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Abstract

This dissertation aimed at developing an inhibitor strategy to improve the oral
bioavailability (Fora1) and systemic exposure (AUC,) of buprenorphine (BUP) as well as
reduce the variability associated with them. Twenty-seven generally recognized as safe
(GRAS) compounds or dietary substances were evaluated for their potential to inhibit the
oxidative and conjugative metabolism of BUP, using pooled human intestinal and liver
microsomes. Using IVIVE, the extraction ratio of BUP in the intestine and liver was
predicted to be 91% and 71%, respectively. In both the organs, oxidation appeared to be
the major metabolic pathway with a 6 fold (intestine) and 4 fold (liver) higher intrinsic
clearance than glucuronidation. Buprenorphine was predicted to show low and variable
Forat (3£2%), AUC (344+327 ng*min/ml) and a large total clearance (CL= 10504126
ml/min). The biorelevant solubilities of 5 preferred inhibitors (a-mangostin, chrysin,
ginger extract, pterostilbene and silybin) were incorporated in the final model. Of the
preferred inhibitors, pterostilbene appeared to be most effective in improving the mean
predicted F o (74.8%) and AUC,, (36,130 ng*min/ml). A ten fold lower concentration of
pterostilbene appeared to be more effective in reducing the variability (by 2 fold) in the
mean predicted AUC, of BUP. An equipotent combination of pterostilbene and ginger
extract was tested and it inhibited the oxidative and conjugative metabolism of BUP in an
additive manner. These results demonstrate the feasibility of the approach of using GRAS
or dietary compounds to inhibit the presystemic metabolism of buprenorphine and thus
improve its oral bioavailability. This inhibitor strategy has promising applicability to a
variety of drugs suffering from low and variable oral bioavailability due to extensive

presystemic oxidative and conjugative metabolism.

(xv)



Chapter 1: Introduction
1.1 Buprenorphine

1.1.1 Mechanism of action

Opioid dependence continues to be a serious health problem throughout the world
[1]. Buprenorphine or combination of buprenorphine and naloxone is one of the widely
used therapeutic alternatives for treatment of opioid addiction as well as pain
management [2]. Buprenorphine is a semisynthetic thebaine derivative belonging to
morphinan class of opioids [3]. It was approved by the US FDA in 1981 for severe pain
management and in 2002 for opioid addiction. Buprenorphine is the first medication to
treat opioid dependence that can be prescribed in various settings such as offices,
community hospitals, correctional facilities etc. by qualified physicians [4].
Buprenorphine possess a unique pharmacology characterized by partial agonism at the p
opioid receptors because of which it has lower potential of producing side effects such as
respiratory depression, addiction and withdrawal symptoms [3-6]. Being a partial agonist,
it exhibits high affinity but low intrinsic activity than the full agonists at the p opioid
receptor thus blocking access of abused opioids for prolonged period of time (Fig 1.1) [4,
6]. It has a long receptor fixation half-life, which is responsible for its longer duration of
action making alternate day dosing possible [3, 4, 6]. Buprenorphine has a better safety
profile than other opioids because even at higher than normal doses it rarely produces
significant respiratory depression (‘ceiling effect”) [3-5]. However, care must be taken to
avoid co-administration of CNS depressants like alcohol or benzodiazepines with

buprenorphine [3].



Figure 1.1: Buprenorphine - a partial agonist at p opioid receptors [4]

Heroin Buprenorphine Naloxone
Full Agonist Partial Agonist Antagonist

Activity
Zone
Affinity
Zone

1.1.2 Pharmacokinetics of buprenorphine

BUP suffers from poor oral bioavailability but given sublingually it achieves 33 —
55% bioavailability [3, 7, 8]. It is highly lipophilic because of which it exhibits a large
volume of distribution estimated to be around 188-335L after IV administration [3].
Buprenorphine is highly plasma protein bound (96%) mainly to o and B globulins [3].
Despite having good GI solubility and permeability, it shows poor oral bioavailability
due to extensive presystemic metabolism [3, 8-10]. It undergoes CYP mediated oxidation
(CYP 3A4, 2C8, 2C9) [11, 12] to form norbuprenorphine (NBUP) and UGT mediated
glucuronidation (UGT 1A1, 1A3 and 2B7) [13-15] to form buprenorphine glucuronide
(BUPG) (Fig 1.2). NBUP further undergoes glucuronidation (UGT 1A1 and 1A3) [14,
15] to from norbuprenorphine glucuronide (NBUPG) (Fig 1.2). Picard et al. studied the
contribution of various CYP450 enzymes to NBUP formation and also to BUP

consumption [12]. CYP3A4 was reported to be the major CYP450 enzyme involved in

2



producing maximum NBUP formation [12]. Two approaches were used for testing the
contribution of CYP3A4 to NBUP formation namely relative activity factor (RAF)
approach and chemical inhibition. The relative activity factor approach is one of the
techniques used for quantitative reaction phenotyping and helps in scaling the enzymatic
activities obtained using recombinant enzymes to liver or intestinal microsomes [12].
Using an RAF value of 0.284 for recombinant CYP3A4 (obtained from BD Gentest), the
relative contribution of CYP3A4 to BUP metabolism in liver microsomes was estimated
by Picard et al. to be 73% [12]. Based on the chemical inhibition of CYP3A4 using
ketoconazole (0.25 — 1.5 uM), CYP3A4 accounts for approximately 65% of NBUP
formation in liver [12]. These results are in agreement with the inhibition experiments
conducted by Iribarne et al. using ketoconazole (about 75% inhibition) or the CYP3A
mechanism-based inhibitors troleandomycin, gestodene, and erythral (about 70%
inhibition) [11]. Rouguieg et al. investigated the individual contribution of the hepatic
UGT isoforms to glucuronidation of BUP [14]. The RAF approach was used which as
explained earlier involves use of selective substrates such as etoposide and azido-
thymidine for UGT1Al and UGT2B7, respectively to scale the isoform specific
clearances in recombinant enzymes to human liver microsomes [14]. The study reports
UGT1A3 to be the major contributor (50%) followed by UGT2B7 (40%) and UGT1A1
(10%) [14]. Despite being the major contributor, the contribution of UGT1A3 was
determined indirectly i.e. without calculating the RAF value using a selective UGT1A3
substrate. However, a study by Chang and Moody confirms involvement of recombinant
UGTs 1A1, 2B7, 1A3 in conjugating BUP, granting support to the results of the

Rouguieg et al. study [13]. Among the metabolites, NBUP is the only active metabolite



having about one-fiftieth of analgesic potency of its parent drug [3]. On the other hand,
the glucuronide metabolites do not exhibit any of the therapeutic effects of BUP [3],
similar to morphine-3 glucuronide (inactive) but unlike morphine-6-glucuronide (active).

Figure 1.2: Metabolic pathways of Buprenorphine
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BUP is highly extracted in the liver, which is evident from plasma clearances in
healthy human volunteers ranging from 1042 to 1280 mL/min [3]. Assuming a liver
blood flow of 1500 ml/min, these plasma clearances result in hepatic extraction ratio
ranging from 0.7 — 0.9, making BUP a high extraction ratio drug [3]. BUP appears to
have a long elimination half-life, however the half-life estimates (24 — 69 hours) vary
significantly from amongst the published reports [3]. One of the probable reasons
includes differences in the sensitivity of analytical methods used for detection of BUP
and its metabolites, especially when lower doses of the parent drug are administered [3].
In addition, differences in the duration for which plasma samples are collected can
influence the final elimination half-life estimates [3]. The route of administration also
influences the elimination half-life, which is evident from the longer half-life following
sublingual administration of BUP as compared to IV dosing [3]. As per the product
monograph, sublingual BUP shows a mean elimination half-life of about 37 hours [3, 7].
Following IV administration, ~70% of the dose is eliminated in feces mostly as BUP and
NBUP while ~30% dose appears in urine mainly as glucuronide conjugates [3, 10].
Buprenorphine, norbuprenorphine and their glucuronide metabolites have also been
reported to undergo enterohepatic recirculation, which can further prolong their
elimination half-life [3, 10]. Sublingual BUP has been proposed to exhibit enhanced
sequestration in adipose tissue and oral mucosa, which can contribute to its long half-life
[3, 10]. Kuhlman and colleagues have proposed a three-compartment model to
incorporate the absorption component from the reservoir in the oral mucosa to the
systemic circulation [16]. The absorption rate constant from the reservoir in oral mucosa

to the plasma compartment appears to be slower than the elimination rate constant [16].



Thus, following sublingual administration, BUP shows larger volume of distribution than
after IV administration. The tight binding to and slow dissociation from the opioid
receptors coupled with extended elimination half-life are responsible for the longer
duration of action shown by BUP [3].

Limited information is available on pharmacokinetics of BUP following oral
administration. To the best of our knowledge, we could find only two references that

discuss metabolic disposition of BUP after oral administration in humans:
Reference 1 - Review paper by Walter and Inturrisi (1995)[10]

Walter and Inturrisi have discussed a collection of studies evaluating ADME of
BUP in humans following administration through various routes like IV, IM, sublingual,
SC and oral [10]. The amount of BUP and its metabolites excreted in feces and urine
have been quantified using radiolabelled HPLC methods or Gas phase liquid
chromatography (GPLC). The following results were generated by subjecting methanolic

extracts of the feces to chromatographic analysis [10].

Table 1.1: BUP and its metabolites excreted in human urine and feces

Dose Collection
Route Method . % Dose
(ng/kg) period (days)

Urine Feces Total
M 2 H 7 27.0 67.5 94.5
PO 15 H 7 15.3 70.7 86.0
PO 20 H 15 16.5 62.7 79.2
PO 20 H 15 10.3 49.6 59.9

Adapted from Walter and Inturrisi review [10]
About 10 — 15% radioactivity following oral dose of BUP was detected in urine

mainly in the form of polar glucuronide metabolites NBUPG and BUPG [10]. The
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majority of the radioactivity was detected in feces (50 — 70%), most of which was BUP
with a relatively minor presence of NBUP [10]. The exact % composition of BUP and
NBUP in feces is not reported. The number of healthy human subjects used in these
studies was also not reported. Another study conducted by Cone et al. has been discussed
in this review. The quantification of BUP and the metabolites in feces and urine was
performed using GC-MS [10, 17]. In this study, about 12% of the oral dose was excreted
in urine: 7-8% as NBUPG, 2-3% as NBUP and about 1.5 — 3% as BUPG [10, 17].
Unconjugated BUP and NBUP were not detected in urine and feces in this study. The
results of the fecal analysis performed by Cone et al. were presented in a convoluted
manner and hence are difficult to interpret [17]. However, from the discussion presented
by the author, it can be inferred that both conjugated and unconjugated BUP and NBUP
were detected in the feces [17]. However, unconjugated BUP and NBUP were clearly the
major components in feces, with reported % higher for BUP than NBUP [17].
Reference 2 — Jeffcoat et al. taken from NIDA research monograph 132 (1993) (8]
This research monograph discusses study performed after oral administration of
0.63 pg/kg body weight dose of [’H] BUP in 4 young adult subjects. The observed
average plasma Cpax of BUP, NBUP, BUPG and NBUPG was 7 pg/ml, 8 pg/ml, 8 pg/ml
and 10 pg/ml [8]. 11% of the administered dose was detected in urine and 72% in feces
(in agreement with the results of studies reported in the Walter and Inturrisi review paper)
[8, 10]. The oral bioavailability of BUP observed in this study was reported to be <15%
[8]. However, this monograph lacks description of the methods employed to obtain the
aforementioned results. Hence, it is difficult to assess the appropriateness of the

techniques used to perform this study and lowers the confidence in their reported



findings. Also, such similar mean Cp,x values for BUP and its metabolites after oral
administration are surprising.

Based on the published in vitro studies as well as in vivo studies, we know that
BUP is extensively metabolized [10, 18-20]. Thus, it is difficult to believe that ~ 50 -
70% of BUP is excreted unchanged in feces. A more logical explanation would be
conjugated BUP, after being subjected to hydrolysis by p-glucuronidase (in lower gut),
gets converted to BUP and appears in feces. Thus, it is difficult to determine the exact
percentage of BUP excreted unchanged in feces versus the fraction of BUP that was
hydrolyzed from BUPG. BUP and NBUP are also reported to undergo enterohepatic
circulation, which can further alter the fraction of BUP converted to BUPG and NBUP.
In addition, the contribution of oxidation versus glucuronidation as well as the
contribution of intestine versus liver to the overall presystemic metabolism of BUP still
remains to be determined.
1.1.3 Need for oral buprenorphine

Currently, BUP is available for various routes of administration such as
sublingual, transdermal, buccal, intravenous and intramuscular administration.
Sublingual BUP appears to be one of the widely used routes of administration. However
it suffers from several disadvantages such as longer dissolution time, variable sublingual
retention times between different patients, interference with daily activities such as
drinking, eating, talking, inability to mask bitter taste etc. [2] These disadvantages can
lead to a certain degree of patient non-compliance [2]. Oral BUP can address these issues
and would be expected to be associated with higher patient compliance. However, an oral

formulation of BUP is not yet available because after oral administration it would suffer



from poor and variable oral bioavailability due to extensive presystemic metabolism [9,
10, 17, 18]. Administering a higher oral dose of BUP to improve its systemic availability
would not be an ideal strategy because the higher dose would still be expected to show
variable Fo and systemic exposure. Increasing the dose will also result in exponential
elevation in the price of this already expensive drug product ($581/g of BUP (Medisca)
and $348 for 30 Suboxone films of 8/2 mg strength), which would be undesirable. Hence,
there is a need for developing an effective and economical strategy to inhibit the

metabolism of BUP and achieve adequate bioavailability following oral administration.

1.2 Inhibitor strategy using GRAS compounds and dietary constituents

Several generally recognized as safe (GRAS) compounds and dietary constituents
have been reported in the literature to interact with CYP and UGT enzymes [21-26].
Thus, it appears logical to co-administer suitable dietary components with BUP to
achieve pharmaco-enhancement of BUP through inhibition of its presystemic
metabolism. A classic example of pharmaco-enhancement achieved by combining two
agents includes the lopinavir-ritonavir (Kaletra) combination [27, 28]. Lopinavir (LPV)
suffers from poor oral bioavailability due to its low oral uptake and extensive presystemic
metabolism by CYP3A4, thus limiting its use as an independent anti-retroviral agent [27,
28]. However, co-administration of a small dose of ritonavir (RTV) produces drastic
improvement in the systemic concentrations of LPV making it a therapeutically effective
protease inhibitor [27, 28]. RTV is a potent CYP3A4 inhibitor (ICsp = 0.073 puM in
human liver microsomes) and it significantly inhibits the hepatic CYP3A4 mediated
metabolism of LPV and might also inhibit its P-gp mediated intestinal efflux [27-29].
Thus, RTV boosts the oral bioavailability and systemic exposure of LPV making it a
successful pharmaco-enhancer. Thus, we propose to utilize the GRAS compounds or
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dietary constituents as pharmaco-enhancers to achieve sufficiently high and less variable
oral bioavailability and systemic exposure of BUP.

We evaluated twenty-seven dietary compounds that appeared to be likely
candidates to inhibit UGT and CYP enzymes, based on their structural characteristics as
well as published studies [30]. Various criteria were considered while selecting the test
compounds such as their regulatory status (FDA-GRAS compounds, dietary supplements,
everything added to food (EAF)), maximum daily doses in humans, potential for safe
clinical use, favorable physicochemical features. Most of these compounds are lipophilic,
unsaturated or bicyclic with phenol or alkyl catechol groups making them structurally
favorable to interact with conjugating enzyme systems such as UGT and phase I enzyme
systems like CYP. The list of compounds tested included a-mangostin, #-anethole, iso-
borneol, carvacrol, chrysin, z-cinnamaldehyde, curcumin, ethyl cinnamate, geraniol,
geranyl acetate, ginger extract, 6-gingerol, grapeseed oil, hesperitin, D-limonene,
linalool, linalyl acetate, magnolol, menthol, menthyl acetate, naringin, pterostilbene,
pulegone, quercetin, resveratrol, silybin and thymol (Fig 1.3, structures drawn using
ChemDraw v15.1). Most of these putative inhibitors are single compounds with the
exception of ginger extract and grapeseed oil. Linoleic acid appears to be the major fatty
acid component of grapeseed oil [31]. Ginger extract is a mixture composed of four main
constituents namely 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol [32-34]. 6-
Gingerol is reported be the most abundant component of ginger extract, hence it was also

tested individually for its potential to inhibit the metabolism of BUP.
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Figure 1.3: Structures of putative inhibitors
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1.3 Biorelevant solubility

The aqueous solubility of a compound is one of the key factors influencing its oral
absorption from the gastrointestinal tract (GIT) [35, 36]. Several studies focusing on the
computational prediction of aqueous solubility of compounds with distinct
physicochemical profiles have been performed with varying degrees of success [35-39].
These publications emphasize the importance of determining solubilites in a biorelevant
medium instead of aqueous buffers to improve the predictive power of the computational
models [35-39]. A biorelevant medium is an artificial medium that mimics the
physicochemical properties of the corresponding physiological fluid with regards to its
buffer capacity, pH, composition of surfactants, osmolarity etc. [40, 41] The biorelevant
media are especially helpful in determining the solubility of poorly soluble drugs [41,
42]. Dressman and colleagues were the first research group to propose and design the
biorelevant media and revealed marked superiority of the biorelevant media over the
traditional aqueous media for studying the physiochemical characteristics of diverse
chemical entities [43]. Several media mimicking various physiological fluids have been
developed such as simulated human physiological fluids such as body fluid, blood
plasma, synovial fluid, gastric fluid, intestinal fluid, colonic fluid, saliva, lung fluid,

vaginal fluid, semen, lacrimal fluid (tears), sweat etc. [42] These simulated fluids have
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proven extremely helpful in evaluating solubility and dissolution characteristics of dosage
forms and predicting their in vivo performance at the site where maximum drug
absorption takes place [38-42]. Their application can be extended to include various
conventional and non-conventional routes of administration such as oral, parenteral,
sublingual, buccal, pulmonary, ocular, vaginal, rectal, dermal (skin), organ-targeted drug
delivery etc. [42] The composition of some of the aforementioned biorelevant medium
can be modified to simulate fasted or fed conditions [38-42]. This can be crucial for drugs
whose rate and extent of absorption is drastically affected by presence or absence of food.

Biorelevant media simulating the human intestinal fluid have found widespread
use for determination of solubility, dissolution and permeability profiles of novel
compounds during drug development [38-42]. Several publications in the past few years
have highlighted the differences in solubility exhibited by a compound in aqueous buffers
versus in a biorelevant medium [38-42]. The dissimilarity becomes readily apparent in
case of poorly soluble drugs predominantly because of the drastic disparity in the
wettability of the compounds in the two mediums. While aqueous buffers like phosphate,
acetate, bicarbonate, phosphate buffered saline etc. can capture the effect of ionization on
solubility at various pH, they are devoid of the surfactants such as sodium taurocholate
and lecithin present in the human intestinal fluid [40, 41]. These surfactants possess the
potential to significantly improve the solubility of compounds showing poor solubility in
aqueous buffers. Fasted state simulated intestinal fluid (FaSSIF) and FaSSIF-V2 are
widely used simulated intestinal fluids for dissolution and solubility testing under fasted

condition [38-42]. The two formulations differ in their lecithin content, which is about

18



four fold higher in FaSSIF. The composition and properties of the two buffers are as

shown in Table 1.2.[42]

Table 1.2: Composition of human simulated intestinal medium [42]

Component FaSSIF (mM) FaSSIF-V2 (mM)
Sodium taurocholate 3.5 3.5
Lecithin 0.75 0.2
Sodium hydroxide 10.5 34.8
Sodium chloride 105.85 68.62
Sodium dihydrogen
phosph}a]lte ) 2805 )
Maleic acid - 19.12
Properties
pH 6.5 6.5
Buffer capacity
(mmol/L/pH) 270 + 10 180 + 10
Osmolality (mOsm/kg) 12 10

For the purpose of this dissertation, the biorelevant solubility determination was
performed to better predict concentrations of inhibitors in the gut lumen following oral
administration under fasted conditions. The equilibrium solubility of four shortlisted
inhibitors (o-mangostin, chrysin, pterostilbene and silybin) was determined using
FaSSIF. To supplement our empirical solubility values, biorelevant solubility of these
compounds was also predicted using ADMET predictor™ v8.1 (Simulation Plus,

Lancaster, CA).

1.4 In vitro in vivo extrapolation (IVIVE)

In vitro (Latin: in glass) studies refer to the experiments conducted in a controlled
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environment in lieu of a natural setting or within a living organism. /n vivo (Latin: in
living) studies represent the represent the studies carried out in whole living organisms
instead of partial or dead organisms. In vitro to in vivo extrapolation allows qualitative or
quantitative transposition of in vitro observations to predict phenomena in vivo [44]. One
of the key aims of drug discovery and development studies is the ability to predict the
in vivo clearance of a novel entity from in vitro studies [45-52]. Several methods have
been proposed to predict in vivo clearances from kinetic parameters determined using in
vitro systems like hepatocytes, microsomes, cell-lines etc. [45-52] Ito and Houston
compared five different methods to predict in vivo hepatic intrinsic clearance (CLinghep)
namely physiologically based scaling factor (PB-SF), physiologically based and drug
specific scaling factor (PBD-SF), rat intrinsic clearance, empirical scaling factor (E-SF)
method and allometric scaling (A-SF) method [53]. The PB-SF method was based on
using a scaling factor based on hepatic microsomal recovery from whole liver. Intrinsic
clearance data from human microsomes scaled using PB-SF showed strongest positive
correlation (r’= 0.82) with the predicted in vivo intrinsic clearance [53]. However, this
method showed a general trend of underpredicting the hepatic CLiynep probably due to
incomplete recovery of microsomes from the human liver samples. This underprediction
appeared to improve when an empirical scaling factor (E-SF) (6.2 g protein/kg body
weight) or a drug based physiological scaling factor (PBD-SF) based on in vivo and in
vitro CLiynep Obtained in rats was introduced [53]. Using the rat intrinsic clearance, the
predicted in vivo CLiq nep sShowed negligible bias. Similar observation was made when an
allometric scaling factor (A-SF) was used [53]. However, the A-SF method exhibited

poorest precision of all the methods [53].
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The hepatic clearance (CLyep) can be predicted from CLiynep using traditional models
such as well-stirred model and parallel tube model or some newer methods such as
Berezhkovskiy et al. method and Poulin et al. method [53-56]. The well-stirred and
parallel tube model have contradictory assumptions about the distribution of the enzyme
[55]. The well-stirred model assumes uniform distribution of enzymes within the liver
and exposure to a well-mixed concentration of drug within the liver cells [55]. On the
other hand, parallel tube model (Eq. 1) assumes that the enzyme is distributed along
uniform series of parallel tubes and there is an exponential concentration gradient across
the liver sinusoids [55]. The extraction ratios predicted using the two methods differ
significantly for drugs showing intrinsic clearances that exceed liver blood flow (i.e.
highly extracted drugs) [55]. The well-stirred model was used in this dissertation and will

be discussed in detail further.

CL
—fu x b

Ehep =1-ce Chep (1)

where Ei, = hepatic extraction ratio, Qe = liver blood flow (1500 ml/min), fu = fraction
unbound, CLint, u = unbound intrinsic clearance.

Berezhkovskiy et al. (Eq. 2-4) method accounts for the ionization of unbound drug after

exposure to varying pH in the extracellular and intracellular spaces of hepatocytes [54,

56].

fu—
Qhep X Rpp X CLint,in vivo,hep X ;L 2L
CL _ u,inc (2)
hep —

fu-a
Qhept Rpp X CLint,in vivo,hep X ——arp

fu,inc
Eyp—app = invitro fu, X F; 3)
F[ — funionized,plasma (4)

funionized,intracellular water
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where Ry, = blood to plasma ratio, f,.,, = unbound fraction corrected for ionization, F; = f; of
drugs unionized between extracellular plasma ( fynionizedplasma) and intracellular tissue

(funionized,intracellular water)-

Poulin et al. proposed modification of the well-stirred model to incorporate the protein-
facilitated metabolism and uptake resulting from ionic interactions between surface of the
liver cells and extracellular protein-drug complex (Eq. 5-6) [54]. This method replaces

fu, with fujer to take into account liver specific drug distribution and protein binding

[54].

R CLint i i fu,liver

Qhep X Rpp X CLint,in vivo,hep X Fo
CL — u,inc (5)

hep Qhept Rpp X CLint in vivo hep X f—u'liver

ep P intinvivohep X 7f o -
fop = PLR X fup—app ©)
wliver ™ 4L (PLR-1)X fup—app

where fu,liver = unbound fraction of drug in liver and PLR = plasma-to whole-liver concentration
ratio

Of the three methods, the well-stirred model is the simplest method that requires less
information [53, 54, 56]. However, it shows a general trend of underpredicting the
hepatic clearance probably because the model assumes that the extent of protein binding
shown by a drug in plasma in similar to binding in liver cells [53, 54, 56]. Thus, it fails to
incorporate the effects of pH gradient, protein binding and distribution with respect to the
hepatocytes, which is accounted for by the remaining two methods. The Poulin et al.
method appears to show least error in accuracy and precision especially for drugs with
extensive albumin binding [54].

The IVIVE methods for predicting intestinal clearance are gaining prominence
because numerous publications have highlighted the role of intestine as an important
drug-metabolizing organ [14, 45-47, 50, 57-64]. Three models namely well-stirred, Qgus,

and ACAT models are commonly used for prediction of in vivo intestinal clearances.
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The intestinal well-stirred model is similar to the hepatic well-stirred model and was used
in this dissertation for predicting intestinal availability (explained on page 25-26). The
Qguimodel (Eq. 7-8) slightly modifies the well-stirred model to incorporate permeability
characteristics of the drug while estimating its intestinal extraction [65]. The parameter
Qgut represents a hybrid of both the permeability clearance (Clyerm) 0f @ compound and the
villus blood flow (300 ml/min) [65]. The Clyerm can be calculated (Eq. 9) based on the
effective permeability of the test compound determined using in vitro systems such as
Caco-2 cells, MDCK cells, PAMPA, or using physiochemical properties of the drug like

polar surface area or number of hydrogen bond donors [65].

_ qut
Eg - Qgut+ fug X invitro Clin, 7
Clperm X Quilli
= —‘perm ~ vvilli 8
qut Clperm+ Quilli ( )
Clperm ES Peff X A (9)

where fug = fraction unbound in gut (generally assumed to be 1), in vitro Clint — intrinsic
clearance determined using in vitro systems like cell lines or microsomes, Clyemm = permeability
clearance, Qi = villous blood flow (300 ml/min), P.s = effective permeability determined using
in vivo jejuonal perfusion and A = intestinal surface area (0.66 m?, assuming average length and
radius of the small intestine = 6 m and al.75 cm, respectively.)

Yang et al. compared the performance of the two minimal models i.e. the well-stirred and
the Qgu model by using a dataset of 16 drugs predominantly metabolized by CYP3A
[65]. Of the two models, the Qg model was associated with the least mean prediction
error (best accuracy) and mean squared prediction error (best precision) [65].

The advanced compartmental and absorption transit or ACAT model (Fig 1.4) is a
complex dynamic compartmental PBPK model which includes linear and nonlinear
transport and metabolism kinetics and depicts the absorption of drug through nine distinct

physiological compartments i.e. stomach, seven segments of small intestine, and colon
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[65, 66]. The model allows incorporation of physicochemical properties (pKa, solubility,
particle size and density, lipophilicity, permeability), physiological features (intestinal
transit time, gastric emptying, presystemic metabolism and intestinal transport) as well as
formulation/dosage factors (dosage form and dose) to better predict the oral absorption of
drugs [66]. Although this model gives a comprehensive prediction of oral absorption and
bioavailability of compounds, its requires extensive information about the drug,
exhaustive characterization of the metabolic fate of the test compound in the enterocytes,
its GI transit as well as the effect of various gradients of enzymes and transporters (such
as pH, fluid and blood flow) while passing through different sections of the GI tract.
Figure 1.4: ACAT model
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Several in vitro and in vivo studies focusing on metabolism of BUP have been
published [9, 10, 12, 14, 20, 67]. However, these studies do not reveal any information on
the contribution of the two metabolic pathways (CYP and UGT) as well as the overall
extraction of BUP in intestine versus liver. Hence, the intrinsic metabolic clearances from

our microsomal studies were extrapolated using the well-stirred model to predict
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intestinal (F,) and hepatic availability (F,) [65, 68, 69]. In the intestinal well-stirred

model (Eq. 10), Q .. (300 ml/min) indicates intestinal villous blood flow, f;,, represents

the unbound fraction of BUP in the enterocytes and in vitro Cliy is the total intrinsic
clearance in the pooled intestinal microsomes scaled to physiological level using two

scaling factors i.e. 20.5 mg microsomal protein/g intestinal mucosa (SF,) and 11.16 g
intestinal mucosa’kg (SF,) [65]. In addition to the well-stirred model, F, was also

predicted using the Qg model. However for a highly permeable drug like BUP, the Q

gut

term is expected to be similar to the villous blood flow (Q

villi

). Thus, F, predicted using
the two models did not differ drastically (~ 2 fold difference) and hence the well-stirred

model was chosen.

Quilli
F, = 2 (10)

Quitli + fug X invitro Cline X SF; X SF,

Similarly in the hepatic well-stirred model (Eq. 11), Qhep (20.7 ml/min/kg)
represents hepatic blood flow, fup is the fraction of unbound BUP in plasma and in vitro

Cliy 1s the total intrinsic clearance in pooled liver microsomes physiologically scaled

using two scaling factors i.e. 40 mg microsomal protein/g liver (SF,) and 21.4 g liver/kg

(SF,) [68, 69].

Fh — Qhep (1 1)

Qhep + fup X invitro Clipe X SFy X SF,

The intestinal and hepatic availabilities were used to predict the systemic
availability of BUP using equation 12 [70]. Since BUP hydrochloride is highly soluble

and highly permeable drug expected to exhibit almost complete absorption, the fraction
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absorbed (F ) was assumed to be 1.

Forai = Fy X Fy X F, X 100 (12)

1.5 Predicting the effect of inhibitor treatments on variability in PK
parameters

A drug undergoing extensive presystemic metabolism is often associated with
poor and highly variable systemic bioavailability and exposure values [55]. Huge
variability in the PK parameters can be detrimental to the efficacy and safety of a drug,
limiting its administration in humans [55]. Understanding the biochemical and
physiological mechanisms responsible for the interindividual variability in the magnitude
of presystemic metabolism is extremely pivotal for optimization of drug therapy [71].
Although CYP3A enzymes are expressed profusely in the human livers, they have been
observed to show a high degree of interindividual variability (>100 fold) [71]. Of special
importance is the variability in CYP3A4 metabolism because it is the most dominant of
all CYP450 enzymes expressed in the intestine and liver and is reported to be involved in
the metabolism of a majority of the currently marketed drugs [64]. Numerous factors
influencing the expression and function of CYP3A enzymes [71] have been identified
such as epigenetic factors (DNA methylation, histone modification, impact of
microRNAs) [72], host specific factors (gender, age, body weight, organ blood flow
especially liver perfusion, protein binding and expression of transporters and enzymes,
disease states etc. [73-79] and to a smaller extent genetic polymorphisms. In addition,
drug-drug, drug-food or disease state mediated interactions can also contribute to the
variability in CYP3A metabolism by inducing or inhibiting the enzyme expression and

function [55]. Using a sample set of 52 human livers, Cubitt et al. observed about 41%
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variability in the hepatic CYP3A4 abundance [46]. A variability of 33% in CYP3A4
content was reported by Kato et al. based on an in silico study using 43 diverse CYP3A
substrates [60]. While the variability in hepatic CYP3A4 has been studied considerably,
the interindividual variability in intestinal CYP3A4 content still remains significantly
understudied [46, 55, 61]. The intestinal CYP3A4 accounts for 70 to 80% of the total
CYP450 content and has been identified as an important organ involved in the first pass
metabolism of drugs [46, 55, 61]. Midazolam, a CYP3A substrate was reported to show
significantly higher variability in the intestinal extraction ratio (mean- 0.43+0.24, range-
0 to 0.77) over the hepatic extraction ratio (mean- 0.44+0.14, range- 0.24 to 0.76) [80]. A
study by Paine et al. performed using six human intestinal samples revealed a 60%
interindividual variability in CYP3A4 abundance [61], while the in silico study by Kato
et al. reported an 81% variability in the intestinal intrinsic clearance corrected for
permeability [60]. Intestine represents a highly heterogeneous biological tissue with
significant intra-organ variability, contrary to the liver [61, 80]. Hence, it is not surprising
that a higher interindividual variability was observed in the intestine as compared to the
liver.

In addition to predicting the Foa of BUP, the scope of this dissertation also
included determining the effect of inhibitors on the variability associated Fon and
systemic exposures (AUC,) of BUP. Hence, a simulated population dataset was
generated using Monte Carlo simulations (MCS). @RISK (Palisade Corporation, Ithaca,
NY) software was used to perform MCS. The sampling technique used in MCS involves
random sampling of numbers from a given probability distribution. The values chosen

through MCS are completely random and can fall anywhere within the specified range of
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distribution of the input variables [81]. MCS gives an opportunity to define the variability
in input variables and integrate them in to the prediction of output variables [82]. It is
recommended to have adequate number of iterations in a simulation to avoid the problem
of clustering while generating input distributions [81]. Thus, using MCS a large
simulated population of 10,000 individuals was generated and the effect on input
variables on the mean and variability in the mean of the output variables was evaluated in
this dissertation. Another crucial aspect while setting up MCS is selecting appropriate
distributions for the input variables [82]. For the purpose of our analysis, all the input
variables were assigned normal distribution with a minimum possible value of zero (non-
negative). In our model, F., AUC, and Cl,; were the desired output variables while the
intrinsic hepatic and intestinal clearances for the CYP and UGT pathway represent the
input variables. In presence of inhibitors, the model included additional variables i.e.
predicted inhibitor concentrations in the gut lumen and the portal vein. Also, the potency
of inhibition i.e. K; for each pathway in the intestine and liver determined from in vitro
inhibition studies was included in the model. In order to investigate the effect of input
variables on the output variables, a sensitivity analysis was performed. Spearman rank
correlation coefficient was used to describe the magnitude and direction of the effect of
the input variables on output parameters. Spearman rank correlation coefficient was
chosen because it does not assume linear relationship between the input and output

variables and is less sensitive to the effect of outliers in the simulated population.

1.6 Previous work from our lab

The preliminary inhibition studies on several dietary compounds including the
ones listed earlier were performed in LSI180 cells (intestinal human colon
adenocarcinoma cell line). The LS180 cells were treated with calcitriol (5 uM) to induce
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CYP3A4 expression confirmed by the CYP glow assay (using selective CYP3A4
fluorescent probe). After induction (72 - 96 hours), the cells were exposed to BUP (10
uM) alone or along with certain putative inhibitors (24 pM, chosen based on prior studies
in our lab) for two hours. The incubation time was optimized by monitoring formation of
the metabolites (NBUP, BUPQG) at various time points till 2 hours. One-way ANOVA
with Dunnett’s post-hoc test was used to determine significant inhibition of NBUP or
BUPG formation (o = 0.05; Prism v6.0). In addition, an in vivo study in rats was
conducted in our laboratory to determine the effect of certain dietary components on Fo
of BUP [83]. A cocktail of eugenol (20 mg/kg), isoeugenol (16 mg/kg), ethyl vanillin (20
mg/kg), vanillin (20 mg/kg), curcumin (5 mg/kg), silybin (5 mg/kg), a-mangostin (5
mg/kg), resveratrol (20 mg/kg), propyl gallate (12 mg/kg) and naringin hydrate (60
mg/kg) was co-administered with BUP (10 mg/kg) and naloxone (2.5 mg/kg) using oral
gavage. [83]. A 2-fold increase in the oral bioavailability of buprenorphine in presence of
inhibitors was observed in this study. [83]. These in vitro and in vivo studies provide
proof of concept that these dietary compounds can be utilized to inhibit the oxidative and
conjugative metabolism of BUP and thereby improve its systemic availability. Thus, the
compounds showing statistically significant inhibition in the LS180 cell studies and some
compounds from the inhibitor cocktail used in rat studies were further studied in pooled

human intestinal and liver microsomes as discussed in the succeeding chapters.

1.7 Hypothesis and specific aims
1.7.1 Hypothesis:

a) GRAS compounds or components of dietary supplements can be utilized to
inhibit the presystemic metabolism of buprenorphine and significantly improve its
oral bioavailability and systemic exposure.
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b) GRAS or dietary compounds can also produce significant reduction in the
variability associated with oral bioavailability and systemic exposure of
buprenorphine.

1.7.2 Specific aims

Following are the specific aims and objectives of the research performed in this
dissertation:

Specific aim 1:

Determine the transport of buprenorphine using Caco-2 cells and investigate if it suffers
from intestinal permeability limitations.

Specific aim 2:

Identify the potential inhibitors of oxidative and conjugative metabolism of
buprenorphine from a set of twenty-seven GRAS or dietary compounds using pooled
human intestinal and liver microsomes.

Specific aim 3

Determine the potency of inhibition (ICsp) of oxidation and conjugation metabolism of
buprenorphine for five shortlisted inhibitor candidates in pooled human intestinal and
liver microsomes.

Specific aim 4

Determine the biorelevant solubilites of the shortlisted inhibitor candidates using fasted
state simulated intestinal fluid (FaSSIF).

Specific aim 5

a) Predict the oral bioavailability (Forar), systemic exposure (AUC.) and total clearance

(CLtot) of BUP with and without inhibitor treatments.
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b) Predict the effect of inhibitor treatments on the variability in the mean predicted Fopal,
AUC, and CLy of BUP.

c) Perform sensitivity analysis and identify the most sensitive input variable showing
strong influence on Fr,, AUC, and CLy of BUP in presence and absence of inhibitor

treatments.
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Chapter 2 — Transport of buprenorphine across Caco-2 cells

Partially drawn from manuscript published Biopharmaceutics and Drug Disposition
(January 2017, 38: 139-154)

2.1 Introduction

The factors governing oral bioavailability of a drug include gastrointestinal (GI)
solubility, GI permeability and presystemic metabolism in intestine and/or liver.
Published literature provides strong evidence on contribution of presystemic metabolism
to the poor oral bioavailability of BUP. However, limited information is available on the
impact of efflux transporters on the intestinal absorption of BUP. Contradictory evidence
exists in the literature on the status of BUP as a P-glycoprotein (P-gp) substrate. Certain
in vivo and in vitro studies indicate involvement of P-gp in mediating efflux of BUP at
the blood brain barrier (BBB) [84]. On the other hand, studies in in vitro systems like
Caco-2 monolayers and P-gp ATPase assay suggest that BUP does not appear to be a P-
gp substrate [85]. It was of interest to determine if BUP undergoes efflux at the GI lumen
resulting in reduced absorption following an oral dose.

The Caco-2 cell monolayers are a well characterized and widely used in vitro
model to study the intestinal absorption of test compounds and evaluate the transport
mechanisms involved [86-88]. The apparent permeability values determined from this in
vitro model show a high degree of correlation with observed in vivo absorption in
humans [86, 87, 89]. Hence, in the present study the transport of BUP was studied using
Caco-2 cell monolayers. If the results indicate involvement of efflux transporters like P-
gp in the transport of BUP, then the potential of GRAS or dietary compounds to inhibit
the GI efflux of BUP will be investigated as a strategy to improve oral bioavailability of

BUP.
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2.2 Materials and Methods

2.2.1 Biological materials

The Caco-2 cells were purchased from American Type Culture Collection
(Manassas, VA). Dulbecco’s modified Eagle’s medium (DMEM) and non-essential
amino acids were obtained from Gibco (Grand Island, NY') and fetal bovine serum (FBS)
was obtained from Atlanta Biologicals (Lawrenceville, GA). Penicillin and streptomycin
were purchased from Quality Biological (Gaithersburg, MD).
2.2.2 Chemicals and reagents

Hanks balanced salt solution (HBSS), lucifer yellow (LY) and caffeine were
purchased from Sigma-Aldrich (St Louis, MO), and polycarbonate transwell filters and
polystyrene plates were obtained from Costar (Corning, NY). Rhodamine 123 (RH-123)
was purchased from MP Biomedicals (Solon, OH) and haloperidol from Wako Chemicals
(Richmond, VA).
2.2.3 Caco-2 cell culture

The Caco-2 cells (passage 10—16) were grown in a humidified incubator at 37 °C

under 5% CO, in air in DMEM containing 10% v/v heat inactivated FBS, 0.1 mM

nonessential amino acids, 2 mM L-glutamine, 100 U/ml penicillin and 100 pg/ml
streptomycin. The Caco-2 cells were seeded on polycarbonate transwells (0.4 pM pore
size, 12 mm diameter, Costar #3401) at a density of 3 x 10’ cells/cm” and grown for 21
days. Cell culture media was replaced within 12 h of seeding, and thereafter every other

day for the initial 7 days, and subsequently every day until day 21.
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2.2.4 Transport of buprenorphine in Caco-2 cells

The integrity of the cell monolayers was evaluated by a low paracellular
permeability marker lucifer yellow (100 uM) and transepithelial electrical resistance
measurements (TEER) measured 21-24 days after seeding. The TEER values were
corrected for background values due to the filters. The transport of RH-123 (10 uM, a P-
gp substrate) in the presence or absence of P-gp inhibitor haloperidol (50 uM) was
evaluated to confirm the functionality of P-gp in the Caco-2 cells. The filters containing
cell monolayers were incubated in HBSS + HEPES (25 mM, pH 7.4) (apical side volume
0.5 ml and basolateral side volume 1.0 ml) and allowed to equilibrate for 10 min in an
incubator- orbital shaker at 37 °C and 100 rpm. To study the transport of buprenorphine
in the basolateral to apical (B-A) direction, the donor solution containing 10 uM
buprenorphine was placed on the basolateral side and the aliquots were taken from the
apical side. For transport in apical to basolateral (A-B) direction, aliquots were taken
from the basolateral side. The transport experiment was performed in triplicate for 120
min with aliquots (200 pl) taken at 5, 15, 30, 45, 60, 90 and 120 min. At every time point,
the 200 pl aliquot was replenished by an equal amount of HBSS + HEPES to maintain
constant volume. Aliquots were taken before beginning the transport study to serve as
blanks, and at the end of the experiments for determining the recovery and mass balance
in the system. The lucifer yellow transport was performed simultaneously with the
buprenorphine transport experiment in separate wells to determine monolayer integrity.
Lucifer yellow transport was also performed for 1 h subsequent to the buprenorphine
transport experiment in the buprenorphine treated wells to investigate the effect of

buprenorphine on the monolayer integrity. The apparent permeability coefficients (Ppp)
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and efflux ratios were determined at sink conditions using equations 1 and 2, respectively
[85].

—_4ae
Papp T dtxAxCo (1)

where dQ/dt is the linear appearance rate of mass in the receiver compartment, A is the
surface area of the membrane filter, and C, is the initial concentration in the donor

compartment.

Efflux ratio = Parvpa (2)

app4_p
Transport of high transcellular permeability standard caffeine was also performed

simultaneously in separate wells. Lucifer yellow and rhodamine-123 were quantitated

using a Synergy 2 plate reader (Biotek, Inc; Winooski, VT) at Aexcitation = 485 nm and
Aemission = 528nm. Quantification of caffeine was performed on a Waters 2695 HPLC

system with a 2487 dual wavelength UV-Vis detector (280 nm), using Altima C18
column (4.6x100mm, 3um). The HPLC method comprised a mobile phase flow (1 ml/
min) of 10% acetonitrile (Solvent A) and 90% water (Solvent B) from 1 min (0 to 1 min)
followed by a Solvent A gradient from 10% to 40% over 4 min (1 to 4 min) with a
subsequent ramping of Solvent A from 40 to 90% over 0.5 min (4 to 4.5 min) followed
by maintaining 90% Solvent A for 1 min (4.5 to 5.5 min) and returning to 10% Solvent A

over 1.5 min (5.5 to 7 min).
2.2.5 Sample analysis

Buprenorphine concentrations were analyzed using a previously validated method
consisting of reversed phase HPLC coupled with Acquity QDa mass spectrometric
detection (as described in chapter 3) [90]. Linear calibration curves were obtained for

buprenorphine (single ion recording of BUP - 468.6).
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2.3 Results

2.3.1 Transport of buprenorphine in Caco-2 cells
The net TEER values at 37°C were greater than 200 Q.cm’, the apparent permeability

(Papp) of <1x10° cm/s for Lucifer yellow confirmed the presence of tight junctions in the

Caco-2 cell monolayers. The high transcellular permeability standard caffeine displayed a
permeability of 45x10 cm/s, which is comparable to the values previously reported [89,
91]. The efflux ratio of 23.5 of RH-123 was reduced to 7.5 in the presence of the P-gp
inhibitor haloperidol confirming the functionality of P-gp in Caco-2 cells (Table 2.1).
RH-123 has also been reported to be a BCRP substrate [92, 93]. Thus, lack of BCRP
inhibition by haloperidol might account for the efflux ratio being greater than 2. The
mean apparent permeability of buprenorphine (n = 2) in A-B direction was 34x10° +
14x10° cm/s while the mean B-A permeability was 39x10° + 20x10° cm/s. Different
passages of the Caco-2 cells (passages 10 and 13) were used for the BUP transport
studies and the cells were not protein normalized which might explain the differences
between the apparent A-B and B-A permeability values in the two experiments. The

observed efflux ratio was 1.2 suggesting lack of efflux of buprenorphine in the GI lumen

[88].
Table 2.1: Apparent permeability of RH-123 and BUP in Caco-2 cells
Test compound (I::plp O(?c;n]/gs)) (lj:plp 0(6Bc_m/As)) Efflux ratio
RH-123 0.2+0.01 55+0.2 23
RH-123 + Haloperidol 0.2+0.03 1.5+0.2 7.5
BUP 34+ 15 39+£20 1.2
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Figure 2.1: A-B transport of BUP in Caco-2 cells
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Fig 2.1: Apical to basolateral transport of BUP in Caco-2 cells

All determinations were made in triplicate. Date represents mean + SD of the cumulative fraction
transported at various time points from 5 to 120 mins. Mean apparent A-B permeabilities in
expt#1 and exp#2 were 22 + 0.1 x 10 cm/s and 46 £ 0.1 x 10 cm/s.

Figure 2.2: B-A Transport of BUP in Caco-2 cells
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Fig 2.2: Basolateral to apical transport of BUP in Caco-2 cells

All determinations were made in triplicate. Date represents mean + SD of the cumulative fraction
transported at various time points from 5 to 120 mins. Mean apparent B-A permeabilities in
expt#1 and exp#2 were 21 + 0.4 x 10 cm/s and 58 £ 0.2 x 10 cm/s.
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2.4 Discussion and conclusions

The integrity of Caco-2 monolayers was established by TEER measurements,
lucifer yellow and caffeine transport. The transport of RH-123 from basolateral to apical
side was significantly higher than the absorptive transport, as would be expected for a P-
gp substrate. Treatment with haloperidol (50 uM), a selective P-gp inhibitor drastically
reduced the efflux ratio of RH-123. Thus, the functionality of P-gp protein in the Caco-2
cells was established. The bidirectional transport studies of BUP in the Caco-2 cells
indicate that BUP is highly permeable drug. The ratio of B-A and A-B permeabilities of
BUP was less than 2, indicating BUP does not undergo efflux transport by transporters
like P-gp and BCRP in the Caco-2 cells. Poor GI solubility, poor GI permeability and
extensive presystemic metabolism could result in poor oral bioavailability. However,
BUP shows high permeability and high solubility indicating that its extensive
presystemic metabolism is likely responsible for its low oral bioavailability. Hence,
future studies will focus on investigating the potential of GRAS or dietary compounds to

inhibit the oxidative and conjugative metabolism of BUP.

38



Chapter 3: Screening Study To Identify Potential Inhibitors Of
Oxidative And Conjugative Metabolism Of Buprenorphine

Partially drawn from manuscript published Biopharmaceutics and Drug Disposition
(January 2017, 38: 139-154)
3.1 Introduction

Opiate addiction is a severe health problem in the United States and throughout
the world [1]. In 2014, 1.9 million people in the USA suffered from substance use
disorders related to prescription opioid pain medicines and 586,000 suffered from a
heroin use disorder [1]. Therapeutic regimens or treating opiate addiction have met
varying degrees of success and failures. However, a growing need for new products and
strategies still exists.

Currently, buprenorphine (BUP) in combination with naloxone (NX) is a
preferred treatment for maintenance of opioid dependence. It is available as a sublingual
(SL) tablet and film. A sublingual tablet or film containing buprenorphine and naloxone
exhibits bitter taste/aftertaste [2]. Sublingual buprenorphine is reported to suffer from
certain limitations such as a longer dissolution time, variability in the sublingual retention
time, inability to mask the bitter taste, interference with common activities — talking,
drinking and eating; these issues lead to a certain degree of patient non-compliance [2].
According to a survey conducted by Reckitt Benckiser Pharmaceuticals, a high
percentage of patients reported problems with the sublingual dissolution time of the
Suboxone tablet as well as its taste [7]. Oral administration of buprenorphine could help
in mitigating these issues, thus providing a better drug product with lesser variability and
comparable or higher efficacy. However, buprenorphine exhibits poor oral bioavailability
due to extensive presystemic metabolism by both oxidation (primarily by cytochrome

P450 (CYP) 3A4 and minor contributions by CYP2C8 and CYP2C9) to form
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norbuprenorphine (NBUP) and glucuronidation (mainly by glucuronosyltransferases
(UGTs) — 1A1, 1A3 and 2B7) to form buprenorphine glucuronide (BUPG) [8, 12, 14].
Norbuprenorphine is then conjugated to form norbuprenorphine glucuronide (NBUPG)
[14]. Due to the extensive presystemic metabolism and accompanying low and variable
bioavailability, an oral formulation of buprenorphine is currently not available in the
market.

Limited information is available on the pharmacokinetics of buprenorphine after
oral administration in humans. Published in vivo studies indicate that the majority
(~70%) of the oral dose is eliminated via feces with minor (~10—15%) renal elimination
[8, 10]. In the feces, unchanged buprenorphine is reported to be the major component
with unchanged norbuprenorphine as the minor component [8, 10]. However, the
unchanged buprenorphine in feces is contaminated with buprenorphine obtained
following hydrolysis of buprenorphine glucuronide by B-glucuronidase in the gut wall. In
the urine, norbuprenorphine glucuronide (8—10%) and buprenorphine glucuronide (2—
3%) form the major components with trace amounts of unchanged buprenorphine and
norbuprenorphine [94]. However, the above data do not distinguish between the intestinal
vs hepatic as well as the CYP vs UGT contributions to the overall presystemic
metabolism of buprenorphine.

There are numerous reports on the effects of dietary components on drug
metabolism [21-26]. Therefore it would seem reasonable to create a strategy in which
selected dietary and/or GRAS substances could be combined to inhibit the presystemic
metabolism of drugs such as buprenorphine (which are extensively metabolized). Such a

strategy would need to be established considering many aspects of the dietary or GRAS
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substances as inhibitors: target enzyme inhibition, solubility, permeability, systemic
bioavailability, clinically feasible doses, regulatory status, potential for side
effects/toxicity and potential for undesired interactions with other medications. A recent
study conducted in rats in our laboratory demonstrated a 2-fold increase in the oral
bioavailability of buprenorphine following co-administration of buprenorphine with a
cocktail of GRAS /dietary supplements [83]. The focus of this chapter will be the
inhibition of the target enzyme pathways.

The present study consists of two objectives: (1) the prediction of the contribution
of CYP and UGT to overall presystemic metabolism of buprenorphine in intestine and
liver using well-stirred model, (2) inhibition of oxidative and conjugative metabolism of
buprenorphine (individually) using GRAS compounds and dietary supplements or

components (referred to as ‘inhibitors’ hereafter).

3.2 Materials and Methods

3.2.1 Chemicals and reagents

Curcumin, geraniol, geranyl acetate, linalool, naringin and thymol were
purchased from Alfa Aesar (Ward Hill, MA). Ginger extract, 6-gingerol, menthyl acetate,
pulegone, tris hydrochloride (Tris-HCl), UDP-glucuronic acid (UDPGA) were obtained
from Sigma Aldrich (St Louis, MO). Trans-anethole was obtained from Oxchem
Corporation (Irwindale, CA), iso-borneol and D-limonene from MP Biomedicals LLC
(Solon, OH), carvacrol from TCI America (Portland, OR), chrysin from Hawkins
Pharmaceutical Group (Minneapolis, MN), trans-cinnamaldehyde and linalyl acetate
from Acros (NJ), hesperitin and silybin from Cayman Chemical Co. (Ann Arbor, MI), a-
mangostin from Indofine Chemical Company (Hillsborough, NJ), menthol from Humco

(Texarkana, TX), resveratrol and magnolol from Ark Pharm Inc. (Libertyville, IL),
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saccharolactone from Calbiochem (La Jolla, CA), magnesium chloride (MgCl»),

dimethyl sulfoxide (DMSO) from Fisher Scientific (Fairlawn, NJ) and alamethicin from
Enzo Life Sciences (Farmingdale, NY). Buprenorphine HCl and naloxone HCI were
purchased from Medisca (Plattsburgh, NY), norbuprenorphine and buprenorphine
glucuronide from Cerilliant (Round Rock, TX). All the solvents were high-performance
liquid chromatography (HPLC) grade and were obtained from VWR (Radnor, PA).
Quercetin was purchased from ChemImpex (Wood Dale, IL), pterostilbene from AK
Scientific, (Union City, CA) and ethyl cinnamate from Beantown Chemical (Hudson,
NH). NADPH was obtained from Akron Biotech (Boca Raton, FL) and bovine serum
albumin (BSA) from Calbiochem (San Diego, CA). Human plasma from a healthy adult
male was obtained under approval from the VCU IRB. Pooled human liver microsomes
(HLM) (pool of 200 donors; lot no: 1210347 and 1410230) and human intestinal
microsomes (HIM) (pool of 10 donors; lot no: 1410074 and pool of 13 donors; lot no:

1310173) were obtained from Xenotech, LLC (Lenexa, KS).

3.2.2 General assay procedure with pooled microsomes

The incubation mixture (100 pl) contained 0.1-0.33 mg/ml of pooled HIM or
HLM. Depending on the enzyme of interest (CYPs or UGTs), the incubation mixture
comprised 1 mM of NADPH or 2.5 mM UDPGA (respectively) and 5 or 10 uM
buprenorphine. The CYP mediated reactions were carried out in 0.1 M potassium

phosphate buffer (pH 7.4) containing 0.05% BSA, 3.3 mM MgCly, while the UGT

mediated reactions were carried out in 100 mM Tris.HCl buffer (pH 7.4) containing

0.05% BSA, 12.5 mM MgCly, 31.25 pg/ml of alamethicin and 8 mM saccharolactone.

The UGT mediated reactions were preactivated with alamethicin for 20 min on ice and 5
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min at 37°C. Regardless of the enzyme, all reactions were carried out at 37°C and in the
case of CYPs, the reactions were exposed to an atmosphere saturated with humidity.
Following 10 to 30 min incubation, depending on the enzyme (see Table 3.1), the
reactions were stopped by the addition of an equal volume of cold acetonitrile (ACN)
containing naloxone (I pM) as the internal standard. Samples were subsequently
centrifuged at 12,500 x g for 5 min at 4°C to precipitate protein. The supernatant was
stored at 20°C until further analysis. Control incubations without the cofactors, substrate

or the enzyme were also performed. All incubations were performed in triplicate.

Table 3.1: Experimental conditions

Test condition HLM HIM
CYP UGT CYP UGT
Incubation time (min) 15 11 15 30
Protein concentration 0.1 0.1 033 02
(mg/mL)

3.2.3 Determination of binding of buprenorphine to human plasma, BSA and
microsomes

Rapid equilibrium dialysis (RED; Thermo Scientific Pierce, Rockford, IL) was
used to determine the binding of buprenorphine to human plasma, 0.05% bovine serum
albumin (BSA) and pooled microsomes. The protein solution (200 pl) containing varying
concentrations of buprenorphine was added to the sample compartment and appropriate
buffer solution (350 pl) was added to the buffer compartment (Table 3.2). The Teflon
base plate containing the inserts was sealed and incubated at 37°C on an orbital shaker at

100 rpm for a suitable time (Table 3.2) chosen from prior optimization experiments (see
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Fig 3.1). The fraction unbound was calculated using equation 1. All determinations were

made in triplicates.

Concentration in buf fer compartment

% unbound = x 100 (1)

Concentration in sample compartment

Table 3.2: Test conditions for binding studies using RED

- Sample Buffer Incubation BUP tes.t
Binding to . concentrations
compartment compartment | time (hours) (M)
Plasma Human plasma Phosphate 2 4.1,32,98
proteins 4 plas buffered saline
Phosphate
buffer (pH 7.4) Phosphate
0
0.05% B3A containing buffer (pH 7.4) 2 3.5,29,69
0.05% BSA
Start solution”
containing HLM
Microsomes | (0.1 mg/mL)or | Start solution® 4 2.8,27, 106
HIM (0.2
mg/mL)

a — start solution comprises of 12.5 mM MgCl,, 31.25 pg/ml of alamethicin and 8 mM saccharolactone in
100 mM phosphate buffer (pH 7.4)

3.2.4 Determination of kinetic parameters in pooled microsomes

In preliminary experiments with pooled microsomes, the linearity of metabolite
formation (buprenorphine glucuronide or norbuprenorphine) with incubation time (5—60
min) was established. Kinetic experiments were then performed by incubating increasing
concentrations of buprenorphine (I puM-160 puM) with either the liver or intestinal
microsomes (0.1-0.33 mg/ml) for 10-30 min depending on the enzyme of interest. The
Michaelis-Menten or Hill equation was fitted to the resulting kinetic data, and kinetic
parameters were calculated by nonlinear regression analysis using Prism v6.0 (GraphPad

Software, Inc.; La Jolla, CA). Intrinsic clearances (Clim) were estimated using Equation 2
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when the Michaelis-Menten equation was chosen and Equation 3 [95] when the Hill

equation was used.

Vmax

Clint = H (2)
Vimax h-1

Cline = 2 x iy (3)

where V__ is the maximal velocity rate, K  is the substrate concentration at 50% of
Voo and h is the Hill coefficient.

The CL and Cl

it CYP inLuGT Were corrected for nonspecific microsomal binding as

well as binding to BSA to determine the total unbound intrinsic clearance (Cly, ). In the

pooled HIM, the Cluim’ cyp and Cluim,UGT were scaled to an in vivo level using intestinal

scaling factors of 20.5 mg microsomal protein/g intestinal mucosa (SF,) and 11.16 g

intestinal mucosa/kg (SF,) [67, 96]. The Clu, ., ,and Clu_ .. determined using HLM

were scaled to an in vivo level using hepatic scaling factors of 40 mg microsomal

protein/g liver and 21.4 g liver/kg [67, 96]. The total scaled in vitro CL_ (ml/min/kg) in

both HLM and HIM was calculated by addition of scaled Clu, ., and Clu,_ .. of

buprenorphine, respectively.

3.2.5 Prediction of intestinal availability (F,)

The well-stirred model (Eq. 4) was used to predict the intestinal availability (Fg)
of buprenorphine [65, 97]. Q . (300 ml/min) is the intestinal villous blood flow, fy,
indicates the unbound fraction of the substrate in the enterocytes and in vitro Cliy is the
total intrinsic clearance in HIM scaled using scaling factors 20.5 mg microsomal
protein/g intestinal mucosa (SF,) and 11.16 g intestinal mucosa/kg (SF,)[65].
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F — Quilli (4)

9 Quitti + fug X inVitro Cline X SFy X SF,

The following assumptions were made:

(a) fu, was assumed to be 1. Yang et al. have shown that equating fu, with fu in plasma
or blood instead of using fug = 1 led to a loss of successful prediction of F,. The resultant
F, values (when fug # 1) for a wide variety of drugs were reported to approach 1. Models
with fug set to unity showed lowest mean prediction error (accuracy) and the mean
squared prediction error (precision) [65].

(b) Linear PK (i.e. gut concentrations of buprenorphine < K ) conditions were achieved

enabling addition of the CI ., and Cl_ .. (estimated separately) in the HIM to

determine the total Cl. in the intestine. The oral doses of 0.63 ng/kg, 15 pg/kg and 20
ng/kg of buprenorphine reported in the literature result in gut concentrations almost equal

to or less than the K _ values (determined from the present in vitro studies) supporting the

assumption of linear PK conditions [8, 10].
3.2.6 Prediction of hepatic availability (Fp)

The hepatic well-stirred model (Eq. 5) was utilized for determining hepatic
availability (F,) of buprenorphine [68, 69]. Qhep (20.7 ml/min/kg) is the human hepatic
blood flow, fup indicates fraction of unbound drug in plasma and in vitro Cliy is the total
intrinsic clearance in HLM scaled using scaling factors 40 mg microsomal protein/g liver

(SF)) and 21.4 g liver/kg (SF,). Linear PK conditions were assumed as with the intestinal

well-stirred model.

Fh — Qhep (5)

Qhep + fup X invitro Clipe X SFy X SF,
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3.2.7 Prediction of oral bioavailability (Forar)
The oral bioavailability of buprenorphine was predicted based on the above-

determined Fg and F, values using Eq. 6. [70]. The F_ (fraction absorbed) was assumed to

be 1 since buprenorphine hydrochloride is expected to show near complete absorption

being a highly soluble and highly permeable drug [3, 10, 67].
Forqr = Fg X Fy X Fp X 100 (6)

3.2.8 Inhibition studies in HLM and HIM

Inhibition studies were performed using the same experimental method as
described above for microsomes, although studies were carried out in the presence of
inhibitors. Inhibitor solutions (final concentration: 25 uM) were prepared from DMSO
stock solutions (100 mM) for all pure compounds based upon their molecular weights as
usual. However, since ginger extract is a mixture of mainly 6-, 8- and 10-gingerols and 6-
shogaol [32], the molecular mass of 8-gingerol was chosen as an approximate
representative of the mixture, and stock solutions of ginger extract were prepared to
provide a final total concentration of 25 pM. Buprenorphine (5 or 10 uM) was incubated
with or without 25 pM of inhibitors for 10-30 min with 0.1-0.33 mg/ml HLM and HIM,
depending on the metabolic pathway being tested (Table 3.1). Control reactions were
carried out in the absence of inhibitors (solvent control). Significant inhibition was tested
by comparing the % inhibition of norbuprenorphine or buprenorphine glucuronide
formation to control reactions (no inhibition) using one-way ANOVA with Dunnett’s

post-hoc test (o = 0.05; Prism v6.0).
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3.2.9 Sample analysis

Quantification of buprenorphine and its metabolites buprenorphine glucuronide
and norbuprenorphine was performed using a previously validated method [90]. Briefly,
the HPLC method comprised a mobile phase flow (1 ml/ min) of 1% acetonitrile (Solvent
A) and 99% of 90% aqueous 25 mM ammonium acetate (pH 6.6, adjusted with 5 pl
glacial acetic acid) in 10% acetonitrile (Solvent B) from 1 min (0 to 1 min) followed by a
Solvent A gradient from 1% to 50% over 1.5 min (1 to 2.5 min) with a subsequent
ramping of Solvent A from 50 to 90% over 0.5 min (2.5 to 3 min) and followed by
maintaining 90% Solvent A for 3 min (3 to 6 min). The column (Alltima HP C18, 4.6 x
100 mm, 3 um; Grace- Davison Discovery Sciences, Columbia, MD) was re-equilibrated
to 1% Solvent A for 1.5 min (6 to 7.5 min). The column and sample temperatures were
30 °C and 5 °C, respectively. The initial effluent (3 min) was diverted to the waste.
Detection consisted of an Acquity QDa mass spectrometer (Waters, Milford, MA), with
the capillary positive voltage set at 0.8 kV and the probe temperature set to 600 °C.
Instrument control, acquisition and data processing were performed using Empower 3
software (Waters). The single ion recording (m/z ratio) for the four analytes and the
internal standard (IS) are as follows: norbuprenorphine glucuronide 590.6,
norbuprenorphine 414.5, buprenorphine glucuronide 644.7, buprenorphine 468.6 and
naloxone 328.4. Linear calibration curves were obtained from 25-4000 ng/ml for
norbuprenorphine and buprenorphine and from 1004000 ng/ml for norbuprenorphine
glucuronide and buprenorphine glucuronide. Buprenorphine concentrations from the
enzymatic assays that were outside the calibration curve of buprenorphine on the QDa

mass detector were quantified by UV detection (Waters 2487) at 220 nm.
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3.3 Results

3.3.1 Binding of buprenorphine to plasma proteins, BSA and microsomes

Incubation time of 8 hours and 2 hours was chosen for plasma and BSA binding
studies, respectively. Beyond these time points a pattern of reduction in the fraction of
bound buprenorphine was observed (Fig 3.1 a-b). Buprenorphine exhibited 48 + 14%
binding to 0.05% BSA. The microsomal binding of buprenorphine was determined to be
72 + 3% in pooled HIM (0.2 mg/ml) and 78 £+ 3% in pooled HLM (0.1 mg/ml). The
plasma protein binding of buprenorphine was determined to be 97 = 1%, which is in good

agreement with the published values [3, 10].

Figure 3.1: Optimization of incubation time for binding studies of buprenorphine in
(a) plasma and (b) 0.05% BSA.
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Fig 3.1 (a) Optimization of incubation time for binding studies of buprenorphine in plasma: BUP (32
and 100 uM) was added to the plasma compartment and appropriate buffer solution (350 pl) was added to
the buffer compartment (PBS) and incubated at 37 °C on an orbital shaker at 100 rpm. Data represents BUP
concentrations (mean + SD) in plasma compartment at various time points till 24 hours. All determinations
were made in triplicate.
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Fig 3.1 (b) Optimization of incubation time for binding studies of buprenorphine in 0.05% BSA: BUP
(32 and 100 uM) was added to the sample compartment and appropriate buffer solution (350 ul) was added
to the buffer compartment (100 mM phosphate buffer) and incubated at 37 °C on an orbital shaker at 100
rpm. Data represents BUP concentrations (mean + SD) in the sample compartment at various time points
till 6 hours. All determinations were made in triplicate.

3.3.2 Kinetics of buprenorphine in HLM and HIM

In both HLM and HIM, the disappearance of buprenorphine translated into
formation of metabolite (NBUP or BUPG). Metabolite formation (BUPG and NBUP)
was linear in pooled HIM and HLM till 60 min (Fig 3.2). Under the final experimental
conditions (Table 3.1), saturable formation of buprenorphine glucuronide and
norbuprenorphine was observed in the microsomes (Table 3.3, Fig 3.3). In the HIM, the

contribution of oxidation (unbound CI.

int, CYP 21.4 pl/min/mg protein) to the total

intestinal clearance of buprenorphine was about 6 fold higher than glucuronidation (CL.

var = 3-43 w/min/mg protein), indicating CYP to be the major metabolic pathway for

buprenorphine in the intestine (Table 3.3). CYP appeared to be the major pathway in liver

microsomes as well with about 4 fold higher C1._ (CI = 183 pl/min/mg protein) than

int, CYP

glucuronidation (Cl.

nt, UGT — 47.4 ul/min/mg protein). These intrinsic clearances were

corrected for binding to 0.05% BSA and microsomes and then scaled using intestinal and

hepatic scaling factors to determine Fg and F , respectively.
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Figure 3.2: Linearity of metabolite formation in pooled HIM and HLM
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Fig 3.2 Linearity of BUPG and NBUP formation in pooled HIM and HLM.

All the determinations were performed in triplicates. Data represent mean + SD.

a: BUPG formation in pooled HIM (slope = 2.65 = 0.1 pmol/min, R*=0.99, 10 uM BUP, Lot 1310173)
and HLM (slope = 6.70 £ 0.2 pmol/min, R’= 0.99, 10 uM BUP, Lot 1410230)

b: NBUP formation in pooled HIM (slope =1.44 + 0.15 pmol/min, R*= 0.95, BUP, Lot 1410074) and
HLM (slope = 2.17 + 0.1 pmol/min, R*= 0.99, 5 uM BUP, Lot 1210347)

Figure 3.3: Saturation of BUPG and NBUP formation in pooled HIM and HLM
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Fig 3.3: Saturation of buprenorphine glucuronide formation in pooled HIM and HLM.

All the determinations were performed in triplicates. Data represent mean + SD. Curves represent best fit of
Michaelis—Menten curve. (a) Buprenorphine glucuronide (BUPG) formation in pooled HIM (0.2 mg/ml, 30
min incubation, buprenorphine (BUP) concentrations: 1- 64 pM; Lot 1310173), V_ = 379 + 1.5
pmol/min/mg protein; K = 11.1 = 1.4 uM. (b) Buprenorphine glucuronide formation in pooled HLM (0.1
mg/ml, 11 min incubation, buprenorphine concentrations: 0.1-132 uM; Lot 1410230), V = 1527 = 46

pmol/min/mg protein; K =32.2+2.6 uM
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Fig 3.3: Saturation of norbuprenorphine formation in pooled HIM and HLM. All the determinations
were performed in triplicate. Data represent mean + SD. Curves represent best fit of Michaelis—-Menten
curve. (¢) Norbuprenorphine (NBUP) formation in pooled HIM (0.33 mg/ml, 15 min incubation,
buprenorphine (BUP) concentrations: 0.68—-160 pM; Lot 1410074), V= 624 £ 11 pmol/min/mg protein;
K, =29.2+ 1.6 uM. (d) Norbuprenorphine formation in pooled HLM (0.1 mg/ml, 15 min incubation,
buprenorphine concentrations: 0.68-103 uM; Lot 1210347), V_ = 2323 + 80 pmol/ min/mg protein; K =

max

12.7 1.3 uM
Table 3.3: Saturation assay in pooled HIM and HLM
Parameter HIM HLM
CYP UGT CYP UGT
Vmax (pmol/min/mg 624+11 37.9+1.5 2323+80 1527446
protein)
K (uM) 29.2+1.6 11.1+1.4 12.74£1.3 32.242.6
R’ 1.00 0.98 0.98 0.99
Hill slope (h) 1 1 1 1
Clint (uL/min/mg 21.4 3.43 183 47.4
protein)
Clujy (mL/min/ mg 0.15 0.02 1.6 0.41
protein)”
scaled Clujy 33.6" 5.39° 1370° 355°
(uL/min/kg)

a- Cl;y corrected for nonspecific binding to 0.05% BSA (f, gsa = 0.52) and microsomes (f, mic = 0.28 for
HIM and 0.22 for HLM).

b- scaled using intestinal scaling factors 20.5 mg protein/g intestinal mucosa and 11.2 g intestinal
mucosa’kg body weight.

c- scaled using hepatic scaling factors 40 mg protein/g liver and 21.4 g liver/kg body weight.
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3.3.3 Prediction of intestinal availability (F,)

Using the well-stirred model, Fg was estimated to be 0.095, indicating 90.5%

intestinal extraction of buprenorphine. Based on these results, we would expect a
significant contribution of intestinal metabolism to the first-pass clearance of
buprenorphine when given orally. Of the total predicted fraction of buprenorphine
metabolized, 86% was attributed to oxidation and 14% to glucuronidation indicating CYP

to be the major metabolic pathway in the gut wall.

3.3.4 Prediction of hepatic availability (Fp)

Using the hepatic well-stirred model, F, was estimated to be 0.29 indicating 71%

hepatic extraction of buprenorphine. In the liver, while the CYP contribution was 79%,
glucuronidation contributed to 21% of the hepatic metabolism. Thus, when given orally
buprenorphine would be expected to undergo extensive presystemic metabolism in both
intestine and liver.

3.3.5 Prediction of oral bioavailability (Forar)

Based on the predicted Fg of 0.095, F, of 0.29 and assuming F_= 1, the F__ was

predicted to be 2.75% (Eq. 6). Assuming the F__ of buprenorphine to be 2.75%,

I
inhibition of 75% of intestinal extraction and 50% of hepatic extraction by the GRAS
compounds or dietary constituents or their combinations would result in a bioavailability

of 49.7%. F__ of 49.7% is comparable to the bioavailability of the sublingual

buprenorphine (30-55%) [16, 98, 99], indicating the feasibility of an oral swallowed

formulation.
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3.3.6 Inhibition study in pooled HLM and HIM

Of the 28 inhibitors tested in the microsomes, 14 inhibitors in HIM and 15
inhibitors in HLM significantly inhibited buprenorphine glucuronide formation (Fig 3.4
a-b). Chrysin, curcumin, ginger extract and silybin produced an impressive inhibition of
glucuronidation in both HIM and HLM. With regard to oxidation (norbuprenorphine
formation), five compounds showed statistically significant inhibition in HIM, but 11
compounds in HLM (Fig 3.4 c-d).

Ginger extract inhibited oxidation as well as glucuronidation in both the
microsomes. Chrysin and pterostilbene inhibited norbuprenorphine formation in HLM as
well as HIM while curcumin was effective in inhibiting glucuronidation in both the
microsomes. Also, curcumin and resveratrol produced effective inhibition of oxidation in
the HLM and HIM. Overall, most of the tested compounds exhibited better inhibition of
glucuronidation than oxidation of buprenorphine.

Some inhibitors such t-anethole, iso-borneol, t-cinnamaldehyde, ethyl cinnamate,
geraniol, geranyl acetate, D-limonene, linalool, linalyl acetate, menthol, menthyl acetate,
pulegone and thymol appeared significantly to promote buprenorphine glucuronide
formation in HIM or HLM. Also, six compounds (hesperitin, cinnamaldehyde, ethyl
cinnamate, geraniol acetate, linalyl acetate, D-limonene) showed apparent stimulation of

norbuprenorphine formation in HLM, but not in HIM.
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Figure 3.4: Metabolite formation in presence of inhibitors in pooled HIM and HLM
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Fig 3.4 (a): Buprenorphine glucuronide (BUPG) formation with and without inhibitors in pooled
HIM; Lot 1310173. Data represent mean = SD of buprenorphine glucuronide or norbuprenorphine
formation rate. All the determinations were performed in triplicate. Panels represent separate experiments.
Asterisk indicates p < 0.05
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Fig 3.4 (b): Buprenorphine glucuronide (BUPG) formation with and without inhibitors in pooled
HLM; Lot 1410230. Data represent mean £ SD of buprenorphine glucuronide or norbuprenorphine
formation rate. All the determinations were performed in triplicate, except iso-borneol (n = 2). Panels
represent separate experiments. Asterisk indicates p < 0.05
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Fig 3.4 (¢): Norbuprenorphine (NBUP) formation with and without inhibitors in pooled HIM; Lot
1410074. Data represent mean + SD of buprenorphine glucuronide or norbuprenorphine formation rate. All
the determinations were performed in triplicate, except menthol and carvacrol (n = 2). Panels represent
separate experiments. Asterisk indicates p < 0.05. t-Anethole was also tested (n = 2) but did not appear

different from the control
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Fig 3.4 (d): Norbuprenorphine (NBUP) formation with and without inhibitors in pooled HLM; Lot
1210347. Data represent mean + SD of buprenorphine glucuronide or norbuprenorphine formation rate. All
the determinations were performed in triplicate. Panels represent separate experiments. Asterisk indicates p

<0.05
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3.4 Discussion

Oxidative and conjugative metabolism of buprenorphine has been extensively
studied in several in vitro and in vivo systems [9, 10, 12, 14, 20, 67]. However, the
contribution of the CYP vs the UGT pathway in the intestine and liver as well as the
contribution of the two organs to the presystemic metabolism of buprenorphine has not
been well studied. Cubitt et al. reported that the intestinal oxidation of buprenorphine was
significantly higher than the hepatic oxidation and liver was reported to be the major site
for buprenorphine glucuronidation [67]. Our in vitro results and corresponding
extrapolations are in agreement with the Cubitt et al. study [67]. Oxidation appears to be
the dominant pathway in both the gut wall and liver with a 6-fold greater hepatic intrinsic
clearance and 3-fold higher intestinal intrinsic clearance over glucuronidation.
Furthermore, Rouguieg et al. reported a norbuprenorphine glucuronide formation rate in
HLM of 51.8 pmol/mg/min at 5 pM norbuprenorphine; they also reported sigmoidal
kinetic parameters for buprenorphine glucuronide formation in HLM [14]. From the
latter, a rate of buprenorphine glucuronide formation at 5 uM is calculated to be 247
pmol/mg/min; thus, the norbuprenorphine glucuronide formation rate is substantially
lower than the buprenorphine glucuronide formation rate, which is also less than the
norbuprenorphine formation rate [14]. Using well-stirred model, the intestinal extraction
was predicted to be 90.5% and the hepatic extraction to be 71%, resulting in a predicted

F_ of 2.75%. Thus, buprenorphine given orally would be expected to undergo

oral
significant presystemic metabolism in both the intestine as well as in the liver. Previous

oral studies in humans indicate buprenorphine displays an F__ of <I15%, which is

1

consistent with our results [8, 10, 16]. However, most of these studies do not provide a
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detailed description of how the determination of F,, was made. Also, buprenorphine was
administered to a limited number (< 4) of healthy volunteers in these studies. Hence, our
IVIVE predictions cannot be validated accurately due to lack of robust in vivo
information on oral bioavailability of buprenorphine.

Increasing the dose to improve the oral bioavailability of BUP does not appear to
be a feasible strategy. 8mg of sublingually administered BUP is reported to exhibit about
42% bioavailability [7]. Assuming an F, of 3%, the sublingual dose (8 mg) would have
to be increased to 107 mg to achieve an oral bioavailability similar to the sublingual
bioavailability. One gram of USP grade BUP hydrochloride (from Medisca) costs about
$581 [100]. 30 units of Suboxone comprising 8 mg BUP (and 2 mg naloxone) cost about
$348 [101]. Thus, a formulation with 107 mg BUP would increase the price
exponentially (by atleast 13 fold), making it an economically unviable strategy. In
addition, administering a higher oral dose would not address the issue of the large
variability in the systemic availability and exposure shown by a highly extracted drug
like BUP. On the other hand, co-administering herbal (i.e. GRAS or dietary compounds)
inhibitors as bioenhancers of BUP affords an economical strategy to not only improve the
PK properties of BUP but also reduce the variability associated with them.

From these screening studies, chrysin, curcumin, ginger extract, hesperetin, 6-
gingerol, a-mangostin, magnolol, quercetin, pterostilbene, resveratrol and silybin were
identified as preferred inhibitors. These inhibitors (at 25 uM concentration) produced

>50% UGT and/or >30% CYP inhibition (Table 3.4).

60



Table 3.4: List of preferred inhibitors

Inhibitor Formation (% of Formation (% of FDA Maximum
control) in pooled control) in pooled status” | human dose
HIM HLM (mg)"
CYP UGT CYP UGT 1000
Chrysin 67.7£7.5 | 67.6£8.2 | 62.5+4.0 | 36.1£8.4 DS 500
Curcumin 80.1+44 | 13.948.6 | 43.6£9.4 16.5+8.7 DS 600
Ginger extract | 61.149.2 | 35.1+48.4 | 65.142.6 18.2+10 F, DS 38°
6-gingerol 92.049.3 | 53.9493 | 52.6+£75 51.749.3 DS 1000
Hesperitin 108+£5.6 | 60.4+9.3 | 123+6.9 32.448.8 DS 150
o- Mangostin | 68.1£15 | 37.9+7.9 | 104+5.2 51.8+10 DS 1200
Pterostilbene | 53.3+3.5 | 94.0+9.6 | 38.2+7.9 68.248.2 G, DS 2000
Quercetin 79.948.7 | 49.3+9.5 | 80.6+5.4 23.8+8.1 G, DS 500
Resveratrol 78.1+13 70.3+£10 | 46.1+5.4 58.2+12 G, DS 480
Silybin 77.146.6 | 36.5+8.0 | 58.3+29 | 37.248.3 DS 1000

a: G — GRAS, F — food additive (EAFUS), DS — dietary supplement

b: Doses taken from FDA-approved use as GRAS substance or food additive, or current usage as dietary
supplement, whichever is higher.

c¢: assuming 6.3% 6-gingerol content in ginger extract [102]

The apparent stimulation of glucuronidation and/or oxidation by certain
compounds is curious. Being a microsomal system, the regulation of expression is
obviously impossible, while any detergent-based or pore-forming activity of the
compounds would be overwhelmed by our use of alamethicin. Similarly, gefitinib was
reported to activate CYP3A in mouse and human hepatic microsomes [103]. One of the
possible reasons explaining the apparent stimulation of UGT and/or CYP metabolism by
certain compounds such as D-limonene could be a cooperative interaction between
CYP/CYP or UGT/UGT enzymes. Several studies have reported that certain UGT
isoforms such as UGT1AI, 1A3, 1A9, 2B7 etc. undergo oligomerization and can possibly
act as cooperative ligand-binding multisubunit enzymes [104, 105]. Such oligomerization
can result in conformational changes leading to stimulation of the glucuronidation
activity and enhancement of substrate affinity [105]. Recent studies have also reported

that CYP-CYP interactions can occur among the same (homo-oligomer) and different
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(hetero-oligomer) CYP isoforms [106]. This can significantly affect the functional
capacity of the CYP enzymes and the substrate specificity. Also, some CYP3A4
substrates do not follow Michaelis-Menten kinetics instead exhibiting positive
cooperativity or simultaneous activation of the enzyme by a second substrate [95]. Hosea
et al. has shown that the CYP3A4 active site is large enough to allow binding of more
than one substrate molecule [107]. Thus, the observed stimulation of norbuprenorphine or
buprenorphine glucuronide formation could also be due to allosteric effects. However,
the interactions between buprenorphine and the putative inhibitors are difficult to predict
given the current understanding of the enzyme structures as well as the occurrence of
conflicting effects such as simultaneous inhibition and activation of the enzymes. Thus,
further studies would be needed to elucidate the exact mechanism by which these
compounds stimulate metabolite formation.

The approach of using GRAS or dietary compounds as inhibitors of presystemic
metabolism would preferably only inhibit intestinal and hepatic enzymes during
absorption, and would preferably not affect systemic clearance. In that case, undesirable
pharmacokinetic interactions with other medications could easily be avoided. This would
depend upon the chosen compounds resulting in low systemic exposure. In fact, this is
reasonably well supported by several published studies. For example, following doses of
2 g of ginger, 6-gingerol was undetectable (< 0.1 pg/ ml; 0.34 uM) in human plasma [34].
Next, in human subjects receiving 5g oral resveratrol, peak plasma concentrations
reached only 2.4 uM [108]. Also, patients receiving up to 8 g oral curcumin had serum
concentrations up to 3.6 uM [109]. Additionally, the peak plasma concentration of

quercetin following a 50 mg oral dose was 0.29 uM [110]. Finally, in a separate study, on
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day 7 of dosing with quercetin 150 mg orally, the median peak plasma concentration of
quercetin was 0.43 uM [111]. While a comprehensive review of human PK of all of the
compounds used in the present study is outside the scope, these and other published data
suggest that these compounds generally reach low circulating plasma concentrations and
are thus unlikely to have significant effects on systemic clearance mechanisms.

Furthermore, the approach would depend upon the ability of the inhibitors to be
clinically administered to humans in doses that would be effective at inhibiting
presystemic intestinal and hepatic metabolism, while not causing toxicities. Table 3.4
lists the top inhibitors (as discussed previously), residual metabolite formation activity,
their FDA regulatory status and their current maximum dose. All the compounds are able
to be taken by humans as either GRAS or dietary components. Maximal intestinal
concentrations of inhibitors will depend upon their dose, solubility, and absorption rate.
For example, dose will likely be concentration limiting for 6-gingerol (38 mg/ 250 ml ~
500 uM), while solubility will be concentration-limiting for curcumin (potentially
enhanced by lipid formulations) [112].

These results demonstrate the feasibility of our research hypothesis of using
GRAS or dietary compounds to inhibit the presystemic metabolism of buprenorphine and
thus improve its oral bioavailability. Inhibition of at least 50% of hepatic extraction and
75% of intestinal metabolism would lead to a predicted F__ equivalent to sublingual
buprenorphine. Thus, an oral formulation of buprenorphine and these inhibitor treatments
or their combinations has promising potential to serve as an efficacious alternative to
sublingual buprenorphine.

Based on the published data (mainly animal; limited human data), buprenorphine
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as well as its metabolites appear to undergo enterohepatic recirculation (EHC) following
oral administration [9, 113]. The route of administration is reported to have a significant
influence on the magnitude of enterohepatic recirculation. Brewster et al. reported that
the intrahepatoportal route was associated with greater enterohepatic recirculation (91%)
in comparison with intraduodenal (46%) or sublingual administration of buprenorphine in
rats [9]. Most of the inhibitors are extensively metabolized via conjugation by UGTs and
SULTs in the gut wall and liver [114-119]. The available literature in animal models
and/or humans suggests that the parent compounds as well as their conjugates can
undergo enterohepatic recirculation to varying extents [114-118]. Although limited
information is available on the elimination half-lives in humans for several of the tested
inhibitors, most of these are reported to exhibit relatively short to intermediate
elimination half-lives in rats compared with buprenorphine [9, 114-118]. Hence, while
the inhibitors could potentially affect the enterohepatic recirculation of buprenorphine,
the effect might not be clinically significant because of the relatively short residence
times of inhibitors compared with that of buprenorphine. However, it is possible that the
buprenorphine + inhibitor(s) combination might exhibit different enterohepatic
recirculation characteristics, which may not be predicted from their individual
enterohepatic recirculation patterns. Further in vivo studies following the co-
administration of buprenorphine and inhibitors would be required to evaluate the effect
on enterohepatic recirculation of buprenorphine.

Future studies will also focus on determining the potency of the top inhibitors
determined from this screening study. Various combinations of these inhibitor treatments

will also be evaluated to investigate the nature of interaction (synergistic, additive or
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antagonistic) between them. Isoform-specific investigations will also be helpful to avoid
undesirable interactions. The intrinsic clearance of buprenorphine in the presence of these
inhibitors or their combinations will be determined to predict the oral bioavailability of
buprenorphine. These studies will further help to optimize an oral formulation of

buprenorphine with reduced variability and comparable or higher bioavailability.

3.5 Conclusion

These results affirm our proposed approach of using GRAS or dietary compounds
to inhibit the presystemic metabolism of buprenorphine and thus improve its oral
bioavailability. Our IVIVE studies indicated that both liver and intestine contributed
extensively to the presystemic metabolism of buprenorphine and oxidation was the
predominant pathway over glucuronidation in both liver and the intestine. Selected
inhibitors displayed inhibitions of greater than 30% and 50% for oxidation and
glucuronidation, respectively. These inhibitors exhibit the potential to improve the low
oral bioavailability of buprenorphine and would aid in reducing the in vivo variability
associated with it. The results from the present study will aid in the selection of inhibitors
or their combinations to effectively reduce intestinal and hepatic presystemic metabolism
of buprenorphine. An oral formulation of buprenorphine and these inhibitors or their
combinations has potential to substitute for sublingual buprenorphine to improve patient
compliance, acceptability and therapeutic outcomes. Future studies will focus on defining

feasible effective doses and combinations of the top inhibitors.
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Chapter 4: Determination of Potency of Inhibition of a-
Mangostin, Chrysin, Ginger Extract, Pterostilbene and Silybin
Towards Oxidative and Conjugative Metabolism of
Buprenorphine Using Intestinal and Liver Microsomes

4.1 Introduction

About 73% of the top 200 drugs are cleared by metabolism, of which the
members of the cytochrome P450 (CYP) superfamily account for about 75%, with
CYP3A family being the major (46%) contributor [64]. Among the phase II metabolic
pathways, UGTs play a crucial role in metabolism of 20-30% of currently marketed drugs
[120] and are responsible for 40-70% of all drugs metabolized through conjugation
reactions [121-124]. The UGTs occupy second position after CYPs as the primary
metabolic pathway, accounting for metabolism of 10% of the top 200 drugs [64, 125].
Both the enzyme families significantly contribute to the presystemic metabolism of drugs
resulting in poor and variable oral bioavailability. Buprenorphine (BUP) serves as an apt
example because it suffers from poor and variable oral bioavailability due to extensive
presystemic metabolism by CYPs (CYP3A4 — major, CYPs 2C8, 2C9 - minor) to form
norbuprenorphine (NBUP) [12] and UGTs (1A1, 1A3 and 2B7) to form buprenorphine
glucuronide (BUPG) [3, 14]. The primary oxidative metabolite NBUP further undergoes
glucuronidation (UGTs — 1Al and 1A3) to form norbuprenorphine glucuronide
(NBUPG) [3, 14]. Previous studies using pooled human intestinal (HIM) and liver
(HLM) microsomes suggest oxidation to be the major metabolic pathway for BUP in
both intestine and liver [30, 67, 126].

As discussed in the previous chapter, several generally recognized as safe

(GRAS) compounds, dietary supplements and dietary constituents have been reported to

66



enhance bioavailability of orally administered drugs [21-26]. The mechanisms
hypothesized to be responsible for this bioenhancement include but are not limited to 1)
improved GI solubility ii) delayed GI transit and emptying time iii) reduction in gastric
acid secretion iv) increased intestinal permeation by modification of GI membrane v)
increased intestinal perfusion vi) reduction in intestinal motility vi) inhibition of
presystemic intestinal and hepatic metabolism vii) increased bile flow from liver [127,
128]. Our research hypothesis is based on the bioenhancement achieved through
metabolic inhibition of CYP and UGT enzymes.

Chapter 3 evaluated the potential of 27 compounds to inhibit the oxidative and
conjugative metabolism of BUP in pooled human intestinal (HIM) and liver microsomes
(HLM). A retrospective filter was applied to the results where compounds exhibiting >
50% inhibition of BUPG formation and/or > 30% inhibition of NBUP formation were
identified as preferred inhibitors. The purpose of this retrospective filter was to identify
the potential inhibitor candidates from rest of the test compounds. Chrysin, curcumin,
ginger extract, 6-gingerol, hesperitin, o—mangostin, pterostilbene, quercetin, resveratrol
and silybin appeared to be the preferred inhibitors of BUP metabolism in intestinal and/or
liver microsomes [30]. The next step was to further isolate and shortlist 5 inhibitor
candidates to study their potency of inhibition towards the oxidative and conjugative
metabolism of BUP.

On the basis of our IVIVE predictions and previous publications, the contribution
of the gut wall to the presystemic metabolism of BUP appears to be significant [30, 67,
126]. Hence, it was pivotal that the shortlisted compounds inhibit the major metabolic

pathway i.e. CYP metabolism of BUP, ideally in both intestinal and liver microsomes. In
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addition, intestine represents the first major biological site of metabolism for orally
administered compounds. Thus, preference was given to the candidates inhibiting CYP
metabolism of BUP in the HIM. Most of the test compounds show poor aqueous
solubility and extensive metabolism by conjugative enzymes resulting in low to
intermediate oral bioavailability [34, 108, 110, 114-119, 129-131]. Hence, most of these
inhibitors have a higher probability of inhibiting the intestinal metabolism of BUP as
compared to its hepatic metabolism. The second factor considered in the screening
process was inhibition of BUPG formation, ideally in both HIM and HLM. Due to the
reasons explained earlier, preference was given to candidates inhibiting glucuronidation
of BUP in HIM. The physicochemical characteristics of the inhibitors influencing their
GI solubility and permeability were also evaluated. The Biopharmaceutics Classification
System (BCS) was used to compare their solubility and permeability characteristics
[132]. A BCS class of I (i.e. high solubility and high permeability) was highly preferable.
However, since most of the compounds showed poor aqueous solubility, they appeared to
be BCS class II or IV compounds, with the exception of 6-gingerol, which belonged to
BCS class I [131]. Lastly, the maximum daily dose allowed in humans was also
considered while shortlisting the inhibitors. An inhibitor with a higher daily dose was
preferred, as this would maximize the probability of achieving higher local and systemic
inhibitor concentrations and subsequently help in achieving greater inhibition of the
metabolism of BUP in the intestine and liver. The pharmacokinetic characteristics of
these inhibitors in animals and/or humans were also studied using previous publications
[34, 108, 110, 114-119, 129, 130, 133-135]. However, most of these compounds except

pterostilbene are reported to exhibit low oral bioavailability [34, 108, 110, 114-119, 129,
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130, 133-135]. Also, limited information is available on the oral disposition of these
compounds in humans. Hence, oral bioavailability or pharmacokinetic features of the
inhibitors could not be used as a distinguishing criterion in the selection process. Thus,
based on the aforementioned factors (inhibition of CYP and UGT metabolism in HIM
and HLM, BCS class and maximum daily dose in humans), a-mangostin chrysin, ginger
extract, pterostilbene and silybin were shortlisted for further studies (Table 4.1). This
chapter aims at determination of the potency of inhibition (i.e. ICsp) of CYP and UGT
metabolism of BUP by these five inhibitor candidates in pooled HIM and HLM.

Table 4.1: Factors considered to shortlist inhibitors for further study

Maximum

Inhibitors HIM HLM BCS human

class dose
(mg/day)
CYP UGT CYP UGT

chrysin v X v v 11 1000
curcumin X v v v v 500
ginger extract v v v v 11 600
6-gingerol X v v X I 38°
hesperetin X X X v II 1000
a-mangostin v v X X A% 150
pterostilbene v X v X I’ 1800
quercetin X v X v 11 2000
resveratrol X v v X 11 500
silybin X v v v IT 480

Inhibitors highlighted in orange were identified as preferred inhibitors.

*Estimated from solubility and permeability data [129, 136-140]

"Doses taken from FDA-approved use as GRAS substance or food additive, or current usage as dietary
supplement, whichever is higher.

“Assuming 6.3% 6-gingerol content in ginger extract [102]

4.2 Materials and Methods
4.2.1 Chemicals and Reagents

Ginger extract, tris hydrochloride, acetic acid and UDPGA were obtained from

Sigma Aldrich (St. Louis, MO), chrysin from Hawkins Pharmaceutical Group
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(Minneapoils, MN), silybin from Cayman Chemical Company (Ann Arbor, MI),
pterostilbene from AK Scientific (Union City, CA) and o—mangostin from Indofine
Chemical Company (Hillsborough, NJ). Saccharolactone was purchased from
Calbiochem (La Jolla, CA), magnesium chloride (MgCl,) and dimethyl sulfoxide
(DMSO) from Fisher Scientific (Fairlawn, NJ). Alamethicin was obtained from Enzo
Life sciences (Farmingdale, NY), potassium monophosphate and dibasic potassium
phosphate from J.T. Baker (Center Valley, PA). Buprenorphine HCI and naloxone HCl
were purchased from Medisca (Plattsburgh, NY), NBUP and BUPG from Cerilliant
(Round Rock, TX), NADPH from Akron Biotech (Boca Raton, FL). All the solvents used
were of high-performance liquid chromatography (HPLC) grade and were purchased
from VWR (Radnor, PA). Pooled human liver (pool of 200 donors, Lot 1410230) and
intestinal microsomes (pool of 10 donors, Lot 1417004) were obtained from Xenotech
LLC (Lenexa, KS).
4.2.2 Inhibition studies in pooled microsomes

The oxidative and conjugative metabolism of BUP was studied individually in
pooled HIM and HLM as described in Chapter 3. The inhibitory potency i.e. ICsy was
determined by incubating BUP (11 pM) with 0.1 mg/ml HLM (Lot: 1410230) or 0.4
mg/ml HIM (Lot: 1417004) for 15 min (CYP) or 30 min (UGT) in presence of a wide
concentration range of inhibitors (as shown in Figs. 4.1 to 4.10). Linearity of metabolite
formation with time was established as described in Chapter 3. The oxidative inhibition
studies were repeated thrice and conjugative studies twice to ensure reproducibility of the

ICso values. Duplicate measurements were performed for each inhibitor concentration on
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each inhibition curve. The resulting data was fit to the following standard four-parameter

equation using Prism v7.0 (GraphPad, La Jolla, CA):

Y = Bottom + w (1)

1+ ——
h
ICg,

where Y = Metabolite formation (expressed as % of control), X = inhibitor concentration
(uM), ICsp = inhibitor concentration producing 50% inhibition of metabolite formation,
h = Hill slope of the inhibition curve and Top & Bottom = Metabolite formation at lowest
and highest inhibitor concentration, respectively. Initially, two models with Bottom = 0
versus bottom # 0 were compared using Akaike Information Criterion (AIC). The model
chosen statistically was then modified to compare Hill slope = 1 versus Hill slope # 1.
The statistically preferred model was chosen and corresponding results for the 4
parameters i.e. ICso, Hill slope, Top and Bottom were noted.
4.2.3 Analysis of the combination of Pterostilbene and Ginger extract

The effect of equipotent combination of pterostilbene and ginger extract on CYP
and UGT pathways was studied individually in HIM (BUP=11uM). These inhibitors
were combined in an equipotent manner (as a ratio of their ICsy) and a wide range of
concentrations was studied to determine the inhibitor ratio i.e. IRso. IRso represents the
concentration of the combination that produces 50% inhibition of metabolite formation.
As with earlier inhibition studies, these combination treatments were evaluated three
times for their potential to inhibit oxidative metabolism and twice for inhibition of
glucuronidation of BUP in pooled HIM. The nature of interaction in the combination was
determined using the curve shift analysis method as previously described [141]. Briefly,
the average inhibition curves of pterostilbene, ginger extract and their equipotent

combination were plotted on the same graph; where X axis (I/ICsg) represents the 1Cs
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normalized concentrations of the inhibitors and Y axis indicates the metabolite formation
(NBUP or BUPG) expressed as % of control. A leftward shift in the curve of the
combination with respect to the individual inhibitors would indicate a synergistic
interaction whereas a rightward shift would indicate an antagonistic interaction. No
significant shift in the combination curve with respect to the curves of the individual
inhibitors would indicate additive interactions in the combination.
4.2.4 Sample analysis

BUP and its metabolites BUPG and NBUP were quantified using a previously
validated method as described in Chapter 3 [90]. The same HPLC method was also used
for quantification of chrysin, o—mangostin, pterostilbene and silybin using UV
spectrometric detection. Silybin, chrysin, pterostilbene and o-mangostin eluted at 4.4
min, 4.97 min, 5.1 min and 6.1 min, respectively. Linear standard curves with R?>0.99
were obtained from 0.75-48 pg/ml for silybin, 0.40-25 pg/ml for chrysin, 0.40-26 pg/ml
for pterostilbene and 0.64—41 pg/ml for a-mangostin. Components of the ginger extract

could not be quantified using this analytical method.

4.3 Results

4.3.1 Inhibition studies in pooled microsomes

The apparent 1Csy values of a-mangostin, chrysin, ginger extract, pterostilbene
and silybin in HIM and HLM are as shown in Tables 4.1 — 4.4 and figures 4.1 to 4.10.
Pterostilbene appeared to the most potent inhibitor of NBUP formation in both HIM (ICsg
=1.30 £ 0.89 uM) and HLM (ICsp = 0.79 = 0.10 uM). Ginger extract exhibited moderate
potency towards inhibition of NBUP and BUPG formation in HIM and HLM with

apparent I1Csy values between 10 — 27 uM. Similarly, a-mangostin, chrysin and silybin
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appeared to be moderately potent towards inhibition of NBUP formation in HIM and
HLM. However, a-mangostin in HIM (ICsp = 5.57 = 1.00 uM) and silybin in HLM (ICs,
=1.21 £ 0.34 uM) appeared to be most potent in inhibiting the glucuronidation of BUP.
Most inhibitor treatments were able to achieve complete inhibition of oxidation and
glucuronidation of BUP except pterostilbene, chrysin in HIM and silybin in HLM.
Pterostilbene (bottom = 28.0 + 6.4%) and chrysin (bottom = 29.8 + 2.1%) could achieve
maximum inhibition of 72% and 70% respectively for NBUP formation in HIM and
silybin showed 56% maximum inhibition of BUPG formation in HLM. The ICsy and Hill
slope values for all the inhibitor treatments were fairly reproducible with < 2 fold

difference between different experiments and with acceptable R* values, typically >0.95.
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Figure 4.1: Inhibition of NBUP formation by a-mangostin
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Fig 4.1 (a): Inhibition of NBUP formation by a-mangostin in pooled HIM. Data represent
mean + SD of NBUP formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3,
the NBUP formation in control was 125 + 2.75, 156 = 3.08 and 88.6 = 2.14 pmol/min/mg protein
and R’ value was 0.99, 0.98 and 0.94, respectively.
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Fig 4.1 (b): Inhibition of NBUP formation by a-mangostin in pooled HLM. Data represent
mean + SD of NBUP formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3,
the NBUP formation in control was 346 + 6.00, 439 + 6.85 and 348 + 8.61 pmol/min/mg protein
and R’ value was 1.00, 0.99 and 0.99, respectively.
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Figure 4.2: Inhibition of BUPG formation by a-mangostin
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Fig 4.2 (a): Inhibition of BUPG formation by a-mangostin in pooled HIM. Data represent
mean + SD of BUPG formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
BUPG formation in control was 9.15 = 0.19, and 9.01 + 0.35 pmol/min/mg protein and R*value
was 1.00 and 0.97, respectively.
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Fig 4.2 (b): Inhibition of BUPG formation by a-mangostin in pooled HLM. Data represent
mean + SD of BUPG formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
BUPG formation in control was 288 + 10.8, and 270 + 6.67 pmol/min/mg protein and R*value
was 0.99 and 0.99, respectively.
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Figure 4.3: Inhibition of NBUP formation by chrysin
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Fig 4.3 (a): Inhibition of NBUP formation by chrysin in pooled HIM. Data represent mean +
SD of NBUP formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3, the NBUP
formation in control was 111 + 2.06, 134 + 2.44 and 119 + 2.12 pmol/min/mg protein and R
value was 0.99, 0.98 and 0.98, respectively.
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Fig 4.3 (b): Inhibition of NBUP formation by chrysin in pooled HLM. Data represent mean +
SD of NBUP formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the NBUP
formation in control was 342 + 9.96 and 285 + 8.13 pmol/min/mg protein and R? value was 0.95

and 0.93 respectively.
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Figure 4.4: Inhibition of BUPG formation by chrysin
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Fig 4.4 (a): Inhibition of BUPG formation by chrysin in pooled HIM. Data represent mean +
SD of BUPG formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the BUPG
formation in control was 17.6 + 0.59, and 16.2 + 0.54 pmol/min/mg protein and R? value was 0.96
and 0.96, respectively.
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Fig 4.4 (b): Inhibition of BUPG formation by chrysin in pooled HLM. Data represent mean +
SD of BUPG formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the BUPG
formation in control was 279 + 4.31, and 263 + 7.14 pmol/min/mg protein and R*value was 0.99
and 0.97, respectively.
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Figure 4.5: Inhibition of NBUP formation by ginger extract
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Fig 4.5 (a): Inhibition of NBUP formation by ginger extract in pooled HIM. Data represent
mean + SD of NBUP formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3,
the NBUP formation in control was 149 + 5.20, 106 £+ 3.17 and 140 + 3.15 pmol/min/mg protein
and R’ value was 0.97, 0.98 and 0.96, respectively.
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Fig 4.5 (b): Inhibition of NBUP formation by ginger extract in pooled HLM. Data represent
mean + SD of NBUP formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
NBUP formation in control was 488 = 5.84, 405 £ 11.8 and 416 = 9.16 pmol/min/mg protein and
R’ value was 1.00, 0.97 and 0.98 respectively.
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Figure 4.6: Inhibition of BUPG formation by ginger extract
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Fig 4.6 (a): Inhibition of BUPG formation by ginger extract in pooled HIM. Data represent
mean + SD of BUPG formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
BUPG formation in control was 8.36 = 0.18, and 10.2 + 0.25 pmol/min/mg protein and R*value
was 0.97 and 0.98, respectively.
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Fig 4.6 (b): Inhibition of BUPG formation by ginger extract in pooled HLM. Data represent
mean + SD of BUPG formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
BUPG formation in control was 236 + 3.62, and 251 + 3.82 pmol/min/mg protein and R*value
was 0.99 and 0.99, respectively.
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Figure 4.7: Inhibition of NBUP formation by pterostilbene
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Fig 4.7 (a): Inhibition of NBUP formation by pterostilbene in pooled HIM. Data represent
mean + SD of NBUP formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3,
the NBUP formation in control was 93.5 + 2.60, 156 = 2.61 and 124 £+ 1.79 pmol/min/mg protein
and R’ value was 0.98, 0.99 and 0.99, respectively.
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Fig 4.7 (b): Inhibition of NBUP formation by pterostilbene in pooled HLM. Data represent
mean + SD of NBUP formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3,
the NBUP formation in control was 389 + 12.4, 420 + 8.04 and 382 + 9.50 pmol/min/mg protein
and R’ value was 0.97, 0.99 and 0.97, respectively.
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Figure 4.8: Inhibition of BUPG formation by pterostilbene
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Fig 4.8 (a): Inhibition of BUPG formation by pterostilbene in pooled HIM. Data represent
mean + SD of BUPG formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
BUPG formation in control was 9.80 = 0.21, and 10.7 + 0.20 pmol/min/mg protein and R*value
was 0.96 and 0.97, respectively.
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Fig 4.8 (b): Inhibition of BUPG formation by pterostilbene in pooled HLM. Data represent
mean + SD of BUPG formation rate expressed as % of control. All the determinations were
performed in duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the
BUPG formation in control was 202 + 3.54, and 240 + 3.43 pmol/min/mg protein and R*value
was 0.98 and 0.99, respectively
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Figure 4.9: Inhibition of NBUP formation by silybin
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Fig 4.9 (a): Inhibition of NBUP formation by silybin in pooled HIM. Data represent mean +
SD of NBUP formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3, the NBUP
formation in control was 142 + 3.76, 151 + 2.44 and 199 + 4.46 pmol/min/mg protein and R
value was 0.99, 0.99 and 0.97, respectively.
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Fig 4.9 (b): Inhibition of NBUP formation by silybin in pooled HLM. Data represent mean +
SD of NBUP formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1, 2 and 3, the NBUP
formation in control was 390 + 10.7, 291 + 14.0 and 295 + 10.4 pmol/min/mg protein and R
value was 0.99, 0.97 and 0.96, respectively.
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Figure 4.10: Inhibition of BUPG formation by silybin
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Fig 4.10 (a): Inhibition of BUPG formation by silybin in pooled HIM. Data represent mean +
SD of BUPG formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the BUPG
formation in control was 14.3 + 0.68, and 9.83 + 0.56 pmol/min/mg protein and R? value was 0.96
and 0.98, respectively.
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Fig 4.10 (b): Inhibition of BUPG formation by silybin in pooled HLM. Data represent mean +
SD of BUPG formation rate expressed as % of control. All the determinations were performed in
duplicate. Each curve represents a separate experiment. In experiments 1 and 2, the BUPG
formation in control was 211 + 4.95 and 224 + 6.80 pmol/min/mg protein and R? value was 0.97
and 0.94, respectively.
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Table 4.2: Inhibition of NBUP formation in pooled HIM

Inhibitor Inhibition of NBUP formation in pooled HIM
IC50 . Bottom
(LM) Hill slope (% of control)
o-mangostin 33.8 +6.4 2.51+£0.1 0
Chrysin 14.1+29 1.84+0.3 29.8+2.1
Ginger extract 269+ 6.0 0.91+0.1 0
Pterostilbene 1.30+0.9 1.71+0.5 28.0+6.4
Silybin 36.2+99 0.66 +0.1 0

Data represents mean + SD of ICsy, Hill slope and bottom values observed from three separate
inhibition experiments. All the determinations were performed in duplicate.

Table 4.3: Inhibition of NBUP formation in pooled HLM

Inhibitor Inhibition of NBUP formation in pooled HLM
IC50 . Bottom
(uM) Hill slope (% of control)
o-mangostin 127+ 1.3 2.37+0.2 0
Chrysin 389+5.8 0.93 +£0.002 0
Ginger extract 23.1+£5.0 0.81+0.1 0
Pterostilbene 0.79+0.1 1 294+33
Silybin 129+2.4 0.56 0.1 0

Data represents mean = SD of ICsy, Hill slope and bottom values observed from three separate
inhibition experiments (except two experiments for chrysin). All the determinations were
performed in duplicate.

Table 4.4: Inhibition of BUPG formation in pooled HIM

Inhibitor Inhibition of BUPG formation in pooled HIM
IC50 . Bottom
(LM) Hill slope (% of control)
o-mangostin 5.57+1.0 0.74 £ 0.04 0
Chrysin 19.2+0.1 1.18 £ 0.003 0
Ginger extract 21.6+4.0 1 0
Pterostilbene 47.5+3.6 1.91+0.3 0
Silybin 249+5.1 0.45+0.03 0

Data represents mean + SD of ICs, Hill slope and bottom values observed from two separate
inhibition experiments. All the determinations were performed in duplicate.
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Table 4.5: Inhibition of BUPG formation in pooled HLM

Inhibitor Inhibition of BUPG formation in pooled HLM
IC50 . Bottom
(LM) Hill slope (% of control)
o-mangostin 2.00+ 0.1 0.79 + 0.1 0
Chrysin 22.2 +0.1 1.06 = 0.1 0
Ginger extract 9.04+£0.2 0.89 +£0.01 0
Pterostilbene 28.9+0.5 1.17+0.04 0
Silybin 1.21+0.3 1 442 +22

Data represents mean = SD of ICsy, Hill slope and bottom values observed from three separate
inhibition experiments. All the determinations were performed in duplicate.

4.3.2 Inhibition by the equipotent combination of Pterostilbene and Ginger extract

The ratio of ICsos of pterostilbene and ginger extract for inhibition of NBUP
formation appeared to be between 1:15 and 1:25. However, practically these ratios could
not be achieved due to solubility issues. The highest achievable ratio of pterostilbene:
ginger extract was 1:11, which is biased towards pterostilbene in its composition. For
inhibition of BUPG formation, the mean ratio of ICsgs of pterostilbene and ginger extract
was 2:1. Reproducible ICsy and Hill slope values were achieved for the combination
treatment for inhibition of CYP and UGT metabolism of BUP in pooled HIM with R*
values > 0.98 (Table 4.5 and Fig 4.11). For both the pathways, the combination curve
appeared to be similar to the curve of the individual inhibitor treatments, indicating
additive interactions in the combination (Fig. 4.12).

Table 4.6: Inhibition by combination of pterostilbene and ginger extract

Pathway Effect of pterostilbene and ginger extract combination
IR50 . Bottom
(uM) Hill slope (% of control)
Oxidation 1.72+0.3 0.65+0.1 0
Glucuronidation 1.46 £ 0.1 1.05£0.01 0

Data represents mean + SD of IRsy, Hill slope and bottom values observed from separate
inhibition experiments. All the determinations were performed in duplicate.
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Figure 4.11: Inhibition of NBUP formation by pterostilbene and ginger extract
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Fig 4.11 (a): Inhibition of NBUP formation by pterostilbene and ginger extract (1:11)
combination in pooled HIM. Data represent mean + SD of NBUP formation rate expressed as %
of control. All the determinations were performed in duplicate. Each curve represents a separate
experiment. In experiments 1, 2 and 3, the NBUP formation in control was 136 +2.17, 129 + 5.00
and 126 + 4.27 pmol/min/mg protein and R value was 0.99, 0.98 and 0.98, respectively.
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Fig 4.11 (b): Inhibition of BUPG formation by pterostilbene and ginger extract combination
(2:1) in pooled HIM. Data represent mean £ SD of BUPG formation rate expressed as % of
control. All the determinations were performed in duplicate. Each curve represents a separate
experiment. In experiments 1 and 2, the NBUP formation in control was 9.33 + 0.19 and 8.89 +
0.11 pmol/min/mg protein and R” value was 0.98 and 0.99, respectively.
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Figure 4.12: Curve shift analysis for effect on NBUP and BUPG formation in HIM
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Fig 4.12 (a): Curve shift analysis for effect on NBUP formation in HIM. The curves represent
average of three different curves for each inhibitor treatment. Data represent mean + SD of NBUP
formation rate expressed as % of control. Pterostilbene and ginger extract are combined in 1:11
ratio. No significant shift in the combination curve indicates additive interaction.
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Fig 4.12 (b): Curve shift analysis for effect on BUPG formation in HIM. The curves represent
average of two different curves for each inhibitor treatment. Data represent mean = SD of NBUP
formation rate expressed as % of control. Pterostilbene and ginger extract are combined in 2:1
ratio. No significant shift in the combination curve indicates additive interaction.
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4.4 Discussion

CYPs and UGTs represent major drug metabolizing enzyme families responsible
for clearance of majority of the current top 200 drugs [64, 120-125]. BUP is an example
of such a compound that is oxidized (CYP 3A4 2C8, 2C9) to form norbuprenorphine and
glucuronidated (UGT 1A1, 1A3 and 2B7) to form buprenorphine glucuronide [3, 12, 14,
67, 126]. Theoretically, inhibition of the presystemic metabolism of buprenorphine can
be expected to significantly improve its systemic availability following oral
administration. This is evident from several clinical studies where systemic exposures of
sublingual BUP increased drastically when co-administered with CYP3A inhibitors like
ritonavir, atazanavir, delaviridine, ketoconazole, voriconazole etc. [142-146] These
studies support our hypothesis of improving oral bioavailability of BUP by co-
administering GRAS or dietary compounds to inhibit the oxidative and conjugative
metabolism of BUP.

Several herbal compounds have been reported in the literature to produce
bioenhancement by employing various mechanisms to improve GI solubility,
permeability and reduce the first pass clearance of poorly bioavailable drugs [21-26, 127,
128]. From the list of 28 putative inhibitors evaluated in Chapter 3, a-mangostin, chrysin,
ginger extract, pterostilbene and silybin were shortlisted for further studies because of
their favorable physiochemical properties, BCS class, potency of inhibition, oral PK in
humans and/or animals and the maximum daily dose in humans [30]. Pterostilbene
appeared to be most potent inhibitor of oxidative metabolism of BUP with ICs, values of
<l uM in HIM and HLM whereas a-mangostin and silybin were most potent in
inhibiting glucuronidation of BUP in the intestinal and liver microsomes, respectively.
Pterostilbene showed incomplete inhibition of oxidation in HIM and HLM. Among the
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CYP isoforms responsible for oxidation of BUP, CYP3A4 accounts for 70-80% with
minor contributions from CYP 2C8 and 2C9 [11, 12]. It is possible that pterostilbene can
only inhibit CYP3A4 mediated NBUP formation with minimal to no effect on other CYP
isoforms. This might explain the ~70% inhibition (bottom = 28.0 + 6.4% in HIM and
29.4 + 3.3% in HLM) of oxidation shown by pterostilbene in both HIM and HLM.
However, above reasoning does not explain the incomplete inhibition of NBUP formation
shown by chrysin in HIM (bottom = 29.4 + 6.4%) but not in the HLM. Further studies on
the effect of chrysin on other CYP isoforms in the liver microsomes, metabolism of
chrysin and the effect of the metabolite(s) on the inhibitory action of chrysin etc. need to
be performed. The ICsy and Hill slope values for inhibition of NBUP formation in HIM
and HLM were in good agreement for pterostilbene and ginger extract and in fair
agreement with < 3 fold difference for a-mangostin, chrysin and silybin.

Most of the inhibitors showed complete inhibition of glucuronidation of BUP
except silybin in HLM. Silybin exhibited about 56% inhibition of BUPG formation in
pooled HLM but it was able to achieve complete inhibition of glucuronidation in pooled
HIM. As explained earlier, one of the probable reasons includes differential effect of
silybin on UGT enzymes involved in conjugating BUP. The major isoforms responsible
for glucuronidation of BUP in liver include UGT 1A1, 1A3 and 2B7. Using the relative
activity factor approach, Rouguieg et al. reported that UGT1A3 accounts for about 50%
of the glucuronidation of BUP in HLM followed by UGT2B7 (~40%) and minor
contribution of UGT1A1 (~10%) [14]. However, despite being the major isoform, the
contribution of UGT1A3 was determined indirectly without using a selective UGT1A3

substrate. Chang and Moody performed a similar study using insect cell cDNA-expressed
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human UGT supersomes to identify the UGT isoforms involved in glucuronidation of
BUP [13]. The results of this study are in agreement with the Rouguieg et al. study for
the most part except Chang and Moody observed that UGT2B17 can also cause
glucuronidation of BUP [13]. However, the relative expression of UGT2B17 in liver is
reported to be about 5% of UGT2B7 suggesting minor contribution towards conjugation
of BUP [147, 148]. There is minimal to no expression of UGT1A3 in the intestine [15,
148, 149]. Thus, it is logical to expect higher contribution from UGT 1Al, 2B7 and
possibly UGT2B17 in the intestinal conjugation of BUP. Thus, if silybin inhibits only
UGT 1A1 and 2B7 [150] with minimal to no effect on UGT1A3, this could possibly
explain complete inhibition of BUPG formation in HIM but not in HLM . This
differential effect on UGT isoforms might also explain the 21 fold difference in the ICs
of silybin in intestinal and liver microsomes. The ICsoand Hill slope values of rest of the
inhibitors for inhibition of BUPG formation in pooled HIM and HLM were in fair
agreement.

The equipotent combination of pterostilbene and ginger extract was tested to
investigate possible synergistic interactions in the combination. The combination
(pterostilbene: ginger extract = 1:11) tested for inhibition of oxidation of BUP was biased
towards pterostilbene in its composition. Although pterostilbene alone showed
incomplete inhibition of NBUP formation in pooled HIM, the combination produced
complete inhibition (Fig 4.11 (a) and table 4.5) of oxidation. No significant shift was
observed for the combination curve with respect to the individual inhibitor curves
indicating additive interactions in the combination (Fig 4.12a). Similarly, the equipotent

combination of pterostilbene and ginger extract (2:1) showed additive interactions
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towards inhibition of BUPG formation in pooled HIM (Fig 4.12b). Since the combination
failed to show any synergistic interactions in HIM, further combination studies in HLM
were not performed.

Amongst the five inhibitor treatments, pterostilbene appears to be the most
promising candidate. It can be safely dosed up to 1800 mg/day in humans (Dose taken
from FDA-approved use as GRAS substance or food additive). Pterostilbene has been
reported to show dose dependent bioavailability in rodents ranging from 12% to 80%,
which is significantly higher than its structural analogue resveratrol [133-135]. It is
highly permeable and is reported to show an aqueous solubility of 80 uM [138, 139]. The
biorelevant solubility of pterostilbene is expected to be higher than its aqueous solubility
due to the presence of surfactants such as lecithin and sodium taurocholate in the
biorelevant medium. Thus, pterostilbene has fair potential to achieve sufficiently higher
local (gut lumen) and systemic concentrations to produce a clinically relevant
enhancement in the systemic exposures of orally administered BUP. However,
pterostilbene does not exhibit a significant inhibitory effect on the glucuronidation
pathway and shows incomplete inhibition of the CYP metabolism of BUP. Hence, to
achieve maximal inhibition of both the metabolic pathways, a combination strategy can
also be considered. Future studies will focus on extrapolating the effect of these inhibitor
treatments on the predicted oral bioavailability and the variability associated with oral

bioavailability and AUC,, of BUP.
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Chapter 5 — Determination of biorelevant solubilites of a-

mangostin, chrysin, pterostilbene and silybin
5.1 Introduction

Aqueous solubility is an important molecular property influencing the oral
absorption of drugs from GIT [35, 36]. Compounds suffering from poor aqueous
solubility often exhibit incomplete GI absorption, variable systemic concentrations,
significant food effects, formulation challenges etc. [35, 37]. Potent inhibitors with high
GI solubility can provide high concentration that drives the inhibition of various drug
metabolizing enzymes and transporters. Significant efforts have been made to develop
computational models to predict solubilites of novel entities [37, 38]. However, so far
these methods are not yet robust enough to accurately predict solubilites. One probable
reason for this could be the shortage of large sets of empirical solubility measurements
for a wide range of compounds under identical test conditions [37, 38]. Recent published
studies have underlined the importance of performing solubility measurements in
biorelevant media like fasted or fed state simulated intestinal fluid (FaSSIF or FeSSIF),
fasted or fed state simulated gastric fluid (FaSSGF or FeSSGF) etc. [35, 37, 38].
Solubility measurements made using biorelevant media in lieu of aqueous buffers seem to
improve the predictions of physiologically based PK models [35, 37, 38]. This chapter
aims at determining the equilibrium solubilities of four inhibitor candidates, namely o-
mangostin, chrysin, pterostilbene and silybin using FaSSIF (Fig 5.1, structures drawn
using ChemDraw v15.1). Silybin used in these studies comprises a mixture of the
diastereoisomers silybin A and B (1:1). In addition, the solubilities of these compounds in

FaSSIF will be predicted using ADMET predictor v8.1.
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Figure 5.1: Structures of test compounds

HO o} OH

a-mangostin

OH 0]

chrysin

O
/O

pterostilbene

OH

silybin-A

93



OH

., (@]
o ///// Oi \
OH

silybin-B

5.2 Materials and Methods
5.2.1 Chemicals and Reagents

a-Mangostin obtained from Indofine Chemical Company (Hillsborough, NJ),
silybin from Cayman Chemical Co. (Ann Arbor, MI), chrysin from Hawkins
Pharmaceutical Group (Minneapolis, MN) and pterostilbene from AK Scientific, (Union
City, CA). Sodium chloride (NaCl) and sodium hydroxide (NaOH) were purchased from
Fischer Scientific (Fairlawn, NJ), sodium phosphate monobasic monohydrate (NaH,PO4
* H,0) from J.T. Baker (Center Valley, PA) and FaSSIF powder from biorelevant.com.
5.2.2 Preparation of FaSSIF medium

The FaSSIF medium was prepared freshly on the day of the experiment according

to the manufacturer’s protocol (www.biorelevant.com). A blank buffer (250 ml)

comprising of 0.1 g of NaOH pellets, 0.99 g of NaH,PO4 * H,O and 1.55 g of NaCl was
prepared and the pH was adjusted to 6.5 using IN NaOH. This was followed by addition
of 0.56g of the FaSSIF powder to the blank buffer (250 ml). The medium was then
equilibrated for 2 hours at room temperature before using it for the experiment. The final

medium contained 3 mM sodium taurocholate and 0.75 mM lecithin.
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5.2.3 Determination of equilibrium solubility

Compounds (10.25 mg, 6.35 mg, 2.5 mg or 13 mg of a-mangostin, chrysin,
pterostilbene or silybin) were added to 25 ml of FaSSIF medium in 50 ml tubes to attain a
maximum potential solubility of ImM. The tubes were then rotated end over end in an air
incubator maintained at 37°C. The incubation was carried out for 24 hours in order to
achieve a presumptive thermodynamic equilibrium. At the end of this incubation period,
the tubes were centrifuged at 6000g for 10 min at 4°C. Subsequently, the supernatant was
passed through a 0.2 micron syringe filter and the resulting solution was then subjected to
HPLC-UYV analysis (see sample analysis section).
5.2.4 Predicting FaSSIF solubility using ADMET predictor

ADMET predictor v8.1 by Simulation Plus (Lancaster, CA) was used to predict
the solubility of the four test compounds. In addition, other physicochemical properties of
the four herbal compounds (pKa, log P, aqueous solubility and number of freely rotatable
bonds) were also predicted using ADMET predictor v8.1.
5.2.4 Sample analysis

The HPLC method comprised a mobile phase flow (1 ml/min) of 1% acetonitrile
(solvent A) and 99% of 90% aqueous 25 mM ammonium acetate (pH 6.6, adjusted with 5
ul glacial acetic acid) in 10% acetonitrile (solvent B) from 1 min (0 to 1 min) followed by
a solvent A gradient from 1% to 50% over 1.5 min (1 to 2.5 min) with a subsequent
ramping of solvent A from 50 to 90% over 0.5 min (2.5 to 3 min) and followed by
maintaining 90% solvent A for 3 min (3 to 6 min). The column (Alltima HP C18, 4.6 x
100 mm, 3 pm; Grace- Davison Discovery Sciences, Columbia, MD) was re-equilibrated

to 1% solvent A for 1.5 min (6 to 7.5 min). The column and sample temperatures were 30
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°C and 5 °C, respectively. The initial effluent (3 min) was diverted to the waste. UV
detection (Waters 2487) at 220 nm was used. Silybin, chrysin, pterostilbene and o-
mangostin eluted at 4.4 min, 4.97 min, 5.1 min and 6.1 min, respectively. Linear standard
curves with R* > 0.99 were obtained from 0.75-48 pg/ml for silybin, 0.40-25 pg/ml for
chrysin, 0.40-26 pg/ml for pterostilbene and 0.64—41 pg/ml for a-mangostin. This
analytical method did not distinguish between the diastereoisomers of silybin and thus

total silybin (silybin-A + silybin-B) was detected.

5.3 Results

5.3.1 Determination of equilibrium solubility in FaSSIF medium

The measured and predicted equilibrium solubilites of the four test compounds
are as shown in Table 5.1. Pterostilbene showed the highest equilibrium solubility of 83
pg/ml followed by o-mangostin with solubility of 66 pg/ml. Chrysin and silybin
exhibited significantly lower biorelevant solubilites of 2.0 pg/ml and 0.62 pg/ml,
respectively. The predicted and measured FaSSIF solubilites were fairly agreeable for a-

mangostin and pterostilbene but differed significantly for chrysin and silybin.

Table 5.1: Observed vs. predicted solubility in FaSSIF medium

Predicted FaSSIF Observed FaSSIF
Compound
solubility (ng/ml) solubility (ng/ml)*
o-mangostin 50 66.1 £0.10
chrysin 103 2.02 +0.01
pterostilbene 55 83.2+0.07
silybin (total) 160 0.66 £0.01

*Data represents mean + SD.
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5.4 Discussion and conclusions

It is well known that poor solubility is a limiting factor for absorption of drug and
can result in significantly lower systemic concentrations and subsequent loss of
therapeutic effect [35]. Biorelevant medium such as FaSSIF are extremely useful as they
mimic the characteristics of human intestinal fluids and aid in predicting the solubility of
new chemical entities [37, 38]. Incorporation of biorelevant solubilites in computational
models has been reported to improve their predictive power [37, 38].

In the present study, solubility of four herbal compounds in FaSSIF medium was
determined and compared to the solubilites predicted using ADMET predictor. As
indicated in Table 5.1, pterostilbene exhibited highest observed solubility of 83 pg/ml
followed by a-mangostin (66 pg/ml), chrysin (2 pg/ml) and silybin (0.66 pg/ml). The
observed and predicted solubilites of pterostilbene and o-mangostin were in fair
agreement with less than 2 fold difference. However, a 52 fold and 242 fold difference
was observed in the predicted and measured solubilites of chrysin and silybin,

respectively.
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Several physiochemical properties listed in Table 5.2 below influence the

solubility of a molecule in the FaSSIF medium.

Table 5.2: Predicted physicochemical properties of the test compounds

L # free Aqueous | FaSSIF
Mol. A L
Compound | - Cflc o | PSA* | rotatable | Solubility | solubility
' P bonds (ug/ml) | (ug/ml)
pka;=9.95
a-mangostin | 410.5 | pka,=8.87 | 4.50 | 96.2 5 10 50
pkas;=7.91
) pka;=12.4
h 254.2 : .
chrysin 5 pkar=7.48 3.5 | 66.8 1 39 103
pterostilbene | 256.3 9.67 4.15 | 38.7 4 27 55
pka;=9.83
silybin 482.4 | pka,=9.13 | 1.79 | 155 4 189 160
pkas;=7.84

*PSA — polar surface area was determined using ChemSpider. All the other properties were generated
using ADMET predictor

There appears to be a disagreement in the literature about the impact of these
physicochemical properties on solubility in biorelevant media such as FaSSIF.
Depending on the size of the datasets and the physiochemical nature of compounds being
tested, Mithani et al. and Fagerberg et al. have reported increase in solubilization with
increased lipophilicity (log P) [38, 39]. Ottaviani et al. indicates surface activity
properties especially critical micelle concentrations to be significant predictor of
solubility in FaSSIF [151]. The FaSSIF solubility predictions of the ADMET predictor
v8.1 are based on a dataset of diverse 160 drug-like compounds in FaSSIF-V2. One of
the possible reasons for the discrepancy in measured and predicted solubilites of chrysin
and silybin could be the difference in composition of the biorelevant medium. FaSSIF—v2
possess lower lecithin content (0.2 mM) than FaSSIF (0.75 mM). The difference in bile
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salt: lecithin ratio between the two preparations can result in variations in micelle
formation affecting drug solubility. For instance, a study by Yu et al. reports
enhancement in solubility of silybin to 10 mg/ml by using sodium cholate and
phospholipid [152]. The ratio of silybin: sodium cholate: phospholipid in the final
formulation was 0.22: 0.33: 0.44, respectively [152]. Solubility of 10 mg/ml is
significantly higher than our measured FaSSIF solubility (6.4 x 10™* mg/ml) as well as the
predicted solubility (0.160 mg/ml). This further suggests that differences in surfactant
ratios can result in significant differences in the observed solubility of compounds.
Another possible reason for the disagreement between observed and predicted FaSSIF
solubilites could be related to the physicochemical nature and structural aspects of the
160 drug-like compounds included in the ADMET predictor v8.1 dataset. Since the
properties of compounds included in this dataset are not known, it is impossible to verify
if the dataset included compounds that structurally resemble chrysin and silybin. Also,
the dataset of 160 compounds is not sufficiently large enough which can diminish the
predictive power of the software.

The purpose of determining biorelevant solubilites for the four candidates was to
improve the confidence in the inhibitor concentration values in gut lumen to be used in
the final inhibition model. However, the impact of these solubility values on the overall
inhibition shown by these compounds also depends on the potency of inhibition (ICso or
Kj) of the inhibitor candidates. To be thorough in our analysis, both the measured and
predicted biorelevant solubilites of chrysin and silybin will be tested in the inhibition

model in Chapter 6.
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Chapter 6: Predicting The Effect Of Inhibitor Treatments on
the Oral Bioavailability, Systemic Exposure and Total
Clearance of Buprenorphine Using In Vitro In Vivo

Extrapolation
6.1 Introduction

In vitro systems like human liver and intestinal microsomes, cryopreserved
human hepatocytes, immortalized human hepatocarcinoma cell lines, human embryonic
stem cells etc. have been successfully used in evaluating the metabolic stability of several
compounds [45-52, 153]. One of the key objectives during drug discovery and
development studies is to accurately predict the in vivo clearance of compounds using
relatively simple in vitro assays [45-52, 153]. The intrinsic clearances determined using
in vitro models could be extrapolated to predict the intestinal (Fy;) and hepatic (Fy)
availabilities and consequently the oral bioavailability (For) of compounds. Numerous
methods to predict in vivo clearance from in vitro data have been proposed and described,
and have met with varying degree of success [49, 57, 59, 62, 65, 154, 155].

As discussed in chapter 3, the well-stirred model was used to predict the Fg, Fy,
and ultimately F, of buprenorphine (BUP) [30]. Of the 27 test compounds, the potency
and equilibrium solubilities of five shortlisted inhibitor candidates (a-mangostin, chrysin,
ginger extract, pterostilbene and silybin) were determined, as discussed in Chapters 4 and
5 respectively. The next logical step was to extrapolate the intrinsic clearance of BUP in
the presence of these inhibitor treatments to predict the resultant Fo, of BUP. A highly
extracted drug like BUP is likely to show poor and variable systemic availability and
exposure. Hence, it was also of interest to predict the effect of these inhibitor treatments
on the variability associated with F, systemic exposure (AUC,) and total clearance

(CLota1) of BUP. BUP is metabolized by CYP (mainly CYP3A4) and UGT enzymes
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(mainly UGT 1A1, 1A3 and 2B7) [11-14]. Both CYP and UGT enzyme families are
reported to be associated with high interindividual variability [49, 61, 156, 157]. Studies
conducted by Cubitt et al. and Kato et al. have reported 33 — 41% interindividual
variability in the hepatic metabolism of CYP3A substrates [46, 60]. The variability in the
intestinal CYP3A metabolism appears to be relatively understudied [46, 60]. A small
study conducted on six human intestinal tissue samples by Paine et al. [61] and another in
silico study conducted by Kato et al. [60] revealed 60 — 81% interindividual variability in
intestinal CYP3A metabolism, which is significantly higher than the 40% variability
generally observed in clinical DDI parameters [158]. Oxidative metabolism by CYPs
(CYP3A4) appears to be the major metabolic pathway of BUP in intestine and liver [11,
12, 30]. The UGT pathway appears to be a minor pathway for BUP metabolism and is
considerably understudied with respect to the interindividual variability in the intestinal
and hepatic UGT metabolism [30, 67]. Hence, % variability values reported for intestinal
and hepatic CYP3A metabolism were used in our studies.

This chapter focuses on predicting the effect of inhibitor treatments on the a)
mean Fon, AUC, and CLi of BUP using well-stirred models b) variability in the
predicted mean Fg, AUC, and CLi of BUP by generating simulated population
datasets through Monte Carlo simulations using @RISK software (an add-on linked to
Microsoft Excel). In addition, a sensitivity analysis study was performed to identify the
parameters significantly influencing the predicted Fori, AUC, and CLiota values of BUP

with and without inhibitors.
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6.2 Materials and methods
6.2.1 Model description:

The intestinal availability (F,), hepatic availability (Fn) and Fo. of BUP were
extrapolated using the well-stirred model as explained in chapter 3 [30]. Five inhibitor
candidates, namely a-mangostin, chrysin, ginger extract, pterostilbene and silybin, were
subjected to in vitro in vivo extrapolation (IVIVE) to study their effect on predicted Foa
of BUP. The following assumptions were made:

a) Linear PK (BUP concentrations < Ky,).
The oral doses of 0.63 pg/kg, 15 ng/kg and 20 pg/kg of BUP reported in the literature,

result in gut concentrations almost equal to or less than the K values (determined from

our in vitro metabolic studies) supporting the assumption of linear PK conditions [8, 10].
b) The inhibitor exhibits reversible competitive or non-competitive inhibition; thus
K; value can be calculated from the ICsy value using Cheng-Prussof equation
[159].
Several publications have reported that phenolic or polyphenolic compounds (including
some of the shortlisted inhibitors or their close structural analogues) show competitive (or
in minor cases — mixed or non-competitive) type of inhibition of CYP and UGT enzymes
lending some support to the above assumption [24, 160-167]. For instance, the inhibition
of various CYP isoforms by components on mangosteen extract was studied in liver
miscrosomes and recombinant CYP enzymes. o-Mangostin exhibited competitive

inhibition of CYP3A enzyme.
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c) Equilibrium biorelevant solubility of the inhibitor (determined based on the
experiments in Chapter 5) represents its predicted in vivo concentrations in the gut
lumen,

d) Portal vein concentrations will be predicted using the most conservative (lowest)
estimate of Fo, of the inhibitors (in humans and/or animals) available in the
literature and

e) CLi: of BUP is equal to the total hepatic clearance (CLiep) of BUP (negligible
contribution of non-hepatic pathways)
After oral administration of BUP in healthy human volunteers, about 10 — 15% of the
dose was eliminated in urine, mostly as glucuronide conjugates with negligible/no
presence of unchanged BUP [10, 17]. This indicates that biliary excretion appears to be
the major route of elimination for BUP, thus supporting our assumption.
6.2.2 Steps involved in the extrapolation in presence of inhibitors
Following is the description of the steps involved in the IVIVE study of BUP in
presence of inhibitor treatments:
1) Assuming reversible competitive/non-competitive inhibition, the ICso of each inhibitor
treatment for the CYP and UGT pathway was converted to K; using the Cheng-Prussof

equation [159] stated below:

K = —os0 (1)
T =

i1) Intrinsic clearance of BUP in presence of inhibitor was determined as follows [64]:

Cl;
1 _ int,BUP
Clly, = Seaue 2)

Kj
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where C l{nt= intrinsic clearance of BUP in presence of inhibitor treatment, Cliy, gup =
unbound intrinsic clearance of BUP and I = inhibitor concentration.

iii) The F, and Fy values of BUP in presence of inhibitor (i.e. Fé and F}, respectively)
were predicted by extrapolating the Cli, values using well-stirred model equations (Eq. 3

and 4) given below [65, 68]:

Fl = Quilli (3)

9 7 Quini + fug X invitro €L, iy X SF1 X SF,

where Qi 1s villous blood flow = 4.1 ml/min/kg, fug is fraction of BUP unbound in the
enterocytes (assumed to be 1) and in vitro Cl%nt'GW is the Cl},, in pooled HIM scaled to
physiological levels using scaling factors SF; (20.5 mg microsomal protein/g intestinal

mucosa) and SF, (11.16 g intestinal mucosa/kg) [65].

Fi = oy @

- . . 1
Qhep + fup X in vitro Clint,hep X SF1 X SF,

where Qe 1s hepatic blood flow = 20.7 mL/min/kg, fu, indicates fraction of unbound

drug (BUP) in plasma = 0.03 [30] and in vitro Cl! is the CI!,, in pooled HLM

int,hep
scaled using scaling factors - SF; (20.5 mg microsomal protein/g hepatic mucosa) and
SF, (11.16 g hepatic mucosa/kg) [68].
iii) The Fom of BUP in presence of the inhibitor (F.,.,) was determined using the
following equation [70]:

Fjrq1 = Fy X F} X Fj x 100 (3)
where F, is the fraction absorbed, assumed to be 1 since BUP is a highly soluble (relative
to dose) and highly permeable drug.

The total hepatic clearance in absence (CLyp,p) or presence (CL’hep) of inhibitor

treatments and was calculated as follows [70]:
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CLpep 07 CLygp = Qnep X (1 — Fy o1 Fy) (6)

The AUC, values of BUP with or without inhibitor treatments was predicted
using Eq. 7 [70]:

Foral X Dose Flmlx Dose

PO,I
r AUCPO! = LoraX
CLtot cLly,

AUCL? = (7

where AUCE? or AUCE?" and CL,,; or CLL,, indicates the predicted AUC., and CLy of
BUP in absence or presence of inhibitor treatments, respectively and dose represents the
oral dose of BUP assumed to be 10 mg (falls in the dosing range of sublingual BUP, 4-24
mg). As per the Suboxone monograph, BUP HCI exhibits an aqueous solubility of 17
mg/ml [168]. Thus, it would be logical to expect that an oral dose of 10 mg of BUP

would be show near complete solubility.

6.2.3 Predicting inhibitor concentrations in gut lumen and portal vein

As discussed in Chapter 5, the equilibrium solubilities of a-mangostin, chrysin,
pterostilbene and silybin were experimentally determined in a fasted simulated intestinal
fluid (FaSSIF) as well as predicted using ADMET predictor (Simulation Plus, Lancaster,
CA). The experimental and predicted solubilities of a-mangostin and pterostilbene
appeared to be in good agreement, but differed significantly for chrysin and silybin. For
thoroughness of analysis, both the experimental and predicted equilibrium solubilities of
chrysin and silybin were tested. Several studies have analyzed the composition of ginger
extract and observed that 6-gingerol (most abundant), 8-gingerol, 10-gingerol and 6-
shogaol appear to be the major components [34, 102, 131]. Although the solubility of
ginger extract was not experimentally determined, the predicted solubilities of the
aforementioned major components of ginger extract were used in our study [131]. The
relative composition of the four components in the ginger extract used for the inhibition

studies was not known. Hence, an average of the predicted solubilities of the four
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components was assumed to represent the solubility of the extract. As stated earlier, these
observed or predicted solubilities were assumed to represent the gut lumen concentrations
ie. I (GW) following oral administration of the inhibitors. A literature search was
performed to determine the most conservative (lowest) estimates of F, of the inhibitors
in humans and/or animals. Pharmacokinetic studies of ginger extract or major
components of ginger extract in humans and animals did not report % F.. Following
oral administration of several doses up to 2.0 g in humans, no free 6-gingerol, 8-gingerol,
10-gingerol or 6-shogaol could be detected in plasma (LLOQ-5 ng/ml) [32-34, 102].
Thus, despite showing good oral absorption, these ginger components suffered from poor
oral bioavailability due to extensive presystemic conjugation by UGT and SULT enzyme
families [32-34, 102]. Pfeiffer et al. have shown that 6-gingerol undergoes significant
glucuronidation in both intestinal and liver microsomes [169]. However, the relative
contribution of the intestine versus liver to the overall presystemic metabolism of the
gingerols has not been reported. Hence, for the purpose our analysis it was assumed that
10% of the oral dose of ginger extract in gut lumen survives intestinal metabolism and
appears in portal vein to undergo further metabolism in liver. The portal vein
concentrations i.e. I (hep) for the rest of the inhibitor treatments were calculated as
follows:

I (hep) = Foroy X I (GW) 8)
where F, is the bioavailable fraction after oral administration and I (GW) represents the
gut lumen concentrations of the inhibitors. The reason behind using this method to
predict I (hep) was to be as conservative as possible in our predictions, since I (hep) was

not experimentally determined (using animal models) in our lab. The FDA guidance on
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drug-drug interactions recommends the use of Eq. 8 to determine hepatic inhibitor
concentrations [170]. However, this equation could not be used for our study because
most of the parameters of like fraction unbound (f,5), maximum steady state plasma
concentrations [I]max, absorption rate constant (k,) and F, were unknown for the all the
test compounds. Also, the %F1 of most of the inhibitors except pterostilbene and ginger
extract was less than 1%, which would lead to extremely low values of I (hep)
irrespective of the equation used to predict them. The predicted I (GW) and I (hep) values

of all the inhibitor treatments are summarized in Table 6.1.

fub X [Umax,p+ Fa X KgX Dose
Qn

I (hep) = ©)

Table 6.1: Predicted inhibitor concentrations in the gut lumen and portal vein

Inhibitor I (GW) (uM) % Foral I (hep) (uM)
a-mangostin 161 0.4° 0.64
chrysin
N 7.97 0.02° 0.002
(exp. sol)*
chrysin .
405 0.02 0.08
(pred. sol)*
ginger extract 176 NA** 17.6
pterostilbene 325 12.5¢ 40.6
silybin
Y 2.57 0.95¢ 0.02
(exp. sol) '
silybin
Y 629 0.95¢ 5.98
(pred. sol)

* exp. sol and pred. sol indicate experimental and predicted solubility, respectively.

** Not available, assumed to be 10%

a- Orozco et al. (2013) [171] and Li et al. (2013) [117], b- Walle et al. (2001) [129], c- Lin et al. (2009)
[135] and d- Wu et al. (2009)[172]
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6.2.4 Predicting the effect on variability in F,ya, CL¢ota and AUC,,

@RISK (Palisade Corporation, Ithaca, NY) was used to perform Monte Carlo
simulations for generation of simulated population. This technique involves sampling
random numbers from a given probability distribution. A single simulation comprising of
10,000 iterations was used to generate a simulated population dataset. All the input
variables were assumed to exhibit normal distribution with a minimum possible value of
zero. For BUP alone, the model had four input variables i.e. CLint, (GW,CYP), CLint,
(GW,UGT), CLint, (hep,CYP) and CLint, (hep,UGT) and three output parameters i.e
Fora, CLiot and AUC, (Table 6.2). The model comprising BUP with the inhibitor
treatment had two additional input variables i.e. I (GW) and I (hep) leading to a total of
six input variables and same three output parameters stated earlier. An inhibitor can
exhibit distinct potency of inhibition (K;) of the CYP versus UGT pathway, which can
result in different extent of inhibition of the two pathways in the intestine and liver.
Hence, the input variables I (GW) and I (hep) were further categorized as I (GW,CYP), I
(GW,UGT), I (hep,CYP) and I (hep,UGT) to distinguish the contribution of inhibitor
concentrations (with reference to their Kj) to % inhibition for each individual pathway in
the intestine and liver. A larger value for inhibitor concentrations and a smaller K; value
for a particular metabolic pathway will result in higher % inhibition for that pathway.

The following two conditions with different % variability in the intestinal and
hepatic clearances were tested:

a) Scenario #1 - 60% variability in intestinal and 41% variability in hepatic intrinsic

clearances
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b) Scenario #2 - 40% variability in intestinal and 25% variability in hepatic intrinsic
clearances

For the higher variability scenario #1, 41% variability was applied to the hepatic intrinsic
clearances [CLint, (hep,CYP) and CLint, (hep,UGT)], based on previously published
studies [46, 60]. Paine et al. and Kato et al. have reported 60% and 81% interindividual
variability in intestinal clearances [60, 61]. Hence, a variability of 60% (case 1) and 81%
(case 2) in the intestinal intrinsic clearances was tested for this scenario. If no significant
difference is observed in the resultant standard deviation of the predicted mean of the
three output variables, then a variability of 60% in the intestinal intrinsic clearances
would be used for further extrapolation in scenario #1. To assess the effect of variability
in inhibitor concentrations in the gut lumen and portal vein on output parameters, a
variability of 25% and 20% was applied to I (GW) and I (hep), respectively. The results
are reported as mean + SD of the three output variables in presence of different inhibitor
treatments under scenarios #1 and 2.

A sensitivity analysis was performed to identify the input variables that strongly
influence the output variables i.e. For, CLyx and AUC, of BUP. The results of the
sensitivity analysis will be reported using tornado graphs with input variables on Y-axis
and spearman rank correlation coefficient (r) on X-axis. The correlation co-efficient
conveys the magnitude as well as direction of the effect of the input variables on output
parameters. The intrinsic clearances are expected to exhibit negative or inverse
correlation with Fo and AUC, and positive correlation with CLiy, while inhibitor
concentrations are likely to show positive correlation with Fo and AUC, and negative

correlation with CL:.
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Table 6.2: Description of input variables of the model

Input variables Description Units
CLint (GW.CYP) scaled 1ntr1n51f: cleqrance for the CYP pathway in ml/min
intestinal microsomes
CLint (GW,UGT) scaled 1ntr1n51f: cleqrance for the UGT pathway in ml/min
intestinal microsomes
CLint (hep.CYP) scaled intrinsic c}earanc.:e for the CYP pathway in ml/min
liver microsomes
CLint (hep,UGT) scaled intrinsic cl.earanc{e for the UGT pathway in ml/min
liver microsomes
Inhibitor concentration in gut lumen available for
HGW.CYP) inhibition of intestinal CYP metabolism of BUP nM
Inhibitor concentration in gut lumen available for
HGW.UGT) inhibition of intestinal UGT metabolism of BUP nM
Inhibitor concentration in portal vein available for
I (hep, CYP) inhibition of hepatic CYP metabolism of BUP nM
I (hep, UGT) Inhibitor concentration in portal vein available for uM

inhibition of hepatic UGT metabolism of BUP
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6.3 Results
6.3.1 Effect of inhibitor treatments on predicted F;., AUC, and CL of BUP

As stated in the methods section, two scenarios comprising distinct % variability
in the intrinsic clearances were evaluated. Based on the predictions of the IVIVE study
under both scenarios, BUP exhibited a poor and variable oral bioavailability of 3 + 2%
(Tables 6.3 and 6.4). The CLy of BUP was predicted to be ~ 1050 to 1060 ml/min
yielding an extraction ratio of 0.7 (assuming liver blood flow of 1500 ml/min [68]). The
F-test for equality of variances (0=0.025) was used to detect significant differences in the
variance of mean predicted For, AUC, and CLyy between the 60% variability (case 1)
and 80% variability (case 2) group. For all the output variables, the critical F-value (Fora
= 1.2, AUC,= 1.2 and CL;y = 1.1) was greater than 1.0 (F-value from the F-distribution
table for oo degrees of freedom) indicating significant difference between the two groups.
However, the statistical difference did not seem scientifically meaningful hence a
variability of 60% in CLint (GW) was used in all studies in scenario #1.

Regarding the output, first let’s consider means; the effect of inhibitor treatments
on the mean of all output variables appeared to be similar under the conditions of
scenarios #1 and 2. Pterostilbene appeared to be the most potent inhibitor that
significantly improved the mean F.., and AUC, by 22 to 24 fold and 105 fold,
respectively with 4 fold reduction in CL of BUP. The extrapolations made using
experimental versus predicted solubilites of silybin generated significantly distinct
results. IVIVE based on its predicted solubility made silybin the second most potent
inhibitor after pterostilbene, producing an 11 fold and 15 to 16 fold increase in the mean
Fora and AUC, of BUP, respectively and minor reduction (2 fold) in the mean CLiy of
BUP. In contrast, the extrapolations based on its experimental solubility indicate that
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silybin does not have a significant effect on systemic availability, exposure and clearance
of BUP. Similarly, chrysin appeared to drastically improve the predicted mean F,, and
AUC, of BUP, only when the extrapolations were performed using its predicted
solubility. Ginger extract produced 8 to 9 fold and 13 fold increase in the predicted mean
Foral and AUC,, of BUP, respectively and a minor decrease (1.5 fold) in the predicted Cli
of BUP. On the other hand a-mangostin improved the mean F,, and AUC, by 5 fold
with no significant effect on the predicted Cli,; of BUP.

Next, lets consider the effect of inhibitors on variability associated with mean.
The variability around the mean of output variables was higher under scenario #1 than
scenario #2 due to larger % variability in the intrinsic clearances in scenario #l.
Pterostilbene showed highest reduction in the variability around mean F (8 to 9 fold)
while a 2 to 3 fold reduction was achieved by o-mangostin, ginger extract as well as
chrysin and silybin (IVIVE using predicted solubilities). No significant change in
variability in the predicted mean Cli was observed for all the inhibitors except
pterostilbene, which exhibited 22 to 30 fold increase. About 2 fold reduction was
observed in the variability associated with AUC,, after treatment with pterostilbene as
well as chrysin and silybin (IVIVE using predicted solubilities), while rest of the inhibitor
treatments did not strongly affect the variability in AUC,. The results for all the

treatment groups are summarized in Tables 6.3 and 6.4.
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Table 6.3: Effect of inhibitors on F.., AUC, and CL¢ of BUP (scenario #1)

Treatment Foral (%) AUC, (ng*min/ml) CLtot (ml/min)
Mean+SD | % CV | Mean+SD | % CV | Mean+SD | % CV
BUP (case 1)* | 3.39+2.24 66 344 + 327 95 1050 £ 126 12
BUP (case 2)* | 3.32+2.48 75 336 + 302 90 1050 £ 122 12
BUP + a-M 16.5+6.62 40 1780 + 1160 65 1000 + 133 13
BUP + CHR
545+3.25 60 553 +447 81 1050 £ 123 12
(exp. sol)**
BUP + CHR
24.5+6.96 28 2490 + 1390 56 1050 £ 122 12
(pred. sol)**
BUP + GEX | 28.3 £8.60 30 4429 + 3020 68 715+ 141 20
36,130 +
BUP + PT 74.8+5.60 | 7.5 70 247 +75.3 30
25,460
BUP + SIL
3.78 £2.56 68 384 +324 84 1050 £ 122 12
(exp. sol)**
BUP + SIL
36.1 £9.28 26 5450 + 4790 88 769 + 160 21
(pred. sol)**

* case 1 and case 2 represent 60% and 81% variability in the CLint (GW). Above results were
obtained after applying 60% variability in the intestinal clearances and 41% variability in the

hepatic clearances. ** exp. sol and pred. sol indicate experimental and predicted solubility,

respectively.
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Table 6.4: Effect of inhibitors on F.., AUC, and CL¢ of BUP (scenario #2)

Treatment Fora (%) AUC,, (ng*min/ml) CL¢o¢ (ml/min)
Mean+SD | % CV | Mean+SD | % CV | Mean+SD | % CV

BUP
(case 3)*
BUP +a-M | 15.7+4.67 30 1579 £ 579 37 1020 + 75.9 7.4
BUP + CHR

3.14 + 1.46 46 300 + 151 50 1060 + 69.2 6.5

( 1y 5.08 £2.12 42 486 + 225 46 1060 + 69.2 6.5
exp. so

BUP + CHR
(pred. sol)**
BUP + GEX | 27.4+6.54 24 3900 + 1384 35 729 £93.1 13
31,538

BUP + PT 74.4 +£4.55 6.1 32 251 £54.0 22
10,086

23.6 +4.21 18 2262 + 582 26 1060 + 68.9 6.5

BUP + SIL
3.46 £ 1.61 47 332+ 168 51 1060 + 69.5 6.5
(exp. sol)**
BUP + SIL
(pred. sol)**

*case 3 represents 40% variability in the CLint (GW). Above results were obtained after applying

35.0+6.44 18 4622 + 1587 34 787 £99.5 13

40% variability in the intestinal clearances and 25% variability in the hepatic clearances.
** exp. sol and pred. sol indicate experimental and predicted solubility, respectively.

Despite showing significant enhancement of predicted AUC, in scenarios #1 and
2, pterostilbene exhibited a large variability of 70% under scenario #1. Hence, scenario
#1 was subjected to further analysis using five additional doses of pterostilbene (Figs. 6.1
— 6.3). Based on the results of this study, a ten fold lower dose (I (GW) = 32.5 uM and |
(hep) = 4.06 uM) was further studied under the conditions of scenarios #1 and 2. In
addition, the effect of introduction of higher variability (60%) in I (hep) was also
investigated and the results are as summarized in Table 6.4. Reducing the concentration

of pterostilbene to 32.5 uM not only improved F, and AUC, of BUP but also lowered
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the variability in AUC, from 95% to 49% in scenario #1 and from 50% to 28% in

scenario #2. Increasing the variability in I (hep) to 60% resulted in a minor increase in the

variability around AUC,, for both scenarios.

Figure 6.1: Effect of different concentrations of pterostilbene on predicted %F,a
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Figure 6.2: Effect of different concentrations of pterostilbene on predicted CL¢
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Figure 6.3: Effect of different concentrations of pterostilbene on predicted AUC.,
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Table 6.5: Effect of ten fold lower dose of pterostilbene on output variables

Test
Foral (%) AUC, (ng*min/ml) CL¢o¢ (ml/min)
condition
Mean+ SD | % CV Mean + SD % CV Mean + SD % CV

Scenario #1

A 34.5+7.93 23 6584 + 3225 49 570+ 113 20

B 33.9+8.50 25 6486 + 3722 57 588 + 143 24
Scenario #2

C 34.7+5.92 17 6217+ 1718 28 574+ 72.5 13

D 34.0 +£6.62 20 6067 = 2070 34 593 +112 19

Test conditions A and C represent variability of 20% in I (hep) same as before
Test conditions B and D represent 60% variability in I (hep)
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6.3.2 Sensitivity analysis

In scenario #1, the results of the sensitivity analysis of BUP for case 1 with 60%
(Fig 6.4) or case 2 with 81% (Fig 6.5) variability in the intestinal clearances were in
agreement with previous predictions (discussed in chapter 3) that CYP pathway appears
to be the dominant metabolic pathway for BUP. The intestinal CYP intrinsic clearance
(CLint (GW,CYP)) was predicted to be the most sensitive input variable in both cases
with a negative correlation to For (r = -0.85 or -0.88) and AUC, (r = -0.75 or -0.79)
whereas hepatic CYP clearance showed a strong positive relationship with CLiy (r
=0.97). The intestinal clearances exhibit no impact on CLy because the model assumes
that total clearance is similar to the hepatic clearance of BUP. The results of the
sensitivity analysis in scenario #1 were in agreement with the results of scenario #2;

hence tornado plots of only scenario #1 are shown below.
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CLint (GW,CYP) and CLint (hep,CYP) appeared to be the most sensitive input
variables influencing Fo and AUC, of BUP for all the inhibitor treatments except
pterostilbene. The rank order of the input variables (with reference to the magnitude and
direction of their effect on output variables) appeared to be in excellent agreement under
the test conditions of scenarios #1 and #2. Hence, the results of only one scenario i.e.
scenario #1 will be discussed. Among the variables impacting Fo, of BUP, CLint
(GW,CYP) appeared to be the most sensitive input variable showing strong negative
correlation in presence of a-mangostin (r = -0.70), chrysin and silybin (IVIVE using
experimental solubility, r = -0.82 and -0.8, respectively) and ginger extract (r = -0.73)
(Figs. 6.6 — 6.12), while CLint (hep,CYP) exhibited strong negative relationship with Fo,
for chrysin (r =-0.88) and silybin based on extrapolations using predicted solubility (r =
-0.77). AUC, of BUP was strongly and negatively influenced by CLint (GW,CYP) after
treatment with chrysin and silybin (IVIVE using experimental solubility, r = -0.73 and —
0.76, respectively) and by CLint (hep,CYP) in presence of a-mangostin, chrysin and
silybin (IVIVE using predicted solubility, r = -0.92 and -0.89 ,respectively) and ginger
extract (r = -0.76), respectively (Figs. 6.6 — 6.12). As expected CLint (hep,CYP) showed
a strong positive correlation with CL of BUP for all the inhibitor treatments except
pterostilbene. In presence of pterostilbene, CLint (hep,UGT) was the most sensitive
input variable exhibiting strong negative correlation with Fyp (r = -70)and AUC,, (r = -
0.92) and strong positive correlation with CL (r = 0.93) of BUP. For all the inhibitor
treatments, intestinal and hepatic inhibitor concentrations showed weak positive
correlations with Foa, AUC, and negative correlation with CLiy. The inhibitor

concentrations appeared to have a relatively stronger effect on output variables in
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scenario#2 than scenario #1. However, even in scenario #2 their correlation coefficient
values were < 0.41 indicating weak effect on output parameters (data not shown).
Amongst the four inhibitor concentration variables, I (GW,CYP) appeared to be most
sensitive to Fora and AUC,, in presence of all inhibitor treatments except pterostilbene

which had I (hep,UGT) as the most sensitive variable.
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Figure 6.6 Tornado plot for a-mangostin
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Tornado plot for pterostilbene

Figure 6.10
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6.4 Discussion

Oral bioavailability is one of the most important PK properties for an orally
administered drug [173, 174]. For a drug to reach systemic circulation in an unchanged
form, it has to first get absorbed, survive metabolism while passing through the gut wall
and finally avoid extraction by liver either through enzymatic metabolism or via biliary
excretion [175, 176]. Measuring oral bioavailability in vivo especially in humans can be
quite expensive, laborious and possibly yield results with huge variability [173-176].
Hence, in silico methods of predicting PK parameters such as F,, clearance, systemic
exposure, presystemic intestinal and hepatic extraction using results from relatively
simple in vitro systems can prove very helpful during the process of drug discovery and
development. In vitro to in vivo extrapolations can also help in predicting PK parameters
when clinical data are not available [48, 50, 57, 173-176]. As discussed in Chapter 3,
limited information is available on pharmacokinetic features of BUP after oral
administration in humans. Hence, a minimal model (i.e. well-stirred model) was used to
predict the pharmacokinetic properties of BUP such as Foa AUCy, and CLy. Intrinsic
oxidative and conjugative clearances in pooled intestinal and hepatic microsomes were
extrapolated using the well-stirred model to make predictions on oral PK characteristics
of BUP. The well-stirred model assumes that the metabolic enzymes are distributed
uniformly within the organ and have access to a well-stirred concentration of drug [55].
As is evident from the mathematical formula, the model links the unbound intrinsic
clearance to the extraction efficiency of the organ [55].

CYP3A4 is reported to be the major CYP isoform responsible for oxidation of
BUP [11, 12]. Historically, it was believed that liver represents the major site for
metabolism of drugs by CYP3A4 [61, 63]. However, within the last few decades
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numerous studies emphasizing the contribution of intestine to CYP3A4 metabolism have
been published [45-47, 50, 57-60, 62, 64, 156]. Drugs metabolized by CYP3A4 have
been reported to exhibit a high degree of interindividual variability [45-47, 50, 57-60, 62,
64, 156]. One of the major factors responsible for this appears to be the high variability in
the metabolic activity of hepatic and intestinal CYP3A4 [45-47, 50, 57-60, 62, 64, 156].
Numerous sources of variability have been proposed and studied such as genetic
polymorphism, epigenetic factors, non-genetic factors like age, gender, body weight,
liver blood flow, expression of drug metabolizing enzymes and transporters, disease
states, enzyme induction or inhibition etc. [71] Cubitt et al. conducted a study to estimate
the interindividual variability in hepatic CYP3A4 abundance (using three CYP3A
substrates i.e. alprazolam, triazolam and midazolam) to improve estimation of variability
in the predicted in vivo clearance [46]. The variability in CYP3A4 abundance in 52 livers
was studied and the interindividual variability was estimated to be 41% [46]. Kato et al.
performed an in silico study to predict the factors contributing to interindividual
variability in PK parameters (AUC, total and oral clearance, intestinal and hepatic
extraction) in humans. They identified hepatic CYP3A4 content as the most sensitive
parameter affecting the variability in AUCgose Of test substrate [60]. This study reported
% CV of 33% and 81% for hepatic CYP3A4 content and intrinsic intestinal clearance
corrected for permeability, respectively [60]. Another study conducted by Paine et al.
using six human intestines reported 60% variability in the intestinal CYP3A4 content
[61]. However, the 60% and 81% variability reported in both the studies likely accounts
for both experimental and true interindividual variability [46]. Since the true

interindividual variability in clearance of BUP after oral administration in humans is not
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yet known, two scenarios with distinct variability in intestinal and hepatic intrinsic
clearances were evaluated. Scenario #1 represents the least favorable condition with
higher variability while scenario #2 represents a more favorable condition with lower
variability in intrinsic clearances. Based on the interindividual variability estimates for
CYP3A4 abundance, scenario #1 comprised 41% variability in the hepatic intrinsic
clearances and a variability of 60% in the intestinal clearances. In addition, a variability
of 81% in the intestinal clearances was also tested, but no significant difference was
observed in the variability around mean of the output variables (Fora AUC, and CLyy) for
60% versus 81% variability. Hence, %CV for intestinal clearances was set at 61% under
scenario #1. On the other hand, scenario #2 comprised almost half the variability in
scenario 1 i.e. of 40% variability in the intestinal intrinsic clearances and a variability of
25% in the hepatic clearances. Both the scenarios exhibited similar mean values for all
the output variables as well as similar ranking of input variables in the results of the
sensitivity analysis. However, as expected the variability in the mean values of the output
variables was much higher under conditions of scenario #1 than #2.

BUP was predicted to exhibit poor Fyr, and AUC,, with 46 to 66% and 50 to 95%
variability, respectively as well as a huge CL (1050 to 1060 ml/min) in both scenarios.
The results of the sensitivity analysis predict CLint (GW,CYP) to be the most sensitive
input variable affecting For, and AUC, of BUP while CLy; was most sensitive to CLint
(hep,CYP). These results are consistent with our IVIVE predictions showing higher
contribution of oxidation (6 fold in intestine and 4 fold in liver) over glucuronidation to
the overall metabolism of BUP [30]. The results of the in vitro studies performed by

Cubitt et al. reporting 70% and 66% contribution of the CYP pathway to the metabolism
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of BUP in the liver and intestinal microsomes, respectively; appear to be in good
agreement with our predictions [67].

Treatment with a-mangostin, improved the predicted Fo, and AUC,, of BUP by 5
fold with a ~2 fold reduction in their variability and a negligible effect on CL, of BUP.
CLint (hep,CYP) showed the strongest influence on AUC,, and CLy while Fosy Was most
sensitive to CLint (GW,CYP). These results seem logical because a-mangostin exhibited
poor inhibition (9%) of hepatic oxidation and glucuronidation (30%) but was more
effective in inhibiting intestinal oxidation (87%) and conjugation (98%) of BUP. Despite
showing higher potency in inhibiting oxidation (K = 6.8 uM-liver, 24.6 uM -intestine)
and glucuronidation (K; = 1.5 pM-liver, 2.8 uM -intestine) in liver, the overall %
inhibition was higher in the intestine due to significantly higher predicted concentrations
in the gut lumen (161 pM) as compared to the portal vein (0.6 uM).

The effect of chrysin using both experimental (7.97 uM) and predicted (405 uM)
equilibrium solubilities (as gut lumen concentrations) was tested for thoroughness of
analysis. The extrapolations made using experimental solubility show negligible/no effect
of chrysin on all the output variables, while the use of predicted solubility values results
in a 7 to 8 fold increase in the predicted mean Fo, and AUC, as well as 2 to 3 fold
reduction in their variability. No significant effect on CL of BUP was observed for both
treatment groups. Since extrapolated results of chrysin using experimental solubility
show negligible inhibition of BUP metabolism, the sensitivity analysis yields similar
results as BUP alone. On the other hand, predictions based on predicted solubility of
chrysin show that CLint (hep, CYP) has the strongest influence on all the output

variables. This is most likely due to higher predicted gut lumen concentrations coupled
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with about 2 fold higher potency of CYP and UGT inhibition in intestine than liver
resulting in 98% inhibition of intestinal metabolism and negligible/no inhibition of
hepatic metabolism of BUP.

In presence of ginger extract, the mean F., and AUC, increased and CLiy
decreased by 8, 13 and 1.5 fold, respectively. In addition, a 2 fold and 1.4 fold reduction
in the variability in F,, and AUC, of BUP was observed, respectively after treatment
with ginger extract. CLint (GW,CYP) influenced F strongly while AUC,, and CLy
appeared to be most sensitive to CLint (hep,CYP). This is likely explained by lower %
inhibition of the hepatic metabolism in comparison to the intestinal metabolism. Despite
showing similar potencies in inhibiting oxidation (K; = 19.6 uM- intestine, 12.3 uM -
liver) and glucuronidation (K; = 11.0 pM- intestine, 6.7 pM - liver) of BUP in the
intestine and liver, the total % inhibition of intestinal metabolism was higher due to
significantly higher predicted concentrations in the gut lumen (176 uM) than the portal
vein (17.6 uM).

Similar to chrysin, the effect of both experimental (2.57 uM) and predicted (629
uM) equilibrium solubilities of silybin was tested for thoroughness of analysis. The
extrapolations made using experimental solubility show negligible effect on the mean and
the variability of all output variables due to very low solubility values. On the other hand,
extrapolations made using predicted solubility exhibit improvement in the mean F, and
AUC,by 11 and 15 to 16 fold, respectively with minor (1.4 fold) reduction in CL of
BUP. A 3 fold reduction of variability in Fo, 2 fold increase in variability in CLand
negligible effect (1.1 fold) on variability in AUC, was observed. The CL; value

indicates significant reduction in the hepatic extraction ratio of BUP from 0.70 to 0.51
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(assuming liver blood flow = 1500 ml/min) in presence of silybin. Collectively, these
results suggest that silybin might have the potential to inhibit systemic clearance of BUP.
As expected, the sensitivity analysis results using observed solubility of silybin are
similar to the results of BUP with no inhibitor. However, the sensitivity analysis
performed using predicted solubility shows CLint (hep,CYP) to be the most sensitive
input variable strongly influencing all the output variables. This is consistent with a low
% inhibition (46%) of hepatic CYP metabolism shown by silybin. Silybin exhibits higher
potency in inhibiting hepatic oxidation (K; = 26.3 uM- intestine, 6.9 uM - liver) and
hepatic glucuronidation (K; = 12.5 uM- intestine, 0.9 uM - liver). However, the drastic
difference in the predicted gut lumen (629 uM) versus portal vein concentrations (6 pM)
is likely responsible for higher % inhibition of intestinal metabolism. Hoh et al. observed
a 60 fold higher concentration of silibinin in the intestinal tissue (140 + 170 uM) over the
hepatic tissue (2.5 + 2.4 uM) in cancer patients following oral administration of silibinin
(1.4 g/day) [177].

In the presence of pterostilbene, CLint (hep,UGT) was predicted to be the most
sensitive input variable that strongly influences all the output variables. This is expected
because of the weak inhibition of glucuronidation and extremely potent inhibition of
oxidation of BUP shown by pterostilbene in both intestine and liver. Pterostilbene
appeared to be the most potent of all the inhibitors showing 22 to 24 fold increase in
mean predicted Fop, 105 fold enhancement in mean AUC, and 4 fold reduction in mean
CLof BUP. It was also effective in reducing the variability in the predicted mean Fo,
of BUP. However as seen with other inhibitors, the % variability in AUC, after treatment

with pterostilbene was very large especially in scenario #1 where 70% variability was
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observed which would be clinically significant and highly undesirable. The likely cause
of the higher variability in AUC is the strong inhibition of CL of BUP by pterostilbene,
which converts a highly extracted drug like BUP in to a low extraction ratio drug. Thus, it
is reasonable to expect that inhibitor concentration in the portal vein is extremely crucial
in case of pterostilbene because it has a direct effect on the CL.. Of all the inhibitor
treatments, pterostilbene had the highest portal vein concentration of 40.6 uM predicted
assuming an oral bioavailability of 12.5%. To assess the effect of lower portal vein
concentrations of pterostilbene, a dose — effect study was performed using 5 additional
doses of pterostilbene, as shown in Figs. 6.1 — 6.3. A ten fold lower dose i.e. with I (GW)
= 32.5 uM and I (hep) = 4.06 uM that could still achieve predicted F,. closer to
sublingual bioavailability of BUP (~33%) was chosen for further analysis. Published
studies report a wide variability in Fo, of pterostilbene in rats ranging from 12.5 to 80%
[133-135, 138], depending on the dose administered. Thus, an additional 60% variability
was introduced in I (hep) and the effect of this lower dose on the output variables was
investigated. As reported in Table 6.5, the variability in AUC, of BUP reduced by almost
50% in scenario #1 (from 95 % to 49%) and # 2 (from 50 % to 28%). Increasing the
variability in I (hep) from 20% to 60% resulted in a minor increase in the variability
around the mean of the output variables (Table 6.5). Thus, a lower dose of pterostilbene
exhibited significant improvement in systemic availability of BUP to achieve an F
similar to the sublingual availability (~33%) of currently marketed BUP formulations. In
addition, there was also a significant improvement in the predicted mean AUC, and
modest reduction in the variability associated with the mean AUC,, of BUP under both

scenarios making pterostilbene the most favored candidate of all the inhibitors.
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Cubitt et al. conducted a study quite similar to the initial part of our IVIVE
analysis, to evaluate the contribution of the intestinal and hepatic - oxidation as well as
glucuronidation to the metabolism of BUP (among other compounds) and predict its in
vivo clearance after IV and oral administration [67]. The conclusions of their study about
CYP being the dominant metabolic pathway (in both organs) and that intestinal oxidation
exceeds hepatic oxidation (after correction for CYP3A abundance) support our results
[67]. In addition, the Fy, Fi and Fo values extrapolated using the in vitro intrinsic
clearances of the Cubitt et al. study appear to be in fair agreement with our predicted
estimates [67]. However, the study omits prediction of in vivo intrinsic clearance of BUP
following oral administration due to lack of adequate information on PK of orally dosed
BUP in humans. Using a simple static model i.e. well-stirred model and under a set of
assumptions, we could predict the in vivo intrinsic clearance as well as the total systemic
clearance of BUP in addition to F [30]. Unfortunately, our predictions could not be
validated due to lack of published clinical studies reporting these parameters for orally
administered BUP in humans. Several published studies have tried to identify the factors
responsible for the high degree of inter-individual variability in the systemic availabilities
and exposures of CYP3A substrates among other CYP substrates [46, 55, 60, 61, 63,
158]. Significant research has been conducted on the use of various herbal compounds as
bio-enhancers acting via inhibition of the most prevalent drug metabolizing enzymes
such as CYP (especially CYP3A4) and UGTs [21-26, 46, 55, 60, 61, 63, 158, 160, 178].
Their application to improve the oral bioavailability of therapeutic agents has also been
proposed, studied using in vitro systems and modeled using diverse in silico systems and

PBPK models [21-26, 46, 55, 60, 61, 63, 158, 160, 178]. However, to the best of our
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knowledge we did not come across combinatorial studies such as ours, that investigated
the effect of such herbal/dietary agents to not only improve the pharmacokinetic

properties of a drug but also reduce the variability associated with them.

6.5 Conclusion

The potential of five GRAS or dietary compounds (a-mangostin, chrysin, ginger
extract, pterostilbene and silybin) to improve the oral bioavailability and systemic
exposure and to reduce the variability associated with them was evaluated. Using the
well-stirred model, the in vitro clearances of BUP in presence and absence of inhibitor
treatments were extrapolated to predict their effect on Fon, AUC, and CLy under
physiological conditions. Of the five inhibitors, only pterostilbene and silybin could
achieve an Fr, similar to the marketed sublingual products but with lower variability.
However, these inhibitors exhibited an undesirable high variability in the systemic
exposure of BUP under both higher (#1) and relatively lower (#2) variability scenarios.
However, a ten fold lower concentration of pterostilbene (32.5 uM or 8.3 pg/ml)
appeared to be the most effective in improving Fo and AUC, considerably lowering
their variability. These results provide strong support to our strategy of co-administering
GRAS or dietary compounds like pterostilbene with BUP to inhibit its oxidative and
conjugative metabolism and achieve sufficiently high oral availability and systemic
exposure to produce its intended therapeutic effects. Future studies will focus on
evaluating the effect of pterostilbene in vivo using animal models such as dogs to identify
the effective clinical doses, study the PK profile of BUP in presence of the various doses
of pterostilbene and to design a suitable dosing regimen for the oral administration of

BUP + pterostilbene combination.
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Chapter 7: Conclusions and Future Directions

Drug addiction including misuse of prescription pain opioid medications or use of
illicit substances like heroin is a grave problem throughout the world [1]. Buprenorphine
(BUP) alone or in combination with naloxone is a widely used therapeutic agent for
treatment of opioid dependence as well as for pain management. It is available for
several routes of administration (sublingual, buccal, intravenous, intramuscular,
transdermal etc.) except the traditional oral route. The sublingual route suffers from
disadvantages like inability to mask bitter taste, interference with daily activities, high
interindividual variability in systemic availability & exposure due to factors such as
inconsistencies in sublingual retention time, rate and extent of absorption from oral
mucosa, loss of drug via swallowing etc. [2, 7] However, the extensive presystemic
metabolism of BUP through oxidation and conjugation in intestine and liver significantly
lowers its systemic availability, hindering its successful oral administration [11-14].
Hence, the main objective of this dissertation was to improve the oral bioavailability
(Fora) of BUP and reduce the variability associated with its bioavailability and systemic
exposure (AUC). An inhibitor strategy was proposed which includes use of generally
recognized as safe (GRAS) compounds or components of dietary supplements to inhibit
the oxidative and conjugative metabolism of BUP. In vitro to in vivo extrapolations
(IVIVE) were performed to predict the F., AUC, and total clearance (CLy) of BUP in
presence and absence of five promising inhibitor candidates (a-mangostin, chrysin,
ginger extract, pterostilbene and silybin). The overall conclusions based on the

experiments conducted in each chapter are as discussed below:
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7.1 Evaluating the intestinal permeability of BUP

One of the factors influencing the oral bioavailability of a compound is its
gastrointestinal (GI) permeability. The intestinal permeability of BUP was evaluated
using the well-characterized Caco-2 cell model, which involves studying the bidirectional
transport of a test substrate through the tight monolayers of the Caco-2 cells plated on
Transwell filters [86-88]. It was also of interest to determine if BUP undergoes efflux
through intestinal efflux transporters such as P-gp, BCRP etc. As would be expected
from a small lipophilic molecule, BUP appeared to be a highly permeable drug with an
apparent absorptive permeability of 32 x 10 cm/s. The transport of BUP in basolateral to
apical direction was quite similar to its transport from apical to basolateral direction
resulting in an efflux ratio of ~1. Thus, the results of this study indicated that BUP is a
highly permeable drug that does not undergo efflux transport by transporters like P-gp
and BCRP in the Caco-2 cells. It was also inferred that since BUP was highly soluble and
highly permeable, its poor oral bioavailability is most likely an outcome of its extensive

presystemic metabolism.

7.2 Predicting the oral bioavailability of BUP

As presystemic metabolism was identified as the likely factor responsible for the
poor oral bioavailability of BUP, its metabolism was closely studied in pooled human
intestinal and liver microsomes. The intrinsic CYP and UGT clearances of BUP in pooled
human intestinal and liver microsomes were extrapolated using a simple physiological
model (i.e. well-stirred model) to predict intestinal (F,) and hepatic (F}) availabilities and
ultimately For.i of BUP. BUP was predicted to show 91% intestinal extraction (F, = 0.09)
and 71% hepatic extraction (F, = 0.29) resulting in a mean predicted Foa 0f 2.7%. The

intrinsic CYP clearances were six and four fold higher than the UGT clearances in the
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intestine and liver, respectively. Taken together, these results indicate significant
contribution of the intestine to the overall presystemic metabolism of BUP and that CYP
appears to be the dominant metabolic pathway for BUP in both intestine and liver. Our
results appeared to be in good agreement with previous publications evaluating the
contribution of hepatic and intestinal — oxidation and glucuronidation to the metabolism

of BUP [67, 126].

7.3 Screening study to identify potential inhibitors

Several GRAS or dietary compounds have been studied for their effect on drug
metabolizing enzymes like CYP, UGT, SULT etc. [21-26] Compounds with functional
groups such as phenol, catechol, stilbene, flavanol etc. are ideal candidates for interacting
with conjugating enzymes (UGT, SULT). Hence, 27 such compounds were evaluated for
their potential to inhibit the oxidative and conjugative metabolism of BUP. The effect of
these inhibitors (25 uM) on the formation of oxidative metabolite i.e. norbuprenorphine
(NBUP) and conjugative metabolite i.e. buprenorphine glucuronide (BUPG) was
monitored individually in the pooled human intestinal and liver microsomes. The results
were subjected to a retrospective filter i.e. compounds inhibiting >50% of BUPG
formation and/or >30% of NBUP formation, were identified as preferred inhibitors.
Using this selection criterion, ten preferred inhibitors were identified, namely: chrysin,
curcumin, ginger extract, 6-gingerol, hesperitin, a-mangostin, pterostilbene, quercetin,
resveratrol and silybin.

7.4 Determination of potency of inhibition (ICsy) of the preferred

candidates

The ten preferred inhibitors identified on the basis of the screening study were

further scrutinized using factors such as favorable physiochemical properties, BCS class,
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oral PK in humans and/or animals and the maximum daily dose in humans and further
shortlisted to five promising inhibitors i.e. a-mangostin, chrysin, ginger extract,
pterostilbene and silybin. The inhibitory potency (ICso) of these five inhibitors towards
each metabolic pathway was individually studied in pooled human intestinal and liver
microsomes. Of the five compounds, pterostilbene appeared to be the most potent
inhibitor (ICso <1 uM) of CYP metabolism in both intestine and liver while a-mangostin
in intestine and silybin in liver were the most potent inhibitors of UGT metabolism of
BUP. Ginger extract and chrysin exhibited moderate to low potency of inhibition for both
the pathways in the intestinal and liver microsomes. An equipotent combination of
pterostilbene and ginger extract was also tested for its potential to inhibit the metabolism
of BUP in the intestinal microsomes. The results of the curve shift analysis indicate that
the combination showed additive interactions for inhibition of both the metabolic

pathways.

7.5 Determination of biorelevant solubility of the inhibitor candidates

The next logical step after studying the metabolism of BUP and identifying
promising inhibitor candidates was to extrapolate the in vitro results to physiological
levels and predict the Fon, AUC, and CLy: of BUP with and without inhibitor
treatments. To improve the predictive power of the well-stirred model, an appropriate
selection of inhibitor concentrations in the GI lumen was very critical. To aid in
predicting the inhibitor concentrations in the gut lumen, the equilibrium solubilites of the
shortlisted candidates (except ginger extract) were determined using a biorelevant
medium (FaSSIF; fasted state simulated intestinal fluid). It was assumed that the
equilibrium solubilites represent the concentration of the inhibitors in the GI lumen
following oral administration. In addition to experimental determination, the equilibrium

141



solubilities of the four inhibitors were also predicted using ADMET predictor
(Simulation Plus, CA). Pterostilbene and a-mangostin showed experimental biorelevant
solubilites of 83.2 + 0.07 pg/ml and 66.1 + 0.01 pg/ml, respectively in good agreement
with their predicted solubilities (55 and 50 pg/ml). On the other hand, chrysin and silybin
exhibited biorelevant solubilities of 2.02 + 0.01 pg/ml and 0.66 = 0.01 pg/ml,
respectively with a 52 and 242 fold difference in their respective predicted solubilites.
For thoroughness in analysis, the extrapolations were performed using both experimental
and predicted solubilities of chrysin and silybin. Irrespective of being experimentally
determined or predicted, the equilibrium solubilities indicate that the four inhibitors show

poor aqueous solubilites that might possibly lower their oral bioavailability.

7.6 In vitro in vivo extrapolation to predict the effect of inhibitors on

Fora, AUC,, and CL,; of BUP

To assess the effect of inhibitors on the variability associated with Fo, AUC,
and CL,, of BUP, a simulated population dataset of 10,000 patients was generated using
Monte Carlo simulations. BUP was predicted to show a poor and variable oral
bioavailability (3 + 2%) and systemic exposure (334 + 327 ng*min/ml) with huge total
clearance (1050 ml/min). Being the most potent inhibitor of the dominant CYP pathway,
pterostilbene showed the highest improvement in mean predicted Foa (22 fold) and
AUC, (105 fold) and drastic reduction in CL (4 fold) of BUP. Silybin appeared to be
the second most effective inhibitor based on the extrapolations using its predicted
solubility, showing an 11 and 16 fold increase in Foa and AUC, of BUP, respectively.
All the rest of the inhibitor treatments were not effective in achieving the F,, equal to or
more than the sublingual bioavailability of BUP (~33%). Despite showing significant

enhancement of mean predicted Fory and AUC,, as well reduction of variability in mean
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Foral, both pterostilbene and silybin failed to reduce the variability in the mean AUC,, of
BUP. Hence, a concentration-effect study was performed using a wide range of
pterostilbene concentrations (0 — 325 uM) and a concentration of 32.5 uM was chosen
for further analysis. At this lower concentration, pterostilbene was still able to achieve an
Fora similar to sublingual bioavailability of BUP but also exhibited considerable
reduction in the variability associated with the mean predicted AUC, of BUP. Increasing
the variability in the portal vein inhibitor concentrations of pterostilbene (to 60%) did not
produce significant increase in the variability in F, or AUC, at this lower dose.
Pterostilbene exhibits potential to inhibit the systemic clearance of BUP in addition to its
presystemic metabolism. Inhibition of systemic clearance can influence the elimination
half-life of BUP, which might necessitate dose adjustment or alteration of the dosing
regimen of BUP. Due to limited availability of clinical data after oral administration of
BUP in humans, it was not possible to validate our predictions. Also due to limited
clinical data on both BUP and the inhibitors, our model was built on several assumptions
that may or may not be true. All these factors can have a significant effect on our
predictions depending on the extent to which the assumptions deviate from clinical

observations.

7.7 Overall conclusions

In conclusion, the overall results demonstrate feasibility of the proposed approach
of co-administering GRAS inhibitors such as pterostilbene with BUP to inhibit its
oxidative and conjugative metabolism and achieve sufficiently high Foq & AUC, to
produce its intended pharmacological effect. These results support the potential of
developing an efficacious oral formulation of BUP with greater patient compliance to
serve as a better alternative to sublingual BUP. The GRAS inhibitor strategy has
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promising applicability to a wide variety of drugs suffering from low and variable oral

bioavailability due to extensive presystemic metabolism.

7.8 Future directions

Future studies will focus on further characterizing the effect of pterostilbene on
oral PK properties of BUP in vivo using animal models such as beagle dogs. Dogs appear
to exhibit similarities in several PK properties (absorption, oral bioavailability, route of
elimination and contribution of CYP vs. UGT metabolic pathways) to humans [10, 20].
The use of rats as an animal model for BUP is not recommended because this species
strongly favors glucuronidation over oxidation, which contradicts the metabolic pattern
of BUP observed in humans [9, 18, 19, 179]. Such in vivo studies can help in determining
safe and effective doses of pterostilbene as well as an optimal dosing regimen for the
BUP+pterostilbene oral formulation. The mechanism of inhibition of pterostilbene and
possible time-dependent inhibition can be studied using in vitro systems like pooled
microsomes, primary hepatocytes, intestinal cell lines etc. The metabolism of
pterostilbene can be studied in the aforementioned in vitro systems to predict the extent
of its metabolism in vivo and possible effects of the metabolites on the inhibition
efficiency of pterostilbene. Using the Caco-2 cell monolayers, the permeability and
possible efflux of pterostilbene at the GI lumen can be evaluated. On the basis of the
collective results from all these in vitro studies, a more comprehensive physiologically
based dynamic PK model can be developed to better predict the effect of inhibitors such
as pterostilbene on the pharmacokinetics of BUP after oral administration in humans.
Such a model is likely to be superior in its predictive power than the minimal model used
in this dissertation. Combinations of pterostilbene with other GRAS or dietary
compounds can also be tested to investigate any potential synergistic interactions, which
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might help in reducing the overall dose of inhibitors to be co-administered with BUP.
Formulation studies to develop nanoparticles or liposomes for the oral formulation of
BUP and inhibitor(s) might prove helpful in overcoming the solubility issues of the

inhibitors.
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Appendix 1: Previous work in LS180 cells and UGT1A1
The goal of this dissertation was to explore the potential of the GRAS compounds/dietary

constituents/dietary supplements to significantly inhibit the pre-systemic metabolism of
BUP. Appendix 1 focuses on preliminary experimental studies conducted in LS 180 cells

and recombinant UGT1A1.
A1l Methods:

Al.1 Kinetic and inhibition studies in the induced LS180 cells

The LS180 cells were treated with calcitriol (5 pM) to induce CYP3A4
expression and this induction was confirmed using P450-Glo assay (Promega, using
selective CYP3A4 fluorescent probe; data not shown). Calcitriol concentration was
chosen based on previously published study evaluating the effect of varying
concentrations of calcitriol on CYPA4 induction in different cell lines including LS180
cells [180]. After induction (72 - 96 hours), the cells were exposed to BUP (10 uM) alone
or along with certain putative inhibitors (24 uM) for two hours. The reaction was
quenched with equal volume of cold acetonitrile at the end of the incubation time. The
cells were then scraped followed by centrifugation at 12,500 rpm for 10 min (4°C) to
remove the protein. The supernatant (75 pL) was then analyzed using reversed phase
HPLC coupled with UV spectrometric detection and Acquity QDa mass detection. The
incubation time was optimized by monitoring the formation of metabolites i.e.
norbuprenorphine (NBUP) and buprenorphine glucuronide (BUPG) at various time
points till 2 hours. Kinetic experiments were performed by incubating increasing
concentrations of buprenorphine (I pM-160 pM) with induced LS180 cells. The
Michaelis-Menten or Hill equation was fit to the resulting kinetic data, and the kinetic

parameters were calculated by nonlinear regression analysis using Prism v6.0 (GraphPad
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Software, Inc.; La Jolla, CA). Intrinsic clearances (CL_) were estimated using Equation 1

when the Michaelis-Menten (MM) equation was chosen and Equation 2 [95] when the

Hill equation was used.

Vinax

Clint = H (1)
Vimax n-1

Cliye = e x 1oL 2)

where V__ is the maximal velocity rate, K is the substrate concentration at 50% of
V_, and n is the Hill slope.
max

When present, inhibitor solutions (final concentration: 24 pM) were prepared
from DMSO stock solutions (25 mM) for all pure compounds based upon their molecular
weights as usual. However, since ginger extract is a mixture of mainly 6-, 8- and 10-
gingerols and 6-shogaol [32], the molecular mass of 8-gingerol was chosen as an
approximate representative of the mixture, and stock solutions of ginger extract were
prepared to provide a final total concentration of 24 uM. Buprenorphine (17 uM) was
incubated with or without 24 uM of inhibitors for 2 hours. Control reactions were carried
out in the absence of inhibitors (solvent control). Significant inhibition was tested by
comparing the % inhibition of norbuprenorphine or buprenorphine glucuronide formation
to control reactions (no inhibition) using one-way ANOVA with Dunnett’s post-hoc test
(o = 0.05; Prism v6.0). All the results are reported as mean = SD for quadruplicate
measurements.

A1.2 Kinetic and inhibition studies using recombinant UGT1A1
Linearity of BUPG formation at two recombinant UGTI1Al protein

concentrations (0.2 and 0.4 mg/mL) was monitored till 1 hour (BUP =5 uM). BUP (2 —
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150uM) was incubated with 0.4 mg/mL UGTI1A1l for 1 hour to establish saturable
formation of the glucuronide metabolite. A typical reaction mixture (100 pL) comprised
0.4 mg/mL of recombinant UGT1A1, 50 mM Tris HCI (0.025% BSA), 2.5 mM UDPGA,
12.5 mM magnesium chloride, 8 mM saccharolactone and 31.25 pg/mL alamethicin. The
reaction was quenched with equal volume of cold acetonitrile followed by centrifugation
for 10 min (12,500 rpm at 4°C) to precipitate protein. The supernatant was analyzed using
the HPLC- UV-Acquity QDa mass spectrometric detection system. As stated earlier MM
(Eq. 1) or Hill equation (Eq. 2) was fitted to the saturation data. GraphPad Prism v.6.0
was used for curve fitting and non-linear regression analysis for calculating the kinetic
parameter estimates.

The inhibitors showing good inhibition of UGT metabolism of BUP in the
induced LS180 cells were further tested in recombinant UGTI1Al. List of tested
inhibitors includes a-mangostin, 6-gingerol, hesperetin, iso-eugenol, magnolol, menthol,
menthyl acetate, naringin, propyl paraben, pulegone, resveratrol and silybin. BUP (5 puM)
was incubated with selected inhibitors (24 uM) for 1 hour with 0.4 mg/ml of recombinant
UGTI1ALI and the effect of inhibitors on BUPG formation was monitored.

A1.3 Determination of the relative contribution of the UGT and CYP isoforms in the

induced LS180 cells using isoform selective inhibitors

It was of interest to estimate the relative contribution of the CYP and UGT
isoforms towards formation of NBUP and BUPG, respectively in the induced LS180
cells. Hence, the formation of these metabolites in presence of certain isoform selective
inhibitors was monitored in the induced LS180 cells. Same experimental procedure as
explained earlier was used for performing these studies. Atazanavir (1 uM), lithocholic

acid (20 uM) and amitriptyline (1 mM) were chosen as the selective inhibitors for UGT -
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1A1, 1A3 and 2B7, respectively [15, 181, 182]. On the other hand, ketoconazole (1 pM),
quinidine (2 uM), sulphenazole (20 uM) and montelukast (0.5 uM) were used as the
selective inhibitors for CYP — 3A4, 2D6, 2C9 and 2C8, respectively [183]. These
inhibitors were tested using two-fold higher concentrations than their ICsy or K; values

reported in the literature. [15, 181, 182]
A2 Results:

A2.1 Kinetic and inhibition studies in the induced LS180 cells

In the non-induced LS180 cells, NBUP formation appeared to be negligible
(<LLOQ of NBUP, Fig. 1). After treatment with calcitriol, the NBUP formation in the
induced LS180 cells increased drastically (Fig 1). Calcitriol treatment produced a two-
fold increase in BUPG formation (Fig. 2), indicating possible induction of the
glucuronidation pathway. Formation of both metabolites (BUP = 17 uM) was linear till
two hours in the induced cells, however it explained only about ~ 50% of the
disappearance of BUP (Fig. 3-4, Table 1). Non-specific binding of BUP and/or
involvement of other metabolic pathways might account for the missing mass balance.
The negative Y-intercept for the metabolites indicates that there is a lag time involved in
the formation of metabolites. This time is most likely the time it takes for BUP to
permeate and accumulate in the cells and reach the enzymes to form the metabolites. The
formation of both the metabolites was saturable (Fig. 5-6); parameter estimates are
reported in Table 2. MM model was chosen for both the metabolites because it had lower
AIC value than the Hill model, indicating that this fit had least error. Glucuronidation
appeared to be the major pathway compared to oxidation especially at BUP

concentrations < 24uM. Inhibition studies indicated that 11/20 and 5/20 inhibitors,
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significantly inhibited BUPG and NBUP formation respectively, while 5/20 significantly
inhibited both the pathways (Figs. 7 and 8). Fig. 9 depicts the reduction in disappearance
of BUP (% of control) versus inhibitor treatments. The test inhibitors that significantly
reduced BUPG and/or NBUP formation seemed to reduce BUP disappearance to varying
extents except hesperitin (despite showing 70 — 80% inhibition of BUPG and NBUP
formation). Ginger extract and geraniol were found to significantly increase NBUP
formation while showing modest (ginger extract) to no (geraniol) inhibition of BUPG
formation.

Limitations:

While conducting the inhibition studies, < 20% metabolism of BUP was allowed
to occur to target the linear kinetic range. The S/N ratio for BUP was relatively low;
consequently the detection of BUP levels while monitoring its disappearance was not
adequately sensitive. Formation rates were not normalized with protein content to
account for differences in protein concentrations in different wells. The intrinsic
oxidative and conjugative clearances of BUP were not corrected for protein binding
shown by BUP in the LS180 cell matrix. The results of the kinetic study appeared to be in
disagreement with the published studies as well as our microsomal studies, which
indicate oxidation to be the dominant metabolic pathway of BUP in the intestine than
glucuronidation [30, 67, 126]. In addition, the BUPG levels were higher in the induced
cells than the non-induced cells, which might explain the greater conjugation of BUP
than oxidation observed in the induced LS180 cells. Thus, the induced LS180 cell model

was not successful in simulating the intestinal metabolic conditions of BUP in humans.
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Figure 1: NBUP formation in induced vs non-induced LS180 cells
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Fig 1: Kinetics of NBUP formation in induced and non-induced LS180 cells. Data shows mean +

SD values for quadruplicate measurements. Treatment with 5 uM calcitriol drastically increased
the formation rate of NBUP in the induced LS180 cells.

Figure 2: Formation of BUPG in induced vs. non-induced LS180 cells
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Fig 2: Kinetics of BUPG formation in induced and non-induced LS180 cells. Data shows mean +
SD values for quadruplicate measurements. Formation rate of BUPG appeared to be about two
fold higher in the induced LS180 cells.
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Figure 3: Linearity of metabolite formation in the induced LS180 cells
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Figure 4: Disappearance of BUP and appearance of metabolites
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Fig 3 and 4: Formation of BUPG and NBUP (BUP=17uM) appears to be linear till two hours in
LS180 cells. Rate of disappearance of BUP is faster than the formation of BUPG & NBUP.
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Figure 5: Saturation of BUPG formation
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Fig 5: Saturable formation of BUPG was observed in the induced LS180 cells and it appeared to
follow MM kinetics (BUP=2 —-160uM). Data show mean = SD wvalues for quadruplicate
measurements.

Figure 6: Saturation of NBUP formation
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Fig 6: Saturable formation of NBUP was observed in the induced LS180 cells and it appeared to
follow MM kinetics (BUP=2 — 160uM). Data show mean = SD wvalues for quadruplicate
measurements.
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Table 1: Metabolite formation and disappearance of BUP

Parameter BUPG NBUP
Vimax (pmol/min) 3.0+£0.1 1.0+£0.1
K (uM) 24 +34 63+6.9
Cliye (UL/min)* 0.13 0.02
R? 0.94 0.98

Table 2: Results of the saturation assay

Parameter BUP BUPG NBUP
Y-intercept 1770 + 333 23445 7.0+3.0
(pmol)
Slope 4.6+0.6 15401 0.9+ 0.04
(pmol/min)
Lag time (min) S 14 7.5
R’ 0. 70 0.97 0.97

Figure 7: Inhibition of BUPG formation in induced LS180 cells
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Fig 7: Inhibition of glucuronidation of BUP by various inhibitors. BUP (10uM) was incubated for
2 hours in presence and absence of test inhibitors (24pM). Results are expressed as % of control
and depict mean + SD for quadruplicate measurements. * indicates significant difference (a =
0.05) from control. BUPG formation in control was 2.99 = 0.62 pmol/min.
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Figure 8: Inhibition of NBUP formation in induced LS180 cells
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Fig 8: Inhibition of oxidation of BUP by various inhibitors. BUP (10 pM) was incubated for 2
hours in presence and absence of test inhibitors (24uM). Results are expressed as % of control
and depict mean + SD for quadruplicate measurements. * indicates significant difference (o =
0.05) from control. BUPG formation in control was 1.12 £ 0.35 pmol/min.

Figure 9: Reduction in disappearance of BUP in induced LS180 cells
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Fig 9: Reduction in the disappearance rate of BUP in induced LS180 cells. Results are expressed
as % of control and depict mean + SD for quadruplicate measurements. Control (no inhibitor)
indicates no reduction in BUP disappearance. * indicates significant difference (a0 = 0.05) in
reduction of BUP disappearance rate with respect to control.
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A2.2 Kinetic and inhibition studies in recombinant UGT1A1

Formation of BUPG appeared to be linear till 1 hour and approximately
proportional to protein concentration (Fig. 10). BUPG formation was saturable and the
parameter estimates were in fair agreement with published values (Fig 11, Table 3). Hill
model was chosen because it showed the least AIC value (difference of 23.5 in the AIC
values of Hill and MM model, p-value <0.0001 for F-test). The disappearance of BUP (-
1.5£0.4 pmol/min) was accounted for by formation of BUPG (1.8 = 0.1 pmol/min)
indicating achievement of mass balance in the recombinant system. Intrinsic clearance
was calculated using Eq. 2. The K, for BUPG formation appeared about two fold higher
in the recombinant system than the induced LS180 cells. a-Mangostin, hesperetin,
magnolol, naringin, resveratrol and silybin exhibited significant inhibition of BUPG
formation (Fig. 12-13). On the other hand, compounds such as 6-gingerol, menthol,
menthyl acetate and propyl paraben produced an apparent stimulation of BUPG
formation (Fig. 12-13). Inhibitors that produced significant inhibition of glucuronidation
of BUP in the induced LS180 cells (6-gingerol, isoeugenol, menthol, menthyl acetate,
propyl paraben and pulegone) were not necessarily effective in the recombinant system.
Probable reasons for such an occurrence include differences in the activity of UGT1A1
enzyme in the recombinant system versus the induced LS180 cells, significant inhibition
of the other UGT isoforms involved in conjugation of BUP (UGT1A3 and/or 2B7) or
inadequate inhibitor concentrations (possibility of higher K; in the recombinant system).

All the results are reported as mean + SD for triplicate measurements.
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Figure 10: Optimization of incubation time and recombinant UGT1A1
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Fig 10: Formation of BUPG (BUP=5 uM) at various protein concentrations appears to be linear
till 1 hour in the recombinant UGTIA1 enzyme. The R’ values at 0.2 and 0.4 mg/ml protein
concentrations were 0.90 and 0.94, respectively.

Figure 11: Saturable formation of BUPG in recombinant UGT1A1
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Fig 11: Saturable formation of BUPG was observed in recombinant UGT1A1 and it appeared to

follow Hill equation kinetics (BUP=2-160uM). Data shows mean + SD for triplicate
measurements.
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Table 3: Results of the kinetic studies for BUPG formation in recombinant UGT1A1

Picard
Parameter Gerk lab (DMD, 2010)
Vmax
(pmol/min/mg 1300 + 56 1769 + 240
protein)
K (WM) 413+24 71.8+12.4
h 2.3+0.26 1.7+0.2
Intrinsic clearance
(UL/min/mg protein) 159 12:5
Enzyme conc 0.40 020
(mg/ml)
LLOQ (nM) 39 2

Figure 12: Inhibition of BUPG formation in recombinant UGT1A1 (0.025% BSA)
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Fig 12: Inhibition of glucuronidation of BUP by various inhibitors. BUP (10 pM) was incubated
for 1 hour in presence and absence of test inhibitors (24 pM). Results are expressed as mean = SD
for triplicate measurements. * indicates significant difference (o = 0.05) from control. BUPG
formation is control was 50.1 £ 1.97 pmol/min/mg protein.
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Figure 13: Inhibition of BUPG formation in recombinant UGT1A1 (no BSA)
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Fig 13: Inhibition of glucuronidation of BUP by various inhibitors. BUP (10 pM) was incubated
for 1 hour in presence and absence of test inhibitors (24 puM). The reaction mixture lacked
presence of BSA. Results are expressed as mean = SD for triplicate measurements. * indicates
significant difference (o = 0.05) from control. BUPG formation is control was 30.1 = 0.37
pmol/min/mg protein.

A2.3 Determination of the relative contribution of the UGT and CYP isoforms in the
induced LS180 cells using isoform selective inhibitors

Using atazanavir, lithocholic acid and amitriptyline as selective UGT 1A1, 1A3
and 2B7 inhibitors, BUPG formation was inhibited by 50%, 64% and 80%, respectively
(Fig 14). These results suggest highest contribution of UGT2B7 towards BUPG
formation followed by UGT1A3 and least contribution by UGT1Al. CYP isoform
selective inhibitors did not significantly influence BUPG formation. Similarly, individual
treatment with ketoconazole, quinidine, sulphenazole and montelukast resulted in
inhibition of BUPG formation by 85%, 56%, 15% and 1%, respectively (Fig 15). This
indicates highest contribution of CYP3A4 towards NBUP formation followed by CYP

2D6, 2C9 and lowest contribution of 2C8. Two UGT isoform selective inhibitors i.e.

174



lithocholic acid and amitriptyline showed a significant influence on NBUP formation.
Lithocholic acid appeared to significantly increase NBUP formation (~143% of control)
while amitriptyline produced a significant decrease in NBUP formation (~34% of

control).

Figure 14: Effect of inhibitors on BUPG formation in induced LS180 cells
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Fig 14: BUPG formation in presence of selective CYP and UGT inhibitors. BUP (10 uM) was
incubated for 2 hours in presence and absence of atazanavir (1 uM), lithocholic acid (20 uM) and
amitriptyline (1 mM), ketoconazole (1 pM), quinidine (2 puM), sulphenazole (20 pM) and
montelukast (0.5 pM). Results are expressed as mean = SD for quadruplicate measurements. *
indicates significant difference (o = 0.05) from control. BUPG formation is control was 3.16 +
0.26 pmol/min. Atazanavir (1 pM), lithocholic acid (20 uM) and amitriptyline (1 mM)
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Figure 15: Effect of selective inhibitors on NBUP formation in induced LS180 cells
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Fig 15: NBUP formation in presence of selective CYP and UGT inhibitors. BUP (10 uM) was
incubated for 2 hours in presence and absence of atazanavir (1 uM), lithocholic acid (20 uM) and
amitriptyline (1 mM), ketoconazole (1 pM), quinidine (2 puM), sulphenazole (20 pM) and
montelukast (0.5 pM). Results are expressed as mean = SD for quadruplicate measurements. *
indicates significant difference (o = 0.05) from control. NBUP formation is control was 0.70 +
0.05 pmol/min.

Limitations:

The selectivity of inhibitors is quite crucial while preforming reaction phenotyping using
chemical inhibition. Lithocholic acid and amitriptyline failed to produce selective
inhibition of specific UGT isoforms. Also, the results suggest overlap of UGT and CYP
isoform inhibition by some of the inhibitors. Hence, these results should be interpreted
with caution. It is always recommended to perform reaction phenotyping studies using
selective isoform substrates rather than using chemical inhibition method. The relative
contribution of CYP isoforms other than CYP3A4 appears to be overestimated and is in

disagreement with the published results reporting ~70 to 75% contribution of CYP3A4,

~10-15% contribution of CYP2CS8, negligible/no contribution of CYP2C9 and CYP2D6
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[11, 12]. Similarly, the relative contribution of UGT isoforms i.e. UGT2B7>UGT1A3
>UGT1Al towards BUPG formation appears to be erroneous. The expression of
UGTI1A3 is negligible in the human intestine in comparison to the other two UGT
isoforms [15, 148, 149]. Thus, in humans the contribution of UGT1A3 to the intestinal
conjugation of BUP is expected to be insignificant.

The induced LS180 cells offer a theoretical advantage of simultaneously
monitoring the kinetics of BUP and the effect of inhibitor treatments on both CYP and
UGT metabolic pathways. However, the induced LS180 cell model was also associated
with several substantial limitations and could not simulate human intestinal metabolic
conditions of BUP. Hence, all the future studies were performed using pooled human

intestinal and liver microsomes, which appeared to be a more clinically relevant system

for BUP than the induced LS180 cells.
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Appendix 2 — Combination studies
A2.1 Introduction

The final oral formulation of BUP is envisioned to comprise a combination of inhibitors
for achieving maximum possible inhibition of BUP metabolism. When two or more
inhibitors are combined, there is a possibility that the inhibitors might increase (additive
or synergistic effect) or decrease (antagonistic effect) each other’s efficiency of
inhibition. Thus, it becomes important to evaluate the effect of a combination of
inhibitors on the overall inhibition produced. Effect of the combination of inhibitors on
the oxidation and glucuronidation metabolism of BUP was individually tested using the
combination index (CI) method developed by Chou and Talalay [184].

Using the traditional Webb’s method, synergy between inhibitors A and B; when
each inhibits 60% of metabolism, can be calculated as follows [184]:

(1-0.6)(1-0.6) = 0.16 then, (1-0.16)= 0.84.

Thus, the combination is expected to exhibit 84% inhibition. However, the Webb’s
method suffers from following disadvantages [184]:
a) limited validity because it takes into account only the potency of inhibition and ignores
the shape of the “metabolite formation rate” (expressed as fraction of control) versus
“inhibitor concentration” curve (e.g., hyperbolic or sigmoidal),
b) valid only when the inhibitors have hyperbolic curves (i.e., in simple Michaelis-
Menten kinetics; slope h =1) and is not valid when h # 1, such as sigmoidal (4 >1) or flat
sigmoidal (4 < 1) curves and
c) valid only when the effects of two inhibitors are mutually non-exclusive (e.g., totally
independent) and is not valid for mutually exclusive inhibitors (e.g., similar mechanisms

or modes of actions, as assumed for the classic isobologram).
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The CI method developed by Chou and Talalay lacks all the above limitations and is
fairly universal in its application and hence was chosen for studying the combination of
pterostilbene and ginger extract. In addition to the CI method, the nature of interaction in

a combination was evaluated using the curve shift analysis method [141].
A2.2 Methods

A2.2.1 General description of the CI method

For testing a combination of three inhibitors (say A, B and C), a total of 7 experiments
will be performed. In experiments 1 — 3 (Table 1), inhibition of BUPG formation will be
monitored at a suitable BUP concentration (< K,,) and a wide range of concentrations
(say 0.001 — 100 uM) of inhibitors A, B and C to get inhibition curves for each individual
inhibitor. These three experiments will determine the individual potency (ICsg) of each of
the three inhibitors. Parameters like f, (fraction of BUPG formation inhibited), ICsy and h
(slope) will be estimated using equation 1 (called the median effect equation) [184].

Dx = ICso x [f, (1-f)]"" (1)
where Dy = inhibitor concentration, f, = fraction of BUPG formation inhibited, h = slope of the

saturation curve and ICsy = concentration of inhibitor or combination required to inhibit 50% of
BUPG formation

The next four experiments will focus on testing equipotent combinations of A+B, B+C,
A+C and A+B+C in the similar manner to get f,, ICso, and slope (h) values for each
combination. Based on these experiments, CI values will then be calculated using

equation 2:[184]

Dy Dy 2]
(Dx)a (Dx)B + (Dx)c 2)
where D1, D2 and D3 represent different test concentrations of A, B and C and the denominators
indicate the dose of each inhibitor alone required to produce same % inhibition as produced by
the combination

Cl =
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Interpretation of the CI values: Appropriate determination of the CI value will indicate

if the combination of two or more inhibitors shows an additive, synergistic or an

antagonistic effect towards BUP glucuronidation. If CI = 1, then the combination will be

characterized as being additive [184]. If CI < 1, then combination will be characterized as

being synergistic [184]. If CI>1, the combination will be considered as antagonistic

[184]. For synergy and antagonism, the extremes of CI values include 0 - 1 and 1 — oo,

respectively.

Table 1: Studying the interaction between three hypothetical inhibitors

E;(Opt. Inhibitors Parameters
A B C fa h IC50 r|CI
1 D,
2 D,
3 D;
4 D+ D,
D,+
5 D,
D, + Ds
7 D;+ Dy+ Ds
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Table 1: Dy, D, and D;indicate range of
different test concentrations of the
individual inhibitors A, B and C. D;+D,,
D,tD; and D;+D; indicate range of
different test concentrations of a
combination of two inhibitors (A+B, B+C,
A+C, respectively) and D;+D,+D;
represent range of  different test
concentrations of a combination of the
three inhibitors (A+B+C). fa = fraction of
BUPG formation inhibited, h = slope of
the saturation curve and ICsy =
concentration of inhibitor or combination
required to inhibit 50% of BUPG
formation, r = linear -correlation co-
efficient and CI = combination index



A2.2.2 Evaluating the combination of pterostilbene and ginger extract using CI
method

As stated in the earlier section, the first step was to determine the potency of
inhibition of each metabolic pathway shown by pterostilbene and ginger extract,
individually using pooled human intestinal (HIM). A wide range of concentrations of
pterostilbene (0.01 — 50 uM) and ginger extract (0.01 — 75 uM) was tested in pooled HIM
(0.4 mg/ml). Pterostilbene and ginger extract were then combined in an equipotent
manner i.e. as a ratio of their ICsos and the potency of inhibition of CYP and UGT
metabolism of BUP shown by the combination was determined. The two compounds
were combined in the ratio of 1:11 and 2:1 (pterostilbene: ginger extract) for the CYP and
UGT studies, respectively. The ratio of ICsos of pterostilbene and ginger extract for
inhibition of NBUP formation appeared to be between 1:15 and 1:25. However,
practically these ratios could not be achieved due to solubility issues. Hence, the highest
achievable ratio of pterostilbene: ginger extract of 1:11 was chosen, which is biased
towards pterostilbene in its composition. The experimental procedure for determination
of inhibitory potency of the individual inhibitors and the equipotent combination and
subsequent data analysis has already been explained in detail in Chapter 4. The results of
the ICs studies are summarized in Table 2.
A2.2.3 Evaluating the combination of pterostilbene and ginger extract using curve
shift analysis method (Description taken from Chapter 4)

The effect of equipotent combination of pterostilbene and ginger extract on CYP
and UGT pathways was studied individually in HIM. These inhibitors were combined in

an equipotent manner (as a ratio of their ICso values) and a wide range of concentrations
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was studied to determine the inhibitor ratio i.e. IRso. IRso represents the concentration of
the combination that produces 50% inhibition of metabolite formation. As with earlier
inhibition studies, these combination treatments were evaluated three times for their
potential to inhibit oxidative metabolism and twice for inhibition of glucuronidation of
BUP in pooled HIM. The nature of interaction in the combination was determined using
the curve shift analysis method as previously described [141]. Briefly, the average
inhibition curves of pterostilbene, ginger extract and their equipotent combination were
plotted on the same graph; where X axis (I/ICso) represents the ICs) normalized
concentrations of the inhibitors and Y axis indicates the metabolite formation (NBUP or
BUPG) expressed as % of control. A leftward shift in the curve of the combination with
respect to the individual inhibitors would indicate a synergistic interaction whereas a
rightward shift would indicate an antagonistic interaction. No significant shift in the
combination curve with respect to the curves of the individual inhibitors would indicate
additive interactions in the combination.

A2.3 Results:

A2.3.1 Determination of nature of interaction using CI method

The results of the ICsy studies for the individual inhibitor treatments are
summarized in Table 2. As mentioned earlier the CI method accounts for both the
potency of inhibition as well as the slope of the inhibition curve. Thus, both ICsy and Hill
slope values were used and the CI at each concentration level of the combination was
calculated using equation 1 and 2 (Table 3 and 4) individually for each metabolic
pathway. For inhibition of NBUP formation, no specific pattern of interaction was

observed. There appeared to be a strong apparent synergy at extremely low
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concentrations of the combination and then some mild synergy at concentration 0.1
uM:1.1 uM of pterostilbene:ginger extract, respectively. CI values close to 1 were
observed at three intermediate concentration levels indicating additive interactions, while
an apparent antagonism was observed at the three highest concentrations (from 1.5:16.5
uM to 9:99 uM of pterostilbene:ginger extract) of the combination. For inhibition of
BUPG formation a trend of decreasing CI values with increasing concentration of the
combination was observed. However, at all the concentration levels except the two
highest concentration (75:35 uM and 100:50 uM of pterostilbene:ginger extract), strong
antagonistic interactions were observed. At the aforementioned concentrations of the
combination, additive interactions were observed since CI values were close to 1.

Table 2: Summary of results of the ICs studies in pooled HIM

Inhibitor Inhibition of NBUP formation Inhibition O.f BUPG
formation
IC50 . ICSO :
Hill slope Hill slope
(uM) P (uM) P
Ginger extract 26.9+ 6.0 0.91+0.1 47.5+3.6 1.91+0.3
Pterostilbene 1.30+£0.9 1.71 £ 0.5 249 +5.1 0.45 +0.03

Table 3: Effect of the combination on NBUP formation

*PT conc. *GEX conc.
(M) (M) f, h ICs CI
0.001 0.011 0.03 +0.02 0.06 + 0.05
0.01 0.11 0.08 +£0.00 0.13+0.002
0.05 0.55 0.07 £0.03 1.02+0.7
0.1 1.1 0.16+0.03 | 091 (PT)+ | 269 (PT)+ | 0.61 £0.14
0.5 5.5 0.34+0.05 | 1.71 (GEX) | 1.30 (GEX) 1.13+0.3
1.5 16.5 0.56 +0.04 1.46 0.3
5 55 0.69 +0.04 291+0.5
9 99 0.77 £ 0.06 369 £1.3

*PT and GEX refer to pterostilbene and ginger extract, respectively.
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Table 4: Effect of the combination on BUPG formation

PT conc. GEX conc.

(M) (M) b h 1Cso <l
0.01 0.005 -0.01 -
0.1 0.05 -0.03 -

1 0.5 0.05+0.00 142+1.27

10 5 0.15+0.01 1.91 (PT)+ | 47.5(PT)+ 8.6+ 1.54

25 12.5 0.42+0.02 | 0.45(GEX) | 24.9 (GEX) 1.8+ 0.31

50 25 0.64 +£0.03 1.2+0.19

70 35 0.75+0.02 1.0+0.11

100 50 0.87+0.02 0.7+0.10

A2.3.2 Determination of nature of interaction using the curve shift analysis method

(taken from Chapter 4)

Reproducible ICsy and Hill slope values were achieved for the combination

treatment for inhibition of CYP and UGT metabolism of BUP in pooled HIM with R*

values > 0.98 (Table 5 and Fig.1 (a) and (b)). The curve shift analysis method evaluates

the nature of interaction based on the shift in the inhibition curve of the combination in

comparison to the individual treatments. For both the pathways, the combination curve

appeared to be similar to the curve of the individual inhibitor treatments, indicating

additive interactions in the combination (Fig.2 (a) and (b)).

Table S: Inhibition by combination of pterostilbene and ginger extract

Pathway Effect of pterostilbene and ginger extract combination
IR50 . Bottom
(uM) Hill slope (% of control)
Oxidation 1.72+0.3 0.65+0.1 0
Glucuronidation 1.46 £ 0.1 1.05£0.01 0

Data represents mean + SD of IRsy, Hill slope and bottom values observed from separate
inhibition experiments. All the determinations were performed in duplicate.
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Figure 1: Inhibition of NBUP formation by pterostilbene and ginger extract

combination
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Fig 1 (a): Inhibition of NBUP formation by pterostilbene and ginger extract (1:11)
combination in pooled HIM. Data represent mean + SD of NBUP formation rate expressed as %
of control. All the determinations were performed in duplicate. Each curve represents a separate
experiment. In experiments 1, 2 and 3, the NBUP formation in control was 136 +2.17, 129 + 5.00
and 126 + 4.27 pmol/min/mg protein and R value was 0.99, 0.98 and 0.98, respectively.
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Fig 1 (b): Inhibition of BUPG formation by pterostilbene and ginger extract combination
(2:1) in pooled HIM. Data represent mean £ SD of BUPG formation rate expressed as % of
control. All the determinations were performed in duplicate. Each curve represents a separate
experiment. In experiments 1 and 2, the NBUP formation in control was 9.33 + 0.19 and 8.89 +
0.11 pmol/min/mg protein and R” value was 0.98 and 0.99, respectively.
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Figure 2: Curve shift analysis for effect on NBUP and BUPG formation in HIM
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Fig 2 (a): Curve shift analysis for effect on NBUP formation in HIM. The curves represent
average of three different curves for each inhibitor treatment. Data represent mean = SD of NBUP
formation rate expressed as % of control. Pterostilbene and ginger extract are combined in 1:11
ratio. No significant shift in the combination curve indicates additive interaction.
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Fig 2 (b): Curve shift analysis for effect on BUPG formation in HIM. The curves represent
average of two different curves for each inhibitor treatment. Data represent mean = SD of NBUP
formation rate expressed as % of control. Pterostilbene and ginger extract are combined in 2:1
ratio. No significant shift in the combination curve indicates additive interaction.
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A2.4 Conclusion:

There appears to be a discrepancy in the results of the two methods, especially for
the inhibition of BUPG formation. The CI method suggests strong antagonistic
interactions at most of the concentrations of the combination while the curve shift
analysis reveals additive interactions towards inhibition of conjugation of BUP. For
inhibition of NBUP formation, the CI method reveals synergistic interactions at
extremely low concentrations of the combination that are significantly lower than the I1Cs
values of individual the inhibitors. At the intermediate concentrations and high
concentrations of the combination, the CI method suggests additive and antagonistic
interactions, respectively. On the contrary, the curve shift analysis method indicates
additive interactions throughout the concentration range of the combination. The results
of the curve shift analysis method appear more logical because the graphs provide visual
evidence supporting the resultant conclusions. The extreme CI values at lowest
concentrations of the inhibition curve seem erroneous. At these low concentrations
(<ICsp), the extent of inhibition of BUPG formation would be negligible and the
predicted antagonistic or synergistic effect would lack clinical significance. Hence, the
curve shift analysis method was used for evaluating the interactions in the pterostilbene-

ginger extract combination.
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