0.0001]. On Day 1 of morphine (32 mg/kg, 

i.p.) administration, total distance traveled was significantly increased for both Tat(-) and 

Tat(+) mice to similar levels (Fig. 27) during a 2-h test session. This testing repeated 

over the next three days, and total distance traveled further increased dramatically in 

Tat(-) mice but to a slower degree in Tat(+) mice, where there was a significant 

between-group difference at Day 3 (p=0.0453). However, by Day 8, Tat(+) mice 

surpassed Tat(-) mice in total distance traveled before finally performing to similar levels 

at Day 11. 

Oxycodone locomotor sensitization was also probed in Tat transgenic mice using 

a cumulative dosing regimen. Mice were first evaluated under REG-chow conditions 

during which between-group differences were not found in total distance traveled during 

the 30-min habituation period. OXY dose-dependently increased total distance traveled 

for both genotypes under REG-chow conditions as shown in Figure 28. After two weeks 

on DOX chow, mice were re-tested and both Tat(-) and Tat(+) mice showed decreased 

distance traveled during the 30-min habituation period and significantly so for Tat(-) 

mice as compared to their REG-chow baseline (not shown). Under DOX-chow 
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conditions, OXY again dose-dependently increased total distance traveled for both 

genotypes, and locomotor sensitization relative to the REG-chow baseline occurred at 

the two highest doses for Tat(-) mice but only at the highest dose for Tat(+) mice. For 

both Tat(-) and Tat(+) mice, there was a significant main effect of OXY dose on total 

distance traveled [Tat(-): F (4, 32)=303.4, p<0.0001; Tat(+): F (4, 40)=43.95, p<0.0001]. 

Moreover, for Tat(-) only, there was a significant main effect of test day (i.e., under 

REG/baseline or DOX testing) [F (1, 8)=11.77, p=0.0090] as well as a significant 

interaction of OXY dose and test day [F (4, 32)=6.672, p=0.0005]. 

4. Summary 

In REG- or DOX-fed C57BL/6J mice, chronic oxycodone administration 

increased locomotor activity and its stereotypy. Naloxone-precipitated withdrawal 

decreased these measures. These results suggest doxycycline does not possess 

nonspecific effects on locomotor activity nor interfere with oxycodone’s effects on 

locomotor activity and its related measures. Moreover, locomotor sensitization was 

observed after chronic oxycodone administration. Interestingly, the time to peak 

locomotor activity did not change after chronic oxycodone administration, but there was 

a leftward shift in the descending limb of oxycodone’s effects on locomotor activity. This 

effect is discussed further in Chapter VI. Together, these results support other 

preclinical reports of oxycodone’s mu-opioid prototypic effects on locomotor activity and 

its sensitization. 

Tat expression in mice attenuated total distance traveled, supporting previous 

findings of reduced locomotion in Tat-expressing mice (Hahn et al., 2015). Tat 

expression did not alter oxycodone’s ability to increase locomotor activity or stereotypy, 
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however the time spent in the center was significantly reduced in Tat-expressing mice 

after acute oxycodone administration to a lesser degree than Tat(-) control mice. That 

is, oxycodone’s effects on center time were not as robust in Tat-expressing mice. 

Interpretation of these results relative to an anxiety-like index is discussed in Chapter 

VI. Chronic oxycodone administration increased locomotor activity and stereotypy in 

both Tat(-) and Tat(+) to similar levels, regardless of chow type provided. Moreover, 

naloxone-precipitated withdrawal dose-dependently decreased both locomotor activity 

and stereotypy in both genotypes, but again to similar levels.  Unlike acute oxycodone, 

chronic oxycodone administration did not affect center time. Precipitated withdrawal 

increased center time in both Tat(-) and Tat(+) mice, but only significantly so at the 

highest dose of naloxone for Tat-expressing mice. Interestingly, in morphine and 

oxycodone locomotor sensitization tests, Tat expression attenuated, but did not abolish, 

locomotor sensitization. This is discussed in depth in Chapter VI. Overall, these results 

demonstrate that Tat expression affects locomotor activity and its related measures, 

modulates mu-opioid induced locomotor sensitization, and provides further evidence 

that Tat expression alters abuse-related behavioral effects of oxycodone. 
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5. Figures 

 

Figure 19. Total distance traveled (A and B) and stereotypy counts (C and D) after 
chronic OXY and its precipitated withdrawal in REG- and DOX-fed C57BL/6J mice. 
N=8-10/group. Data are expressed as the mean (± S.E.M.) total distance traveled or the 
mean stereotypy counts (± S.E.M.) during a 1-h test session. *P<0.05, ***P<0.0001, 
****P<0.0001 to Day 0/SAL or SAL-treated mice; $$$$P<0.0001 to Day 9/SAL. 
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Figure 20. Timecourse of oxycodone locomotor sensitization regimen in 
C57BL/6J mice. Mice (n=10/group) were administered either SAL or 9 mg/kg OXY and 
immediately tested in a 1-h locomotor activity session on Day 1. Mice were then 
chronically administered SAL or OXY (9-33 mg/kg, s.c.) the following seven days. On 
Day 8, mice were once again administered SAL or 9 mg/kg OXY and immediately 
tested during a 1-h locomotor activity session. 
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Figure 21. Total distance traveled (A and B) and stereotypy (C) was evaluated at 
Days 1 and 8 of a chronic OXY administration regimen using C57BL/6J mice. 
N=10/group. Data are represented as the mean total distance traveled (± S.E.M.) or the 
mean stereotypy counts (± S.E.M.) during 1-h test sessions. **P<0.01, ****P<0.0001 to 
Day 1 or SAL-treated mice. 
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Figure 22. Effects of Tat expression on total distance traveled (A) and stereotypy 
counts (B) during 2-h test sessions across days of DOX exposure. N=8/group. 
Each symbol represents the mean (± S.E.M.) total distance traveled or the mean (± 
S.E.M.) stereotypy counts during 2-h test sessions. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001 to baseline; $P<0.05 and $$P<0.01 to Tat(-)/DOX mice. 
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Figure 23. Effects of acute OXY and Tat expression on total distance traveled (A), 
stereotypy counts (B), and center time (C) during 1-h test sessions. N=8/group. 
Each symbol represents the mean (± S.E.M.) total distance traveled, stereotypy counts, 
or center time as a percentage of SAL treatment during 1-h test sessions. *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001 to SAL. 
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Figure 24. Total distance traveled (A), stereotypy counts (B), and center time (C) 
after chronic OXY and its precipitated withdrawal in REG-fed Tat transgenic mice. 
N=10/group. Data are expressed as mean (± S.E.M.) total distance traveled, stereotypy 
counts, or center time as a percentage of Day 0/SAL during a 1-h test session. *P<0.05, 
**P<0.01, ***P<0.0001, ****P<0.0001 to Day 0/SAL; $$$$P<0.0001 to Day 9/SAL. 
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Figure 25. Total distance traveled (A and B) and stereotypy counts (C and D) after 
chronic OXY and its precipitated withdrawal in DOX-fed Tat transgenic mice. 
N=10/group. Data are expressed as mean (± S.E.M.) total distance traveled or the 
mean (± S.E.M.) stereotypy counts during a 1-h test session. **P<0.01, ***P<0.0001, 
****P<0.0001 to Day 0/SAL; $P<0.05, $$$P<0.001, $$$$P<0.0001 to Day 9/SAL. 
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Figure 26. Center time spent after chronic OXY and its precipitated withdrawal in 
DOX-fed Tat(-) (A) and Tat(+) (B) mice. N=10/group. Data are expressed as mean (± 
S.E.M.) center time as a percentage of Day 0/SAL during a 1-h test session. *P<0.05, 
***P<0.0001 to Day 0/SAL; $P<0.05, $$$$P<0.0001 to Day 9/SAL. 
 



 

107 
 

 

Figure 27. Effects of Tat expression on morphine locomotor sensitization. Mice 
had been exposed to 12-weeks of DOX chow as well as locomotor tests as shown in 
Figure 24A prior to SAL baseline measurements in a 2-h locomotor test. The next four 
days, morphine (32 mg/kg, i.p.) was administered immediately prior to locomotor tests. 
This was again re-tested on Days 7 and 10. N=8/group. Each symbol represents the 
mean (± S.E.M.) total distance traveled during a 2-h test session. *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001 to baseline/SAL test; $P<0.05 to Tat(+) mice. 
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Figure 28. Effects of Tat expression on oxycodone locomotor sensitization. REG-
fed Tat(-) and Tat(+) mice (A and B, respectively) were first habituated to locomotor 
chambers for 30-min before receiving a SAL injection (s.c.) and tested during a 10-min 
test session. Following this, mice were administered 0.1 mg/kg OXY and re-tested. This 
process continued to create a cumulative OXY dose-effect curve (0.1- 33 mg/kg). Mice 
were then switched to DOX chow for two weeks and, after which, were re-tested. N=5-
6/group. Each symbol represents the mean (± S.E.M.) total distance traveled during a 
10-min bin for each dose of OXY. *P<0.05, **P<0.01, ***P<0.001 to REG-chow baseline 
test. 



  

109 
 

 Chapter VI: Discussion and Conclusions 

 
 
 
 
 

1. Introduction 

The evidence from this dissertation is of importance from both methodology 

development and scientific standpoints. The first demonstration of volitional, oral 

operant self-administration of oxycodone in C57BL/6J mice was observed and 

refinement of this procedure led to similar observations in HIV-1 Tat transgenic mice. 

Moreover, the acoustic startle response demonstrated its ability to serve as a measure 

of oxycodone dependence in a quantifiable, objective manner. These two procedures 

will provide tools to illuminate oxycodone’s abuse liability, its mechanisms of 

dependence, and for developing pharmacotherapies for attenuating its abuse-related 

effects. Additionally, these procedures will concurrently facilitate investigating 

mechanisms behind comorbid disorders, such as that of opioid abuse and neuroAIDS.  

Oxycodone self-administration and physical dependence as measured by 

acoustic startle were partially altered by expression of the neurotoxic HIV-1 Tat protein. 

Tat-induced PPI deficits were not worsened by oxycodone (see below). Tat expression 

did not shift the acute effects of oxycodone on locomotor activity, but did shift its chronic 

effects. Tat expression also attenuated, but did not abolish, the development to and 
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expression of locomotor sensitization to morphine and oxycodone. Together, these 

results suggest chronic HIV-1 Tat expression and chronic oxycodone administration 

alters the abuse-related behavioral effects of oxycodone in a manner opposite of 

originally predicted. Importantly, chronic expression of HIV-1 Tat may reduce overall 

sensitivity to chronically administered opioids and their abuse-related effects, resulting 

in attenuated oxycodone or morphine locomotor sensitization, resistance to 

dependence-related effects, and possibly explain increased self-administration 

responding as discussed in detail below.  

2. Chapter II 

The results from Chapter II demonstrated that oxycodone can be volitionally, 

orally self-administered in mice with and without post-prandial conditions and 

oxycodone induces physical dependence as inferred by naloxone dose-dependent 

increases in the number of observed somatic signs of withdrawal. These results were 

found using novel methodologies and regimens developed in our lab, and laid an 

essential foundation for investigating the interactions of HIV-1 Tat expression on 

oxycodone abuse-related behaviors. 

2.1. Oral oxycodone self-administration in C57BL/6J mice 

It was observed that as the concentration of oxycodone increased, the number of 

deliveries obtained increased before decreasing with higher concentrations, whereas 

the estimated consumption increased reaching an average maximum of approximately 

40 mg/kg. In the only other oral opioid, operant self-administration report using mice, 

consumption of the potent benzimidazole opioid, etonitazene, also increased with 
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increases in concentration in four different strains of mice (Elmer et al., 1995). In 

regards to the inverted U-shaped relationship between oxycodone infusions and dose, a 

similar relationship was observed in a rat oxycodone intravenous self-administration 

study (Beardsley et al., 2004), and which is characteristic of other reports of self-

administered drugs under limited access conditions (e.g., Moreton et al., 1977; Suzuki 

et al., 1988). In an intravenous oxycodone self-administration procedure with adolescent 

and adult C57BL/6J mice, however, it was reported that the number of infusions dose-

dependently decreased with increases in dose in both age groups, while intake 

increased resulting in a maximum intake of 8.25 mg/kg i.v. in adult mice (Zhang et al., 

2009). In rats, a similar decrease in number of oxycodone infusions and an increase in 

total intake was found in an intravenous self-administration procedure examining 

duration of drug access (Wade et al., 2015). Differences in these reported patterns of 

self-administered oxycodone might be a function of the range of doses and 

concentrations tested, in that the ascending limb of the dose-effect curve may have 

been missed if doses not low enough were untested.  

The observed levels of oxycodone intake reached behaviorally active levels 

inducing mu-opioid receptor-like mediated effects in the mice including hyperlocomotion 

and Straub tail (Aceto et al., 1969; Hecht and Schiorring, 1979). Likely, in part, 

attributable to these observed effects, it is important to note that the present self-

administration procedure is not without its limitations, specifically regarding the precise 

measurement of oxycodone consumption. For example, one subject was observed 

engaging in stereotypic biting/chewing upon the active lever that resulted in oxycodone 

deliveries that were not consumed. These observations were noted after ~30 min into 
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the test session (see Fig. 29), and after a bout of oxycodone consumption had been 

observed, suggesting that the drug elicited these stereotypic effects. These stereotypic 

effects have been previously observed in rats that had orally self-administered the 

highly potent opiate, etonitazene (Beardsley and Meisch, 1981; Carroll and Meisch, 

1981; Meisch and Kliner, 1979). 

 

Figure 29. Cumulative record of oxycodone obtained liquid deliveries during a 3-h 
test session in a C57BL/6J mouse subject. Note: this record shows the first 1.5-h of 
the test session to demonstrate the likely stereotypic effect. Each diagonal tick mark 
represents one 20ul liquid delivery. 

Pre-session feedings were incrementally reduced from 100% to 50, 25, and 

finally 0% of the total daily food allotment with each reduction in effect for five 

consecutive experimental sessions in which 1 mg/ml oxycodone was the available 

oxycodone concentration. Interestingly, this reduction resulted in the transitory decrease 

in deliveries and consumption as shown in Figure 30A. Moreover, this coincided with an 

increase in inactive-lever responding, as shown in Figure 30B.  
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Figure 30. Panel A, Number of deliveries (left ordinate) and consumption 
estimates (right ordinate); Panel B, Number of inactive lever responses (left 
ordinate) and active lever responses (right ordinate) as a function of food 
availability during 3-h test sessions. N=14. Food allotments were supplied in the pre-
session and subsequently present or absent in the operant chamber during the test 

session. Data represents the mean (± S.E.M.) of five consecutive test sessions in which 

1 mg/ml oxycodone was available. 

This pattern of behavior is similar to previously described effects of food 

disruption or deprivation in oral self-administration studies of opioids and other drugs of 

abuse. In oral etonitazene self-administration studies with rats, an increase in liquid 

deliveries occurred after food restriction although this effect was later shown to differ in 

Sprague-Dawley rats in which a decrease in etonitazene deliveries was observed 

(Carroll and Meisch, 1979; Carroll et al., 1986). Most self-administration studies utilizing 

food restriction manipulated bodyweight as a percentage of the free-feeding weight, 
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whereas in the present study bodyweight was kept at 85% of the free-feeding weight 

throughout. Therefore, in the present study, the schedule of feedings themselves may 

have had an important role on the transitory effects observed more than just the 

satiation of the animal prior to the test session. Sharpe et al. found methamphetamine-

induced locomotor sensitization was altered in food-restricted mice depending on if their 

daily allotment of chow was provided as one meal or separated into three equal-sized 

meals (Sharpe et al., 2012). Consequently, the presence, frequency, and timing of 

delivery of a natural reinforcer in the context of drug self-administration may in turn alter 

the sensitivity to, or reinforcing efficacy, of the drug itself.  

Conversely, food is a natural reinforcer and may therefore affect general operant 

responding rather than possess interactions of biological importance with non-natural 

reinforcers, such as drugs of abuse. In the present study, as pre-session food 

percentage is reduced from 100% to 25% the number of deliveries is maintained at 

similar levels; however, the number of inactive lever presses changed as a function of 

pre-session food percentage. This allocation of behavior to the inactive lever, despite 

maintaining similar total session deliveries is an interesting consequence of an external 

manipulation (pre-session feeding) that resolves once pre-session feeding is completely 

removed. Because this pattern resolves itself after complete withdrawal of pre-session 

feeding, it is difficult to suggest this increased inactive lever responding is simply due to 

rate-altering effects of oxycodone itself in a potentially hungry-state mouse but more so 

to do with ancillary operant learning cues in the context of pre-session feeding. 

Alternatively, it is important to note that the endogenous opioid system and 

dopaminergic systems have both been implicated in the hedonic value of food as well 
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as the rewarding properties of opioids. The extensive overlap of these systems in the 

context of the experiment itself (using postprandial conditions to induce oxycodone oral 

self-administration) may play a key role in the observed behaviors. This complicates 

distinguishing the biological determinants of these observations where pre-session 

feeding differentially affected oxycodone self-administration which, in addition, utilized 

the oral route of administration making it a multilayered challenge. Therefore, the 

relationships between feeding behavior and oral oxycodone self-administration are 

complex to interpret within the confines of this dissertation and additional investigation is 

necessary to resolve them. 

Once pre-session feedings were withdrawn, the mice progressively and once 

again proportioned most presses to the active lever as well as increased the numbers of 

oxycodone deliveries to previous levels indicating that pre-session feedings were no 

longer needed to induce self-administration of oxycodone solutions. This observation is 

consistent with the inference, but does not definitively confirm, that oral oxycodone was 

serving as a positive reinforcer. Similar maintenance of behavior has been found 

previously in an oral operant self-administration study in mice with the highly potent 

opioid, etonitazene, once pre-session feeding was withdrawn (Elmer et al., 1995). 

Attempts to further confirm oral oxycodone was serving as a positive reinforcer met with 

challenges, and because they amounted to "probes" in now what were aging mice with 

complex behavioral histories, were not included in Chapter II. For example, the maximal 

amounts of behavior that are maintained by different reinforcer deliveries using 

progressive ratio schedules has been one way to disentangle the strengths of different 

reinforcers (Richardson and Roberts, 1996). In probe studies, progressive ratio tests 
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were performed for both water and 1 mg/ml oxycodone. Briefly, after complete removal 

of pre-session feedings, mice were maintained on 1 mg/ml oxycodone before being 

switched to water (minimum of five days) to wash out oxycodone and stabilize 

performance. During this time, as an example, one mouse required 29 days of lever 

pressing reinforced with water deliveries to finally reach stability criteria (Fig. 31A). After 

this period of water reinforcement, mice were returned to 1 mg/ml oxycodone availability 

and tested until reaching stability criteria again. Then, progressive ratio tests for 1 mg/ml 

oxycodone began in which the ratio to receive a liquid delivery increased between-

sessions using the formula 2x, where x began at 2 (i.e., to receive one liquid delivery, 

mice pressed 4, 8, 16, 32, 64, etc. times) until a breakpoint was hit. The breakpoint was 

defined as the final ratio step completed before the subsequent ratio step in which the 

animal failed to receive at least one liquid delivery. After oxycodone tests, mice were 

switched back to water, stabilized, and then tested in progressive ratio for water 

deliveries. Shown in Figure 31B are the breakpoint averages for seven subjects that 

underwent progressive ratio tests for oxycodone and water. 
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Figure 31. Panel A, Number of deliveries for a mouse subject undergoing water 
extinction; Panel B, Breakpoints of mice for water and 1 mg/ml oxycodone. 

Symbols in A represent the mean (± S.E.M.) number of deliveries during a 3-h session; 

bars in B represent the mean (± S.E.M.) breakpoint ratio size (N=6; one outlier 

removed) to obtain at least one liquid delivery during a 3-h session. 

 As seen in Figure 31B, the breakpoints for water and oxycodone were similar, 

with high responding subjects allocating high responses for both water and oxycodone 

and the same pattern with low responding subjects. The definitive inference for a drug 

serving as a positive reinforcer in an operant task is for its ability to maintain greater 

levels of responding than in its absence such as when it is replaced by vehicle (such as 

water). In the literature, there are very few preclinical studies that examine oxycodone in 

progressive ratio tests and neither compare to a nondrug reinforcer or placebo. In those 

reports, oxycodone breakpoints are compared either by duration of access, or to a 

combination of oxycodone and ultra-low dose of the opioid antagonist naltrexone, in an 
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intravenous self-administration procedure using rats (Leri and Burns, 2005; Wade et al., 

2015). Therefore, it is difficult to conclude that the oxycodone breakpoint observed in 

the present study suggests oxycodone is truly serving as a positive reinforcer. In the 

clinical literature, oxycodone has been used in progressive ratio tests and compared to 

either placebo or a nondrug reinforcer, which is often money. In one report, oxycodone 

obtained higher breakpoints than placebo as well as money as a function of magnitude 

of dose (Babalonis et al., 2013). In another study, oxycodone served as a positive 

reinforcer to prescription opioid abusers and non-drug abusers but only in the presence 

of experimentally-induced pain (i.e., hand immersed in cold water via cold pressor test) 

and breakpoints for money again shifted as a function of oxycodone dose (Comer et al., 

2010). In summary, exceptionally high breakpoints often exceeding FR200 were 

maintained by both water and oxycodone deliveries in non-liquid deprived mice, 

suggesting other factors beyond those of intrinsically reinforcing effects were 

maintaining behavior. It is likely that some of these factors were conditioning factors 

resulting from the extensive associations of previous drug effects with the test 

environment. Because at the time of these progressive ratio tests the mice were aging 

(reaching approximately 9 months of age) and had extensive behavioral and 

pharmacological histories, it was impossible to continue to test them to isolate these 

potential factors and would have to be left for future researchers. Also, a limitation of the 

present studies was that only one type of progressive ratio schedule was tested. There 

are multiple determinants of break points under progressive ratio schedules including 

the initial FR used, step size, and criteria for defining breakpoint (Stafford and Branch, 
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1998) that could not be investigated in these studies given the primary aim of examining 

"volitional" intake of oxycodone in Tat-expressing mice. 

In conclusion, in addition to previous mouse intravenous self-administration 

reports, these results suggest that oxycodone can also be volitionally consumed via the 

oral route in mice at behaviorally active levels. Overall, this methodology provides a 

useful, noninvasive technique enabling the study of the determinants of oxycodone self-

administration in mice the duration of which may only be limited by a mouse's natural 

lifespan. 

2.2. Oxycodone physical dependence in C57BL/6J mice 

Physical dependence upon oxycodone was induced in C57BL/6J mice after nine 

days of its b.i.d. subcutaneous administration as inferred by naloxone-precipitated 

somatic signs of opiate-like withdrawal syndrome. In previous reports, morphine-

dependent rhesus monkeys demonstrated cross-dependency to oxycodone (Beardsley 

et al., 2004), and naloxone precipitated disruptions of lever pressing maintained by 

intra-cranial self-stimulation in rats chronically-treated with oxycodone suggestive of 

dependence (Wiebelhaus et al., 2016). Thus, oxycodone demonstrates opiate-like 

dependence effects across species including mice, rats and rhesus monkeys. The signs 

and their patterns of direction observed in C57BL/6J mice of the current study are 

similar to those reported in previous studies with other strains of mice that used 

oxycodone regimens involving continuous drug delivery (Mori et al., 2013; Raehal and 

Bohn, 2011) or repeated injections (Bhalla et al., 2015) to induce dependence. The 

regimen to induce physical dependence in this study was adapted from a previous study 

that found physical dependence upon morphine to be induced in mice (Muldoon et al., 
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2014). After naloxone-precipitated withdrawal in morphine-treated wildtype mice, similar 

numbers of paw tremors but fewer numbers of jumps were observed in comparison to 

the present study’s results with oxycodone. Moreover, unlike morphine, naloxone 

precipitated similar degrees of withdrawal in both wildtype and beta-arrestin-2 knockout 

mice made dependent on oxycodone via osmotic pumps (Raehal and Bohn, 2011). 

These differences between morphine and oxycodone, in addition to clinical 

psychopharmacological and analgesic effects (Curtis et al., 1999; Wightman et al., 

2012; Zacny and Lichtor, 2008), suggest that these two mu-opioid agonists have 

different pharmacological profiles that warrant further investigation into oxycodone’s 

specific abuse-related effects on behavior. Unlike previous studies that only reported 

tests after one dose of naloxone to precipitate withdrawal, a wide range of naloxone 

doses (0.1 to 10 mg/kg) was evaluated in the present study. A naloxone dose-

dependent increase in withdrawal severity was observed. The C57BL/6J strain of mice 

has been observed to consistently display characteristic effects of opiate dependence 

(e.g., naloxone-precipitated jumping) across various methods of inducing physical 

dependence upon morphine, although at times with less intensity than some other 

strains such as Swiss-Webster mice (Kest et al., 2002). The regimen used in the 

present study therefore provides a novel method to measure physical dependence-

related effects of oxycodone in future behavioral studies. 

3. Chapter III 

Studies described in Chapter III reported the ability for ASR to serve as a 

measure of oxycodone dependence in C57BL/6J mice using a novel oxycodone 

dependence regimen. In addition to startle, habituation, but not PPI demonstrated 
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withdrawal-specific effects. A lack of nonspecific effects of the tetracycline derivative 

doxycycline supported these findings. These results support the use of the described 

procedure for evaluating oxycodone dependence-related effects. Moreover, the 

established regimen and procedure add another methodological layer to evaluate 

oxycodone dependence-related effects in mice expressing the neurotoxic HIV-1 Tat 

protein. 

Chronic (nine-day), b.i.d. subcutaneous administration of oxycodone to C57BL/6J 

mice fed a REG-chow diet resulted in a significant increase in the ASR, but did not 

affect habituation or PPI. Naloxone-precipitated withdrawal, however, resulted in a 

significant decrease in ASR and habituation, but not PPI. These results with oxycodone 

mimic findings in rats where chronic morphine, via implantation of a 75-mg morphine 

pellet, increased ASR whereas naloxone-precipitated withdrawal decreased ASR 

(Mansbach et al., 1992). However, other researchers have found opposite effects in rats 

under withdrawal from morphine. In these latter studies, however, morphine 

dependence was induced via an acute intraperitoneal injection of morphine (1-10 

mg/kg) and spontaneous as well as naloxone-precipitated withdrawal resulted in 

significant increases in ASR (Harris and Gewirtz, 2004). The authors suggested the 

observed increases in ASR reflect a state of anxiety as a component of morphine 

withdrawal syndrome as it is listed as part of the syndrome in humans. We attempted to 

replicate these findings, albeit in mice, and found spontaneous withdrawal (3-h after 

acute morphine injection) increased ASR in a morphine dose-dependent manner but an 

acute naloxone injection 3-h post-morphine decreased ASR (see Figure 32). Moreover, 

in our hands, acute morphine alone attenuated ASR.  
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Figure 32. Spontaneous withdrawal (A) and naloxone-precipitated withdrawal (B) 
from acute morphine on the acoustic startle response in C57BL/6J mice. 
N=8/group. Data represents the mean (± S.E.M.) startle magnitude for 13 STIM trials 
during a 30-min test session. 

Differences in these results from previous studies in rats may be due to 

differences in methodology (i.e., species, morphine/naloxone doses, and time after 

acute morphine). Importantly, however, our results showing decreased ASR after 

naloxone-precipitated withdrawal from morphine mimic what was observed after 

naloxone-precipitated withdrawal in oxycodone-treated mice. Together, these results 

suggest that mu-opioid agonist dependence-related effects may be reliably measured 

using acoustic startle response procedures. 
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 Acoustic startle and its related measure, PPI, are typically found to be altered by 

dopamine agonists or NMDA antagonists such as amphetamine or ketamine, 

respectively. Mu-opioid agonists are not as well known to affect these measures 

directly, where variable effects have been reported, although morphine has shown to 

increase PPI in healthy human volunteers and naloxone has been demonstrated to 

block amphetamine-induced PPI deficits in rats suggesting a role of the opioid system in 

regulating these effects (Quednow et al., 2008; Swerdlow et al., 1991). Recently, rats 

trained to self-administer intravenous morphine demonstrated increased startle 1-h but 

not 3-h after self-administration sessions, whereas PPI was only disrupted after 3-h 

post-session (Lee et al., 2016). In sum, these effects support the role of the opioid 

system in regulation of startle reflexes as well as sensorimotor gating and further 

characterization of its role is warranted. 

3.1. Effects of doxycycline on acoustic startle 

 Control experiments in C57BL/6J mice fed a diet infused with the tetracycline 

derivative doxycycline essentially replicated our previous findings with REG-fed 

C57BL/6J mice. Doxycycline treatment alone did not alter ASR, habituation, or PPI up 

to 58 days of DOX exposure, suggesting a lack of effect of doxycycline on these 

measures. Moreover, while there was no significant effect of chronic oxycodone on ASR 

in DOX-fed mice, naloxone-precipitated withdrawal significantly reduced ASR as well as 

habituation. This demonstrates that doxycycline does not interfere with the development 

or expression of oxycodone dependence as measured by acoustic startle and further 

supports the use of this procedure to characterize oxycodone abuse-related effects in 

the mouse. Interestingly, doxycycline and similar tetracycline derivatives have shown to 
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affect behavioral effects of other drugs of abuse, such as ethanol. For example, 

C57BL/6J mice supplied a DOX-containing diet had reduced ethanol consumption 

values and an increased sensitivity to its motor-impairing effects (McIver et al., 2012). 

Administration of a semisynthetic tetracycline, tigecycline, also reduced ethanol 

consumption and ethanol withdrawal in mice, and administration of minocycline 

suppresses morphine reward as measured by conditioned place preference, which 

together suggests antibiotics may differentially interact with drugs of various classes 

(Bergeson et al., 2016; Hutchinson et al., 2008; Martinez et al., 2016). Further 

commentary of doxycycline’s effects and consideration of its anti-inflammatory 

properties in the expression of these effects is discussed later in this chapter. 

4. Chapter IV 

The results from Chapter IV extended the developed oral oxycodone self-

administration procedure and the physical dependence regimen to HIV-1 Tat-

expressing mice. Tat transgenic mice readily self-administered oral oxycodone and 

were susceptible to naloxone-precipitated withdrawal effects as measured by acoustic 

startle. Under the conditions tested, HIV-1 Tat expression altered oxycodone abuse-

related effects and consideration of the limitations of the studies in this regard are 

discussed below. Nevertheless, results from this chapter demonstrate the potential of 

HIV-1 Tat altering oxycodone abuse-related effects which support recent reports 

involving morphine (Fitting et al., 2016). 
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4.1. Oral oxycodone self-administration in Tat transgenic mice 

Results from the oral self-administration study replicate earlier findings with 

C57BL/6J mice where, as oxycodone concentration increased, the number of deliveries 

obtained decreased. This was observed in both Tat(-) and Tat(+) mice, regardless if Tat 

expression was actively being induced or not (i.e., Pre-DOX versus DOX or Post-DOX 

phases of the study). Once Tat expression was induced or Tat was still likely present 

(i.e., during DOX and Post-DOX phases in Tat(+) subjects), numbers of liquid deliveries 

of oxycodone increased for Tat(+) mice relative to both their Pre-DOX baseline and to 

Tat(-) mice. Importantly, Tat(+) mice maintained significantly greater numbers of 

deliveries of 1 mg/ml oxycodone during their Post-DOX phase as compared to Tat(-) 

mice during their Pre-DOX phase. This suggests, among several possibilities, that Tat 

expression may have either increased the reinforcing efficacy of oxycodone or reduced 

sensitivity to oxycodone (e.g., via a greater degree of general tolerance or adaptation to 

oxycodone's potential aversive effects) resulting in an increased maintenance of 

behavior. This is the first report of self-administration of a drug in Tat-expressing mice, 

therefore limitations of the interpretation of these results must be considered. At the 

present time, the only preclinical reports of interactions of drug self-administration and 

HIV-1 are those of cocaine i.v. self-administration in HIV-1 transgenic rats which 

express seven of the nine viral proteins (Reid et al., 2001). In the first report, HIV-1 

transgenic rats displayed a significant leftward shift in the cocaine, but not heroin, dose-

response curve as compared to Fischer 344 rats in an intravenous self-administration 

model suggesting an increased sensitivity to cocaine’s rewarding properties (McIntosh 

et al., 2015). Although there was a leftward shift in heroin’s dose-response curve for 
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HIV-1 transgenic rats, the lack of statistical significance was suggested by the authors 

to be due to its negligible dopaminergic involvement than what is found with cocaine. In 

the second report, it was found that while HIV-1 transgenic rats did not show any 

difference from control animals in cocaine self-administration, there was significantly 

enhanced firing of medial prefrontal cortex pyramidal neurons from cocaine-exposed 

HIV-1 transgenic rats as compared to Fischer 344 rats and to saline-yoked control 

animals (Wayman et al., 2016). In the present study, consumption of oxycodone in Tat 

transgenic mice reached behaviorally active levels as some subjects exhibited 

stereotypic behaviors including hyperlocomotion and biting/chewing of levers. To 

maintain simplicity of design and interpretation, and to avoid the disruptive effects of 

removing pre-session food that were observed in C57BL/6J mice, Tat transgenic mice 

were tested only under post-prandial conditions throughout the study. Therefore, at the 

present time it cannot be concluded that oxycodone was serving as a positive reinforcer 

in Tat transgenic mice or whether the reinforcing efficacy of oxycodone was altered by 

Tat expression. The increased number of deliveries seen mainly in Tat(+) mice, 

however, suggests that Tat expression did have an effect on oral oxycodone self-

administration. One possible explanation for the increased responding maintained by 

oxycodone could be due to an increased or more rapid tolerance to oxycodone’s 

subjective effects than Tat(-) mice that resulted in an increased responding to maintain 

a level of effect. In fact, an increased tolerance to morphine’s antinociceptive effects 

was reported recently in Tat-expressing mice, which supports the plausibility of Tat 

altering inherent properties of opioids (Fitting et al., 2016). Moreover, in HIV-1 

transgenic rats, an increased tolerance to methamphetamine-induced hyperthermia was 
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observed (Kass et al., 2010). Therefore, it is possible that the observed increase in 

oxycodone oral self-administration is due to an increased tolerance to oxycodone in Tat-

expressing mice, although other possible mechanisms are possible. 

4.2. Acoustic startle measures in Tat transgenic mice 

In general, Tat expression did not alter acoustic startle or habituation up to 58 

days of DOX exposure. However, PPI was notably decreased in Tat-expressing mice 

after 16-d on DOX that was maintained over time. This supports previous findings 

where Tat exposure significantly reduced PPI, suggesting deficits in sensorimotor gating 

are observed after Tat exposure and reflect sensorimotor gating deficits reported in 

HAND patients (Fitting et al., 2006a; Minassian et al., 2013; Moran et al., 2014; Paris et 

al., 2015). Acute oxycodone administration significantly decreased ASR in DOX-fed 

Tat(-) and Tat(+) mice (although it was not significantly altered at the lowest dose, 9 

mg/kg, for Tat(+) mice). This was the first evidence to show oxycodone has acute 

effects on acoustic startle. These acute effects of oxycodone are interesting as they 

were only found for ASR and virtually had no effect on habituation or PPI. Therefore, 

under the conditions tested, Tat expression did not interact with acute oxycodone to 

worsen PPI deficits seen with Tat expression alone. This may be due to Tat expression 

alone inducing PPI deficits only after 16-d of DOX exposure. In the present study, acute 

oxycodone was administered and tested only after 7-d of DOX exposure, therefore an 

interaction of acute oxycodone and Tat expression may be time-sensitive and longer 

durations of DOX exposure may be necessary to demonstrate an interactive effect with 

oxycodone. This lack of effect was also seen in REG-fed Tat transgenic mice chronically 
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administered oxycodone, suggesting chronic oxycodone does not have acoustic startle-

altering effects on its own.  

In saline-treated control mice, PPI deficits were not evident in Tat(+) mice after 

DOX exposure as previously seen in the timecourse study. This may be due to 

differences in testing parameters such as time between repeated testing as well as 

repeated injections prior to testing for the chronic study. Repeated injections, handling, 

as well as testing nocturnal rodents during the light phase, have all demonstrated to 

alter behavior in both rats and mice (Izumi et al., 1997; Longordo et al., 2011). Both the 

timecourse study and the chronic saline experiment would need to be replicated to first 

determine the replicability of outcomes from both experiments before manipulating the 

DOX exposure length prior to saline administration to determine if these effects are due 

to duration of Tat expression.  

Naloxone-precipitated withdrawal in Tat transgenic mice replicated findings with 

C57BL/6J mice, in which acoustic startle and habituation was significantly decreased as 

a result of naloxone injections. This was observed for both REG- and DOX-fed Tat(-) 

and Tat(+) mice, and was dependent on naloxone dose where the lowest dose (0.1 

mg/kg) increased ASR and higher doses (1 and 10 mg/kg) decreased ASR. While in 

general no significant differences between Tat(-) and Tat-expressing mice occurred, an 

attenuated severity of naloxone-precipitated withdrawal effects, particularly for 

habituation, was observed for Tat-expressing mice suggesting that Tat expression 

reduced the expression of dependence-related effects. The degree of physical 

dependence upon an opioid has been inferred to be correlated with the severity of 

withdrawal symptoms produced after administration of an antagonist, such as naloxone 
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(Blasig et al., 1973; Geary and Wooten, 1985; Heishman et al., 1989). Therefore, 

attenuated withdrawal effects in Tat-expressing mice may be due to a resistance to 

physical dependence. This is contrary to the original hypothesis that Tat expression 

worsens oxycodone abuse-related effects; however, recent findings have shown a 

similar pattern of behavior in Tat-expressing mice in which morphine physical 

dependence was assessed (Fitting et al., 2016). In that study, Tat transgenic and 

C57BL/6J mice were implanted with a placebo or 75-mg morphine pellet and morphine-

induced antinociceptive tolerance as well as somatic signs of withdrawal produced after 

a 1 mg/kg naloxone challenge were measured. Tat-expressing mice were found to have 

both an increased antinociceptive tolerance and decreased severity of morphine 

physical dependence. It was suggested that this attenuated dependence effect was 

possibly due to the use of an insufficient dose of naloxone (1 mg/kg) to precipitate 

withdrawal, and that higher doses may increase the severity of a withdrawal effect. This 

is indeed what was observed in the present study, in which only the highest dose of 

naloxone (10 mg/kg) was able to significantly decrease habituation in Tat-expressing 

mice. However, in comparison to the effects seen at 1 mg/kg naloxone, the evidence 

does not strongly support this conclusion as the severity of decreased habituation in 

Tat-expressing mice was not different between 1 mg/kg and 10 mg/kg doses of 

naloxone. The effects of Tat expression on dependence-related measures of other 

drugs of abuse have not yet been evaluated. Importantly, however, physical 

dependence is just one phenomenon indicative of abuse liability and therefore does not 

reflect the entire pharmacological profile of oxycodone or its alteration by HIV-1 Tat 
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expression. Further expansion of this point is discussed in the summary of chapters 

below. 

5. Chapter V 

5.1. Oxycodone’s effects on locomotor activity and its sensitization in C57BL/6J 

mice 

Results from Chapter V showed that oxycodone induces mu-opioid agonist 

prototypic increases in locomotor activity and is able to induce locomotor sensitization in 

C57BL/6J mice. The tetracycline derivative doxycycline does not interfere with 

oxycodone’s hyperactivity effects, further providing evidence of a lack of nonspecific 

effects on oxycodone’s behavioral effects. In the oxycodone locomotor sensitization 

study with C57BL/6J mice, the time to peak effect after an acute injection of 9 mg/kg 

oxycodone (~6-min) did not change from Day 1 to Day 8, however, recovery toward 

baseline levels accelerated. That is, on Day 8, mice rapidly decreased distance traveled 

after reaching peak effects, whereas mice maintained near-peak effects longer on Day 

1. Oxycodone locomotor sensitization has been previously found in mice, but reporting 

of time-sensitive shifts were not mentioned (Liu et al., 2005; Niikura et al., 2013). In the 

Liu et al. (2005) study, time to peak effect after an acute injection of 5 mg/kg oxycodone 

was approximately 30-min. This relatively large difference from the 6-min peak effect in 

the present study may be due to both dose (5 versus 9 mg/kg) and mouse strain 

(Kunming versus C57BL/6J). Differences in mouse strain can affect opioid 

responsiveness and their abuse-related effects (Elmer et al., 2010; Kest et al., 2002; 

Metten et al., 2009), and therefore may explain why time to drug peak effect is sooner in 
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the present study than in the Liu et al. (2005) study. Still, the rapid decrease in distance 

traveled on Day 8 may suggest that there is alteration of the pharmacokinetic profile of 

oxycodone after repeated administration.  

5.2. Oxycodone’s effects on locomotor activity in Tat transgenic mice 

HIV-1 Tat expression in mice showed less locomotor activity and fewer 

stereotypy counts as compared to Tat(-) control mice up to 58 days of DOX exposure. 

This supports previous findings of motor impairments with this mouse model of 

neuroAIDS (Hahn et al., 2015), and also corresponds to those reported in HIV-

associated neurocognitive disorders (Antinori et al., 2007). Acute administration of 

oxycodone produced significant increases in locomotor activity and stereotypy counts in 

both Tat(-) and Tat(+) mice. Relative to a saline baseline, the time spent in the center 

area of the chamber under acute oxycodone conditions was reduced in both Tat(-) and 

Tat(+) mice, but to a lesser degree in Tat-expressing mice. That is, Tat expression 

interacted with oxycodone's acute effects to result in greater center time than was 

observed in Tat(-) mice. The time in center is an indirect index of anxiety-related 

behavior (Lipkind et al., 2004; Prut and Belzung, 2003), and previous studies have 

shown Tat expression alone results in reduced time in open field tests and greater time 

in dark regions in the light/dark assay, suggesting a greater anxiety-related behavior 

after Tat expression is induced (Hahn et al., 2015; Paris et al., 2013). In the present 

study, Tat(+) mice did have a reduced time in center under saline conditions than Tat(-) 

mice, although the effect was not statistically significant (data not shown). Anxiety-like 

behavior is not typically observed after acute administration of opioids, although 

cessation of chronic opioid administration sufficient to produce withdrawal is reported to 
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produce anxiety-like behavior (Harris and Aston-Jones, 1993; Schulteis et al., 1998; 

Zhang and Schulteis, 2008). Therefore, the acute effects of oxycodone on decreasing 

center time were unexpected; however, mice were injected 25-min prior to a 30-min 

acoustic startle test before being tested in locomotor activity and this may have 

promoted reduced center time rather than as an effect of oxycodone alone. Omitting 

startle tests prior to locomotor activity tests and conducting other kinds of anxiety-

related behavioral tests under oxycodone administration conditions would help clarify its 

potential effects on anxiety-like behavior. 

Chronic oxycodone significantly increased locomotor activity as well as 

stereotypy counts in Tat transgenic mice, regardless of chow type provided or genotype. 

The effect was somewhat blunted in DOX-fed Tat(+) mice (i.e., Tat-expressing), 

although nonsignificantly so, and may reflect a dampening effect by Tat expression's on 

locomotor activity in general. Center time, however, was not affected by chronic 

oxycodone administration. Precipitated withdrawal with naloxone dose-dependently 

suppressed locomotor activity and stereotypy as expected, while increasing center time. 

An increase in center time was unexpected, as it indicates a lack of anxiety-related 

effects that is in conflict with other literature demonstrating withdrawal increases 

anxiety-related behavioral effects (Harris and Aston-Jones, 1993; Schulteis et al., 1998; 

Zhang and Schulteis, 2008). Similar to the acute oxycodone study, however, the chronic 

study was in conjunction with prior acoustic startle testing and may have interfered with 

any expression of anxiety-related behavior in locomotor activity tests. Moreover, the 

locomotor chambers and procedures used may not be sensitive to anxiety-related 

behavioral effects (e.g., testing was conducted in darkened chambers).  
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5.3. Opioid locomotor sensitization in Tat transgenic mice 

Tat expression attenuated the development to and the expression of morphine 

and oxycodone locomotor sensitization. In the morphine sensitization study, Tat 

expression was induced and maintained for 12-weeks prior to morphine tests. Acute 

administration of 32 mg/kg morphine on Day 1 resulted in similar increases in locomotor 

activity in Tat(-) and Tat(+) mice. However, when the same dose of morphine was given 

prior to locomotor activity tests on Days 2-4, a reduced expression of sensitization was 

observed for Tat(+) mice but not Tat(-) mice. When morphine was given again on Days 

8 and 11, however, Tat(+) mice had surpassed or achieved the level of total distance 

traveled observed as of Tat(-) mice. Together, these results suggested that Tat 

expression reduces the development of morphine sensitization.  

In the oxycodone sensitization study, REG-fed Tat transgenic mice were first 

tested under a cumulative oxycodone dosing regimen to establish a pre-Tat expression 

baseline. Interestingly, there was already a reduced sensitivity to the highest two doses 

of oxycodone in Tat(+) mice. This effect may be attributable to a mild level of Tat protein 

being present, as the Tat promotor has been found to have some constitutive activity in 

this mouse model (Bruce-Keller et al., 2008; Fitting et al., 2012; Fitting et al., 2010). 

Once mice were placed on DOX chow for two weeks, the cumulative oxycodone dosing 

regimen was repeated. There was sensitization to the two highest doses of oxycodone 

(10 and 33 mg/kg) for Tat(-) mice, but only at the highest dose (33 mg/kg) for Tat(+) 

mice suggesting Tat expression reduced oxycodone locomotor sensitization. The 

results from locomotor sensitization tests with morphine or oxycodone using Tat 

transgenic mice indicate that Tat expression reduces, but does not abolish, the 
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development of opioid sensitization. Similarly, attenuation of cocaine locomotor 

sensitization was reported in Tat-expressing mice as well as in ovariectomized rats that 

received intra-accumbal injections of Tat (Harrod et al., 2008; Paris et al., 2014b). 

However, in transgenic rats expressing seven of the nine viral proteins, greater 

sensitization to methamphetamine-induced effects was observed suggesting other viral 

proteins may drive contrary effects on abuse-related effects of drugs (Kass et al., 2010; 

Liu et al., 2009). In sum, the results from the present study further provide evidence for 

Tat expression altering abuse-related effects of opioids. 

6. Is a reduced sensitivity to opioids in Tat-expressing mice sufficient to 

conclude a lack of abuse liability?  

The results from Chapter IV and V indicated three major findings: (i) Tat 

expression increases oral self-administration of oxycodone, (ii) Tat expression 

attenuates oxycodone dependence-related effects as measured by acoustic startle and 

habituation, and (iii) Tat expression slows the development or expression of morphine 

and oxycodone locomotor sensitization. Together, along with recent reports in this 

mouse model showing reduced physical dependence (Fitting et al., 2016), the evidence 

presented suggest that Tat expression appears to reduce opioid sensitivity rendering 

the measurement of abuse-related effects challenging. This interpretation is unexpected 

as there are many reports demonstrating the co-exposure of opioids and HIV-1 Tat 

results in worsened neuronal damage or toxicity, increases pro-inflammatory cytokine or 

chemokine release, and increases microglial activation (Bruce-Keller et al., 2008; El-

Hage et al., 2005; Fitting et al., 2014; Gurwell et al., 2001). Moreover, increased 

morphine antinociceptive tolerance in Tat-expressing mice suggests a greater sensitivity 
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to opioids, although the underlying mechanisms behind tolerance and physical 

dependence may be independent of one another (Christie et al., 1987). Blunted 

sensitivity to opioids, specifically morphine, has been demonstrated by Tat-expressing 

mice as well as by rats given microinjections of another neurotoxic viral protein, gp120, 

into the periaqueductal grey region (Chen et al., 2011; Fitting et al., 2012). In the gp120 

study, this effect was blocked by administration of an antagonist for the CXC chemokine 

receptor 4 (CXCR4) suggesting the role of this receptor in gp120-induced modulation of 

morphine sensitivity. Potential mechanisms behind the observed effects in the studies 

presented in this dissertation are discussed in the next section.  

Conversely, could Tat expression directly reduce abuse-related effects of opioids 

in general? In most theories of addiction, the presence and severity of a withdrawal 

syndrome upon cessation of drug intake is sufficient to classify a drug as having abuse 

liability and the withdrawal syndrome itself can promote further abuse of the drug. 

Therefore, one interpretation of the attenuated opioid abuse-related effects seen in the 

present acoustic startle and locomotor activity studies and in the Fitting et al. (2016) 

study might be due to Tat expression blunting abuse-related effects. Though, if this 

were the case, one would assume there would be substantial epidemiological data in 

HIV-infected individuals demonstrating reduced drug misuse after HIV infection, 

however no such evidence to support that claim has been reported. The majority of 

clinical literature investigating opioid and HIV interactions are centered on the treatment 

of HIV-related pain. Interestingly, HIV-infected individuals with a history of drug misuse 

report greater levels of pain proceeded by greater use of prescription opioids and 

require a higher morphine dosage to treat pain (Kaplan et al., 2000; Tsao et al., 2007). 
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Moreover, Tat expression did promote increased oral self-administration in the present 

studies. Therefore, it is unlikely that Tat expression is actively reducing the reinforcing 

properties of oxycodone or other opioids, and rather the choice of laboratory procedure 

to measure abuse-related effects may or may not detect changes in the sensitivity to 

opioids. Moreover, these changes may be reflected in opposite directions than predicted 

insofar as a blunted sensitivity to oxycodone may have been the underlying cause of 

increased oral self-administration observed in Tat-expressing mice. 

7. Potential mechanisms of oxycodone-Tat interactions 

 The majority of preclinical studies that have begun to examine opioid and HIV-1 

Tat interactions typically use the prototypic mu-opioid agonist, morphine. From these 

studies, the underlying mechanisms of these interactions have been suggested to 

involve neuroinflammation (i.e., increase in pro-inflammatory cytokine and chemokine 

release) via glial cell activation. It is fairly well known that opioids have 

immunomodulatory effects, and morphine-induced glial activation has shown to have a 

role in reinstatement of morphine conditioned place preference via prevention of 

morphine-CPP after administration of the glial cell inhibitor ibudilast, also known as AV-

411 (Schwarz et al., 2011). In fact, ibudilast and other glial cell modulators such as 

minocycline have been shown to attenuate abuse-related effects of opioids as well as 

other drugs of abuse (Habibi-Asl et al., 2009; Hutchinson et al., 2009; Hutchinson et al., 

2008; Snider et al., 2013; Snider et al., 2012). Together, it has been suggested that 

these glial cell inhibitors may be a potential treatment option for both opioid and 

psychostimulant abuse (Beardsley and Hauser, 2014; Cooper et al., 2016). However, 

caution should be noted as these glial modulators are mostly nonspecific inhibitors and 



 

137 
 

therefore possess multiple effects at various targets which may have opposing or 

undesirable side effects. Additionally, in the present studies, HIV-1 Tat expression 

altered abuse-related effects of oxycodone which, under the conditions tested, 

appeared as an overall reduction in some measures (acoustic startle and locomotor 

sensitization) and an increase in others (oral self-administration). It would therefore be 

interesting to measure these abuse-related effects in Tat-expressing mice after 

administration of a glial cell inhibitor. First, however, these effects would need to be 

further characterized to clarify if Tat expression is altering abuse-related effects due to a 

reduced opioid sensitivity. If glial cell activation is the underlying mechanism, 

administration of a glial inhibitor would attenuate or reverse these effects. Interestingly, 

glial cell inhibition has indeed begun to be evaluated at as a potential therapeutic for 

HIV-associated neurocognitive impairments. These evaluations have been performed 

primarily with minocycline, and while cognitive improvement was not observed in HIV-

infected individuals, levels of lipid biomarkers for oxidative stress were reduced (Sacktor 

et al., 2011; Sacktor et al., 2014). In the present studies, the Tat transgenic mouse 

model utilized the tetracycline derivative doxycycline to induce Tat expression in Tat(+) 

mice. Doxycycline itself possesses anti-inflammatory properties and according to one 

report has a greater anti-inflammatory activity than minocycline (Leite et al., 2011), 

suggesting differences in their actions that may or may not translate to altering Tat-

induced effects. Although this is one disadvantage of the mouse model, as doxycycline 

may be blunting some Tat-specific effects, it did not completely mask Tat’s effects in 

these studies, nor in previous studies observing Tat-induced behavioral impairments. 
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 Recent studies have begun to characterize the effects of HIV-1 Tat on the 

functional profile of the mu-opioid receptor to understand the mechanism behind the 

observed reduced morphine efficacy in previous Fitting et al. (2016 and 2012) studies. 

Using [35S]GTPγS autoradiography, it was observed that HIV-1 Tat exposure decreased 

[35S]GTPγS binding via reduced Emax values rather than a decrease in potency and that 

this decrease was not a result of decreased mu-opioid receptor (MOR) levels (Hahn et 

al., 2016). Importantly, these effects were dependent on length of Tat exposure and 

were brain region-specific insofar as the nucleus accumbens and amygdala were most 

sensitive to Tat-induced alterations in MOR signaling. To further explain how Tat might 

be altering morphine efficacy, the authors examined the role of β-arrestin-2 (βarr2), a 

regulatory protein which has been implicated in morphine tolerance via increased 

desensitization of the MOR (Bohn et al., 2000), and found that βarr2 protein expression 

levels were significantly increased by Tat and showed an enhanced association with 

MOR which indicates decreased MOR functional availability due to possible 

desensitization of the MOR. This mechanism for Tat-morphine interactions would 

explain why a reduced morphine efficacy was then observed in the Fitting et al. (2012 

and 2016) studies, but would this hold true for oxycodone? Oxycodone has been shown 

to have a lesser degree of MOR activation than morphine in several brain regions as 

measured by GTPγS binding in mice and rats (Lemberg et al., 2006; Nakamura et al., 

2013; Thompson et al., 2004). Furthermore, in a study examining multiple MOR 

agonists (morphine, oxycodone, fentanyl, and methadone) on antinociceptive tolerance 

in wildtype and βarr2 knockout mice, only morphine antinociceptive tolerance was 

blocked in βarr2 KO mice (Raehal and Bohn, 2011). Together, this evidence further 



 

139 
 

demonstrates that MOR agonists are not identical in their pharmacological effects. 

Therefore, the Tat-oxycodone effects observed in the present studies may be through a 

mechanism that is independent of βarr2 regulation. The similarity in behavioral 

responses in the present Tat-oxycodone and previous Tat-morphine studies, but 

notable differences in the role of βarr2 in the pharmacology of these two opioids, may 

suggest an alternative underlying mechanism in which morphine and oxycodone 

converge within the context of HIV-1 Tat expression. Still, oxycodone’s active 

metabolite, oxymorphone, may be driving the behavioral effects and therefore might not 

represent the effects of oxycodone itself. In conclusion, investigation of the role of βarr2 

in Tat-oxycodone effects is essential to further clarify the mechanisms behind the 

observed behavioral effects seen in the present studies. 

8. Future Directions 

Results from these studies suggest multiple future directions, but the most 

important directions that would complement the present studies are discussed below. 

Importantly, these immediate directions would be essential prior to pharmacotherapy 

screening, such as testing the effects of glial cell inhibitor administration on oxycodone 

abuse-related effects or their effects on opioid-Tat behavioral interactions.  

In the present self-administration studies, determining whether oxycodone served 

as a positive reinforcer was met with challenges, as described earlier. Therefore, the 

immediate future direction for this procedure would be to clearly identify oxycodone’s 

reinforcing efficacy in oral self-administration. One way this might be achievable would 

be to utilize a concurrent fixed ratio schedule of reinforcement to examine self-

administration of oxycodone and water. That is, responding on one lever at a certain 
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ratio requirement would result in an oxycodone liquid delivery and responding on a 

second lever at the same, or different, ratio requirement would result in a water delivery. 

This technique has been used to evaluate ethanol and phencyclidine as an oral 

reinforcer in rats (Carroll, 1982; Roehrs and Samson, 1981; Samson and Doyle, 1985) 

and this type of choice procedure in preclinical research advances the inference of a 

drug serving as a positive reinforcer beyond that of an active/inactive lever choice 

procedure (for review, Banks and Negus, 2012), as was used in the present oral 

oxycodone self-administration studies, and would complement the type of abuse liability 

assessment procedures used in clinical studies (i.e., choice procedures with drug 

versus money or an alternative reinforcer). Once oxycodone’s oral reinforcing effects 

are demonstrated, further characterization of HIV-1 Tat expression on the modulation of 

these effects can be examined. 

Oxycodone dependence-related effects were measured by acoustic startle and 

its related measure habituation. However, there is a need to further characterize the 

dependence regimen used and its effects in startle procedures. First, the acute effects 

of oxycodone must be investigated in C57BL/6J mice. These effects were only studied 

in DOX-fed Tat transgenic mice, and therefore may limit the interpretation of how acute 

oxycodone alone affects startle. Moreover, if Tat-expressing mice are showing reduced 

dependence-related effects due to reduced opioid sensitivity, then this should be 

surmountable by administering higher doses of oxycodone. Using a dosing regimen with 

higher doses of oxycodone, it would be hypothesized that a greater degree of severity 

of naloxone-precipitated withdrawal effects would be observed as compared to those 

observed using the present dosing regimen.  
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9. Conclusions 

The studies within this dissertation have added new methodologies for 

characterizing oxycodone’s abuse-related effects in the mouse and have further 

characterized a mouse model of neuroAIDS in reference to the clinically relevant opioid, 

oxycodone. Oxycodone was shown to be volitionally, orally self-administered, 

demonstrated physical dependence-related effects, and engendered locomotor 

sensitization in C57BL/6J mice. Acoustic startle and its related measure, habituation, 

proved to be useful for demonstrating oxycodone dependence-related effects in a 

sensitive, objective, and quantifiable manner. Together, these procedures enable new 

approaches for exploring biological and environmental determinants of the abuse-

related effects of oxycodone. 

HIV-1 Tat expression in transgenic mice was able to modulate oxycodone's 

abuse-related effects in interesting ways. Tat expression increased oral self-

administration of oxycodone, attenuated oxycodone dependence-related effects as 

measured by acoustic startle and habituation, and slowed the development or 

expression of morphine and oxycodone locomotor sensitization. Recent studies with 

morphine support the present findings insofar as an attenuated sensitivity to morphine 

suggested by reduced morphine efficacy and dependence in Tat-expressing mice may 

be occurring via Tat-induced mu-opioid receptor desensitization. These reported results 

need to be replicated with oxycodone, but, in general, they support the hypothesis that 

HIV-1 Tat expression alters sensitivity to opioids that may affect their overall abuse and 

accelerated neuropathology in opioid-dependent, HIV-infected individuals.
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