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ALPHA6 BETA2 SUBUNIT CONTAINING NICOTINIC ACETYLCHOLINE RECEPTOR 
CONTRIBUTIONS TO ABUSE-RELATED EFFECTS OF NICOTINE AND ALCOHOL  
 
By Alexandra McIver Stafford, B.S. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University.  
 

Virginia Commonwealth University, 2017. 
 

Major Director, Darlene H. Brunzell, Ph.D., Associate Professor, Pharmacology and Toxicology 
 
 

 
Pharmacotherapies for tobacco and alcohol cessation are only modestly successful, so it is 

important to better understand mechanisms underlying their use and abuse. The overarching goal 

of this research is to assess α6β2 subunit containing nicotinic acetylcholine receptor 

(α6β2*nAChR; *denotes possible assembly with other subunits) contributions to abuse-related 

effects of nicotine and alcohol. In the absence of α6β2*nAChR-selective agonists, α6β2*nAChR 

gain-of-function (α6L9’S) mice provide a tool for selective activation of α6β2*nAChRs. Using 

the α6L9’S mice together with nicotine doses sub-threshold for stimulation of native nAChRs, 

these studies tested the hypothesis that activation of α6β2*nAChRs is sufficient to promote 

neurochemical and behavioral effects relevant to nicotine addiction. Intracranial infusions of an 

α6β2*nAChR-selective antagonist further tested the neuroanatomical locus of α6β2*nAChR 

contributions to mesolimbic dopamine (DA) release and nicotine reward behavior.  Our in vivo 



	   xix	  

microdialysis and nicotine conditioned place preference (CPP) studies reveal that stimulation of 

α6β2*nAChRs on ventral tegmental area (VTA) DA neurons, as well as on DA terminals in the 

nucleus accumbens (NAc) shell support nicotine reward. VTA α6β2*nAChR stimulation is 

required for elevated basal NAc DA levels in α6L9’S mice, who also show elevated nicotine 

CPP.  These studies also showed elevated anxiety-like behavior in α6L9’S mice, but no change 

in α6 subunit null mutant (α6KO) mice to suggest that elevated cholinergic tone at 

α6β2*nAChRs promotes anxiety-like behavior. To better define the molecular make-up of 

α6β2*nAChRs supporting nicotine reward and anxiety-like behavior, these studies crossed 

α6L9’S to α4 subunit knockout mice to differentiate (non-α4)α6β2* and α4α6β2*nAChR 

contributions. (non-α4)α6β2*nAChRs appear to promote nicotine reward behavior, while the 

α6β2*nAChR subtype that regulates anxiety-like behavior depends on the anxiety assay. Finally, 

these studies developed a mouse model of oral operant ethanol (EtOH) self-administration and 

assessed EtOH reinforcement in α6 heterozygous (α6HET) and α6KO mice to characterize the 

role of α6β2*nAChRs in EtOH reinforcement. EtOH self-administration was similar to wild type 

mice in α6KO mice, but not α6HET mice, suggesting that expression of α6β2*nAChRs 

modulates EtOH reinforcement. Together, these preclinical studies implicate α6β2*nAChRs in 

various abuse-related effects of nicotine and alcohol, identifying this receptor as a potential 

therapeutic target for treatment of dependence. 
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Chapter 1 – Introduction 

 
 

The prevalence of tobacco dependence is higher than for any other abused substance (U.S. 

Department of Health and Human Services, 2010), with tobacco use being the leading 

preventable cause of death worldwide (WHO, 2015). Smokers report multiple factors that 

contribute to their tobacco use, including pleasure and anxiety relief received from smoking. 

Nicotine, a primary addictive component in tobacco, exerts its behavioral and physiological 

effects via nicotinic acetylcholine receptors (nAChRs) that are normally activated by the 

endogenous neurotransmitter acetylcholine (ACh). Like nicotine, basal cholinergic signaling 

itself is known to modulate behaviors relevant to addiction (Avena and Rada, 2012; Hoebel et al, 

2007; Lanca et al, 2000; Rada et al, 2001; Xiao et al, 2016). Alcohol abuse is also a significant 

health concern, causing 5.9% of all deaths worldwide (WHO, 2014). Nicotine is commonly co-

abused with alcohol, with as many as 96% of alcoholics being smokers; thus, it is likely that 

nAChRs also mediate phenotypes relevant to alcohol use and dependence. There are a multitude 

of nAChR subtypes based on subunit composition that display different expression patterns in 

the brain where they regulate the activity of neurons to ultimately affect behavior. The 

development of nAChR subtype-selective ligands and various nAChR subunit knockout and 

transgenic mice have greatly enhanced our understanding of how nAChRs contribute to complex 

behaviors, including those relevant to addiction. Using these pharmacological and genetic 

techniques, the preclinical studies described in this dissertation aimed to characterize α6β2 
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subunit containing nAChR (α6β2*nAChR, * indicates possible assembly with other subunits) 

contributions to abuse-related behavioral and neurochemical effects of nicotine and alcohol, two 

of the most common legal abused drugs in the United States. Compared to other β2*nAChRs, 

α6β2*nAChRs are more selectively expressed in catecholaminergic nuclei in the brain 

(Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996). Important to these studies, 

α6β2*nAChRs are enriched in the mesolimbic dopamine (DA) pathway on dopamine (DA) 

neuron cell bodies in the ventral tegmental area (VTA) and on DA projection terminals in the 

nucleus accumbens (NAc). Given the restricted expression pattern of α6β2*nAChRs, especially 

in brain regions associated with the effects of most abused drugs, we believe that this nAChR 

subtype is a promising potential therapeutic target for nicotine and alcohol addiction.  

Tobacco use and nicotine dependence 
	  
Tobacco dependence is a substantial health problem worldwide. Nearly one billion people across 

the world use tobacco (Ng et al, 2014). There are many different types of tobacco products, all 

which contain nicotine. Tobacco can be consumed using smokeless tobacco products (e.g. gum, 

snus, chewing or dipping tobacco, lozenges), combustible tobacco products (e.g. cigarettes, 

cigars), water pipes, and more recently, electronic cigarettes (e-cigarettes). Cigarettes are the 

most commonly used tobacco product, representing over 90% of tobacco use (Giovino, 2007). 

Approximately one-third of people who try smoking go on to become daily smokers (USDHHS, 

1994) and only around 10% of smokers are successful at quitting (CDC, 2002). Thus, it is 

important to understand the mechanisms that underlie nicotine addiction in order to develop 

novel pharmacotherapies for smoking cessation.  

 Tobacco use disorder, as described by the Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition (DSM-V), is a problematic pattern of tobacco use that leads to clinically 



	   3	  

significant impairment or distress as manifested by at least two of the criteria listed in the DSM-

V occurring within a 12 month period (American Psychiatric Association, 2013). In addition to 

the DSM-V criteria, the degree of tobacco dependence can be characterized using the Fagerström 

Tolerance Questionnaire (FTQ) (Fagerstrom, 1978; Fagerstrom and Schneider, 1989), along with 

the modified version called the Fagerström Test for Nicotine Dependence (FTND) (Heatherton et 

al, 1991). There are also other measures of tobacco dependence that address limitations of the 

DSM-V and FTQ/FTND and consider dependence to be comprised of multiple phenotypes. 

These measures include the Heaviness of Smoking Index (Heatherton et al, 1989), Hooked on 

Nicotine Checklist (DiFranza et al, 2002), Cigarette Dependence Scale (Etter, 2005; Etter et al, 

2003), Wisconsin Inventory of Smoking Dependence Motives (Piper et al, 2006), and Nicotine 

Dependence Syndrome Scale (Shiffman and Sayette, 2005; Shiffman et al, 2004). For detailed 

descriptions of these measures, see U.S. Department of Health and Human Services, 2010. 

Tobacco products contain more than 4,000 chemicals, some of which may contribute to 

tobacco dependence. Many studies have implicated nicotine as a potent addictive component in 

tobacco. Intravenous nicotine and smoking produce similar subjective and physiological effects, 

and nicotine has repeatedly been shown to serve as a positive reinforcer, as animals and humans 

will self-administer nicotine. Smokers self-administering nicotine report rewarding sensations, 

such as euphoria, comfort, “liking”, reduced negative mood, and reduced pain. These positive 

effects are also accompanied with negative ones, such as tension and jitteriness (Cohen and 

George, 2013; Harvey et al, 2004; Henningfield and Goldberg, 1983; Perkins et al, 1994; Rose et 

al, 2010b; Sofuoglu et al, 2008). Chronic nicotine consumption can eventually lead to 

physiological dependence, in which nicotine tolerance develops and cessation produces 

withdrawal symptoms (Benowitz, 1988).  
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Nicotine is an alkaloid found in tobacco plants, which are part of the nightshade family 

(Solanaceae). Nicotine gets its name from the tobacco plant Nicotiana tabacum, which is named 

after the French ambassor Jean Nicot de Villemain, who sent tobacco to Paris in 1560. At the 

time, smoking tobacco was believed to protect against various ailments and diseases, such as 

pain, cancer, and respiratory problems (Kell et al, 1965). The North American Indians were the 

first to introduce tobacco smoke enemas, which were used for artificial respiration and treatment 

of gastrointestinal ailments (Jones, 1827; Nordenskiold, 1929; Hurt et al, 1996). In 1828, 

Wilhelm Heinrich Posselt and Karl Ludwig Reimann first isolated nicotine from the leaves of 

tobacco plants (Posselt and Reimann, 1828; Henningfield and Zeller, 2006). Melsens then 

described the chemical formula of nicotine in 1843 (Melsens, 1843), and Adolf Pinner and 

Richard Wolffenstein discovered its structure in 1893 (Pinner and Wolffenstein, 1891; Pinner, 

1893a,b). In 1904, Amé Pictet and A. Rotschy were the first to synthesize nicotine (Pictet and 

Rotschy, 1904). By the late 17th century, nicotine was not only used in tobacco products for 

smoking, it was also used as an insecticide, acting as an antiherbivore chemical. The use of 

nicotine as an insecticide declined in the 1980s when insectisides that were cheaper and 

reportedly less harmful to humans became available (Ujváry, 1999). As per the EPA, nicotine is 

no longer available as a pesticide in the US (USEPA, 2009). However, most insectisides are still 

indirect agonists of nicotinic and muscarinic acetylcholine receptors, acting as inhibitors of 

acetylcholinesterase, which breaks down ACh. Similar to nicotine, neonicotinoids are nAChR 

agonists that are also currently used as insectisides (Tomizawa and Casida, 2005). Over the past 

few decades, neonicotinoids have come under scrutiny as they have been linked to adverse 

environmental effects such as honey-bee colony collapse (e.g. Gill et al, 2012). As a result, some 

countries have restricted their use (Cressey, 2013).  
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A cigarette contains approximately 10-14 mg of nicotine and smokers intake between 1-

1.5 mg of nicotine per cigarette (Benowitz, 1988; Benowitz and Jacob, 1984; Jarvis et al, 2001; 

Kozlowski et al, 1998). The total amount of nicotine intake ranges from about 0.1-1 mg/kg/day 

in smokers (Benowitz et al, 1984). When tobacco is smoked, nicotine enters the blood stream in 

tens of seconds, primarily through the lungs (Benowitz et al, 2009). Of all methods of nicotine 

delivery, smoking produces the highest peak blood concentration of nicotine and the most rapid 

rate of nicotine absorption, reaching the brain within 20 seconds and peak blood concentration 

within 5 minutes (Benowitz et al, 2009). This rapid increase of nicotine levels after smoking 

contributes to a more intense effect of nicotine compared to other routes of administration and 

allows the smoker to titrate their dose of nicotine to achieve the desired effect, making smoking 

the most reinforcing form of tobacco use and driving the development of dependence (Benowitz 

et al, 2009; Henningfield and Keenan, 1993) 

While cigarettes are the most commonly used tobacco product (Giovino, 2007), 

waterpipe and e-cigarette use has become increasingly prevalent (Pepper and Eissenberg, 2014). 

Depending on variables such as puff topography and certain device characteristics, e-cigarettes 

can deliver nicotine in quantities much less or much greater compared to cigarettes (Shihadeh 

and Eissenberg, 2015). E-cigarettes may have less abuse liability compared to cigarettes, as e-

cigarettes were found to be less reinforcing compared to cigarettes using a multiple choice 

procedure (Vansickel et al, 2012) and appeared less addictive than cigarettes in multiple tests of 

dependence (Etter and Eissenberg, 2015). Cigarettes and waterpipes deliver similar amounts of 

nicotine, as plasma nicotine concentration did not differ when comparing a single waterpipe use 

episode to a single cigarette smoked. In addition, subjective effects for waterpipe and cigarette 
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smoking were similar in magnitude, but lasted longer for waterpipe, suggesting that waterpipe 

smoking can produce dependence (Cobb et al, 2011). 

In the brain, nicotine binds to nAChRs to exert a wide variety of behavioral and 

physiological effects that can ultimately lead to nicotine dependence. An abundance of data 

exists demonstrating that activity at diverse nAChR subtypes is critical for nicotine’s addictive 

properties, but there is still much to be explored regarding the precise molecular make up of 

nAChR subtypes that support tobacco use and the mechanisms both upstream and downstream of 

nAChR regulation that contribute to the abuse-related effects of nicotine. In addition, the current 

smoking cessation therapies available (e.g. nicotine replacement therapy, bupropion, varenicline) 

are only modestly effective with a success rate of 20-25% (Gonzales et al, 2006), warranting 

further research in order to identify novel therapeutic targets for smoking cessation.  

Alcohol use and dependence and its co-abuse with nicotine 
	  
As with nicotine, alcohol abuse is a significant global health concern, ranking among the top five 

risk factors for disease, disability, and death. In the US, the 12-month prevalence of alcohol use 

disorder (AUD) is 13.9% and the lifetime prevalence is 29.1% (Grant et al, 2015). In addition to 

its vast health consequences, alcohol abuse also poses a great economic burden; in the US alone, 

it costs $366 billion per year (Chatterjee and Bartlett, 2010). According to the DSM-V, AUD is 

defined as a problematic pattern of alcohol use leading to clinically significant impairment or 

distress, as manifested by at least two of the criteria listed by the DSM-V occurring within a 12-

month period (American Psychiatric Association, 2013).  

There is a high prevalence of comorbid alcohol and nicotine abuse. In fact, nicotine and 

alcohol are the most common co-abused drugs (Sussman et al, 2011). As many as 96% of 

alcoholics also smoke tobacco (Barrantes et al, 1995; Marks et al, 1997; Miller and Gold, 1998). 
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Having an AUD decreases successful smoking cessation attempts and increases smoking relapse 

rates (Hymowitz et al, 1997; Kahler et al, 2010; Toll et al, 2012; Weinberger et al, 2013). 

Tobacco smokers are more likely to binge drink, consume more alcohol, and are more likely to 

meet DSM-V criteria for an AUD compared to non-smokers (Britt and Bonci, 2013; Carmody et 

al, 1985; DiFranza and Guerrera, 1990; McKee and Weinberger, 2013). Smoking is also 

associated with increased alcohol dependence, increased alcohol withdrawal syndrome, 

increased binge drinking, and decreased rates of alcohol cessation (Chiappetta et al, 2014; 

McKee et al, 2013). Nicotine even increases drinking in non-dependent humans (Barrett et al, 

2006; Harrison and McKee, 2008; Kouri et al, 2004) and rodents (Alen et al, 2009; Hauser et al, 

2012; Le et al, 2010; Le et al, 2003; Olausson et al, 2001). Studies have also shown that nicotine 

enhances alcohol reinforcement in humans (McKee et al, 2013) and in rodent models of self-

administration (Doyon et al, 2013a). Overall, levels of alcohol use are higher in smokers and 

smoking is more common in individuals with an AUD (Craig and Van Natta, 1977; Dawson, 

2000; Schorling et al, 1994).  

Alcohol is known to interact directly or indirectly with different types of molecules, such 

as enzymes and ion channels, to exert its behavioral and physiological effects. Alcohol can bind 

to alcohol dehydrogenase (Ramaswamy et al, 1994; Rosell et al, 2003; Svensson et al, 2000), 

and it can also enhance adenylyl cyclase production of adenosine 3’,5’-monophosphate (cAMP) 

from adenosine triphosphate (ATP) (Yoshimura et al, 2006; Yoshimura and Tabakoff, 1995). 

Alcohol is thought to modulate opioidergic transmission at multiple levels, including 

biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous 

opioid ligands (Mendez and Morales-Mulia, 2008). Alcohol interacts with potassium channels, 

including G protein-activated inwardly rectifying channels, large-conductance calcium-activated 
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channels, and Shaw2 voltage-gated channels (Covarrubias and Rubin, 1993; Dopico et al, 1998; 

Kobayashi et al, 1999; Lewohl et al, 1999). Several classes of ligand-gated ion channels are also 

affected by alcohol. Alcohol can inhibit NMDA receptors and enhance GABAA and glycine 

receptor function (Dildy-Mayfield et al, 1996; Mascia et al, 1996). In addition, n-alcohols can 

inhibit GABAC receptors (Mihic and Harris, 1996), and short-chain alcohols enhance nAChR 

function, while long-chain alcohols block nAChRs (Borghese et al, 2003; Godden et al, 2001). 

Given the high rate of nicotine and alcohol co-abuse, it is likely that nAChRs, the 

primary molecular targets of nicotine, may contribute to the abusive properties of alcohol as 

well; an accumulation of evidence (to be discussed in detail below) suggests that this is the case. 

Relatively speaking, however, the contribution of nAChRs to the abuse-related effects of alcohol 

is not well understood. Thus, research into the role of nAChRs in alcohol’s addictive properties 

is greatly warranted. The success rate of medications available for the treatment of AUDs 

(disulfiram, naltrexone, and acomprosate) is around 30% at the highest (Chatterjee et al, 2010; 

Spanagel, 2009), so identifying novel therapeutic targets for the treatment of AUDs is important; 

nAChRs are a promising candidate for the development of these treatments. In fact, varenicline, 

which is a FDA-approved smoking cessation aid with high therapeutic efficacy targeting α7- and 

β2*nAChRs (Gonzales et al, 2006; Jorenby et al, 2006), is effective in reducing some abuse-

related effects of EtOH. Varenicline reduces EtOH intake and self-administration in rodents 

(Bito-Onon et al, 2011; Feduccia et al, 2014; Hendrickson et al, 2010; Kamens et al, 2010b; 

Santos et al, 2013; Steensland et al, 2007) and it decreases EtOH self-administration and craving 

after a priming dose of EtOH in humans (McKee et al, 2009). Varenicline alters EtOH’s 

reinforcing and rewarding in the absence of nicotine, suggesting that endogenous cholinergic 

activity regulates these effects.   
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Nicotinic acetylcholine receptors  
 
nAChRs, which are endogenously targeted by ACh, are the primary target of nicotine and other 

exogenous nicotinic agonists and antagonists. These receptors belong to the superfamily of cys-

loop ligand-gated ion channels that also includes γ-amino butyric acid (GABA), 5-

hydroxytryptamine (5-HT), and glycine receptors. nAChRs were first purified from the electric 

organ of the Torpedo fish where they were easily discovered, as they make up 40% of the protein 

content. The discovery of α-bungarotoxin, a component of krait snake venom, which binds to 

nAChRs to promote paralysis at the neuromuscular junction, aided in the purification of 

nAChRs. α-bungarotoxin was used on affinity columns to isolate nAChRs from the electric 

organs (Albuquerque et al, 2009).  

nAChRs can be separated into two categories: muscle and neuronal nAChRs. Muscle 

nAChRs are composed of α1, β1, δ, γ, and ε subunits that assemble in a pentameric arrangement 

around a central pore. There are two main types of muscle nAChRs, including the embryonic 

(α1)2β1δγ nAChR and the adult (α1)2β1δε nAChR, which are located at the neuromuscular 

junction (Mishina et al, 1986). Neuronal nAChRs, which are the focus of this dissertation, are 

also pentamers but are made up of either five identical α subunits to make homopentameric 

nAChRs or five α and β subunits to make heteropentameric combinations arranged around a 

central pore. To date, nine α subunits (α2-10) and three β subunits (β2-4) have been identified to 

yield a wide variety of receptor subtypes expressed in the peripheral and central nervous system 

(CNS). All nAChR subunits are expressed in mammals, with the exception of α8, which has 

only been found in avian tissue. Homomeric nAChRs are composed of α7-α9 subunits. 

Heteromeric nAChRs are composed of a combination of α and β subunits, including α2-6 and 

β2-4. More recently, researchers have discovered that α9 and α10 also assemble together to form 
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a heteromeric nAChR (Elgoyhen et al, 2001; Lustig et al, 2001; Sgard et al, 2002).	  Ligands bind 

to homomeric nAChRs at the interface between α subunits, while they bind to heteromeric 

nAChRs at the interface between α and β subunits. α5 and β3 are accessory subunits, meaning 

they do not participate in ligand binding (Dani and Bertrand, 2007; Gotti et al, 2009). Instead, 

these two accessory subunits contribute to the receptor’s channel permeability, binding affinity, 

desensitization, sensitivity to allosteric modulators, and sensitivity to up-regulation (Kuryatov et 

al, 2008; Moroni et al, 2008; Moroni et al, 2006; Tapia et al, 2007). Moreover, it has been 

shown that the presence of β3 is important for the formation of α6β2*nAChRs and the loss of β3 

alters the assembly, degradation, and trafficking of the receptor (Gotti et al, 2006). 	  

nAChR subunits have a hydrophilic extracellular NH2-terminal domain that acts as the 

ligand binding site. This extracellular domain is followed by three hydrophobic transmembrane 

domains (M1-M3), an intracellular loop, and finally a fourth hydrophobic transmembrane 

domain (M4) with an extracellular COOH-terminal sequence. The M2 domain lines the pore, the 

M1 and M3 domains surrounds the M2 domain, separating it from the lipid bilayer of the cell 

membrane, and the M4 domain is the most exposed to the lipid bilayer. The M2 domain is 

important for establishing the ion gate, receptor selectivity, and channel conductivity. When the 

receptor is unbound, hydrophobic residues in helices of the M2 domains of all five subunits form 

a barrier, blocking the passage of ions through the pore. When a ligand binds to the receptor, the 

M2 domains rotate to open the channel; this torque is transferred from the ligand binding site in 

the extracellular NH2-terminal domain through interactions between residues in this extracellular 

domain, including the Cys-loop and linker region between M2 and M3. More specifically, 

residues in the Cys-loop interact with residues in the linker region, acting as a pivot around 

which the M2 domain rotates. Mutations in the M2 domain that substitute hydrophobic residues 
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with hydrophilic residues increases channel permeability. In addition, the M4 domain undergoes 

the greatest structural change during channel opening due to its proximity to the lipid bilayer, 

where it has fewer contacts with other proteins. This movement may be functionally relevant, as 

a conserved cysteine residue seems to be involved in receptor aggregation and interaction with 

cholesterol and other lipid molecules (Albuquerque et al, 2009; Gotti et al, 2009). For an 

illustration of the subunit and receptor, see Fig. 1.1.  
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Figure 1.1 – Structure of nicotinic acetylcholine receptors (nAChRs). a) Illustration of 
nAChR subunits arranged around a cation-conducting pore. Each subunit is made up of four 
transmembrane domains (M1-M4). b) Representation of a single nAChR subunit, which is made 
up of a NH2-terminal extracellular domain containing a cys-loop, four transmembrane domains 
(M1-M4), a linker between M1 and M2, a cytoplasmic domain (M3-M4 loop), and an 
extracellular COOH-terminal domain. The ligand binding site is located in the NH2-terminal 
extracellular domain.   
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 nAChRs can exist in three conformational states: resting, open, or desensitized. In the 

absence of agonist, the receptor is in the resting state with the channel closed, blocking the 

passage of cations. When an agonist binds to the receptor, it undergoes a conformational change 

and transitions to the open state, allowing sodium and calcium to flow through the channel down 

their electrochemical gradient into the cell. This can lead to depolarization of neurons, 

facilitation of neurotransmitter release, or activation of downstream signaling cascades. 

Prolonged exposure to agonist causes the receptor to transition into the desensitized state, where 

agonist is bound, but the channel is closed and cations cannot pass through the pore (Gotti et al, 

2009). Desensitization of nAChRs by ACh is thought to be prohibited by acetylcholinesterase, 

the degradative enzyme of ACh (Brown et al, 1936; Katz and Thesleff, 1957; Thesleff, 1955). 

Nicotine can either mimic or block ACh signaling at nAChRs to exert its effects, which are 

likely stronger compared to ACh, as there is no enzymatic breakdown of nicotine. That is, 

nicotine affects certain behaviors and physiological processes through activation of nAChRs, 

while it affects others by inhibition via desensitization of the receptor (Picciotto et al, 2008). 

Micromolar concentrations of nicotine activate and subsequently desensitize most nAChRs, 

while nanomolar concentrations preferentially desensitize most nAChRs without first activating 

them (Fenster et al, 1997; Grady et al, 2012; Kuryatov and Lindstrom, 2011; Lester and Dani, 

1995; Lu et al, 1999; Mansvelder et al, 2002; Pidoplichko et al, 1997). Studies have shown that 

brain concentrations of nicotine peak at the micromolar level (1-3µM), but are likely maintained 

on a nanomolar scale (200-450 nM) throughout the day (Rose et al, 2010a). Concentrations of 

nicotine achieved in smokers initially activate nAChRs on midbrain DA neurons to increase 

neuronal activity. Upon prolonged exposure to these low levels of nicotine, which mimics the 

steady low levels of nicotine maintained throughout the day in smokers, nAChRs are 
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desensitized, resulting in a reduction of DA neuron activity (Pidoplichko et al, 1997). This 

phenomenon could explain why the first cigarette of the day is the most pleasureable (Dani and 

Heinemann, 1996), and may further explain some aspects of tolerance to nicotine’s rewarding 

effects upon repeated nicotine exposure. 

The effect of nicotine on the brain and resulting behavioral outputs is based on activity at 

a wide variety of nAChR subtypes that have differential expression patterns, as well as unique 

pharmacological (e.g. varying affinities and potencies of ligands) and functional properties. 

nAChRs are distributed widely throughout the brain, including areas associated with addiction 

(Dani et al, 2007; Dani and Harris, 2005; Dani et al, 1996; De Biasi and Dani, 2011; Leslie et al, 

2013). nAChRs act as neuromodulators, being expressed on many different neurons that release 

a variety of neurotransmitters. nAChRs are located all along the neuron on preterminal, 

presynaptic, postsynaptic, axonal, dendritic, and soma regions. Preterminal and presynaptic 

nAChRs modulate neurotransmitter release, while postsynaptic and nonsynaptic nAChRs are 

involved in neuronal excitation and participate in the modulation of circuits and enzymatic 

processes. Through these neuronal mechanisms, nAChRs have a wide variety of functions in the 

CNS, being involved in learning, memory, attention, development, etc. (Albuquerque et al, 2009; 

Dani et al, 2007). These functions are largely based on subtype and vary depending on brain 

region.  

 Nicotine has varying potencies and affinities at the different nAChR subtypes. Nicotine is 

the most potent nicotinic agonist and has the highest affinity at β2*nAChRs compared to other 

nAChR subtypes (Grady et al, 2010; Pauly et al, 1991; Whiting and Lindstrom, 1988; Xiao and 

Kellar, 2004). β2*nAChRs are the most common nAChR subtype in the brain and are critical for 

many of nicotine’s addictive properties, including reward, reinforcement, and anxiety relief (for 
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review, see Brunzell et al, 2015). The β2 subunit primarily assembles with α4 and/or α6 to make 

up three subclasses of β2*nAChRs: α4β2*nAChRs, α4α6β2*nAChRs, and (non-

α4)α6β2*nAChRs. The α4α6β2*nAChRs have the highest sensitivity to nicotine (Exley et al, 

2008; Kuryatov et al, 2011; Liu et al, 2012; Salminen et al, 2007; Salminen et al, 2004), and are 

persistently activated in the VTA at concentrations of nicotine (300 nM) similar to those 

achieved by smokers that typically desensitize other nAChRs (Liu et al, 2012). α-conotoxin MII 

(α-Ctx MII)-insensitive α4β2*nAChRs are widely expressed in the brain, while α-Ctx MII-

sensitive α6β2*nAChRs are more selectively expressed in catecholaminergic nuclei 

(Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996). This dissertation aims to 

investigate the subunit make-up of β2*nAChRs, especially those expressed in the mesolimbic 

DA pathway, that modulate abuse-related effects of nicotine and alcohol.  

Studying the function of β2*nAChRs: genetic and pharmacological tools  
 
The availability of various nAChR subunit knockout and transgenic mice and nAChR subtype-

selective ligands are widely utilized for the study of the function of nAChR subtypes. Studies in 

nAChR subunit knockout and transgenic mice, where the nAChR subunit of interest is silenced 

or mutated, are useful to elucidate the role of specific nAChR subtypes. The α3-7, α9, β2-4 

subunits have all been knocked out in mice, and all but the α3KO mice are viable and grossly 

normal (Gotti and Clementi, 2004). There are drawbacks to using such mice; in the presence of a 

loss- or gain-of-function mutation, potential developmental adaptations may occur that can lead 

to functional compensation by other nAChR subtypes, which can confound interpretation of 

results. nAChR subtype-selective agonists and antagonists are also used to study the function of 

nAChRs. Use of these selective ligands complement studies in nAChR subunit knockout and 
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transgenic mice and can provide insight into whether behavioral or physiological changes 

observed in genetically engineered mice are a result of developmental adaptation/functional 

compensation. However, while there are ligands selective for various nAChR subtypes, they are 

not necessarily specific, as many have affinity at other nAChRs. 

Studies in β2KO mice (Picciotto et al, 1995) provide valuable insight into the function of 

β2*nAChRs but, these data should be carefully interpreted due to the limitations of using 

knockout mice discussed above. While β2KO mice are grossly normal, development of the 

visual system is altered (Bansal et al, 2000; Rossi et al, 2001). Other studies commonly use 

DHβE, a β2-selective antagonist, and A-85380, a β2-selective agonist, as pharmacological tools 

to elucidate the function of β2*nAChRs. As mentioned above, nAChR subtype-selective ligands 

circumvent potential compensatory mechanisms that may occur in knockout or transgenic mice, 

but it should be noted that while DHβE and A-85380 are selective for β2*nAChRs, they are not 

necessarily specific, as they may have affinity for other nAChR subtypes. While these tools have 

provided great insight into β2*nAChR function, they are incapable of differentiating the various 

β2*nAChR subtypes. 

The studies in this dissertation aim to investigate α6β2*nAChR contributions to abuse-

related effects of nicotine and alcohol using genetic and pharmacological tools, including the 

α6β2*nAChR-selective antagonist, α-Ctx MII, as well as α6KO and α6β2*nAChR gain-of-

function (α6L9’S) mice. α6KO mice (Champtiaux et al, 2002) are grossly normal, exhibiting no 

neurological or behavioral deficits. Specifically, there are no developmental alterations in α6KO 

mouse visual or dopaminergic systems, where α6β2*nAChRs are highly expressed. However, 

α6KO mice exhibit an increase in α4β2*nAChRs as shown by epibatidine binding studies 

(Champtiaux et al, 2003), indicating potential functional compensation that may confound 
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interpretations of results generated using these α6KO mice. The α6β2*nAChR-selective 

antagonist, α-Ctx MII (Cartier et al, 1996), is also available to study the effects of α6β2*nAChR 

loss-of-function and complement knockout studies. It should be noted that α-Ctx MII also binds 

to α3β2*nAChRs, which are expressed in some brains areas where α6β2*nAChRs are located. 

The binding affinity of α-Ctx MII for α3β2*nAChRs (Ki=50 nM) is approximately 50-fold 

lower compared to α6β2*nAChRs (Ki=1.1 nM), and α-Ctx MII is slightly more potent at 

α6β2*nAChRs (IC50=0.39 nM) compared to α3β2*nAChRs (IC50=0.5-2.2 nM) (Gotti et al, 

2006). There are other conotoxin derivatives, such as α-Ctx PIA (Dowell et al, 2003), that are 

selective for α6β2* versus α3β2*nAChRs (IC50=0.69 nM and 74.2 nM, respectively) (Gotti et 

al, 2006). More recently, another α6β2*nAChR-selective antagonist, r-bPiDI, was developed 

(Beckmann et al, 2015). Unlike α-Ctx MII, which must be administred intracranially as it does 

not cross the blood brain barrier, r-bPiDI crosses the blood brain barrier, allowing for systemic 

administration. Studies in this dissertation utilized α6KO mice and intracranial infusions of α-

Ctx MII in combination with behavioral and neurochemical techniques to elucidate functions of 

α6β2*nAChRs. 

α6KO mice and α6β2*nAChR-selective antagonists used to reduce α6β2*nAChR 

function have been valuable in investigating the function of α6β2*nAChRs, but there are limited 

tools available to activate this nAChR subtype. To date, development of α6β2*nAChR-selective 

agonists has been unsuccessful due to poor function of α6β2*nAChRs in heterologous 

expression systems (Drenan et al, 2008). As result, Drenan et al developed an α6β2*nAChR 

gain-of-function mouse strain (Drenan et al, 2008), which can be used as an alterative strategy to 

selectively activate α6β2*nAChRs in the absence of a selective agonist. These BAC transgenic 



	   18	  

mice (α6L9’S) possess a single leucine to serine point mutation at the 9’ position of the M2 

pore-forming region of the α6 subunit. This mutation renders the α6β2*nAChRs hypersensitive 

to ACh and nicotine, so that sub-threshold concentrations of these agonists are able to selectively 

activate α6β2*nAChRs in the absence of activation of other nAChRs that don’t respond to these 

low concentrations of ACh and nicotine. For example, sub-threshold concentrations of ACh and 

nicotine are able to increase striatal DA in α6L9’S synaptosome preparations and activate VTA 

DA neurons in α6L9’S midbrain slices compared to WT littermates (Cohen et al, 2012; Drenan 

et al, 2010; Drenan et al, 2008; Engle et al, 2013; Powers et al, 2013; Wang et al, 2014b); these 

in vitro effects are blocked by α-Ctx MII, confirming that this hypersensitivity is mediated by 

α6β2*nAChRs. Behaviorally, these gain-of-function α6L9’S mice exhibit locomotor 

hyperactivity at baseline and in response to doses of nicotine that have no effect in WT mice 

(Berry et al, 2015; Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 2008). α6L9’S mice 

show normal expression of α6β2*nAChRs, with normal localization and intensity of [125I]-α-Ctx 

MII. To confirm this, [125I]-epibatidine binding coupled with inhibition by unlabeled α-Ctx MII 

revealed normal levels and localization of α6β2* and α4β2*nAChRs (Drenan et al, 2008). 

Further, α6L9’S DAT levels are similar to or higher than in WT mice and DA turnover is 

unchanged (Drenan et al, 2010; Wang et al, 2014). Complementary to genetic and 

pharmacological tools that inactivate α6β2*nAChRs, the studies described in this dissertation 

also used α6L9’S gain-of-function mice as a tool to selectively activate α6β2*nAChRs in vivo 

using doses of nicotine sub-threshold to effect WT mice, allowing function isolation of this 

nAChR subtype.   
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Nicotinic contributions to tobacco and alcohol dependence in humans 
 
Human studies suggest that β2*nAChRs contribute to tobacco use and dependence. PET and 

SPECT imaging studies show that nicotine binds to about 88% of the β2*nAChRs in brains of 

smokers after a single cigarette (Brody et al, 2006) and that smoking to satiety (2.4 cigarettes on 

average) results in a prolonged period of β2*nAChR occupancy (Esterlis et al, 2010). 

Postmortem studies show an up-regulation of α4β2*nAChR numbers in the brains of smokers 

(Benwell et al, 1988; Breese et al, 1997). Imaging studies have also shown α4β2*nAChR up-

regulation in various brain regions (e.g. striatum, cerebellum, cortex, midbrain, corpus callosum) 

in smokers (Brody et al, 2013; Cosgrove et al, 2009; Mamede et al, 2007; Mukhin et al, 2008; 

Staley et al, 2006; Wullner et al, 2008). In addition, decreased α4β2*nAChRs expression in the 

brains of smokers has been associated with better smoking cessation outcomes (Brody et al, 

2014). Further, the β2*nAChR partial agonist varenicline promotes smoking cessation by 

reducing craving, withdrawal, and pleasurable effects of smoking (Cahill et al, 2014; Ebbert, 

2013; Fagerstrom and Hughes, 2008; Gonzales et al, 2006; Jorenby et al, 2006).  

Genome-wide associated studies (GWAS) have failed to provide convincing data 

implicating polymorphisms in the gene encoding the β2 subunit (CHRNB2) in the risk for 

tobacco dependence. However, candidate gene studies have identified CHRNB2 polymorphisms 

that are associated with the subjective effects of nicotine, FTND scores, and cessation therapy 

outcomes (Conti et al, 2008; Ehringer et al, 2007; Heatherton et al, 1991; Hoft et al, 2011; King 

et al, 2012; Perkins et al, 2009; Wessel et al, 2010). β2 primarily assembles with the α4 and α6 

subunits in brain areas associated with nicotine addiction. Not surprisingly, candidate gene 

studies have shown that variation in the genes that encode the α4 and α6 subunits (CHRNA4 and 

CHRNA6, respectively) is linked to measures of tobacco dependence. Multiple CHRNA4 
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polymorphisms are associated with greater FTND scores, cigarettes per day (CPD), and DSM-IV 

symptoms (Han et al, 2011; Kamens et al, 2013; Li et al, 2005; Saccone et al, 2009; Saccone et 

al, 2010; Saccone et al, 2007; Voineskos et al, 2007). These gene variants are also linked to 

greater subjective effects and better smoking cessation outcomes (Hoft et al, 2011; Hutchison et 

al, 2007). In addition, linkage analysis has revealed rare CHRNA4 variants are protective against 

tobacco dependence. These protective variants are also associated with altered β2*nAChR 

binding and increased expression and function of α4β2*nAChRs in the brain (McClure-Begley 

et al, 2014; Xie et al, 2011). In regards to CHRNA6, genetic variation is associated with 

smoking initiation, initial sensitivity to nicotine, and positive subjective effects that predict 

vulnerability to smoking (Thorgeirsson et al, 2010; Zeiger et al, 2008). One polymorphism 

located upstream of the CHRNA6-CHRNB3 gene cluster has also been associated with risk for 

developing nicotine dependence (Culverhouse et al, 2014; Hoft et al, 2009; Saccone et al, 2009; 

Saccone et al, 2010; Saccone et al, 2007; Stevens et al, 2008; Thorgeirsson et al, 2010; Wang et 

al, 2014a).  

While GWAS studies were unsuccessful in identifying CHRNB2 polymorphisms 

associated with nicotine dependence, they have identified single nucleotide polymorphisms 

(SNPs) within the CHRNA3-CHRNA5-CHRNB4 gene cluster, encoding the α3, α5, and β4 

subunits, that are associated with nicotine dependence (Berrettini et al, 2008; Bierut et al, 2008; 

Saccone et al, 2009; Thorgeirsson et al, 2010). Additional candidate gene studies and meta-

analyses identified SNPs in this gene cluster that are associated with nicotine dependence (Chen 

et al, 2009; Keskitalo et al, 2009; Munafo et al, 2012), smoking initiation (Grucza et al, 2010; 

Schlaepfer et al, 2008; Sherva et al, 2008), and heavy smoking (Liu et al, 2010; Stevens et al, 

2008).  
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Genetic variation in the nicotinic subunits has also been associated with alcohol use and 

dependence. SNPs in CHRNB2 are linked to the initial subjective response to alcohol (Ehringer 

et al, 2007). Frequency of binge drinking in young adults is associated with SNPs in CHRNA4 

(Coon et al, 2014), and variation in the CHRNB3-CHRNA6 gene cluster have been linked to 

heavy alcohol consumption (Hoft et al, 2009). Polymorphisms in the CHRNA3-CHRNA5-

CHRNB4 gene cluster different from ones associated with nicotine dependence have been 

associated with alcohol dependence as defined by the DSM-IV (Wang et al, 2009). Level of 

response (LR) to alcohol, which is defined by an individual’s subjective and physiological 

response to a given dose and blood level of alcohol (Enoch, 2014), has also been associated with 

two SNPs within this gene cluster (Joslyn et al, 2008; Saccone et al, 2007). In addition, SNPs in 

the CHRNA3-CHRNA5-CHRNB4 gene cluster that are associated with nicotine dependence 

have also been shown to be a risk factor for early initiation of alcohol use and frequency of binge 

drinking in adolescence (Lubke et al, 2012; Schlaepfer et al, 2008).  

Neuroanatomy of nAChRs and their function in the mesolimbic dopamine pathway 
 
The mesolimbic DA pathway is made up of DA neurons that originate in the VTA and project to 

the NAc, where DA is released. As observed with most other drugs of abuse, nicotine increases 

DA levels in the NAc (Di Chiara and Imperato, 1988). The NAc is divided into two main regions 

known as the NAc core and NAc shell. Intravenous nicotine administration results in an initial 

preferential increase in NAc shell DA release (Pontieri et al, 1996). Upon repeated 

noncontingent injections of nicotine, DA release in the NAc core becomes sensitized, while it 

remains unchanged in the shell (Benwell and Balfour, 1992; Cadoni and Di Chiara, 2000). This 

sensitization in the core is also observed with nicotine self-administration in rats (Lecca et al, 

2006). These studies suggest that nicotine initially engages the NAc shell to promote its 
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reinforcing effects, while the NAc core comes into play during the later stages of dependence, 

such as cue-induced reinstatement of nicotine seeking (D'Souza and Markou, 2014). 

In humans, PET imaging has revealed that smoking reduces DA receptor availability in 

the ventral striatum, reflecting an increase in DA release. The magnitude of DA release in the 

ventral striatum is related to reduction of craving and withdrawal symptoms, suggesting a role 

for striatal DA transmission in nicotine dependence (Barrett et al, 2004; Brody et al, 2009; 

Brody et al, 2004; Le Foll et al, 2014). Moreover, baseline striatal DA tone appears to be a risk 

factor for addiction (Volkow et al, 2012). In regards to smoking, the results are inconsistent. 

Several SPECT studies using various DA receptor ligands observed no differences in baseline 

striatal DA receptor availability (Staley et al, 2001; Yang et al, 2006; Yang et al, 2008). 

However, these studies were admittedly underpowered. Several PET studies with larger sample 

sizes observed lower baseline DA receptor availability in the striatum and putamen of smokers 

(Brown et al, 2012; Fehr et al, 2008). 

In rodents, electrophysiological and microdialysis studies have shown that nicotine 

stimulates VTA DA neuron firing (Calabresi et al, 1989; Grenhoff et al, 1986; Keath et al, 2007; 

Mansvelder et al, 2002; Picciotto et al, 1998; Pidoplichko et al, 1997; Pidoplichko et al, 2004; 

Zhang et al, 2009) and DA release in the NAc (Di Chiara et al, 1988; Picciotto et al, 1998; 

Zhang et al, 2009). Nicotine results in a persistent increase of NAc DA release from terminals of 

VTA DA neurons despite rapid desensitization of nAChRs. To explain this conundrum, one 

study demonstrated that nAChR subtypes with different desensitization properties regulate 

GABAergic and glutamatergic inputs to the VTA. Nicotine is thought to enhance glutamatergic 

input to DA neurons through α7 nAChR activation, while β2*nAChRs on GABA neurons are 

desensitized, reducing inhibition of DA neurons. This results in a net excitation of DA neurons, 
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producing prolonged DA release seen in response to nicotine (Mansvelder et al, 2002). 

Stimulation of the mesolimbic DA pathway is thought to underlie the abuse-related effects of 

nicotine in rodents. This is supported by data showing that lesions of VTA DA projections to the 

NAc attenuate nicotine self-administration (Corrigall et al, 1992) and nicotine conditioned place 

preference (CPP) in rats (Sellings et al, 2008).  

 A variety of nAChR subtypes are expressed in the mesolimbic DA pathway. Many of the 

nAChR subunits are expressed in the VTA, but the α4β2* and α6β2*nAChRs have been 

identified as the two main populations located on VTA DA neuron soma (Champtiaux et al, 

2003; Drenan et al, 2008; Gotti et al, 2010; Klink et al, 2001; Zoli et al, 2002). The α5 accessory 

subunit is also highly expressed in the VTA; about half of the α4β2*nAChRs expressed in the 

VTA assemble with the α5 subunit (Chatterjee et al, 2013). Other nAChRs expressed in the 

VTA include α7 and α3*nAChRs. In the NAc, there are four main populations of nAChRs 

expressed on DA terminals. These include the α4β2*, α4α5β2*, α6β2*, and α4α6β2*nAChRs. 

According to one study, there is very little α5 expression on these terminals (Salminen et al, 

2004). α7 nAChRs are also expressed on cortical and thalamic inputs to the NAc (Champtiaux et 

al, 2003; Kaiser and Wonnacott, 2000; Marchi et al, 2002; Rousseau et al, 2005).   
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Figure 1.2 – Diagram of the mesolimbic dopamine (DA) pathway and its expression of 
nicotinic acetylcholine receptors (nAChRs). The mesolimbic DA pathway consists of DA 
neurons that originate in the ventral tegmental area (VTA) and project to the nucleus accumbens 
(NAc). These neurons synapse with medium spiny neurons (MSN) in the NAc. The medium 
spiny neurons receive glutamatergic input from the prefrontal cortex (PFC) and cholinergic input 
from interneurons (CIN). In VTA, the DA neurons receive glutamatergic input from the PFC and 
pedunculopontine tegmental nucleus (PPTg), GABAergic input from GABA interneurons, and 
cholinergic input from the pedunculopontine (PPn) and laterodorsal tegmental nuclei (LDTn).   
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In humans, mesolimbic β2*nAChRs appear to play a role in nicotine dependence, as this 

nAChR subtype is up-regulated in the striatum and midbrain of smokers (Cosgrove et al, 2009; 

Mukhin et al, 2008; Staley et al, 2006). β2*nAChR availability is correlated with the urge to 

smoke to relieve withdrawal symptoms during early abstinence (Staley et al, 2006). In rodent 

studies, β2*nAChRs are critical for nicotine-stimulated mesolimbic DA neuron activity. Nicotine 

desensitizes GABAergic β2*nAChRs to reduce the inhibitory drive on DA neurons in the VTA 

(Mansvelder et al, 2002). Nicotine-stimulated VTA DA neuron firing is ablated in β2 null 

mutant (β2KO) mouse slice preparations (Picciotto et al, 1998). Spontaneous VTA DA neuron 

firing is also absent in anesthesized β2KO mice and re-expression of β2 restores neuron firing 

(Maskos et al, 2005). Nicotine does not stimulate NAc DA release in β2KO mice (Champtiaux 

et al, 2003; Grady et al, 2002; Picciotto et al, 1998; Salminen et al, 2004) and it has been shown 

that ACh released from cholinergic interneurons acts via β2*nAChRs on NAc DA terminals, 

maintaining a high probability of action potential-evoked DA release (Threlfell et al, 2012).  

Studies in this dissertation seek to determine β2*nAChR subtypes involved in regulation 

of mesolimbic DA activity. The α4 and α6 subunits, which assemble with β2, are important for 

mesolimbic DA activity. Inward currents of DA neurons in the VTA and nicotine-stimulated DA 

release is blunted in α4 null mutant (α4KO) mice (Champtiaux et al, 2003; Exley et al, 2011; 

Liu et al, 2012; Marubio et al, 2003; Zhao-Shea et al, 2011); re-expression of the α4 subunit in 

the VTA restores nicotinic control of NAc DA release and nicotine-stimulated increases in VTA 

DA neuron firing (Exley et al, 2011). α4β2*nAChR gain-of-function mice with a single point 

mutation of the α4 subunit (α4L9’A) that renders their α4β2*nAChRs hypersensitive to nicotine 
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exhibit enhanced activation of DA neurons, suggesting that α4β2*nAChR stimulation is 

sufficient for this effect (Liu et al, 2012; Tapper et al, 2004; Zhao-Shea et al, 2011).  

In regards to α6β2*nAChRs, this nicotinic subtype has been shown to be primarily 

responsible for DA release in the NAc (Exley et al, 2008). Further, nicotine-stimulated striatal or 

NAc DA release is reduced in α6 null mutant (α6KO) mice or upon administration of α-Ctx MII 

(Azam and McIntosh, 2005; Champtiaux et al, 2003; Grady et al, 2002; Kulak et al, 1997; 

Salminen et al, 2007; Salminen et al, 2004). In the VTA, ACh and nicotine fail to increase DA 

neuron firing in α6KO mice or following local infusion of α-Ctx MII (Champtiaux et al, 2003; 

Liu et al, 2012; Zhao-Shea et al, 2011). In α4L9’A mice, α-Ctx MII infused into the VTA 

blocked the enhancement of VTA DA neuron activation in the response to physiologically 

relevant concentrations of nicotine, implicating α4α6β2*nAChRs in the control of nicotine-

stimulated DA neuron activity (Liu et al, 2012; Zhao-Shea et al, 2011). Infusion of α-Ctx MII or 

α-Ctx PIA in the VTA reduces nicotine-stimulated DA release in the NAc (Gotti et al, 2010). In 

addition, α-Ctx MII robustly attenuates evoked phasic DA release in the NAc core of rats 

(Wickham et al, 2013). α6β2*nAChR gain-of-function mice with a single point mutation in the 

M2 pore-forming region of the α6 subunit (α6L9’S) are hypersensitive to ACh and nicotine, as 

VTA DA neuron activation and striatal or NAc DA release is augmented and left-shifted in vitro 

compared to wild type (WT) mice, suggesting that stimulation of α6β2*nAChRs is sufficient for 

mesolimbic DA neurons activity (Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 2008; 

Engle et al, 2013; Powers et al, 2013; Wang et al, 2014b). This enhancement of DA neuron 

activity requires the α4 subunit, further suggesting that α4α6β2*nAChRs regulate DA neuron 

firing and DA release (Drenan et al, 2010; Engle et al, 2013). 
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α7 nAChRs appear to also be involved in nicotine’s effects on the mesolimbic pathway. 

Nicotine enhances glutamatergic input to VTA DA neurons, resulting in excitation of these DA 

neurons (Mansvelder et al, 2002). Further, intra-VTA infusion of an α7 nAChR-selective 

antagonist, methyllycaconitine (MLA) prevents nicotine-elicited increases in NAc DA release 

(Schilstrom et al, 1998). For a summary of preclinical studies investigating nAChR contributions 

to mesolimbic DA activity, see Table 1.1. 

 

  



	   28	  

Table 1.1 – Nicotinic acetylcholine receptor (nAChR) contributions to activity of the 
mesolimbic dopamine (DA) pathway 
 
Subunit Manipulation Behavioral Outcome Reference 

β2 
KO 

Evoked DA release blocked 
Nicotine-elicited DA release blocked 
 
 
Blocks ACh- and nicotine-stimulated DA 
neuron firing 
 

Zhou et al. 2001 
Picciotto et al. 1998; Grady et al. 
2002; Champtiaux et al. 2003; 
Salminen et al. 2004 
Picciotto et al. 1998; 
Champtiaux et al. 2003; Maskos 
et al. 2005 

DHβE 
Evoked DA release blocked Zhou et al. 2001; Rice and 

Cragg, 2004 

α4 
KO 

Blocks ACh- and nicotine-stimulated DA 
neuron firing  
 
 
Evoked DA release blocked 
Blunted nicotine-stimulated DA release 
 

Champtiaux et al. 2003; Marubio 
et al. 2003; Exley et al. 2011; 
Zhao-Shea et al. 2011; Liu et al. 
2012 
Exley et al. 2011 
Champtiaux et al. 2003; Marubio 
et al. 2003; McGranahan et al. 
2011 

α4L9A Hypersensitive to nicotine-stimulated DA 
neuron firing 

Tapper et al. 2004; Zhao-Shea et 
al. 2011; Liu et al. 2012 

α6 

KO 

Blocks ACh- and nicotine-stimulated DA 
neuron firing 
Blunted nicotine-stimulated DA release 
Blocks evoked DA release 

Liu et al. 2012 
 
Champtiaux et al. 2003 
Exley et al. 2011 

α6L9S 

Hypersensitive ACh- and nicotine-stimulated 
DA neuron firing  
 
Hypersensitive DA release  

Drenan et al. 2008; Engle et al. 
2013; Powers et al. 2013 
Drenan et al. 2008, 2010; Cohen 
et al. 2012 

α-CTX MII 

Blocks ACh- and nicotine-stimulated DA 
neuron firing 
Blunted nicotine-stimulated DA release 
 
 
 
 
Blocks evoked DA release 

Champtiaux et al. 2003; Zhao-
Shea et al. 2011; Liu et al. 2012 
Kulak et al. 1997; Grady et al. 
2002; Champtiaux et al. 2003; 
Salminen et al. 2004, 2007; 
Azam and McIntosh et al. 2005; 
Gotti et al. 2010 
Wickham et al. 2013 

α7 MLA Blocks nicotine-elicited DA release Schilstrom et al. 1998 
Abbreviations: acetylcholine (ACh); dopamine (DA) 
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Nicotinic regulation of nicotine reward and reinforcement 
 
Many people use tobacco due to nicotine’s pleasurable effects. An accumulation of evidence 

highly implicates β2*nAChRs in rodent models of reward and reinforcement. β2KO mice do not 

self-administer nicotine intravenously (i.v) or intracranially in the VTA (Besson et al, 2006; 

Maskos et al, 2005; Picciotto et al, 1998; Pons et al, 2008), suggesting that β2*nAChRs are 

important for nicotine reinforcement. Tail vein i.v. nicotine self-administration consisted of only 

one session (Pons et al, 2008), while jugular i.v. (Picciotto et al, 1998) and intracranial self-

administration (Besson et al, 2006; Maskos et al, 2005) was conducted over multiple sessions, 

modeling initiation and maintenance of nicotine self-administration, respectively. β2KO mice do 

not express nicotine CPP either (Walters et al, 2006), indicating that β2*nAChRs are also critical 

for nicotine reward. As nicotine is administered acutely during CPP, this likely models the initial 

rewarding properties of nicotine that often predict later risk for dependence (for review, see de 

Wit and Phillips, 2012). In addition, nicotine does not enhance conditioned reinforcement in 

β2KO mice as it does in WT mice (Brunzell et al, 2006). β2KO mice also fail to exhibit 

nicotine-stimulated locomotor activation (King et al, 2004b), which like reward and 

reinforcement is also a DA-dependent behavior.  

More specifically, β2*nAChRs expressed in the mesolimbic DA pathway are important 

for nicotine’s abuse-related effects. Local infusion of the β2-selective antagonist, dihydro-β-

erythroidine (DHβE), into the VTA reduces nicotine self-administration, while infusion into the 

NAc has no effect (Corrigall et al, 1994). Moreover, lentiviral re-expression of the β2 subunit in 

the VTA of β2KO mice rescues nicotine self-administration (Pons et al, 2008). β2 transgenic 

mice expressing β2*nAChRs only in VTA neurons show a restoration of nicotine-stimulated 
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locomotor activity after seven days of nicotine administration compared to β2KO mice (Mineur 

et al, 2009).  

Studies in this dissertation aim to investigate subtypes of β2*nAChRs that regulate 

nicotine reward. β2 primarily assembles with the α4 and α6 subunits, which are also involved in 

the rewarding and reinforcing effects of nicotine. α4KO mice do not express nicotine CPP 

(McGranahan et al, 2011; Sanjakdar et al, 2015); but see Cahir et al, 2011) and do not self-

administer nicotine i.v. (tail vein) or intracranially into the VTA (Exley et al, 2011; Pons et al, 

2008). Further, selectively deleting the α4 subunit from DA neurons is sufficient to block 

nicotine reward (McGranahan et al, 2011). However, for jugular i.v. nicotine self-administration, 

α4KO mice do not differ from WT mice (Cahir et al, 2011). α4β2*nAChR gain-of-function 

(α4L9’A) mice exhibit leftward shifts in nicotine CPP (Tapper et al, 2004) and α4-S248F mice, 

who are also more sensitive to low dose nicotine, show leftward shifts in jugular i.v. nicotine 

self-administration (Cahir et al, 2011). Like α4KO mice, α6KO mice also show reductions in 

i.v. (tail vein) or VTA intracranial nicotine self-administration (Exley et al, 2011; Pons et al, 

2008). α6KO mice also exhibit rightward shifts in the dose response curve for nicotine CPP 

(Sanjakdar et al, 2015). Local infusion of the α6β2*nAChR-selective antagonist α-Ctx MII into 

the VTA (Gotti et al, 2010) or NAc shell (Brunzell et al, 2010) decreases nicotine self-

administration. The latter finding in the NAc shell is in contrast to another study showing that 

infusion of DHβE, which inhibits both α4β2* and α6β2*nAChRs, has no effect on self-

administration when infused into the NAc (Corrigall et al, 1994). Intracerebroventricular (i.c.v.) 

(Jackson et al, 2009) or local NAc infusion of α-Ctx MII (Sanjakdar et al, 2015) blocks nicotine 

CPP. α-Ctx MII also decreases locomotor activity when infused into the VTA (Gotti et al, 2010), 

but not when infused i.c.v. (Jackson et al, 2009) or locally in the NAc shell (Brunzell et al, 
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2010). Moreover, basal and nicotine-stimulated locomotor activity is enhanced in α6L9’S mice, 

an effect blocked by D1 (SCH 23390) and D2 (sulpiride) receptor antagonism (Berry et al, 2015; 

Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 2008). This response appears to require the 

α4 subunit, as knocking out the α4 subunit in α6L9’S mice reverses this locomotor effect 

(Drenan et al, 2010).  

Initial studies indicated that α7 nAChRs do not play a critical role in nicotine reward and 

reinforcement (Pons et al, 2008; Walters et al, 2006). However, more recent data suggests that 

α7 nAChRs act in opposition to β2*nAChRs. That is, inhibiting α7 nAChRs enhances nicotine 

reward and reinforcement, while stimulating α7 nAChRs reduces nicotine’s rewarding and 

reinforcing effects (Brunzell and McIntosh, 2012; Harenza et al, 2014). Local infusion of an α7 

nAChR-selective antagonist, α-conotoxin ArIB [V11L, V16D] into the NAc or anterior cingulate 

cortex promotes nicotine self-administration, producing dramatic increases in active lever 

presses and breakpoints during a progressive ratio schedule of reinforcement (Brunzell et al, 

2012). Results from studies assessing the effects of MLA, another α7 nAChR-selective 

antagonist, on nicotine self-administration are conflicting (Grottick et al, 2000; Markou and 

Paterson, 2001), perhaps due to the fact that MLA also acts at α6β2*nAChRs (Mogg et al, 

2002). α7 null mutant (α7KO) mice show leftward shifts in nicotine CPP (Harenza et al, 2014). 

Consistently, α7-selective agonists inhibit nicotine reward and reinforcement, blocking nicotine 

CPP (Harenza et al, 2014) and reducing nicotine-self-administration (Brunzell et al, 2012). 

However, α7KO mice show reductions in oral nicotine self-administration in a two bottle choice 

paradigm after 40 days of exposure. These conflicting results suggest that α7 nAChRs may play 

different roles in the initiation versus maintenance of nicotine self-administration (Levin et al, 

2009; Pons et al, 2008).  
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 Other nAChR subunits also play a role in nicotine reward and reinforcement. α2 null 

mutant (α2KO) mice exhibit increases in nicotine self-administration (Lotfipour et al, 2013). 

When the accessory α5 subunit is genetically deleted in mice, nicotine self-administration is 

markedly increased compared to WT mice. Nicotine self-administration is normalized to WT 

levels when α5 is re-expressed in the medial habenula (Fowler et al, 2011). Overexpression of 

the β4 subunit produces reductions in nicotine intake, which is rescued by expression of the α5 

variant, D398N (Frahm et al, 2011; Morel et al, 2014; Tammimaki et al, 2012). Thus, it appears 

that β4*nAChRs and α5*nAChRs may work against each other or that assembly of 

α3β4*nAChRs with the α5 subunit may change how this subtype regulates nicotine intake. For a 

summary of the rodent data implicating nAChRs in nicotine reward and reinforcement, see Table 

1.2. 
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Table 1.2 – Nicotinic acetylcholine receptor (nAChR) contributions to nicotine reward and 
reinforcement 
 
Subunit Manipulation Behavioral Outcome Reference 

β2 
KO 

CPP blocked 
Self-administration blocked 
 
 
Conditioned reinforcement blocked 
Locomotor activation blocked 

Walters et al. 2006 
Picciotto et al. 1998; Maskos et 
al. 2005; Besson et al. 2006; 
Pons et al. 2008 
Brunzell et al. 2006 
King et al. 2004 

DHβE 
CPP blocked 
Self-administration blocked 

Walters et al. 2006 
Corrigall et al. 1994 

α2 KO Increased self-administration Lotfipour et al. 2013 

α4 
KO 

CPP blocked  
 
CPP unchanged 
Self-administration blocked  

McGranahan et al. 2011; 
Sanjakdar et al. 2015 
Cahir et al. 2011 
Pons et al. 2008; Exley et al. 
2011 

α4L9’A Enhanced nicotine CPP Tapper et al. 2004 
α4-S248F Enhanced self-administration Cahir et al. 2011 

α5 KO Increased self-administration Fowler et al. 2011 

α6 

KO 
CPP right-shifted 
Self-administration reduced 

Sanjakdar et al. 2015 
Pons et al. 2008; Exley et al. 
2011 

α-CTX MII 

CPP blocked 
 
Self-administration blocked 

Jackson et al. 2009; Sanjakdar 
et al. 2015 
Brunzell et al. 2010; Gotti et al. 
2010 

α7 

KO 

CPP unaffected 
Leftward shift in CPP 
Self-administration unaffected 
Chronic oral nicotine intake decreased 

Walters et al. 2006 
Harenza et al. 2014 
Pons et al. 2008 
Levin et al. 2009 

MLA Self-administration unaffected 
Self-administration blocked 

Grottick et al. 2000 
Markou and Paterson 2001 

α-CTX ArIB Self-administration increased Brunzell et al. 2012 
PHA-543613 CPP blocked Harenza et al. 2014 
PNU-282987 Self-administration blocked Brunzell et al. 2012 

Abbreviations: conditioned place preference (CPP) 
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Nicotinic modulation of anxiety-like behavior 
 
In addition to the pleasure obtained from smoking, smokers also report that they smoke to relieve 

anxiety. Stress contributes to escalation of smoking and can precipitate relapse (Shiffman et al, 

1997; Skara et al, 2001), and smokers experience more intense anxiety compared to non-smokers 

(Fidler and West, 2009; Parrott, 1999; Perkins and Grobe, 1992). There is a significant 

correlation between smoking and anxiety disorders, such as panic disorder, phobias, and post-

traumatic stress disorder (Gilbert et al, 2008; Grillon et al, 2007; John et al, 2004; McCabe et al, 

2004; Morissette et al, 2006; Tsuda et al, 1996; Vujanovic et al, 2010). 

It has been suggested that expression of β2*nAChRs contributes to anxiety phenotypes 

(Picciotto et al, 2015). Chronic nicotine exposure produces an up-regulation of the 

α4β2*nAChRs in mice (Even et al, 2008; Metaxas et al, 2010; Nashmi et al, 2007; Nuutinen et 

al, 2005; Pakkanen et al, 2005; Pauly et al, 1996; Perez et al, 2008; Pietila et al, 1998; Sparks 

and Pauly, 1999; Turner et al, 2011; Xiao et al, 2009), rats (Abdulla et al, 1996; Barrantes et al, 

1995; Collins et al, 1990; el-Bizri and Clarke, 1994; Flores et al, 1997; Nguyen et al, 2003, 

2004; Perez et al, 2008; Walsh et al, 2008; Wang et al, 2007; Yates et al, 1995), non-human 

primates (Kassiou et al, 2001; McCallum et al, 2006; Perez et al, 2012; Perez et al, 2013a; 

Slotkin et al, 2002) and human smokers (Benwell et al, 1988; Breese et al, 1997; Brody et al, 

2013; Cosgrove et al, 2009; Mamede et al, 2007; Metaxas et al, 2010; Mukhin et al, 2008; 

Staley et al, 2006; Staley et al, 2005; Wullner et al, 2008) who have higher overall levels of 

anxiety. In contrast, most of the evidence suggest that α6β2*nAChRs are down-regulated after 

chronic nicotine (Perez et al, 2008; Perez et al, 2012; Perez et al, 2013a, b); but see Parker et al, 

2004). It should be noted that expression of α6β2*nAChRs in response to chronic nicotine 

depends on whether α4 is present, where α4α6β2*nAChRs are down-regulated and (non-
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α4)α6β2*nAChRs are up-regulated in the striatum (Baker et al, 2013; Lomazzo et al, 2011; 

Metaxas et al, 2010; Moretti et al, 2010; Perez et al, 2008; Perez et al, 2013a; Xiao et al, 2009).  

In support of the theory that expression of β2*nAChRs regulated anxiety-like behavior, 

preclinical rodent studies report that the β2*nAChR-selective antagonist, DHβE and β2*nAChR 

partial agonists, varenicline, ABT-089, and sazetidine, produce decreases in anxiety-like 

behavior in the conditioned inhibition, marble burying, light-dark, and elevated plus maze (EPM) 

tasks (Anderson and Brunzell, 2012, 2015; Hussmann et al, 2014; Turner et al, 2010; Yohn et al, 

2014). Low doses of nicotine (0.01 and 0.032 mg/kg, i.p.) mimic this anxiolytic effect, indicating 

that desensitization by these low doses may promote decreases in anxiety-like behavior 

(Anderson et al, 2012). Conversly, high doses of nicotine (0.5 and 1.0 mg/kg, i.p.) increase 

anxiety-like behavior (Anderson et al, 2015; File et al, 1998), an effect that is blunted in β2KO 

mice. High doses of the β2-selective agonist, 5I-A85380 also produce an anxiogenic-like 

phenotype (Anderson et al, 2015). These findings suggest that inactivation of β2*nAChRs, 

presumably via desensitization, promotes anxiolysis, while stimulation of β2*nAChRs promotes 

anxiogenesis. 

The subtype of β2*nAChRs that contribute to anxiety-like behavior is a topic of question 

in this dissertation. α4β2*nAChRs have previously been implicated in anxiety-like behavior. A 

low dose of nicotine (0.01 mg/kg, i.p.) loses its anxiolytic effect in the EPM test when the α4 

subunit is genetically deleted in VTA DA neurons (McGranahan et al, 2011), suggesting that 

α4β2*nAChRs expressed in the VTA are required for nicotine’s anxiolytic properties. α4KO 

mice show elevated levels of basal anxiety-like behavior (Ross et al, 2000), suggesting that 

inhibition of α4β2*nAChRs promotes anxiety-like behavior. Interestingly, α4β2*nAChR gain-

of-function (α4L9’S) mice also show increases in basal anxiety-like behavior in the EPM task 
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(Labarca et al, 2001). Based on these data in α4KO and α4L9’S mice, it is not clear whether 

activation or inhibition of α4β2*nAChRs promotes anxiety-like behavior. For α6β2*nAChRs, 

no studies have investigated their contribution to basal or nicotine-associated anxiety-like 

behavior. However, one study has shown that i.c.v. infusion of α-Ctx MII blocks nicotine 

withdrawal-induced anxiety-like behavior (Jackson et al, 2009), suggesting that α6β2*nAChRs 

regulate anxiety-like behavior in response to withdrawal from nicotine.  

Other nAChR subtypes have also been implicated in anxiety-like behavior. β3 (β3KO) 

and β4 null mutant (β4KO) mice exhibit reductions in basal anxiety-like behavior in the EPM, 

light-dark, and prepulse inhibition tasks compared to WT mice (Booker et al, 2007; Salas et al, 

2003; Semenova et al, 2012), suggesting that nAChRs containing the β3 and β4 subunits 

promote anxiety-like behavior. α7KO mice are similar to WT mice in the open field, EPM, and 

light-dark tasks, but MLA infused locally into the hippocampus reduces nicotine-induced 

anxiogenic effects in the social interaction task (Tucci et al, 2003). Systemic PNU-282987, an 

α7 nAChR-selective agonist, increases anxiety-like behavior (Pandya and Yakel, 2013). These 

data suggest that inhibition of α7 nAChRs reduces anxiety-like behavior. See table 1.3 for a 

summary of the studies implicating nAChRs in anxiety-like behavior.  
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Table 1.3 – Nicotinic acetylcholine receptor (nAChR) contributions to anxiety-like behavior 
 
Subunit Manipulation Behavioral Outcome Reference 

β2 

KO Blunted nicotine-induced anxiogenesis 
(light-dark) 

Anderson and Brunzell, 2015 

DHβE Anxiolytic (EPM; marble burying) Anderson and Brunzell 2012 

Varenicline Anxiolytic (marble burying; hypophagia) Turner et al. 2010; Hussman et 
al. 2014 

ABT-089 Anxiogenic (hypophagia) Yohn et al. 2014 
5I-A85380 Anxiogenic (light-dark; EPM) Anderson and Brunzell, 2015 

β3 KO Decreased anxiety levels (EPM) Booker et al. 2007 

β4 KO Decreased anxiety levels (EPM; light-dark) Salas et al. 2003; Semenova et 
al. 2012 

α4 
KO Nicotine-stimulated anxiolysis blocked 

(EPM) 
McGranahan et al. 2011 

α4L9’S Anxiogenic (EPM; mirrored chamber) Labarca et al. 2001 
Sazetidine Anxiolytic (hypophagia) Hussman et al. 2014 

α6 α-Ctx MII 
Decreased nicotine withdrawal-induced 
anxiety-like behavior 

Jackson et al. 2009 

α7 
KO Anxiety-like behavior unaffected (EPM; 

light-dark; open field) 
Salas et al. 2007; Jackson et al. 
2008 

MLA Reversed nicotine-induced anxiogenesis Tucci et al. 2003 
PNU-282987 Increased anxiety levels Pandya et al. 2013 

Abbreviations: elevated plus maze (EPM) 
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Nicotinic contributions to abuse-related effects of ethanol 
 
nAChRs have also been implicated in abuse-related effects of EtOH. Studies investigating the 

role of β2*nAChRs in the behavioral and neurochemical effects of EtOH have generated 

conflicting results. DHβE or genetic knockdown of the β2 subunit has no effect on EtOH 

consumption and preference (Dawson et al, 2013; Kamens et al, 2010a; Kuzmin et al, 2009; 

Tolu et al, 2017), self-administration (Kuzmin et al, 2009), EtOH-induced VTA DA neuron 

firing (Tolu et al, 2017), or NAc DA release (Ericson et al, 2003; Larsson et al, 2002), but it 

does attenuate the sedative effect of EtOH (Dawson et al, 2013). However, varenicline, which 

acts as a partial agonist at β2*nAChRs, does reduce ethanol consumption (Feduccia et al, 2014; 

Hendrickson et al, 2010; Kamens et al, 2010b; Santos et al, 2013; Steensland et al, 2007) and 

self-administration in rodents (Bito-Onon et al, 2011; Steensland et al, 2007), while enhancing 

the ataxic and sedative effects of EtOH (Kamens et al, 2010b). Varenicline does not have an 

effect on EtOH-associated NAc DA release however (Ericson et al, 2009; Feduccia et al, 2014).  

One goal of this dissertation is to investigate β2*nAChR subtypes that modulate EtOH 

reinforcement. Previous data implicate that α4β2* and α6β2*nAChRs are involved in abuse-

related effects of EtOH. α4KO mice consume less EtOH and show reduced preference for EtOH 

compared to WT mice (Hendrickson et al, 2010; Liu et al, 2013a), while α4L9’A mice exhibit 

increases in EtOH preference (Liu et al, 2013a). EtOH-induced VTA DA neuron activation is 

also reduced in α4KO mice and enhanced in α4L9’A mice compared to WT mice (Liu et al, 

2013a). Intra-VTA α-Ctx MII results in reductions of EtOH consumption and preference in mice 

and rats (Larsson et al, 2004), as well as reductions in EtOH self-administration (Kuzmin et al, 

2009) and EtOH-associated conditioned reinforcement in rats (Lof et al, 2007). However, 

systemic DHβE has no effect on self-administration (Kuzmin et al, 2009) and it does not reduce 
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conditioned reinforcement when infused into the VTA (Lof et al, 2007). In contrast to the studies 

using α-Ctx MII to inhibit α6β2*nAChRs, α6KO mice show no differences compared to WT 

mice for measures of EtOH consumption and preference (Guildford et al, 2016; Kamens et al, 

2012). But, α6KO mice do show a loss of reward sensitivity at high doses of EtOH in CPP 

(Guildford et al, 2016). α6L9’S mice show increases in EtOH consumption and CPP compared 

to WT mice (Powers et al, 2013). Consistent with these results, VTA infusion of α-Ctx MII 

blocks EtOH-induced DA release in mice (Larsson et al, 2004) and intra-VTA α-Ctx MII or α6 

genetic deletion reduces EtOH-induced activation of VTA DA neurons (Liu et al, 2013b).  

Other nAChR subunits have been tested for involvement in EtOH’s effects. In one study, 

α7KO mice consumed less EtOH compared to WT mice (Kamens et al, 2010a). However, 

antagonizing α7 nAChRs has no effect on operant EtOH self-administration (Kuzmin et al, 

2009) or EtOH-elicited DA release (Larsson et al, 2002). β3KO mice show similar levels of 

EtOH intake as WT mice. This mutation does not affect EtOH-induced sedation or ataxia either, 

showing no differences in the loss of righting reflex (LORR) and balance beam tests compared to 

WT mice (Kamens et al, 2012). α5 null mutant mice (α5KO) consume similar amounts of EtOH 

as WT mice in the DID paradigm, but they are more sensitive to EtOH’s sedative and ataxic 

effects, showing slower LORR recovery and decreases in rotarod performance compared to WT 

mice (Santos et al, 2013). Ethanol activation of VTA DA neurons is decreased in β4KO mice, 

while they consumed more alcohol compared to WT mice in a two-bottle choice procedure (Tolu 

et al, 2017). For a summary of the data demonstrating the role of nAChRs in ethanol’s addictive 

effects, see Table 1.4.  
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Table 1.4 – Nicotinic acetylcholine receptor (nAChR) contributions to EtOH-induced 
mesolimbic activity and associated intake, reward, and reinforcement 

 
Subunit Manipulation Behavioral Outcome Reference 

β2 

KO 

No change in EtOH intake (two-bottle choice; 
intermittent access) or preference  
No effect on EtOH-associated conditioned 
reinforcement 
Decreased EtOH-induced sedation (LORR) 
Decreased EtOH-induced VTA DA neuron firing 

Kamens et al. 2010a; Dawson et al. 
2013 
Lof et al. 2007 
 
Dawson et al. 2013 
Tolu et al. 2017 

DHβE 

No effect on EtOH operant self-administration 
Decreased EtOH-induced hypnosis (LORR) 
No effect on EtOH-elicited DA release 

Le et al. 2000; Kuzmin et al. 2009 
Dawson et al. 2013 
Larsson et al. 2002; Ericson et al. 
2003 

Varenicline 

Reduced EtOH intake (two-bottle choice; DID) 
 
 
 
Reduced EtOH operant self-administration 
 
Increased EtOH-induced sedation and ataxia 
(LORR; balance beam; dowel test) 
No effect on EtOH-elicited DA release 

Steensland et al. 2007; Hendrickson 
et al. 2010; Kamens et al. 2010a; 
Santos et al. 2013; Feduccia et al. 
2014 
Steensland et al. 2007; Bito-Onon et 
al. 2011 
Kamens et al. 2010b 
 
Ericson et al. 2009; Feduccia et al. 
2014 

β3 KO 
No change in EtOH intake (two-bottle choice) or 
EtOH-induced sedation and ataxia (LORR; 
balance beam) 

Kamens et al. 2012 

β4 KO Increased EtOH intake (two-bottle choice) Tolu et al. 2017 

α4 
KO 

Reduced EtOH intake (DID) 
EtOH CPP blocked 
Reduced EtOH-stimulation of DA neurons 

Hendrickson et al. 2010 
Liu et al. 2013a 
Liu et al. 2013a 

L9A Enhanced EtOH CPP 
Hypersensitive EtOH-stimulation of DA neurons 

Liu et al. 2013a 
Liu et al. 2013a 

α5 KO 
No change in EtOH intake (DID) 
Increased EtOH-induced sedation and ataxia 
(LORR; rotarod) 

Santos et al. 2013 
Santos et al. 2013 

α6 

KO 

No change in EtOH intake or preference (two-
bottle choice; DID) 
Increased EtOH-induced sedation 
Reduced EtOH-stimulation of DA neurons 

Kamens et al. 2012; Guildford et al. 
2016 
Kamens et al. 2012 
Liu et al. 2013b 

α6L9’S Increased EtOH intake (DID) and enhanced EtOH 
CPP 

Powers et al. 2013 

α-CTX MII 

Reduced EtOH operant self-administration 
Reduced EtOH intake and preference (two-bottle 
choice) 
EtOH-associated conditioned reinforcement 
Reduced EtOH-stimulation of DA neurons 
Reduced EtOH-induced DA release 

Kuzmin et al. 2009 
Larsson et al. 2004 
 
Lof et al. 2007 
Liu et al. 2013b 
Larsson et al. 2004 

α7 
KO Reduced EtOH intake (two-bottle choice) Kamens et al. 2010a 

MLA No effect on EtOH operant self-administration 
No effect on EtOH-elicited DA release 

Kuzmin et al. 2009 
Larsson et al. 2002 

Abbreviations: ethanol (EtOH); drinking-in-the-dark (DID); loss of righting reflex (LORR); dopamine (DA); conditioned place 
preference (CPP) 
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Experimental aims 
 
Overall, the goal of these studies is to build on our knowledge related to α6β2*nAChR 

contributions to abuse-related effects of nicotine and alcohol. This will be accomplished using 

pharmacological and genetic manipulations in various mouse behavioral and neurochemical 

models, including: 1) in vivo microdialysis in awake animals to quantify NAc DA release, 2) 

nicotine CPP to measure reward, 3) multiple tests of anxiety, including the open field, light-dark, 

and EPM tests, and 4) EtOH self-administration to measure EtOH reinforcement. 	  

Specific Aim 1 will test the overall hypothesis that stimulation of mesolimbic 

α6β2*nAChRs promotes nicotine reward and NAc DA release using nicotine CPP and in vivo 

microdialysis in WT and α6L9’S mice. These studies will assess the effects of acute nicotine 

exposure, which is relevant to addiction, as responses to initial exposure are known to predict 

risk for later dependence (for review, see de Wit et al, 2012). Given in vitro studies showing that 

α6L9’S α6β2*nAChRs respond to sub-threshold concentrations of nicotine that aren’t effective 

at native nAChRs (Berry et al, 2015; Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 2008; 

Engle et al, 2013; Powers et al, 2013; Wang et al, 2014b), we reason that we can use lower doses 

of nicotine in vivo to selectively activate α6β2*nAChRs, isolating their function in α6L9’S mice. 

Chapter 2 of this dissertation will describe the results from the microdialysis and CPP 

experiments in Specific Aim 1.  

First, we will assess basal NAc DA levels using in vivo microdialysis in awake, behaving 

WT and α6L9’S mice. We expect that α6L9’S mice will exhibit elevated basal NAc DA levels 

compared to WT mice to corroborate previous in vitro studies (Cohen et al, 2012; Wang et al, 

2014b), suggesting that stimulation of α6β2*nAChRs promotes NAc DA release. As NAc DA 

release is associated with nicotine’s rewarding and locomotor stimulating properties, we will 
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next compare nicotine CPP and locomotor activity in a second group of WT and α6L9’S mice. 

As with NAc DA release, we predict that α6L9’S mice will exhibit a leftward shift in the 

nicotine CPP and locomotor activity dose response curves compared to WT mice to suggest that 

stimulation of α6β2*nAChRs also promotes nicotine reward and locomotor activity.  

To expand on these initial studies, we seek to determine neuroanatomical loci where 

α6β2*nAChRs promote nicotine reward. To accomplish this goal, we will administer local NAc 

shell infusions of saline or articial cerebrospinal fluid (aCSF) vehicle (VEH) or the 

α6β2*nAChR-selective antagonist, α-Ctx MII, prior to nicotine CPP training in a third group of 

WT and α6L9’S mice. Based on studies reporting that nicotine induces an initial preferential 

increase in DA in the NAc shell to drive nicotine reward (Balfour, 2015), we predict that local 

infusion of α-Ctx MII into the NAc shell during CPP training will block the acquisition of 

nicotine CPP in WT and α6L9’S mice. Consisent with our lab’s previous nicotine self-

administration studies (Brunzell et al, 2010), this would suggest that α6β2*nAChRs located on 

terminals in the NAc shell are involved in nicotine’s rewarding properties.  

 Specific Aim 2 will assess α6β2*nAChR contributions to anxiety-like behavior. Chapter 

3 will describe results from these studies where α6L9’S and α6KO mice, and their WT 

counterparts, will be tested in a series of behavioral assays that assess anxiety-like behavior. 

These assays, including the open field, light-dark, and EPM assays, exploit a rodent’s opposing 

drives to explore novel areas and avoid brightly lit, open areas where they might be vulnerable to 

predators. Levels of anxiety-like behavior are determined by the ability of an experimental 

manipulation (e.g. genotype, drug) to alter behaviors in aversive areas, such as the center zone of 

the open field arena, the light chamber of the light-dark apparatus, and the open arms of the 

EPM, with increases in behavior indicating anxiolysis and decreases indicating anxiogenesis. We 



	   43	  

will also evaluate locomotor activity as a control experiment to ensure that any effect observed in 

the anxiety assays is not an artifact of altered locomotion. An accumulation of evidence suggests 

that inhibition of β2*nAChRs promotes anxiolytic effects (Anderson et al, 2012, 2015; 

Hussmann et al, 2014; Turner et al, 2010; Yohn et al, 2014). Based on data reporting persistent 

activation of α4α6β2*nAChRs by low concentrations of nicotine that typically desensitize other 

nAChRs (Liu et al, 2012), we hypothesize that activation of α6β2*nAChRs promotes 

anxiogenesis. Thus, we predict that α6L9’S mice will exhibit elevated anxiety-like behavior, 

while α6KO mice will show decreases in these measures.  

 The goal of Specific Aim 3 is to differentiate the contributions of α4α6β2*nAChRs and 

(non-α4)α6β2*nAChRs to nicotine reward and anxiety-like behavior in mice. Chapter 4 will 

describe the results from these experiments in which WT, α6L9’S, α4KO, and α6L9’S mice 

with an α4 null mutation (α6L9’S-α4KO) will be compared at a range of i.p. nicotine doses in 

nicotine CPP, as well as in behavioral assays of anxiety-like behavior including the open field 

and light-dark assays. We will also evaluate locomotor activity. Based on previous data 

demonstrating that α4α6β2*nAChRs regulate mesolimbic activity and associated locomotor 

activity (Drenan et al, 2010; Engle et al, 2013; Liu et al, 2012; Zhao-Shea et al, 2011), we 

predict that the enhancement of nicotine CPP and anxiety-like behavior in α6L9’S mice will be 

at least partially reversed in α6L9’S-α4KO mice, which would demonstrate that α6 assembles 

with α4 to promote behaviors relevant to nicotine addiction (reward and anxiety-like behavior in 

this case). It is unclear whether nicotine reward and anxiety-like behavior will return to WT 

levels to suggest that α4α6β2*nAChRs are solely responsible for α6β2*nAChR-mediated 

effects, or if α6L9’S-α4KO mice will show intermediate levels of nicotine CPP and anxiety-like 
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behavior between WT and α6L9’S mice to suggest that these effects are modulated by both 

(non-α4)α6β2*nAChRs and α4α6β2*nAChRs.  

 Finally, Specific Aim 4 focuses on developing a mouse model of oral, operant EtOH self-

administration to utilize to test the hypothesis that α6β2*nAChRs contribute to EtOH 

reinforcement in mice. Chapter 5 will describe the development of this mouse model of oral, 

operant EtOH self-administration, and Chapter 6 will describe studies utilizing this model in WT 

mice, mice with a 50% reduction in the α6 subunit (α6HET), and α6KO mice. We will also test 

these mice in rotorod and locomotor activity tests following 2 g/kg i.p. EtOH to assess possible 

genotype effects on sensitivity to EtOH. Based on evidence that α-Ctx MII blocks EtOH self-

administration in rats (Kuzmin et al, 2009), we predict that α6KO mice will fail to show EtOH 

reinforcement compared to WT mice to implicate α6β2*nAChRs in EtOH’s reinforcing 

properties. It is less clear whether α6HET mice will show EtOH reinforcement to indicate 

whether full expression of α6β2*nAChRs is required for EtOH reinforcement. 

 The mechanisms underlying nicotine and alcohol use and dependence have yet to be fully 

understood. As a consequence of our incomplete understanding of these substance use disorders, 

treatments have only proved modestly successful. Along with previous studies by our lab and 

others, the studies conducted in this dissertation will provide further insight into α6β2*nAChR 

contributions to the abuse-related effects of nicotine and alcohol. 	  
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Chapter 2 – Activation of α6β2 subunit containing nicotinic acetylcholine receptors 

promotes in vivo nucleus accumbens dopamine release and nicotine reward 

 
 

INTRODUCTION 
 
Tobacco use remains the leading preventable cause of death worldwide (WHO, 2015). The 

psychoactive properties of nicotine support the use of tobacco products such as cigarettes, e-

cigarettes, chew, and snus (NIDA, 2017). Nicotine elicits mesolimbic dopamine (DA) release 

from terminals in the nucleus accumbens (NAc) (Di Chiara et al, 1988), a process that supports 

nicotine reward and reinforcement (Corrigall et al, 1992; Sellings et al, 2008). α-Conotoxin MII 

(α-Ctx MII)-sensitive α6β2 subunit containing nicotinic acetylcholine receptors 

(α6β2*nAChRs, *denotes possible assembly with other subunits) have the highest known 

sensitivity to nicotine and acetylcholine (ACh) (Exley et al, 2008; Kuryatov et al, 2011; Liu et 

al, 2012; Salminen et al, 2007; Salminen et al, 2004) and are selectively expressed in 

catecholaminergic nuclei of the brain, being particularly enriched on mesolimbic DA neurons 

(Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996) where they promote neuronal 

activation and DA release (Champtiaux et al, 2003; Exley et al, 2011; Gotti et al, 2010; Grady et 

al, 2002; Kulak et al, 1997; Liu et al, 2012; Salminen et al, 2007; Salminen et al, 2004; 

Wickham et al, 2013; Zhao-Shea et al, 2011). Due to their high sensitivity and restricted 

expression pattern, α6β2*nAChRs may provide a more selective therapeutic target for smoking 
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cessation. In fact, studies utilizing selective antagonists and null mutant strategies demonstrate 

that mesolimbic α6β2*nAChRs are necessary for nicotine reward and reinforcement (Brunzell et 

al, 2010; Exley et al, 2011; Gotti et al, 2010; Pons et al, 2008; Sanjakdar et al, 2015).  

Due to poor function in heterologous expression systems however, little progress has 

been made to identify α6β2*nAChR-selective agonists that can demonstrate behaviors and 

physiological effects for which α6β2*nAChRs are sufficient (Drenan et al, 2008). The 

development of α6β2*nAChR gain-of-function (α6L9’S) mice has provided a complementary 

research approach to null mutant strategies to test the sufficiency of α6β2*nAChRs. α6L9’S 

mice possess a leucine to serine single point mutation in the M2 pore-forming region of the α6 

subunit that renders their α6β2*nAChRs hypersensitive to ACh and nicotine (Drenan et al, 

2008); nicotine doses that are sub-threshold for activation of native nAChRs can selectively 

activate α6β2*nAChRs, allowing for assessment of α6β2*nAChR function in isolation of other 

nAChRs. In vitro slice studies reveal that the α6β2*nAChR gain-of-function mutation produces 

leftward shifts in ACh- and nicotine-stimulated VTA DA neuron activation and striatal DA 

release (Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 2008; Engle et al, 2013; Powers et 

al, 2013; Wang et al, 2014b). Further, these mice exhibit locomotor hyperactivity in response to 

nicotine, which is blocked by D1 (SCH 23390) and D2 (sulpiride) receptor antagonists (Berry et 

al, 2015; Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 2008). The DA-dependent nature 

of this effect is supported by previous data showing that locomotor activation by nicotine 

requires β2*nAChR-associated DA release (King et al, 2004b). These data suggest that 

activation of α6β2*nAChRs is sufficient for mesolimbic DA neuron activity, however, no 

studies to date have assessed this in vivo or determined if α6β2*nAChR activity is sufficient to 

support nicotine reward. Being that cholinergic tone from pedunculopontine and laterodorsal 
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tegmental projections to the VTA (Blaha et al, 1996; Lanca et al, 2000; Lester et al, 2008; Xiao 

et al, 2016) and striatal cholinergic interneurons (Berlanga et al, 2003; Cachope et al, 2012; Rice 

et al, 2004; Threlfell et al, 2012; Zhang and Sulzer, 2004; Zhou et al, 2001) support DA release 

and drug reward and reinforcement, we hypothesized that elevated cholinergic activity at 

α6β2*nAChRs in α6L9’S mice would promote in vivo NAc DA release and associated nicotine 

reward behavior. 

The present microdialysis experiment demonstrates that NAc DA release is significantly 

elevated in awake behaving α6L9’S mice compared to WT littermates and demonstrate that 

doses sub-threshold to produce nicotine CPP in WT mice support nicotine reward behavior in 

α6L9’S mice. To identify neuroanatomical loci within the mesolimbic DA pathway where 

α6β2*nAChRs support nicotine reward behavior, we expanded on previous findings (Sanjakdar 

et al, 2015) to demonstrate that local antagonism of α6β2*nAChRs in the NAc shell subdivision 

blocked nicotine CPP in WT mice. In α6L9’S mice, however, which express global elevations in 

α6β2*nAChR sensitivity, local antagonism of VTA α6β2*nAChRs was required to block 

nicotine CPP. We further report that VTA infusion of α-Ctx MII significantly attenuated NAc 

DA release in these mice.  

MATERIALS AND METHODS 
	  
Subjects 

A total of 256 adult, male C57BL/6J wild type (WT) and α6β2*nAChR gain-of-function mice 

(α6L9’S) backcrossed > 10 generations on a C57BL/6J background were used in these studies. A 

single allele for the α6L9’S transgene produces the hypersensitive α6β2*nAChR phenotype 

(Drenan et al, 2008) so that breedings to WT mice resulted in 50% α6L9’S and 50% WT 
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offspring. Mice were housed in polycarbonate cages with Teklad corncob bedding (catalog 

number 7092) in a temperature- and humidity-controlled vivarium on a 12 h light/dark cycle 

(lights on at 6:00 a.m.). Mice had access to food (Teklad LM-485 Mouse/Rat Sterilizable Diet, 

catalog number 7012) and water ad libitum. Experimental protocols were approved by the 

Institutional Animal Care and Use Committee at Virginia Commonwealth University. All 

animals were treated according to NIH Guidelines for the Care and Use of Laboratory Animals.  

 
Drugs 

Nicotine hydrogen tartrate salt (Sigma-Aldrich, St. Louis, MO) and (-)-Cocaine HCl (National 

Institute on Drug Abuse Drug Supply Program, Bethesda, Maryland) were dissolved in 0.9% 

sterile saline vehicle (SAL). Injection volumes were 0.1 ml/30 g for nicotine and 0.3 ml/30 g for 

cocaine. Nicotine doses are expressed by free base weight and cocaine doses are expressed by 

salt weight. α-Ctx MII was synthesized as previously described (Cartier et al, 1996). Intra-

cerebral infusions of α-Ctx MII were dissolved in SAL or artificial cerebrospinal fluid (aCSF) 

vehicle (VEH) and administered at 0.5 µl/min for a total volume of 0.25 µl per side.  

 
In vivo microdialysis in awake, behaving mice 

WT (n=4) and α6L9’S (n=4) mice were anesthetized with 2.5% isoflurane and 3 liter/min of 

oxygen for surgical implantation of a unilateral guide cannula (CXG-4, Eicom, San Diego, CA) 

targeting the NAc (+1.5 mm AP, +/−0.5 mm Lat, −4.0 DV in reference to bregma). The surgical 

area was shaved and cleaned with betadine (Purdue Products, Stamford, CT) and 70% ethanol. 

Guide cannulae were secured with dental cement anchored to the skull with jeweler’s screws. To 

determine if α6L9’S mice show enhanced NAc DA release in vivo, a microdialysis probe with an 

artificial cellulose cuprophan membrane (5 mm long, CX-I-4-1, Eicom) designed to extend 1 
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mm beyond the guide into the NAc was carefully inserted into the guide cannula of awake, 

gently restrained mice. Probes were connected to a two-channel liquid swivel (TCS-2-23, Eicom) 

with Teflon tubing (JT-10, Eicom) and perfused with aCSF (147 mM NaCl, 2.8 mM KCl, 1.2 

mM CaCl2, 1.2 mM MgCl2) at 1.0 µl/min.  

Dialysate samples were collected at 15 min intervals into a 50 µl injector loop using an 

online autoinjector (EAS-20s, Eicom) and immediately analyzed for DA concentrations by high-

pressure liquid chromatography (HPLC) coupled to electrochemical detection (HTEC-500, 

Eicom). Mobile phase consisted of 1.5% methanol (EMD, Gibbstown, NJ, USA), 100 mM 

phosphate buffer (Sigma Chemicals, St. Louis, MO, USA), 500 mg/L 1-decane sodium sulfonate 

(TCI America, Montgomeryville, PA, USA), and 50 mg/L EDTA-2Na+ (Dojindo Laboratories, 

Kumamoto, Japan). DA was separated using a C18-reverse phase column (PP-ODS II, Eicom) 

and detected using a graphite working electrode and a Ag+ vs. AgCl reference electrode with an 

applied potential of +450 mV. DA was identified according to the characteristic standard 

solution retention time, and concentrations were quantified by comparison with peak heights of 

the standard concentration curve generated prior to each test. Once DA stabilized, three samples 

were collected to quantify basal DA. At the end of each test, mice received 20 mg/kg cocaine 

intraperitoneal (i.p.), and three additional samples were collected to assess sampling site 

sensitivity.  

To specifically assess VTA α6β2*nAChR contributions to NAc DA release, a separate 

cohort of α6L9’S mice were additionally implanted with 26-gauge bilateral guide cannula that 

enabled infusion of the α6β2*nAChR-selective antagonist, α-CTX MII into the VTA (−3.4 mm 

AP, ±0.5 mm Lat, −2.9 mm DV, with 1.25 mm infusion cannula projection) prior to collection of 

NAc dialysate. Initial studies implanted the guide cannula at -3.4 mm DV, but most of these 
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subjects were not viable after surgery. Raising the guide cannula up to -2.9 mm DV with a longer 

infusion cannula projecting to -3.4 mm for micro-infusions increased viability after surgery. A 

microdialysis probe was inserted into the NAc guide cannula as described above. Once DA 

stabilized, three baseline samples were collected, followed by intra-VTA infusions of aCSF 

(n=4) or 10 pmol α-Ctx MII (n=5) whereupon 3 additional dialysate samples were collected for 

comparison to baseline DA levels. All microdialysis data were quantified with eDAQ 

PowerChrom software (eDAQ, Colorado Springs, CO). 

 
Unbiased Nicotine Conditioned Place Preference (CPP)  

α6L9’S mice (n=13-20/dose) were compared to their WT littermates (n=14-19/dose) to 

determine if α6β2*nAChR gain-of-function would shift nicotine place conditioning. CPP was 

conducted in Med Associates mouse place conditioning chambers (Med Associates, St. Albans, 

VT). The CPP apparatus consisted of two unique but equally preferred conditioning chambers 

with distinct floors (parallel bars or grid) and walls (black or striped) separated by retractable 

doors and a small neutral (grey) chamber with Plexiglas floor.  CPP training took place twice a 

day between the hours of 10:00 a.m. and 12:00 p.m. and 1:00 p.m. and 3:00 p.m., with baseline 

and testing taking place at an intermediate timepoint on the day prior to and following training, 

respectively. During baseline, mice received i.p. SAL prior to being placed in the neutral 

chamber with doors retracted to allow free exploration of the apparatus for 15 min. The 

following 3 days during the a.m. training session, mice received i.p. SAL prior to 30 min 

confinement in the saline-paired chamber. During the p.m. session, mice received i.p. nicotine (0, 

0.03 or 0.1 mg/kg) prior to 30 min of confinement in the opposite, nicotine-paired conditioning 

chamber. Control mice received i.p. SAL prior to exposure to both chambers. Assignment of 

conditioning chamber was counterbalanced with mice showing overall similar preferences across 
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chambers. During test, mice received i.p. SAL and were placed in the chamber as during baseline 

and allowed to explore the entire apparatus for 15 min. Photobeams detected movement and data 

were recorded using Med-PC IV software (Med Associates, St. Albans, VT).  

 
Nicotine CPP following NAc shell or VTA infusion of α-Ctx MII 

To assess the neuroanatomical location of α6β2*nAChR contributions to nicotine reward, a 

separate cohort of mice received local infusions of 10 pmol α-Ctx MII or VEH prior to the p.m. 

nicotine conditioning sessions as described above; all mice received a VEH infusion during the 

a.m. session. Mice were surgically implanted with a 26-gauge bilateral guide cannula (Plastics 

One, Roanoke, VA) targeting the NAc shell (+1.5 mm AP, ±0.5 mm Lat, −4.25 DV with 0.5 mm 

infusion cannula projection) or VTA as described above. Infusions were delivered to awake, 

gently restrained mice via a micro infusion pump (PHD 2000, Harvard Apparatus, Holliston, 

MA) through an internal cannula attached to Hamilton syringes and PE 20 tubing (Stoelting, 

Wood Dale, IL). A 2 min post-infusion wait period allowed for drug diffusion and prevented 

backflow through the guide cannula.  

 
Contextual Threat Conditioning 

To assess if genotypic differences in nicotine CPP were due to generalized changes in contextual 

learning, contextual threat conditioning was conducted in mouse operant conditioning chambers 

(Med Associates, St. Albans, VT). Training occurred during a 5.5 min session with WT (n=14) 

and α6L9’S (n=13) mice placed in the chamber for 2 min before presentation of a 30 s light plus 

tone cue that terminated with a 2 s, 0.5 mA footshock. This sequence was repeated followed by a 

30 s post-shock period. The next day, mice were placed in the conditioning chamber for 5.5 min 

in the absence of the cue and footshock to test for context-specific freezing. Freezing (absence of 
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voluntary movement except for respiration) was measured using Anymaze tracking software 

(Stoelting, Wood Dale, IL) and confirmed by a blind experimenter. Freezing during the first 2 

minutes of the training session (before any footshock) was compared to freezing during the 

corresponding first 2 minutes of the test session (24h after Pavlovian fear conditioning) to assess 

whether mice learned to associate the context with the previous footshocks received during 

training. 

 
Histology 

Confirmation of cannula placement was confirmed following behavioral and neurochemistry 

assays. Mice were trans-cardially perfused with 4% paraformaldehyde (PFA) with brains 

removed and post-fixed in PFA for 24 h followed by storage in 30% sucrose until sectioned. 20 

µm coronal sections were collected using a Cryostat (Leica, Buffalo Grove, IL). Slices were 

mounted on Colorfrost Plus positively charged microscope slides (VWR, Radnor, PA) and 

stained with cresyl violet.   

 
Statistical Analysis  

All statistical analyses were performed using SPSS. Basal DA levels were averaged across the 

three timepoints and compared between genotypes using a two-tailed t-test. CPP data were 

analyzed using a 2x3 (genotype x nicotine dose) ANOVA, followed by post hoc two-tailed t-

tests. For contextual threat conditioning, percent time freezing during the pre-shock period (first 

2 min) was compared between the training and test sessions and was analyzed using a 2x2 

(genotype x session) repeated measures ANOVA. Locomotor data collected during CPP were 

analyzed using a 2x2x3 (CPP training session x genotype x nicotine dose) repeated measures 

ANOVA, followed by post hoc paired t-tests. For NAc shell infusion CPP experiments, data 
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were analyzed using a 2x3 (infusion dose x nicotine dose) ANOVA, followed by post hoc two-

tailed t-tests. For the VTA infusion CPP experiments, data were analyzed using a 2x2 (infusion 

dose x nicotine dose) ANOVA, followed by post hoc two-tailed t-tests. DA levels in response to 

VTA α-Ctx MII were averaged across the three timepoints and compared to VEH controls using 

a two-tailed t-test. The criterion for significance was set at p<0.05. Mice with off-target guide 

cannula placement or data points more than 2 standard deviations from the mean were 

considered outliers and excluded from analysis.  

RESULTS 
	  
In vivo basal NAc DA levels and nicotine CPP are augmented in α6L9’S mice 

Previous in vitro studies report that ACh-stimulated VTA DA neuron firing and ACh-elicited or 

electrically evoked DA release is enhanced in α6L9’S striatal slices or synaptosomes (Cohen et 

al, 2012; Drenan et al, 2010; Drenan et al, 2008; Engle et al, 2013; Powers et al, 2013; Wang et 

al, 2014b). In support of these in vitro findings, we observed significantly elevated basal levels 

of NAc DA in awake, behaving α6L9’S mice compared to WT controls  (t6=-2.67, p=0.04; 

Figure 2.1a). 20 mg/kg cocaine increased NAc DA levels similarly in WT and α6L9S mice, 

indicating tissue sampling site sensitivity (Figure 1A, inset). These in vivo data provide further 

evidence that ACh activation of α6β2*nAChRs is sufficient to enhance basal NAc DA tone.  

To determine if enhanced function of α6β2*nAChRs also supports nicotine reward 

behavior, α6L9’S mice were were compared to WT littermates using an unbiased nicotine CPP 

task (Figure 2.1b). A significant interaction of genotype by nicotine dose (F2,97=3.75, p=0.027) 

revealed a leftward shift in the amount of time α6L9’S mice spent in the nicotine-paired 

chamber; α6L9’S mice showed nicotine CPP at 0.03 mg/kg (t37=-4.32, p<0.001) and 0.1 mg/kg 
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i.p. nicotine (t31=-4.28, p<0.001), while WT mice showed nicotine CPP only at 0.1 mg/kg i.p. 

nicotine (t30=-2.196, p=0.036), as shown previously (Brunzell et al, 2009a; Mineur et al, 2009). 

These findings suggests that α6β2*nAChR stimulation promotes nicotine reward, but it is 

possible that α6L9’S mice showed elevated contextual learning rather than a sensitization to 

nicotine reward per se.  To test this latter possibility, mice were tested using a Pavlovian threat 

conditioning assay. For contextual threat conditioning (Figure 2.1c), there was a main effect of 

session (F1,25=37.089, p<0.001), where % time freezing in a chamber under the same context 

where mice had previously received 2 mild footshocks was greater during the first 2 mintues of 

the test compared to the first 2 minutes of the training, indicating that the mice learned to 

associate the context with the footshocks. There was no main effect of genotype (F1,25=1.772, 

p=0.195) and no interaction of session by genotype (F1,25=2.322, p=0.140) to suggest that 

genotype had no impact on threat conditioning. Thus, elevated nicotine contextual reward 

learning did not appear to generalize to contextual threat learning.  
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Figure 2.1 – In vivo basal nucleus accumbens (NAc) dopamine (DA) levels and nicotine 
reward behavior, but not contextual threat conditioning, are augmented in α6L9’S mice. a) 
Left, Basal NAc DA levels in WT (n=4) and α6L9’S mice (n=4) (inset represents % baseline DA 
in response to 20 mg/kg i.p. cocaine). Right schematic diagram of the NAc shell 1.09 to 1.5 from 
Bregma (adapted from Paxinos and Franklin) and representative photomicrograph depicting the 
tip of the guide cannula from which the 1 mm long microdialysis probe membrane protruded (4X 
magnification). Black lines on schematic diagram represent 1 mm long microdialysis probe 
membrane placements within the NAc and the black circle on photomicrograph highlights the 
anterior commissure. b) Nicotine CPP expressed as change from baseline time spent in the 
nicotine-paired chamber for saline-injected (0 mg/kg nicotine-WT, n=14 and α6L9’S, n=20) and 
nicotine-injected mice (0.03 mg/kg-WT, n=19 and α6L9’S, n=19; 0.1 mg/kg-WT, n=18 and 
α6L9’S, n=13). c) Contextual threat conditioning expressed as percent time freezing during the 
training and test session for the 2 min time period corresponding to the time period before first 
footshock during training (pre-shock) in WT (n=14) and α6L9’S mice (n=13). **p<0.05 vs. WT; 
*p<0.05 vs. saline of same genotype; ***p<0.001 vs. training pre-shock. Data are expressed as 
mean ± SEM.  
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α6L9’S mice exhibit hyperactive nicotine-stimulated locomotor activity  
 
In addition to nicotine reward behavior, α6L9’S mice displayed an enhanced locomotor response 

to nicotine. We compared locomotor activity within-subject during a.m. (saline-paired) versus 

p.m. (nicotine-paired) CPP training sessions. A 2x2x3 repeated measures ANOVA revealed a 3-

way interaction of CPP training session by genotype by nicotine dose (F2,30=17.493, p<0.001). 

Consistent with previous data (Berry et al, 2015; Cohen et al, 2012; Drenan et al, 2010; Drenan 

et al, 2008), nicotine stimulated locomotor activity in α6L9’S (Figure 2.2b), but not WT mice 

(Figure 2.2a) at 0.03 (t5=-4.17, p=0.009) and 0.1 mg/kg i.p. nicotine (t4=-6.922, p=0.002). We 

did not observe differences in locomotor activity of α6L9’S compared to WT littermates that 

received saline injections.  
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Figure 2.2 – α6L9’S mice exhibit enhanced nicotine-stimulated locomotor activity. a) 
Locomotor activity expressed as movement counts in WT mice following 0 mg/kg (n=9), 0.03 
mg/kg (n=4), and 0.1 mg/kg nicotine (n=7) compared within-subject to the saline-paired a.m. 
CPP training sessions. b) Locomotor activity expressed as movement counts in α6L9’S mice 
following 0 mg/kg (n=5), 0.03 mg/kg (n=6), and 0.1 mg/kg nicotine (n=5) compared within-
subject to the saline-paired a.m. CPP training sessions. *p<0.01 vs. vehicle (a.m. training 
session). Data are expressed as mean ± SEM.  
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Nicotine CPP is blocked by intra-NAc shell α-Ctx MII in WT, but not α6L9’S mice 

To investigate the neuroanatomical loci of α6β2*nAChR contributions to nicotine reward 

behavior, WT and α6L9’S mice received intra-NAc shell infusions of VEH or the 

α6β2*nAChR-selective antagonist, α-Ctx MII prior to systemic nicotine injection during CPP 

training. Given that WT and α6L9’S behaved differently in the above CPP task, we analyzed the 

effect of intra-NAc shell α-Ctx MII on WT andα6 L9’S nicotine CPP separately. In WT mice, 

there was a significant interaction of α-Ctx MII infusion by nicotine dose (F3.48=3.818, p=0.016). 

Intra-NAc shell infusion of α-Ctx MII significantly reduced nicotine CPP at 0.1 mg/kg i.p. 

nicotine (t11=2.53, p=0.03), a rewarding dose in WT mice (Figure 2.3a), suggesting that 

α6β2*nAChRs on terminals in the NAc shell promote nicotine reward. α-Ctx MII also induced 

an apparent conditioned place aversion at 0.03 mg/kg i.p. nicotine (t10=2.81, p=0.02), however, 

α-Ctx MII did not appear to be aversive on its own since mice receiving i.p. saline did not show 

reductions in preference for the chamber paired with α-Ctx MII infusion. By contrast, intra-NAc 

shell α-Ctx MII did not impact nicotine CPP in α6L9’S mice (Figure 2.3b), suggesting that 

α6β2*nAChRs elsewhere in the brain were driving nicotine reward behavior of α6L9’S mice. 
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Figure 2.3 – Nucleus accumbens (NAc) shell α-Conotoxin MII (α-Ctx MII) blocks nicotine 
CPP in WT, but not α6L9’S mice. a) Left, Nicotine CPP with NAc shell saline vehicle (VEH) 
or α-Ctx MII pretreatment expressed as change from baseline time spent in the nicotine-paired 
chamber in WT mice at 0 mg/kg (VEH: n=9; α-Ctx MII: n=10), 0.03 mg/kg (VEH: n=6; α-Ctx 
MII: n=6), and 0.1 mg/kg i.p. nicotine (VEH: n=7; α-Ctx MII: n=6). Right, schematic diagram of 
the NAc shell 1.09 to 1.97 from Bregma (adapted from Paxinos and Franklin). Black dots 
represent guide cannula placements within the NAc shell. b) Left, Nicotine CPP with NAc shell 
VEH or α-Ctx MII pretreatment expressed as change from baseline time spent in the nicotine-
paired chamber in α6L9’S mice at 0 mg/kg (VEH: n=6; α-Ctx MII: n=8), 0.03 mg/kg (VEH: 
n=10; α-Ctx MII: n=8), and 0.1 mg/kg i,p. nicotine (VEH: n=5; α-Ctx MII: n=4). Right, 
schematic diagram of the NAc shell 1.09 to 1.97 from Bregma (adapted from Paxinos and 
Franklin). Black dots represent guide cannula placements. *p<0.05 vs. VEH. Data are expressed 
as mean ± SEM.  
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Intra-VTA α-Ctx MII blocks enhanced nicotine reward behavior and attenuates elevated 

basal NAc DA release in α6L9’S mice 

To determine if VTA α6β2*nAChRs promote enhanced nicotine reward, α6L9’S mice received 

intra-VTA infusions of VEH or α-Ctx MII prior to systemic nicotine injection during CPP 

training. A 2x2 ANOVA revealed a significant interaction of α-Ctx MII infusion by nicotine 

dose (F1,26=4.238, p=0.05). Intra-VTA α-Ctx MII blocked nicotine CPP at 0.03 mg/kg i.p. 

nicotine in a naïve cohort of α6L9’S mice (t14=3.228, p=0.006; Figure 2.4a), suggesting that 

α6β2*nAChRs in the VTA support enhanced nicotine reward. Data are not shown for WT VTA-

infused mice due to a failure of vehicle-infused subjects to show nicotine CPP, precluding 

assessment of intra-VTA α-Ctx MII effect on nicotine CPP.  

To determine if VTA α6β2*nAChRs also modulate enhanced α6L9’S basal NAc DA 

release, α6L9’S mice received intra-VTA infusions of aCSF or α-Ctx MII during microdialysis. 

Intra-VTA infusion of α-Ctx MII similarly attenuated NAc DA levels compared to vehicle 

controls (t7=3.317, p=0.01; Figure 2.4b), suggesting that, like nicotine reward, stimulation of 

α6β2*nAChRs on VTA DA neuron soma promotes NAc DA release.  
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Figure 2.4 – Ventral tegmental area (VTA) α-Conotoxin MII (α-Ctx MII) blocks nicotine 
CPP and attenuates nucleus accumbens (NAc) dopamine (DA) levels in α6L9’S mice. a) 
Left, Nicotine CPP with VTA saline or aCSF vehicle (VEH) or α-Ctx MII pretreatment 
expressed as change from baseline time spent in the nicotine-paired chamber in WT mice at 0 
mg/kg (VEH: n=10; α-Ctx MII: n=11) or 0.1 mg/kg i.p. nicotine (VEH: n=7; α-Ctx MII: n=7). 
Right, schematic diagram of the VTA -2.91 to -3.79 from Bregma (adapted from Paxinos and 
Franklin). Black dots represent guide cannula placements within the VTA. b) Left, Nicotine CPP 
with VTA saline or aCSF vehicle (VEH) or α-Ctx MII pretreatment expressed as change from 
baseline time spent in the nicotine-paired chamber in α6L9’S mice at 0 mg/kg (VEH: n=7; α-Ctx 
MII: n=7) or 0.03 mg/kg i.p. nicotine (VEH: n=8; α-Ctx MII: n=8). Right, schematic diagram of 
the VTA -2.91 to -3.79 from Bregma (adapted from Paxinos and Franklin). Black dots represent 
guide cannula placements within the VTA. c) NAc DA levels expressed as percent baseline DA 
following VTA infusion of aCSF vehicle (n=4) or 10 pmol α-Ctx MII (n=5). Right, schematic 
diagram of the VTA -2.91 to -3.79 from Bregma and the NAc 1.09 to 1.53 from Bregma 
(adapted from Paxinos and Franklin). Black dots represent guide cannula placements within the 
VTA and black lines on the schematic diagram represent 1 mm long microdialysis probe 
membrane placements within the NAc. *p<0.05 vs. vehicle. Data are expressed as mean ± SEM.  
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DISCUSSION 
 
Complementary to null mutant strategies, the development of α6β2*nAChR gain-of-function 

(α6L9’S) mice (Drenan et al, 2008) has provided a means of testing behavior under conditions 

where α6β2*nAChR function is amplified and isolated. Our in vivo microdialysis studies support 

α6L9’S in vitro data demonstrating elevated ACh-elicited striatal DA release (Cohen et al, 2012; 

Wang et al, 2014b). α6L9’S mice showed higher basal NAc DA levels compared to WT 

littermate controls, suggesting hyper-excitability of α6β2*nAChRs in response to endogenous 

ACh. It is unlikely that this effect resulted from altered DA transporter (DAT) function or DA 

turnover, as α6L9’S DAT levels are similar to or higher than in WT mice with DA turnover 

unchanged (Drenan et al, 2010; Wang et al, 2014). These in vivo studies provide further 

evidence that activation of α6β2*nAChRs by ACh is sufficient to promote NAc DA release.  

 α6L9’S mice also showed leftward shifts in the dose response curve for nicotine CPP; 

α6L9’S mice showed nicotine CPP at doses sub-threshold for observation of this behavior in WT 

mice. This finding expands on previous data implicating the necessity of α6β2*nAChRs for 

nicotine reward (Jackson et al, 2009; Sanjakdar et al, 2015), to suggest that α6β2*nAChR 

activation is sufficient for this behavior. Similar findings have been reported in α4β2*nAChR 

gain-of-function (α4L9’A) mice (Tapper et al, 2004), raising the possibility that the high 

sensitivity α4α6β2*nAChRs regulate nicotine reward (Liu et al, 2012), a hypothesis that 

warrants further study. Independent groups of α6L9’S mice showed augmented basal NAc DA 

levels, suggesting that changes in cholinergic signaling at α6β2*nAChRs may enhance both 

NAc DA tone and nicotine reward (but see Laviolette and van der Kooy, 2003). While these data 

are only correlative, baseline striatal DA tone appears to be a risk factor for addiction (Volkow et 
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al, 2012). In PET studies, human smokers show lower baseline DA receptor availability, 

reflective of increases in DA release, in the striatum and putamen compared to non-smokers 

(Brown et al, 2012; Fehr et al, 2008). Thus, it is possible that α6L9’S mice exhibit enhanced 

nicotine reward behavior due to the observed increase in basal DA levels. 

α6L9’S mice also showed an enhanced response to nicotine’s locomotor stimulating 

effects, a behavior dependent on β2*nAChR-regulation of DA activity (King et al, 2004). 

Consistent with previous findings demonstrating that nicotine strongly activates locomotor 

activity in α6L9’S, but not WT mice (Berry et al, 2015; Cohen et al, 2012; Drenan et al, 2010; 

Drenan et al, 2008), these data support that α6β2*nAChRs regulate DA-mediated locomotor 

activating effects of nicotine. α6L9’S mice are also hyperactive compared to WT mice under 

basal conditions with the lights off during the dark cycle (Cohen et al, 2012; Drenan et al, 2010; 

Drenan et al, 2008), an effect not seen in our studies where locomotor activity was measured 

with the lights on during the light cycle, conditions where mice are generally less active.  

In vitro cyclic voltammetry studies show that tonic ACh released from cholinergic 

interneurons acts at β2*nAChRs on DA terminals in the NAc to control DA release independent 

of VTA DA neuron firing (Cachope et al, 2012; Threlfell et al, 2012). ACh released from 

cholinergic interneurons also acts on DA terminal β2*nAChRs to maintain a high probability of 

action potential-evoked DA release (Zhou et al, 2001). Moreover, α-Ctx MII or α6 genetic 

deletion reduces nicotine-stimulated NAc DA release (Champtiaux et al, 2003; Grady et al, 

2002; Kulak et al, 1997; Salminen et al, 2004). Given the ability of α6β2*nAChRs on DA 

terminals to support NAc DA release (Champtiaux et al, 2003; Grady et al, 2002; Kulak et al, 

1997; Salminen et al, 2004) and the putative role of NAc DA release in nicotine reinforcement 
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and reward (Corrigall et al, 1992; Sellings et al, 2008), we sought to determine if NAc 

α6β2*nAChRs support nicotine reward.  

Intra-NAc α-Ctx MII blocked nicotine CPP in previous mouse studies (Sanjakdar et al, 

2015). The NAc is divided into two distinct regions, the NAc core and shell. These subdivisions 

differ anatomically, have unique neuronal connections, and are thought to play different roles in 

regard to abused drugs, including nicotine (Balfour, 2015). We report that α6β2*nAChRs in the 

NAc shell subdivision are involved in nicotine reward. This finding in mice is consistent with 

our previous data showing that NAc shell α6β2*nAChRs regulate nicotine reinforcement in rats 

(Brunzell et al, 2010).  

Intra-NAc shell α-Ctx MII did not block nicotine CPP in α6L9’S mice, suggesting that 

α6β2*nAChRs at another neuroanatomical locus contributed to elevated nicotine reward 

behavior. In fact, intra-VTA α-Ctx MII blocked nicotine CPP in α6L9’S mice, suggesting that 

the hyperactivity of α6L9’S VTA DA neurons may have overshadowed effects of NAc shell 

α6β2*nAChRs on reward behavior in α6L9’S mice. A role for VTA α6β2*nAChRs in nicotine 

reinforcement has been established (Gotti et al, 2010; Pons et al, 2008), but the present data are 

the first to our knowledge to show that VTA α6β2*nAChRs modulate nicotine reward behavior 

in mice. These intra-VTA infusion experiments were also attempted in WT mice. However, WT 

VTA-infused mice failed to show nicotine CPP following vehicle infusions, precluding 

observation of intra-VTA α-Ctx MII effects on nicotine CPP. Normally, repeated micro-

infusions are well tolerated in mice. However, some mice became lethargic or were unable to 

ambulate properly upon receiving VTA infusions, which could explain the failure to show 

nicotine CPP in these mice.  
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A preponderance of evidence suggests that VTA α6β2*nAChRs support DA release. 

ACh and nicotine fail to increase VTA DA neuron firing in α6 null mutant mice or following 

intra-VTA α-Ctx MII (Champtiaux et al, 2003; Liu et al, 2012; Zhao-Shea et al, 2011). Intra-

VTA α-Ctx MII also decreases nicotine-stimulated and evoked phasic DA release (Gotti et al, 

2010; Wickham et al, 2013). Studies show that α6β2*nAChR gain-of-function mutation results 

in enhancement of VTA DA neuron firing and NAc DA release in vitro (Cohen et al, 2012; 

Drenan et al, 2010; Drenan et al, 2008; Engle et al, 2013; Powers et al, 2013; Wang et al, 2014). 

We observed that intra-VTA infusion of α-Ctx MII reduced α6L9’S NAc DA levels in awake, 

behaving mice; these findings suggest that elevations of cholinergic tone at VTA α6β2*nAChRs 

supports NAc DA release in these mice. Given the established role of DA in nicotine reward 

(Balfour, 2015; Sellings et al, 2008), our findings support a role for VTA α6β2*nAChR-driven 

DA neuron activity in nicotine reward behavior. Overall, our findings demonstrate that 

mesolimbic α6β2*nAChRs in the VTA and NAc shell independently support nicotine reward. 

Together with previous studies, these findings support a model of nicotine reward modulated by 

DA neuron activity-independent and activity-dependent DA release (Figure 5). 

In summary, these in vivo studies demonstrate that elevated cholinergic tone at VTA 

α6β2*nAChRs is sufficient to enhance basal NAc DA tone and nicotine reward.  Our findings 

also showed that NAc α6β2*nAChRs regulate nicotine reward behavior.  These findings 

demonstrate a role for two independent pools of mesolimbic α6β2*nAChRs in nicotine reward, 

which may be regulated by activity-independent and activity-dependent NAc DA release, a 

hypothesis which needs to be directly tested in future experiments. Overall, this work provides 

information about the neural circuitry implicated in behaviors that can lead to nicotine addiction 
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and supports evidence to suggest that antagonism of α6β2*nAChRs may prove an effective 

therapeutic strategy for smoking cessation. 
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Figure 2.5 – A model for two potential mechanisms by which α6β2*nAChRs in the 
mesolimbic pathway may regulate nicotine reward. a) Nicotine activates α6β2*nAChRs on 
dopamine (DA) terminals in the nucleus accumbens to promote nicotine reward, which may be 
modulated by α6β2*nAChR-mediated DA release. b) Nicotine activates α6β2*nAChRs on 
ventral tegmental area neuron soma to drive DA release, which may promote nicotine reward.	  
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Chapter 3 – Assessing the contributions of α4β2* and α6β2*nAChRs to anxiety-like 

behavior 

 

INTRODUCTION 
	  
Smokers report that they smoke to relieve anxiety, and stress can lead to escalation of smoking 

and relapse (Shiffman et al, 1997; Skara et al, 2001). Further, patients with anxiety disorders are 

at a greater risk for developing nicotine dependence (Kushner et al, 2012). Nicotinic 

acetylcholine receptors (nAChRs), the primary target of nicotine, are implicated in regulation of 

anxiety. Nicotine produces a bimodal effect on anxiety-like behavior in rodents, with low doses 

(0.01-0.1 mg/kg, i.p.) being anxiolytic and high doses (0.5-1.0 mg/kg, i.p.) being anxiogenic 

(Anderson et al, 2012, 2015; Cheeta et al, 2001a; Cheeta et al, 2001b; File et al, 2000; File et al, 

1998; Irvine et al, 1999; McGranahan et al, 2011; Ouagazzal et al, 1999; Varani et al, 2012; 

Zarrindast et al, 2008). Nicotine appears to promote anxiolysis via desensitization of nAChRs, as 

nAChR antagonists produce anxiolytic-like effects (Anderson et al, 2012, 2015; Newman et al, 

2002; Newman et al, 2001; Roni and Rahman, 2011). Further, recent studies from our lab show 

that a low dose of nicotine (0.05 mg/kg i.p.) blocks the anxiogenic-like effects of a high dose of 

nicotine (0.5 mg/kg i.p.) in the light-dark assay; this is presumably via nAChR desensitization 

(Anderson et al, 2015). Together, these studies suggest that activation of nAChRs promotes 

anxiety-like behavior.  
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Previous studies suggest that β2*nAChRs regulate anxiety-like behavior. The 

β2*nAChR-selective antagonist, dihydro-beta-erythroidine (DHβE) decreases anxiety-like 

behavior in a conditioned emotional response (CER) task, as well as in the EPM and marble 

burying tasks (Anderson et al, 2012). Moreover, low doses of the β2*nAChR-selective agonist, 

5I-A5830, decrease anxiety-like behavior, while high doses increase anxiety-like behavior 

(Anderson et al, 2015). DHβE (Grady et al, 2010; Papke et al, 2008) and 5I-A85830 (Mukhin et 

al, 2000) have similar potencies at α4β2* and α6β2*nAChRs. The purpose of these experiments 

was to assess how α4β2* and α6β2*nAChRs independently contribute to anxiety-like behavior. 

α4β2*nAChRs are ubiquitously expressed throughout the brain, including in areas 

associated with anxiety-like behavior. The anxiolytic-like efficacy of a low dose of nicotine is 

reduced in mice with a selective genetic deletion of the α4 subunit from ventral tegmental area 

(VTA) dopamine (DA) neurons (McGranahan et al, 2011), suggesting that VTA α4β2*nAChRs 

are important for nicotine’s anxiolytic effects. Moreover, the α4β2*nAChR gain-of-function 

L9’S mice (α4L9’S) exhibit greater levels of basal anxiety-like behavior compared to wild type 

(WT) mice (Labarca et al, 2001), suggesting that basal cholinergic activity at α4β2*nAChRs 

promotes anxiogenic-like behavior. Interestingly, α4 null mutant (α4KO) mice also show 

increases in basal anxiety-like behavior (Ross et al, 2000). Unlike α4β2*nAChRs, 

α6β2*nAChRs have a more selective expression pattern in brain, being enriched in 

catecholaminergic nuclei, as well as in the visual circuitry. However, α6β2*nAChRs are not 

highly expressed in brain regions such as the amygdala, cingulate cortex, and lateral septum 

(Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996), which are implicated in 

anxiety-like behavior. While α6β2*nAChRs in the VTA and NAc have not been directly 
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implicated in anxiety-like behavior, these areas where α6β2*nAChRs are enriched are involved 

in such behaviors. For example, mesocorticolimbic VTA DA projections to the prefrontal cortex 

(PFC) are involved in stress responses in animals and humans (Anstrom et al, 2009; Cha et al, 

2014). In the NAc, the anxiolytic drug, buspirone reduces ACh levels (Kolasa et al, 1982), while 

local CRF administration increases anxiety-like behavior and local ACh levels (Chen et al, 

2012). α6β2*nAChRs are also expressed in the locus coeruleus, a norepinephrine (NE)-rich 

nucleus that has been implicated in anxiety-like behavior (Chmielarz et al, 2013; Itoi et al, 2011; 

Mazzone et al, 2016; McCall et al, 2015).   

These studies assessed the independent contributions of α4β2* and α6β2*nAChRs to 

anxiety-like behavior. First, we used complementary genetic approaches, assessing anxiety-like 

behavior in mice with a gain-of-function (α6L9’S) or loss-of-function (α6KO) to their 

α6β2*nAChRs using the EPM, open field, and light-dark assays. α6L9’S mice have a single 

point mutation in the M2 pore-forming region of the α6 subunit, rendering their α6β2*nAChRs 

hypersensitive to nicotine and ACh as compared to WT littermates so that subthreshold 

concentrations of these agonists selectively activate α6β2*nAChRs (Drenan et al, 2010; Drenan 

et al, 2008). Finally, we assessed anxiety-like behavior using the EPM, open field, and light-dark 

assays in α4β2*nAChR gain-of-function (α4L9’A) mice with a single point mutation in the M2 

pore-forming region of the α4 subunit, rendering their α4β2*nAChRs hypersensitive to nicotine 

(Tapper et al., 2004), to determine whether activation of α4β2* and α6β2*nAChRs may work 

together or in opposition in regards to regulation of anxiety-like behavior. 

MATERIALS AND METHODS 
 
Subjects 
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A total of 129 adult male mice participated in these studies: 33 α6L9’S and 38 WT littermates; 

15 α6KO mice and 15 WT littermates; 13 α4L9’A and 15 WT littermates. All mice were 

backcrossed at least 10 generations. A single allele for the α6L9’S transgene produces the 

hypersensitive α6β2*nAChR phenotype (Drenan et al, 2008) so that breedings to WT mice 

resulted in 50% α6L9’S and 50% WT offspring. α6KO mice were generated from heterozygous 

matings of mice backcrossed at least 10 generations on a C57BL/6J background. Mice were 

housed in polycarbonate cages with Teklad corncob bedding (catalog number 7092) in a 

temperature- and humidity-controlled vivarium on a 12 h light/dark cycle (lights on at 6:00 a.m.). 

Mice had access to food (Teklad LM-485 Mouse/Rat Sterilizable Diet, catalog number 7012) and 

water ad libitum. The experimental protocol was approved by the Institutional Animal Care and 

Use Committee at Virginia Commonwealth University. All animals were treated according to the 

Guidelines for the Care and Use of Laboratory Animals (National Institutes of Health).   

 
Behavioral procedures 

Mice in these studies underwent anxiety testing in the following order: open field (fluorescent 

lighting), light-dark, locomotor (infrared lighting), EPM. Except for locomotor testing, which 

took place immediately following the light-dark assay, at least 24 h were allowed between tests.  

 
Elevated plus maze assay (EPM) 

A plus maze situated 68 cm above the floor had white plastic flooring on two open arms (5 cm x 

30 cm) that were perpendicular to two closed arms (5 cm x 30 cm) that had black Plexiglas 

enclosures (15.25 cm H). Testing took place under fluorescent lighting. Mice (n=12-15 per 

genotype) were injected with i.p. SAL and returned to their home cage for 5 min before being 

placed on the center of the EPM facing a closed arm. Behavior was recorded using a ceiling-
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mounted camera interfaced to a PC for collection of data using ANY-maze tracking software 

(Stoelting, Wood Dale, IL) for 10 min. Dependent measures included time spent in the open 

arms, entries made into the open arms, distance traveled in the open arms, and latency to explore 

the terminal zones of the open arms. Time spent in the open arms, entries made in the open arms, 

and distance traveled in the open arms data were separated into 5 min time bins.  

 
Open field/locomotor assay 

Open field and locomotor tests took place in a polycarbonate cage (30 cm L x 18 cm W) 

surrounded by a white plastic enclosure. Testing took place under fluorescent (open field) or 

infrared lighting conditions (500 mA emitting an 830 nM frequency) (locomotor). Mice (n=6-8 

per genotype) were placed into the polycarbonate cage facing one of the corners. Data was 

recorded using a ceiling-mounted camera interfaced to a PC for collection of data using ANY-

maze tracking software for 15 min. Dependent measures included total distance traveled, latency 

to enter the centre zone, center zone entries, and time spent in the corners.  

 
Light-dark assay 

The light-dark assay was conducted in modified mouse place conditioning chambers (Med 

Associates, St. Albans, VT) consisting of a small, enclosed dark chamber (16.8 cm L x 12.7 cm 

W x 12.7 cm H) adjacent to a larger, open brightly-lit chamber (26.5 cm L x 12.7 cm W x 26.2 

cm H) illuminated by a 23W fluorescent light bulb. A retractable door was opened (5 cm W x 5.9 

cm H) at the beginning of the test to provide mice with free access to explore both chambers. 

During testing, the experimental room was dark other than illumination required for the light 

dark apparatus. Mice (n=13-14 per genotype) received i.p. SAL immediately prior to evaluation 

in the light-dark assay. A separate cohort of mice (n=8 per genotype) did not receive i.p. SAL 
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injections prior to the light-dark test. Animals were placed in the dark chamber and had free 

access to the entire apparatus for 10 min. Data was collected using Med Associates software. 

Dependent measures included latency to enter the light chamber, % time spent in the light 

chamber, and movement counts.       

 
Statistical Analysis 

All statistical analyses were performed using SPSS. A one-way analysis of variance (ANOVA) 

comparing saline-injected and non-injected mice revealed no significant main effects of injection 

for any measure in the light-dark assay (F’s<1), so these groups were combined for subsequent 

analyses. Two-tailed t-tests were used to assess genotype effects in the light-dark and EPM tasks. 

A repeated measures 2x2 (time x genotype) ANOVA analyzed EPM data separated into 5 min 

time bins. Latency to enter the terminal zone of the open arms was analyzed using two-tailed t-

tests. A two-way 2x2 (genotype x light condition) ANOVA was used to analyze the effects of 

genotype and light condition on locomotor activity and anxiety-like behavior in the open field 

test. Significant interactions were followed by two-tailed t-tests. The criterion for significance 

was set at p<0.05. Data points more than 2 standard deviations from the mean were considered 

outliers and excluded from analysis.   

RESULTS  
	  
Assessment of α6β2*nAChR contributions to anxiety-like behavior 

Elevated plus maze (EPM) 

Repeated measures 2x2 ANOVAs revealed significant time bin by genotype interactions for time 

spent in the open arms (F1,27=6.114, p<0.05) and distance traveled in the open arms (F1,27=7.729, 

p<0.05). α6L9’S mice spent less time in the open arms (t27=2.341, p<0.05; Figure 3.1a) and 
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traveled less distances on the open arms compared to WT littermates during the first 5 min 

(t27=2.745, p<0.05; Figure 3.1b), but not the second 5 min (t27=1.424, p=0.166; t27=0.899, 

p=0.377). α6L9’S mice also had longer latencies to enter the terminal zone of the open arms 

compared to WT controls (t27=2.812, p<0.05; Figure 3.1d). Independent of genotype, mice made 

fewer entries into the open arms during the second 5 min (F1,27=13.04, p<0.01; Figure 3.1c). 

These data demonstrate higher levels of anxiety-like behavior in α6L9’S mice compared to WT 

controls in the EPM assay.  

Repeated measures 2x2 ANOVAs revealed that mice spent more time (Figure 3.1e), 

traveled greater distances (Figure 3.1f), and made more entries in the open arms (Figure 3.1g) 

during the first 5 min independent of genotype (F1,23=27.53; F1,23=18.32; F1,23=16.93, 

p’s<0.001), but no significant effects were detected between WT and α6KO mice for open arm 

time, open arm distance, or open arm entries (F1,23=1, p=0.423; F1,23=1.052, p= 0.316; 

F1,23=1.087, p=0.308). α6KO mice did not show differences for latencies to enter the terminal 

zone of the open arms compared to WT mice (t23=0.240, p=0.814; Figure 3.1h).  
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Figure 3.1 - α6L9’S gain-of-function mice express increased anxiety-like behavior in the 
elevated plus maze (EPM) assay. a-d) Time in the open arms, distance traveled on the open 
arms, open arm entries, and time to explore the terminal 5 cm of the open arms on the EPM in 
wild type (WT) (n=14) versus α6L9’S mice (n=13). e-h) Time in the open arms, distance 
traveled on the open arms, open arm entries, and time to explore the terminal 5 cm of the open 
arms on the EPM in WT (n=13) versus α6 null mutant (α6KO) mice (n=12). Data are 
represented as means ± SEM. *p<0.05 vs. WT.     
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Open field/locomotor assay  

Two-way 2x2 ANOVAs revealed a genotype by light condition interaction for latency to enter 

the center zone (F1,26=10.625, p<0.01) and total distance traveled (F1,26=4.356, p<0.05). Under 

fluorescent lighting conditions, α6L9’S mice had longer latencies to enter the center zone 

(t12=3.218, p<0.01; Figure 3.2a) compared to WT mice, indicating higher levels of anxiety-like 

behavior in α6L9’S mice. WT mice showed traveled greater distances compared to α6L9’S mice 

under infrared, but not fluorescent lighting conditions (t14=2.296 p<0.05; Figure 3.2d), 

suggesting that the longer latencies to enter the center zone in α6L9’S mice under fluorescent 

lighting conditions was not due to an overall decrease in activity. Independent of lighting 

conditions, main effects of genotype revealed that α6L9’S made fewer center entries 

(F1,26=9.969, p<0.01, Figure 3.2b) and spent more time in the corners (F1,26=7.199, p<0.05, 

Figure 3.2c) compared to WT controls, suggesting an anxiogenic-like phenotype in α6L9’S 

mice. Independent of genotype, a main effect of lighting condition revealed that mice made 

fewer center entries (F1,26=10.350, p<0.01, Figure 3.2b), indicating a more anxiogenic 

environment under fluorescent lighting.  

For WT and α6KO mice, there were no main effects of genotype for any measure in the 

locomotor assay (F1,27=1.645, p=0.211, F1,27=1.698, p=0.204, F1,27=1.645, p=0.862, F1,27=1.292, 

p=0.266; Figures 3.2e-h). Unexpectedly, there was a main effect of lighting condition, 

demonstrating that mice spent more time in the corners under infrared lighting conditions 

compared to fluorescent lighting conditions (F1,27=19.48, p<0.001; Figure 3.2g). Mice also 

traveled greater distances (F1,27=5.817, p<0.05; Figure 3.2h) under infrared lights compared to 

fluorescent lights independent of genotype.    
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Figure 3.2 - α6L9’S gain-of-function mice showed higher levels of anxiety-like behavior 
during a locomotor activity test.  a-d) Latencies to enter the center zone, center zone entries, 
time in the corners, and distance traveled under fluorescent or infrared lighting conditions in wild 
type (WT) (fluorescent lights: n=8; infrared lights: n=8) versus α6L9’S mice (fluorescent lights: 
n=6; infrared lights: n=8). e-h) Latencies to enter the center zone, center zone entries, time in the 
corners, and distance traveled under fluorescent or infrared lighting conditions in WT 
(fluorescent lights: n=8; infrared lights: n=8) versus α6 null mutant (α6KO) mice (fluorescent 
lights: n=7; infrared lights: n=8). Data are represented as means ± SEM. *p<0.05 vs. WT, 
**p<0.05 compared to room lights on +.  
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Light-dark assay 

α6L9’S mice spent less time in the light chamber compared to WT littermates (t41=3.837, 

p<0.001; Figure 3.3a), demonstrating an anxiogenic-like phenotype in α6L9’S mice. Despite 

similar trends, there was no significant effect of genotype for latency to enter the light chamber 

(t41=1.395, p=0.171; Figure 3.3b). α6L9’S mice exhibited less movement counts compared to 

WT controls (t41=5.563, p<0.001; Figure 3.3c), suggesting that decreases in activity may reflect 

less time spent in the light chamber. On the other hand, there were no significant differences 

between WT and α6KO mice for any of these measures (t25=1.924, 1.206, 1.687; p’s>0.05; 

Figure 3.3d-f).  
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Figure 3.3 - α6L9’S mice showed an elevated anxiety-like phenotype in the light-dark 
assay. a-c) Time in the light chamber, latency to enter the light chamber, and movement counts 
in wild type (WT) (n=14) versus α6L9’S mice (n=13). d-f) Time in the light chamber, latency to 
enter the light chamber, and movement counts in WT (n=8) versus α6 null mutant (α6KO) mice 
(n=8). Data are represented as means ± SEM. *p<0.05 vs. WT.        
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Assessment of α4β2*nAChR contributions to anxiety-like behaviors 

Elevated plus maze 

Repeated measures 2x2 ANOVAs detected significant time bin by genotype interactions for time 

spent in the open arms (F1,26=4.025, p<0.05) and open arm entries (F1,26=5.28, p<0.05). α4L9’A 

mice spent more time in the open arms (t26=-2.431, p<0.05; Figure 3.4a) and made more entries 

onto the open arms of the EPM during the first 5 min (t26=-2.387, p<0.05; Figure 3.4c), but not 

the second 5 min (t26=-0.215, p=0.832; t26=-0.174, p=0.864) compared to WT littermates, 

suggestive of an anxiolytic-like phenotype in α4L9’A mice. Independent of genotype, mice 

spent less time in the open arms (F1,26=4.361, p<0.05) and made less entries into the opens arms 

of the EPM during the second 5 min (F1,26=9.969, p<0.01). There was no significant time bin by 

genotype interaction for distance traveled in the open arms (F1,26=2.106, p=0.159; Figure 3.4b), 

and no differences between WT and α4L9’A mice for latency to enter the open arm terminus 

(t26=0.689, p=0.517; Figure 3.4d).  
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Figure 3.4 - α4L9’A gain-of-function mice expressed decreased anxiety-like behavior in the 
elevated plus maze (EPM) assay. a-d) Time in the open arms, distance traveled on the open 
arms, open arm entries, and time to explore the terminal 5 cm of the open arms on the EPM in 
wild type (WT) (n=15) versus α4L9’A mice (n=13). Data are represented as means ± SEM. 
*p<0.05 vs. WT, **p<0.05 compared to minute 1-5. 
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Open field/locomotor assay  

There were no significant genotype by light condition interactions for latency to enter the center 

zone (F1,52=2.524, p=0.118), entries into the center zone (F1,52=0.015, p=0.904), time in the 

corners (F1,52=3.34, p=0.073), or total distance traveled (F1,52=0.44, p=0.51) during a locomotor 

test (Figure 3.5a-d). While genotype did not impact behavior in the open field (fluorescent lights) 

and locomotor (infrared lights) assays differently, main effects of genotype revealed that α4L9’A 

mice made more center entries (F1,52=6.378, p<0.05) and spent less time in the corners 

(F1,52=6.869, p<0.05) compared to WT mice independent of lighting conditions, suggestive of an 

anxiolytic-like phenotype in α4L9’A mice. However, α4L9’A mice also traveled greater 

distances independent of lighting conditions (F1,52=19.751, p<0.001), which could have 

influenced increases in center entries. Unexpectedly, mice had greater latencies to enter the 

center zone (F1,52=4.063, p<0.05), made less entries into the center zone (F1,52=16.966, p<0.001), 

and spent more time in the corners (F1,52=11.979, p=0.001) under infrared lighting. Mice also 

traveled less distance overall (F1,52=17.652, p<0.001) under infrared lighting independent of 

genotype, suggesting that reductions in center zone behavior under infrared lighting could have 

resulted from an overall reduction in behavior.  

  
Light-dark assay 

There were no significant differences for percent time spent in the light chamber (t24=-0.573, 

p=0.572), latency to enter the light chamber (t24=0.045, p=0.964), or total movement counts 

(t24=0.817, p=0.422) during the light-dark test (Figure 3.6a-c), indicating no differences in 

anxiety-like behavior as measured by the light-dark test between WT and α4L9’A mice.  
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Figure 3.5 - α4L9’A gain-of-function mice showed no significant differences in anxiety-like 
behavior compared to wild type (WT) mice in a locomotor activity test.  a-d) Latencies to 
enter the center zone, center zone entries, time in the corners, and distance traveled under 
fluorescent or infrared lighting conditions in WT (n=15) versus α4L9’A mice (n=13). Data are 
represented as means ± SEM.  **p<0.05 compared to room lights on +.  
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Figure 3.6 - α4L9’A gain-of-function mice showed no significant differences in anxiety-like 
behavior compared to wild type (WT) mice in the light-dark test.  a-c) percent time spent in 
the light chamber, latency to enter the light chamber, and total movement counts in WT (n=15) 
versus α4L9’A mice (n=11). Data are represented as means ± SEM. 
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DISCUSSION 
	  
In these studies, α6L9’S gain-of-function mice showed elevated levels of anxiety-like behavior 

compared to WT controls in the EPM, open field, and light-dark assays, suggesting that 

activation of α6β2*nAChRs is sufficient to promote anxiogenic-like behavior. In contrast, WT 

and α6KO mice did not differ for measures of anxiety-like behavior, suggesting that 

α6β2*nAChRs are not necessary for expression of anxiety-like behavior. Given the effects we 

observed in α6L9’S mice, we subsequently tested anxiety-like behavior in α4L9’A gain-of-

function mice to determine whether activation of α4β2* and α6β2*nAChRs may work together 

or in opposition to regulate anxiety-like behavior. In contrast to α6L9’S mice, α4L9’SA mice 

showed decreased anxiety-like behavior compared to WT controls in the EPM and open field 

assays, suggesting that α4β2*nAChRs activation is sufficient to promote anxiolysis rather than 

anxiogenesis.  

In support of the present data in α4L9’A mice suggesting that activation of 

α4β2*nAChRs promotes anxiolysis, previous findings have demonstrated that genetically 

inactivating α4β2*nAChRs promotes anxiogenesis (Ross et al, 2000). These present findings are 

also consistent with studies in transgenic mice with their α4 subunit specifically knocked down 

in VTA DA neurons suggesting that α4β2*nAChRs in the mesolimbic DA pathway are 

important for the anxiolytic-like effects of nicotine (McGranahan et al, 2011). More specifically, 

DA neuron-selective α4 deletion resulted in an attenuation of the anxiolytic efficacy of 0.01 

mg/kg i.p. nicotine in the EPM assay. It is interesting that, unlike α4L9’A mice, α4L9’S gain-of-

function mice, whose α4β2*nAChRs are hypersensitive to nicotine like α4L9’A mice, show 

increases rather than decreases in anxiety-like behavior (Labarca et al, 2001). These differences 
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between α4L9’A and α4L9’S mice may be due to differences in the M2 pore-forming region 

mutations, where α4L9’A mice have a leucine to alanine mutation and the α4L9’S mice have a 

leucine to serine mutation. In contrast to our results in α4L9’A mice, selective activation of 

α6β2*nAChRs in α6L9’S mice appears to promote, rather than attenuate anxiety-like behavior, 

acting in opposition of α4β2*nAChRs.  

An accumulation of evidence suggests that cholinergic hyperactivity promotes anxiety-

like behavior in rodents (Hart et al, 1999; Kolasa et al, 1982; Lamprea et al, 2000; Luo et al, 

2013; Mineur et al, 2013; Power and McGaugh, 2002; Revy et al, 2014). As our data suggests 

that activation of α6β2* and α4β2*nAChRs promotes opposite effects on anxiety-like behavior, 

it could be that hyperactive cholinergic tone has a greater effect at α6β2*nAChRs in regards to 

anxiety-like behavior to result in a net increase in this behavior. Brain areas where cholinergic 

activity regulates anxiety-like behavior include the amygdala, where cholinergic lesions decrease 

anxiety-like behavior (Power et al, 2002), the hippocampus, where acetylcholinesterase (AChE) 

inhibition increases cholinergic activation along with anxiety-like phenotypes (Lamprea et al, 

2000; Luo et al, 2013; Mineur et al, 2013), and the prefrontal cortex (PFC), where a 

benzodiazepine partial inverse agonist, FG 7142 promotes anxiogenic-like behavior and reduces 

AChE levels (Hart et al, 1999). Unlike α4β2*nAChRs, α6β2*nAChRs are not greatly enriched 

in these brain areas, suggesting that other brain regions contribute to α6β2*nAChRs regulation 

of anxiety-like behavior. α6β2*nAChRs are expressed on VTA DA neuron soma and DA 

terminals in the NAc, as well as on noradrenergic projection neurons in the locus coeruleus 

(Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996). VTA DA projections to the 

PFC can promote stress (Anstrom et al, 2009; Cha et al, 2014). Further, a role for VTA 

α4β2*nAChRs has been established for nicotine-associated anxiolysis (McGranahan et al, 
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2011), but it is not clear if VTA α4α6β2*nAChRs contribute to this phenotype. Buspirone, an 

anxiolytic drug, reduces ACh levels in the NAc (Kolasa et al, 1982) and local NAc shell infusion 

of CRF produces increases in anxiety-like behavior along with elevations in local NAc shell ACh 

levels (Chen et al, 2012), suggesting that cholinergic hyperactivity in the NAc may promote 

anxiety-like behavior. In addition, α6β2*nAChRs are also found in the locus coeruleus, a brain 

area also implicated in anxiety-like behavior (Chmielarz et al, 2013; Itoi et al, 2011; Mazzone et 

al, 2016; McCall et al, 2015).   

In contrast to the α6L9’S gain-of-function mutation, genetic deletion of the α6 subunit 

had no effect on anxiety-like behavior in these studies. The anxiety tests we used may not have 

been stressful enough for this genetic manipulation to have an effect on behavior; exposing these 

mice to an external stressor, such as restraint stress, before anxiety testing may unmask an effect 

in α6KO mice. While intracerebroventricular infusion of the α6β2*nAChR-selective antagonist, 

α-Ctx MII [H9A;L15A], attenuated nicotine withdrawal-induced anxiety-like behavior in the 

EPM assay (Jackson et al, 2009), the lack of anxiolytic efficacy of α-Ctx MII [H9A;L15A] in 

naïve mice is consistent with our present findings demonstrating that anxiety-like behavior in 

α6KO mice did not differ from WT mice. This further supports that our anxiety studies in α6KO 

mice may not have been stressful enough to undercover an effect on basal anxiety-like behavior. 

Given the higher levels of anxiety-like behavior observed in α6L9’S mice, the anxiolytic effect 

of α-Ctx MII [H9A;L15A] during spontaneous nicotine withdrawal suggests that activation of 

α6β2*nAChRs by endogenous ACh during withdrawal may contribute to anxiety experienced by 

smokers in abstinence. 

Taken together, these findings suggest that activation of α6β2*nAChRs is sufficient to 

promote anxiogenic-like behavior, whereas α6β2*nAChRs don’t appear to be necessary for 
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expression of anxiety-like behavior under basal conditions. We also demonstrate that activation 

of α4β2*nAChRs has the opposite effect of α6β2*nAChRs, decreasing anxiety-like behavior. 

Thus, it appears that α4β2* and α6β2*nAChRs act in opposition in regard to regulation of 

anxiety-like behavior. Overall, these studies provide insight into how cholinergic hyperactivity at 

subtypes of β2*nAChRs might regulate anxiety-like behavior.  

   

   

  



	   89	  

 
 
 
 

Chapter 4 – Differentiating the roles of (non-α4)α6β2 and α4α6β2 subunit containing 

nicotinic acetylcholine receptors to nicotine reward and anxiety-like behavior 

 

INTRODUCTION 
 
β2 subunit containing nicotinic acetylcholine receptors (β2*nAChRs, *denotes possible 

assembly with other subunits) are known to be responsible for many behavioral responses to 

nicotine. Studies show that activation of β2*nAChRs promotes nicotine’s rewarding and 

reinforcing properties (Besson et al, 2006; Corrigall et al, 1994; Maskos et al, 2005; Picciotto et 

al, 1998; Pons et al, 2008; Walters et al, 2006), as well as anxiety-like behavior (Anderson et al, 

2012, 2015; Hussmann et al, 2014; Turner et al, 2010; Yohn et al, 2014). However, the exact 

molecular make-up of β2*nAChRs involved with these addiction-like behaviors is not 

completely understood.  

The β2 subunit assembles with the α4 and/or α6 subunits to make subclasses of 

β2*nAChRs, including α4β2*, α6β2*, and α4α6β2*nAChRs. α4β2* and α6β2*nAChRs are 

independently implicated in regulation of nicotine reward and reinforcement, and anxiety-like 

behavior. α4 null mutant mice (α4KO) do not express nicotine CPP (McGranahan et al, 2011; 

Sanjakdar et al, 2015); but see Cahir et al, 2011), while α4β2*nAChR gain-of-function 

(α4L9’A) mice show enhanced CPP (Tapper et al, 2004). Moreover, selective α4 deletion in 

VTA DA neurons is sufficient to block nicotine CPP (McGranahan et al, 2011). α4KO mice also 

fail to self-administer nicotine intravenously (i.v.) into the tail vein or intracranially into the VTA 
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(Exley et al, 2011; Pons et al, 2008). However, α4KO mice are not different from WT mice in 

jugular i.v. nicotine self-administration (Cahir et al, 2011). Like CPP studies, α4-S248F mice 

with enhanced sensitivity for nicotine (similar to α4L9’A mice) show leftward shifts in the 

jugular i.v. nicotine self-administration dose response curve (Cahir et al, 2011). For anxiety-like 

behavior, nicotine loses its anxiolytic efficacy when the α4 subunit is selectively deleted in VTA 

DA neurons (McGranahan et al, 2011). α4KO mice show increases in basal anxiety-like 

behavior (Ross et al, 2000). Interestingly, α4β2*nAChR gain-of-function (α4L9’S) mice also 

exhibit an increased basal anxiety phenotype compared to WT mice (Labarca et al, 2001), while 

α4L9’A mice show decreases in basal anxiety-like behavior (see Chapter 3). 	  

Similar findings have been reported in studies of mice with modifications to their 

α6β2*nAChRs (see table 4.1 for a summary of previous findings regarding α4β2* and 

α6β2*nAChR contributions).	  α6 null mutant mice (α6KO) show rightward shifts in nicotine 

CPP (Sanjakdar et al, 2015), while α6β2*nAChR gain-of-function (α6L9’S) mice show 

enhanced nicotine CPP (see Chapter 2). Moreover, α6KO mice do not self-administer nicotine 

i.v. or intracranially into the VTA (Exley et al, 2011; Pons et al, 2008). Further, local infusion of 

the α6β2*nAChR-selective antagonist, α-Ctx MII, into the ventral tegmental area (VTA) or 

nucleus accumbens (NAc) shell reduces nicotine self-administration (Brunzell et al, 2010; Gotti 

et al, 2010), and intracerebroventricular (i.c.v.) or intra-NAc α-Ctx MII blocks nicotine CPP 

(Jackson et al, 2009; Sanjakdar et al, 2015). For anxiety-like behavior, we have shown that the 

α6L9’S gain-of-function mutation produces basal anxiogenic effects (see Chapter 3). It is not 

clear from this body of literature whether α4β2* and α6β2*nAChRs independently regulate 
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behaviors relevant to nicotine addiction or if α4 and α6 assemble together with β2 in the 

α4α6β2*nAChR confirmation to promote these behaviors. 

 

Table 4.1 – α4β2* and α6β2*nAChR contributions to nicotine self-administration, nicotine 
CPP, and anxiety-like behavior 
 

 
α4β2*nAChRs α6β2*nAChRs 

α4KO α4 gain-of-
function α6KO α6 gain-of-

function α-Ctx MII 

Nicotine self-
administration ↓ /−  ↑  ↓  ? ↓  

Nicotine CPP ↓ /−  ↑  ↓  ↑  ↓  
Basal anxiety-
like behavior ↑  ↑ /↓  −  ↑  ? 

Nicotine-
associated 

anxiety-like 
behavior 

↑  ? ? ? ? 

↓  indicates that the manipulation decreased the behavior, ↑  indicates that the manipulation 
increased the behavior, and − indicates that the manipulation had no effect on the behavior; ? 
indicates that the study has not been performed to date; Abbreviations: α4 null mutant mice 
(α4KO), α6 null mutant mice (α6KO), conditioned place preference (CPP); α-Conotoxin MII 
(α-Ctx MII)  
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Of all the nAChR subtypes, α4α6β2*nAChRs have the highest sensitivity to nicotine 

(Exley et al, 2008; Kuryatov et al, 2011; Liu et al, 2012; Salminen et al, 2007; Salminen et al, 

2004), and are persistently activated in the VTA at physiologically relevant concentrations of 

nicotine (300 nM) that typically desensitize other nAChRs (Liu et al, 2012). These low 

concentrations of nicotine are similar to levels achieved in the brain during smoking, so it is 

likely that α4α6β2*nAChRs are being engaged to promote some of nicotine’s effects. Not 

surprisingly, stimulation of α4α6β2*nAChRs appears to drive mesolimbic DA neuron activity 

and DA-related locomotor behavior (Drenan et al, 2010; Engle et al, 2013; Liu et al, 2012; 

Zhao-Shea et al, 2011). However, no known studies have investigated α4α6β2*nAChR 

contributions in nicotine reward or anxiety-like behavior. Thus, the purpose of these studies was 

to differentiate the role of (non-α4)α6β2*nAChRs and α4α6β2*nAChRs in nicotine reward and 

anxiety-like behavior by crossing α6L9’S gain-of-function mice with α4KO mice. In support of 

a role for α6β2*nAChRs in nicotine reward and anxiety-like behavior, we have shown 

previously (see Chapters 2 and 3) that α6L9’S mice show elevated basal levels of anxiety and 

express nicotine CPP and locomotor activation at doses of nicotine that are subthreshold for 

activation of other nAChR subtypes. The α6L9’S x α4KO cross will determine if elevated 

reward and anxiety-like behavior are regulated by hypersensitive α4α6β2*nAChRs or 

α6β2*nAChRs that do not contain an α4 subunit ((non-α4)α6β2*nAChRs). If (non-

α4)α6β2*nAChRs are involved with nicotine reward and anxiety-like behavior, we expect that 

elevated α6L9’S nicotine CPP and anxiety-like behavior will be maintained in α6L9’S-α4KO 

mice. On the other hand, if α4 and α6 assemble together in the α4α6β2*nAChR conformation to 
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regulate these behaviors, we expected that elevated α6L9’S nicotine CPP and anxiety-like 

behavior will be reversed in α6L9’S-α4KO mice.  

MATERIALS AND METHODS 
	  
Subjects  
 
Adult male wild type C57BL/6J (WT) (n=40), α4KO (n=32), α6L9’S (n=40), and α6L9’S-

α4KO mice (n=31) backcrossed > 10 generations on a C57BL/6J background were used in these 

studies. A single allele for the α6L9’S transgene produces the hypersensitive α6β2*nAChR 

phenotype (Drenan et al, 2008) so that breedings to WT mice resulted in 50% α6L9’S and 50% 

WT offspring. Then, the α6L9’S mice were crossed with α4KO mice to generate α4 

heterozygous mice (α4HET) with the α6L9’S mutation (α6L9’S-α4HET). Finally, the α6L9’S-

α4HET mice were crossed with α4HET mice to generate WT, α6L9’S, α4KO, and α6L9’S-

α4KO mice (see Figure 4.1 for probable nAChR subtypes expressed as a result of these genetic 

manipulations). This cross also generated α4HET and α6L9’S-α4HET mice, which were not 

used in these studies. Mice were housed in a temperature- and humidity-controlled vivarium in 

polycarbonate cages with Teklad corncob bedding (catalog number 7092) on a 12 h light/dark 

cycle, with lights on at 6:00 a.m. All mice had access to food (Teklad LM-485 Mouse/Rat 

Sterilizable Diet, catalog number 7012) and water ad libitum and were gently handled at least 

three times before any experiments were performed. The experimental protocol was approved by 

the Institutional Animal Care and Use Committee at Virginia Commonwealth University. All 

animals were treated according to the Guidelines for the Care and Use of Laboratory Animals 

(National Institutes of Health).  
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Figure 4.1 – Expression of β2*nAChRs related to nicotine addiction-like behavior resulting 
from genetic manipulations in mice used in these studies. Wild type (WT) mice express 
α4β2*, α4α6β2β3*, and (non-α4)α6β2β3*nAChRs, while α4 null mutant (α4KO) mice only 
express (non-α4)α6β2β3*nAChRs. Like WT mice, α6L9’S mice express all three subtypes as 
well, with the α4α6β2β3* and (non-α4)α6β2β3*nAChRs being hypersensitive. Like α4KO 
mice, α6L9’S-α4KO mice only express (non-α4)α6β2β3*nAChRs, but in the hypersensitive 
state. + indicates the presence of the native receptor subtype, ++ indicates the presence of the 
subtype in the hypersensitive form, and – indicates the absence of the receptor subtype. * denotes 
presence of the α4, β2, or α5 subunit. The α5 and β3 subunits are accessory subunits that do not 
participate in ligand binding, but instead contribute to the receptor’s channel permeability, 
binding affinity, desensitization, sensitivity to allosteric modulators, and sensitivity to 
upregulation (Kuryatov et al, 2008; Moroni et al, 2008; Moroni et al, 2006; Tapia et al, 2007). 
Further, evidence suggests that the β3 subunit is important for the formation of α6β2*nAChRs, 
as expression of α6β2*nAChRs is drastically reduced in β3 null mutant mice (Cui et al, 2003).  
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Drugs 
 
Nicotine hydrogen tartrate salt (Sigma-Aldrich, St. Louis, MO) was dissolved in 0.9% sterile 

saline vehicle (SAL). Nicotine solutions were filter sterilized and titrated to a pH of 7.1-7.4. 

Mice received intraperitoneal (i.p.) injections of SAL or nicotine at a volume of 0.1 ml/30 g. 

Nicotine doses are expressed by free base weight.  

 
Behavioral Procedures 
 
Mice in these studies underwent testing in the following order: CPP, open field, light-dark, 

locomotor activity under dim lighting conditions, and contextual threat conditioning. With the 

exception of one cohort, mice originally tested in CPP were also used for subsequent anxiety and 

threat conditioning tests. Testing took place no less than 24 h apart.  

 
Unbiased Nicotine Conditioned Place Preference (CPP) 

Nicotine CPP was conducted in Med Associates mouse place conditioning chambers (Med 

Associates, St. Albans, VT). The CPP apparatus consisted of two unique but equally preferred 

conditioning chambers with distinct floors (parallel bars or grid) and walls (black or striped) 

separated by retractable doors and a small neutral (grey) chamber with Plexiglas floor.  CPP 

training took place twice a day between the hours of 10:00 a.m. and 12:00 p.m. and 1:00 p.m. 

and 3:00 p.m., with baseline and testing taking place at an intermediate timepoint on the day 

prior to and following training, respectively. During baseline, mice (n=7-12 per group) received 

i.p. SAL prior to being placed in the neutral chamber with doors retracted to allow free 

exploration of the apparatus for 15 min. The following 3 days during the a.m. training session, 

mice received i.p. SAL prior to 30 min confinement in the saline-paired chamber. During the 

p.m. session, mice received i.p. nicotine (0, 0.03 or 0.1 mg/kg) prior to 30 min of confinement in 
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the opposite, nicotine-paired conditioning chamber. Control mice received i.p. SAL prior to 

exposure to both chambers. Assignment of conditioning chamber was counterbalanced with mice 

showing overall similar preferences across chambers. During test, mice received i.p. SAL and 

were placed in the chamber as during baseline and allowed to explore the entire apparatus for 15 

min. Photobeams detected movement and data were recorded using Med-PC IV software (Med 

Associates, St. Albans, VT).  

 
Contextual Threat Conditioning 

To assess if genotypic differences in nicotine CPP were due to generalized changes in contextual 

learning, contextual threat conditioning was conducted in mouse operant conditioning chambers 

(Med Associates, St. Albans, VT). Training occurred during a 5.5 min session with WT (n=14), 

α4KO (n=11), α6L9’S (n=13), and α6L9’S-α4KO mice (n=10) placed in the chamber for 2 min 

before presentation of a 30 s light plus tone cue that terminated with a 2 s, 0.5 mA footshock. 

This sequence was repeated followed by a 30 s post-shock period. The next day, mice were 

placed in the conditioning chamber for 5.5 min in the absence of the cue and footshock to test for 

context-specific freezing. Freezing (absence of voluntary movement except for respiration) was 

measured using Anymaze tracking software (Stoelting, Wood Dale, IL) and confirmed by a blind 

experimenter. Freezing during the first 2 minutes of the training session (before any footshock) 

was compared to freezing during thec corresponding first 2 minutes of the test session to assess 

whether mice learned to associate the context with the previous footshocks received during 

training. 

 
Open Field Assay  
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The open field assay was conducted under overhead fluorescent lighting in a polycarbonate cage 

(30 cm L x 18 cm W) inside a white plastic enclosure that surrounds the walls and floor. Mice 

(n=7-14 per group) received i.p. injections of SAL, 0.03, or 0.1 mg/kg nicotine (dose assigned 

based on dose received during CPP) and were immediately placed in the open field chamber for 

15 min. Data was collected using AnyMaze tracking software. Dependent variables included 

total distance traveled (m) and time in the center (s).  

 
Light-dark Assay  

The light-dark assay was conducted in a rectangle Plexiglas box divided into a small, enclosed, 

dark chamber (25 cm H x 25.5 cm W x 18 cm L) adjacent to a large, open, brightly lit chamber 

(25 cm H x 25.5 cm W x 25.5 cm L) illuminated by a 23W fluorescent bulb. An opening in the 

wall shared by the two chambers allowed mice to move freely throughout the apparatus. Testing 

was conducted in a dark room except for the fluorescent light bulbs above each apparatus. Mice 

(n=7-14 per group) received i.p. injections of SAL, 0.03, or 0.1 mg/kg nicotine (dose assigned 

based on dose received during CPP). Mice were then immediately placed in the dark chamber of 

the light-dark apparatus and allowed to explore the apparatus for 10 min. Data was collected 

using AnyMaze tracking software. Dependent variables included time in the light (s) and light 

chamber entries. 

 
Locomotor Activity-Dim Light Conditions  

Locomotor activity was assessed in a polycarbonate cage (30 cm L x 18 cm W) under dim 

lighting with 500 mA intensity infrared light emitting an 830 nM frequency (Wisecomm, 

Cerritos, CA). On the first day, mice (n=7-14 per group) were habituated to the locomotor 

chamber for 15 min. The following day, mice received i.p. injections of SAL, 0.03, or 0.1 mg/kg 
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nicotine (dose assigned based on dose received during CPP) and were immediately placed in the 

locomotor chamber for 15 min. Distance traveled was measured using Anymaze tracking 

software.  

 
Statistical Analysis 

All statistical analyses were performed using SPSS. CPP, locomotor, and anxiety data were 

analyzed using a 3x4 (nicotine dose x genotype) analysis of variance (ANOVA). Significant 

nicotine dose x genotype interactions were further analyzed using one-way ANOVAs followed 

by Dunnett’s post hoc tests for each genotype independently to assess nicotine effects within 

each genotype. Planned comparisons using two-tailed t-tests were used to compare basal anxiety-

like behavior in WT versus α4KO mice, WT versus α6L9’S mice, and α6L9’S versus α6L9’S-

α4KO mice. For contextual threat conditioning, percent time freezing during the pre-shock 

period (first 2 min) was compared between the training and test sessions and was analyzed using 

a 2x4 (session x genotype) repeated measures ANOVA. The criterion for significance was set at 

p<0.05. Data points more than 2 standard deviations from the mean were considered outliers and 

excluded from analysis.  

RESULTS 
	  
Nicotine CPP 

To differentiate (non-α4)α6β2* and α4α6β2*nAChR contributions to nicotine reward behavior, 

WT, α4KO, α6L9’S, and α6L9’S mice with the α4 null mutation (α6L9’S-α4KO) were tested 

in an unbiased nicotine CPP task (Figure 4.2a). A two-way 3x4 ANOVA revealed a main effect 

of nicotine dose (F2,103=13.311, p<0.001) and an interaction of nicotine dose by genotype 

(F6,103=2.875, p=0.013). Consistent with previous data (Brunzell et al, 2009a; Mineur et al, 



	   99	  

2009), WT mice expressed nicotine CPP at 0.1 mg/kg i.p. nicotine (p<0.001). Similar to Chapter 

2 findings, nicotine CPP was left-shifted in α6L9’S mice, as 0.03 mg/kg (p=0.033) and 0.1 

mg/kg i.p. nicotine (p=0.003) conditioned a place preference. The α4 subunit does not appear to 

be required for α6L9’S pronounced nicotine reward behavior, as α6L9’S-α4KO mice did not 

differ from α6L9’S mice; these mice also showed nicotine CPP at both 0.03 mg/kg (p=0.022) 

and 0.1 mg/kg i.p. nicotine (p=0.050). Like α6L9’S and α6L9’S-α4KO mice, α4KO showed 

increased preference for the nicotine-paired chamber following 0.03 mg/kg and 0.1 mg/kg i.p. 

nicotine, which could suggest that inhibiting α4β2*nAChRs enhances nicotine reward behavior; 

unusual positive changes from baseline in the saline control α4KO mice precluded observation 

of statistically significant nicotine CPP however. In summary, the α6L9’S gain-of-function 

mutation enhanced nicotine reward independent of α4 subunit expression, suggesting that 

stimulation of (non-α4)α6β2*nAChRs is sufficient to drive nicotine’s rewarding effects. For 

contextual threat conditioning (Figure 4.2b), there was a main effect of session (F3,44=65.631, 

p<0.001), where percent time freezing in a chamber under the same context where mice had 

previously received a footshock was greater during the first 2 mintues of the test compared to the 

first 2 minutes of the training, indicating that the mice learned to associate the context with the 

footshocks. It is unlikely that these genetic mutations alter reward behavior due to a change in 

general context-based learning, as there was no main effect of genotype (F3,44=1.248, p=0.304) 

and no interaction of session by genotype (F3,44=2.070, p=0.118) for percent time freezing during 

the contextual threat conditioning test. 
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Figure 4.2 – α6L9’S elevation of nicotine conditioned place preference (CPP) does not 
require the α4 subunit. a) Nicotine CPP is expressed as change from baseline time spent in the 
nicotine-paired chamber in WT, α4KO, α6L9’S, and α6L9’S-α4KO mice receiving saline (WT: 
n=10; α4KO: n=8; α6L9’S: n=11; α6L9’S-α4KO: n=8), 0.03 mg/kg i.p. nicotine  (WT: n=11; 
α4KO: n=8; α6L9’S: n=9; α6L9’S-α4KO: n=7) and 0.1 mg/kg i.p. nicotine (WT: n=11; α4KO: 
n=10; α6L9’S: n=12; α6L9’S-α4KO: n=9). b) Contextual threat conditioning expressed as 
percent time freezing during the training and test session for the 2 min time period corresponding 
to the time period before first footshock (pre-shock) during training in WT (n=14), α4KO 
(n=11), α6L9’S (n=13), and α6L9’S-α4KO mice (n=10). *p<0.05 vs. saline of same genotype; 
**p<0.001 vs. training pre-shock.  
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Locomotor Activity-Dim Lighting Conditions 
 
To assess (non-α4)α6β2* and α4α6β2*nAChR contributions to another DA-related behavior, 

basal and nicotine-associated locomotor activity was assessed under dim light conditions (Figure 

4.3). A 3x4 ANOVA revealed main effects of nicotine dose (F2,102=27.274, p<0.001) and 

genotype (F3,102=22.642, p<0.001), as well as a significant interaction of nicotine dose by 

genotype (F6,102=7.573, p<0.001) for distance traveled under dim lighting conditions. In response 

to i.p. saline, α6L9’S-α4KO mice showed a trend for greater distance traveled compared to 

α6L9’S mice (t21=-1.986, p=0.060). α6L9’S mice, but not α6L9’S-α4KO mice, showed 

locomotor activation in response to the lower 0.03 mg/kg i.p. nicotine dose (p=0.002). Consistent 

with previous data (Drenan et al, 2010), this suggests that the α4 subunit assembles with α6 to 

support nicotine-stimulated locomotor activity. However, locomotor activity was increased in 

response to 0.1 mg/kg i.p. nicotine in both α6L9’S (p<0.001) and α6L9’S-α4KO mice 

(p<0.001), suggesting a role for (non-α4)α6β2*nAChR in locomotor effects of nicotine as well. 

There was a trend for 0.1 mg/kg i.p. nicotine to increase locomotor in α4KO mice (p=0.071), 

that did not reach statistical significance. 
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Figure 4.3 – (non-α4)α6β2* and α4α6β2*nAChRs play a role in nicotine-stimulated 
locomotor activity. a) Distance traveled under dim light conditions in WT, α4KO, α6L9’S, and 
α6L9’S-α4KO mice at saline (WT: n=13; α4KO: n=10; α6L9’S: n=13; α6L9’S-α4KO: n=10), 
0.03 (WT: n=11; α4KO: n=7; α6L9’S: n=11; α6L9’S-α4KO: n=8) and 0.1 mg/kg nicotine (WT: 
n=8; α4KO: n=7; α6L9’S: n=9; α6L9’S-α4KO: n=7). *p<0.05 vs. saline of same genotype. 
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Anxiety-like Behavior 

Nicotine and endogenous ACh can impact anxiety-like behavior. In these studies WT, α4KO, 

α6L9’S, and α6L9’S-α4KO where utilized to assess (non-α4)α6β2*nAChR and 

α4α6β2*nAChR contributions anxiety-like behavior in an open field (Figure 4.4) and light-dark 

assay (Figure 4.5) in the presence or absence of nicotine.  

 
Open Field 

For time spent in the center zone of the open field (Figure 4.4a), a two-way 3x4 ANOVA 

revealed main effects of nicotine dose (F2,105=7.705, p=0.001) and genotype (F3,105=16.726, 

p<0.001), as well as a significant interaction of nicotine dose by genotype (F6,105=3.816, 

p=0.002). Consistent with our previous data, α6L9’S mice exhibited a heightened basal anxiety-

like phenotype, showing decreased time spent in the center zone following i.p. saline compared 

to WT mice (t25=7.221, p<0.001). The α4 subunit does appear to be necessary to promote 

α6β2*nAChR regulation of basal anxiety-like phenotype, as α6L9’S-α4KO mice did not differ 

from α6L9’S mice (t22=-1.466, p=0.157). This indicates that stimulation of (non-

α4)α6β2*nAChRs promotes basal anxiogenic-like behavior as measured by the open field assay. 

α4KO mice did not differ from WT mice (t22=1.201, p=0.243), demonstrating that α4β2(non-

α6)*nAChRs do not appear to regulate anxiety-like behavior in the open field. 

Inconsistent with previous studies in our laboratory (Anderson et al, 2015), 0.03 mg/kg 

i.p. nicotine significantly increased anxiety-like behavior in WT mice, producing decreases in 

time spent in the center zone compared to saline controls (p=0.013). There was also a non-

significant trend for 0.1 mg/kg i.p. nicotine to decrease time spent in the center zone in WT mice 

compared to saline controls (p=0.1). Similarly, both 0.03 mg/kg (p=0.005) and 0.1 mg/kg i.p. 
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nicotine (p=0.005) decreased time spent in the center zone in α4KO mice compared to saline 

controls, indicating that this anxiogenic effect of nicotine does not require α4β2*nAChRs. In 

α6L9’S and α6L9’S-α4KO mice, neither 0.03 mg/kg or 0.1 mg/kg i.p. nicotine further altered 

time spent in the center zone compared to saline controls. (p’s>0.3), suggesting the selective 

activation of (non-α4)α6β2*nAChRs blocks the anxiogenic effect of nicotine.  

 Total distance traveled in the open field was used as measure of locomotor activity 

(Figure 4.4b), and a two-way 3x4 ANOVA revealed main effects of nicotine dose (F2,105=37.262, 

p<0.001) and genotype (F3,105=23.767, p<0.001), as well as a significant interaction of nicotine 

dose by genotype (F6,105=9.347, p<0.001). Unlike WT mice whose locomotor activity was 

unaffected by nicotine exposure (p’s>0.8), 0.03 mg/kg and 0.1 mg/kg i.p. nicotine increased 

distance traveled in α6L9’S (p’s<0.001) and α6L9’S-α4KO (p’s<0.05), with a similar trend for 

0.1 mg/kg i.p. nicotine to increase locomotor activity in α4KO mice (p=0.063). However, 

nicotine-stimulated increases in locomotor activity did not impact center zone measures, as these 

groups did not show any increases in time spent in the center zone in response to nicotine.  
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Figure 4.4 – (non-α4)α6β2*nAChRs modulate basal anxiogenic-like behavior and nicotine-
induced anxiogenesis in the open field. a) Time spent in the center zone of the open field arena 
in WT, α4KO, α6L9’S, and α6L9’S-α4KO mice in response to saline (WT: n=13; α4KO: n=11; 
α6L9’S: n=14; α6L9’S-α4KO: n=10), 0.03 (WT: n=11; α4KO: n=7; α6L9’S: n=11; α6L9’S-
α4KO: n=8), and 0.1 mg/kg nicotine (WT: n=9; α4KO: n=7; α6L9’S: n=9; α6L9’S-α4KO: 
n=7). b) Total distance traveled in the open field arena in WT, α4KO, α6L9’S, and α6L9’S-
α4KO mice in response to saline, 0.03, and 0.1 mg/kg i.p. nicotine. * p<0.05 vs. saline of same 
genotype; # p<0.05 vs. WT of same nicotine dose.  
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Light-Dark Assay 
 
A two-way 3x4 ANOVA revealed a main effect of nicotine dose (F2,105=6.390, p=0.002) and 

genotype (F3,105=16.328, p<0.001), as well as a significant interaction of nicotine dose by 

genotype (F6,105=7.943, p<0.001) for time spent in the light chamber. There were trends for 

α6L9’S saline-injected mice to spend less time in the light chamber than WT littermates 

(t24=1.352, p=0.095), while α6L9’S-α4KO mice spent significantly more time in the light 

chamber compared to α6L9’S mice (t22=-3.312, p=0.003). α4KO mice showed no differences in 

time spent in the light chamber in response to i.p. saline compared to WT mice (t22=1.201, 

p=0.243). Together, these data suggest that trends for increases in anxiety-like behavior require 

α4 assembly with α6 in the α4α6β2*nAChR conformation.  

 Although nicotine did not increase time spent in the light chamber in WT mice (p’s>0.2) 

in contrast to previous reports from this laboratory (Anderson et al, 2015), both 0.03 mg/kg 

(p=0.002) and 0.1 mg/kg i.p. nicotine (p<0.001) produced increases in time spent in the light 

chamber in α6L9’S mice. There was no such effect in α6L9’S-α4KO (p’s>0.5), suggesting that 

α4 is required for α6L9’S reductions in nicotine-associated anxiety-like behavior. A significant 

interaction of nicotine dose x genotype (F6,105=7.260, p<0.001) for light entries revealed that 

both α6L9’S and α6L9’S-α4KO showed greater light entries following 0.3 (p’s=0.001) and 0.1 

mg/kg i.p. nicotine injection (p’s<0.01) compared saline controls. This dissociation of light-dark 

and locomotor activity (as measured by light chamber entries) in α6L9’S-α4KO mice suggests 

that this effect was not simply due to nicotine-associated changes in activity (Figure 4.5b). In 

addition, α6L9’S-α4KO mice made more entries into the light chamber compared to α6L9’S 

mice (t22=-2.071, p=0.050) in response to i.p. saline, so that increased time spent in the light 

chamber in these mice may be a reflection of a basal increase in behavior.   
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Figure 4.5 – α4α6β2*nAChRs modulate trending increases in basal anxiety-like behavior 
and are involved with nicotine-associated anxiolysis in the light-dark test. a) Percent time 
spent in the light chamber of the light-dark box in WT, α4KO, α6L9’S, and α6L9’S-α4KO mice 
in response to saline (WT: n=13; α4KO: n=11; α6L9’S: n=13; α6L9’S-α4KO: n=11), 0.03 (WT: 
n=11; α4KO: n=8; α6L9’S: n=11; α6L9’S-α4KO: n=8), and 0.1 mg/kg nicotine (WT: n=8; 
α4KO: n=7; α6L9’S: n=9; α6L9’S-α4KO: n=7). b) Entries into the light chamber of the light-
dark box in WT, α4KO, α6L9’S, and α6L9’S-α4KO mice in response to saline, 0.03, and 0.1 
mg/kg i.p. nicotine. * p<0.05 vs. saline of same genotype; & p<0.05 vs. α6L9’S of same nicotine 
dose.  
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DISCUSSION 
	  
The present studies assessed contributions of α4α6β2* and (non-α4)α6β2*nAChRs to behaviors 

relevant to nicotine addiction in mice. Nicotine CPP was used as a model of nicotine reward, and 

the open field and light-dark tests were used as models of anxiety-like behavior. Overall, (non-

α4)α6β2*nAChRs appear to be sufficient for nicotine reward behavior, while the subtype that 

contributes to anxiety-like behavior depends on the model of anxiety, as well as whether anxiety-

like behavior was measured basally or in response to nicotine. 

Consistent with our previous findings (see Chapter 2), α6L9’S mice showed nicotine 

CPP at doses subthreshold to support CPP in WT mice. Leftward shifts in these α6β2*nAChR 

gain-of-function mice suggest that stimulation of α6β2*nAChRs enhances nicotine reward 

behavior. This enhancement does not require the α4 subunit, as α6L9’S-α4KO mice don’t differ 

from α6L9’S mice, demonstrating that stimulation of (non-α4)βα62*nAChRs is sufficient to 

drive nicotine’s rewarding properties. Of all nAChR subtypes, α4α6β2*nAChRs are known to 

have the highest sensitivity to nicotine (Exley et al, 2008; Kuryatov et al, 2011; Liu et al, 2012; 

Salminen et al, 2007; Salminen et al, 2004). Moreoever, previous electrophysiology, 

synaptosome, and behavioral studies demonstrate that α4α6β2*nAChRs mediate augmentation 

of mesolimbic DA activity and associated locomotor activity in α6L9’S mice, as enhancement of 

these phenotypes in α6L9’S mice required the α4 subunit (Drenan et al, 2010; Engle et al, 

2013). Further, α-Ctx MII blocks enhancement of VTA DA neuron firing produced by the 

α4L9’A gain-of-function mutation (Liu et al, 2012; Zhao-Shea et al, 2011), suggesting that the 

α4 subunit gain-of-function acts primarily through α4α6β2*nAChRs to support increased 

sensitivity to nicotine and elevated mesolimbic DA activity. As DA is associated with nicotine’s 

rewarding properties, it was expected that α4 assembly with α6 in the α4α6β2*nAChR 
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conformation would be required for expression of enhanced nicotine reward behavior in α6L9’S 

mice. Given the divergent results regarding the α6β2*nAChR subtype that regulates mesolimbic 

DA activity and nicotine reward, it could be that DA is not a key regulator of enhanced nicotine 

reward behavior observed in α6L9’S mice.  

α4KO mice showed similar levels of nicotine CPP at 0.03 mg/kg and 0.1 mg/kg i.p. 

nicotine compared to α6L9’S and α6L9’S-α4KO mice. Statistically speaking however, α4KO 

mice did not show significant CPP, as α4KO mice receiving nicotine did not differ from their 

saline controls. It should be noted that preference scores in the saline controls were unusually 

high, which could have precluded observation of nicotine CPP in these mice. Thus, it is not 

completely clear from these studies whether α4KO mice express CPP or not. Further 

complicating matters, previous evidence is conflicting, with two studies showing that α4KO 

mice don’t express nicotine CPP (McGranahan et al, 2011; Sanjakdar et al, 2015), and one study 

showing that α4KO mice express nicotine CPP similar to WT mice (Cahir et al, 2011). If in fact 

there is a leftward shift in the α4KO mice similar to α6L9’S and α6L9’S-α4KO mice, this 

would suggest that α4β2*nAChRs act in opposition of other nAChR subtypes to reduce 

nicotine’s rewarding properties, as genetically reducing α4β2*nAChR function would enhance 

nicotine reward behavior. Future studies repeating this CPP experiment is necessary to determine 

whether α4KO mice show nicotine CPP or not in our studies.  

 Like nicotine reward, locomotor activity is also a DA-dependent behavior. Activity of the 

mesolimbic DA pathway is required for nicotine’s locomotor activating effects, as studies show 

that 6-OHDA lesions of the NAc (Clarke et al, 1988) and VTA (Louis and Clarke, 1998), as well 

as DA receptor antagonists (King et al, 2004b) block the locomotor stimulant effect of nicotine. 

Further, nicotine-associated changes in locomotor activity are not observed in β2KO mice (King 
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et al, 2004b), suggesting that β2*nAChRs are important for locomotor activation driven by 

mesolimbic DA activity. Moreover, previous studies described in Chapter 2 of this dissertation 

demonstrate that activation of α6β2*nAChRs promote nicotine-stimulated locomotor activity, as 

α6L9’S mice showed an enhanced response to nicotine compared to WT mice. These present 

findings are consistent with previous studies showing that α4α6β2*nAChRs are involved in the 

locomotor stimulant effect of nicotine and related mesolimbic DA activity (Drenan et al, 2010; 

Engle et al, 2013).  

Other than nicotine’s rewarding properties, smokers also report that they smoke to relieve 

anxiety. Our previous data from Chapter 3 of this dissertation demonstrates that α6L9’S mice 

display enhanced basal levels of anxiogenic-like behavior, suggesting that stimulation of 

α6β2*nAChRs promote anxiogenesis. These effects are likely a result of an enhanced response 

of α6β2*nAChRs to endogenous acetylcholine (ACh). This interpretation is consistent with data 

from preclinical rodent studies suggesting that cholinergic hyperactivity promotes anxiety-like 

behavior (Hart et al, 1999; Kolasa et al, 1982; Lamprea et al, 2000; Luo et al, 2013; Mineur et 

al, 2009; Power et al, 2002; Revy et al, 2014). Consistent with our previous findings in α6L9’S 

mice (see Chapter 3), we observed that these α6β2*nAChR gain-of-function mice exhibited 

exaggerated basal anxiogenic-like behavior compared to WT mice in the open field, and showed 

trends for increases in basal anxiety-like behavior in the light-dark assay. In the open field, 

α6L9’S-α4KO showed elevated levels of anxiety-like behavior like α6L9’S mice, indicating that 

endogenous cholinergic activity at (non-α4)α6β2*nAChRs is responsible for the elevated levels 

of anxiety in α6L9’S mice in this model of anxiety. In contrast to the open field, α6L9’S-α4KO 

mice exhibited a decrease in anxiety-like behavior compared to α6L9’S mice in the light-dark 
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test, suggesting that ACh stimulation of α4α6β2*nAChRs modulates trending increases in 

anxiety-like behavior. 

These studies also examined nicotine-associated anxiety-like behavior. In the open field 

test, 0.03 and 0.1 mg/kg i.p. nicotine produced decreases in center zone time in WT mice, 

reflecting an increase in anxiety-like behavior, while nicotine had no effect in WT mice in the 

light-dark test. This is inconsistent with previous studies showing that doses in this range or 

lower are anxiolytic (Anderson et al, 2012, 2015; File et al, 1998; McGranahan et al, 2011; 

Varani et al, 2012). While the mice used in these studies are backcrossed at least 10 generations 

on a C57BL/6J background, this discrepancy between WT mice in our studies and WT mice in 

previous studies may be explained by mouse strain differences. Different effects in WT mice 

may also be due to differences in basal levels of anxiety-like behavior produced by different 

experimenters and different environments.  

In α6L9’S mice, selective activation of α6β2*nAChRs appeared to block nicotine-

associated anxiogenesis observed in WT mice in the open field test. This did not require the α4 

subunit, indicating that (non-α4)α6β2*nAChRs mediate this effect. It is interesting that 

stimulation of (non-α4)α6β2*nAChRs, presumably in response to ACh, promotes basal anxiety-

like behavior, while stimulation of this same subtype decreased nicotine-induced anxiogenic-like 

behavior in the same open field test of anxiety-like behavior. As inhibition of β2*nAChRs 

reduces anxiety-like behavior, nicotine may have desensitized (non-α4)α6β2*nAChRs in 

α6L9’S mice to decrease this behavior, while ACh may have activated α6L9’S (non-

α4)α6β2*nAChRs to increase anxiety-like behavior. This is supported by studies indicating that 

nAChR desensitization is prohibited by acetylcholinesterase (Brown et al, 1936; Katz et al, 

1957; Thesleff, 1955), an enzyme that breaks down ACh, while nicotine desensitizes nAChRs 
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(Fenster et al, 1997; Grady et al, 2012; Kuryatov et al, 2011; Lester et al, 1995; Lu et al, 1999; 

Mansvelder et al, 2002; Pidoplichko et al, 1997). 

In the light-dark test, nicotine decreased anxiety-like behavior in α6L9’S mice, 

suggesting that stimulation of α6β2*nAChRs by nicotine reduces anxiety-like behavior. This is 

somewhat consistent with our open field data; that is, while selective stimulation of 

α6β2*nAChRs did not decrease anxiety-like behavior in the open field, it did relieve the 

anxiogenic effect of nicotine. However, unlike in the open field where the α4 subunit was not 

required for this reversal, the α4 subunit was required to assemble with the α6 subunit in the 

α4α6β2*nAChR conformation to promote this anxiolytic effect in the light-dark test. It is 

interesting that trending basal anxiogenic-like behavior measured by the light-dark test is 

mediated by enhanced cholinergic activity at α4α6β2*nAChRs, while nicotine activates 

α4α6β2*nAChRs to promote anxiolysis in this same anxiety model. As discussed above in 

regard to open field data, ACh may be stimulating these receptors to increase anxiety-like 

behavior, whereas nicotine may be desensitizing these receptors to promote anxiolysis.	  

We did expect for α6L9’S mice to show increases, instead of decreases in anxiety-like 

behavior in response to nicotine in our studies, given that activation of α6β2*nAChRs promotes 

basal anxiety-like behavior and that α6β2*nAChRs are persistently activated at concentrations of 

nicotine that typically desensitize other nAChRs (Liu et al, 2012). As discussed above, nicotine 

may in fact be desensitizing α6β2*nAChRs in α6L9’S mice, but further studies are needed 

characterize α6β2*nAChR desensitization in these gain-of-function mice.  

As with basal anxiety-like behavior, where (non-α4)α6β2*nAChR promote anxiogenesis 

in the open field, but α4α6β2*nAChRs promote trending anxiogenesis in the light-dark assay, 
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(non-α4)α6β2* and α4α6β2*nAChRs contribute to nicotine-associated anxiety-like behavior 

uniquely depending on the model of anxiety. Specifically, these studies suggest that selective 

stimulation of (non-α4)α6β2*nAChRs blocks nicotine-induced anxiogenic-like behavior in the 

open field test, and while stimulation of α4α6β2*nAChRs promotes anxiolysis in the light-dark 

test. Given that anxiety is a complex, multifaceted behavior, these tests of anxiety-like behavior 

could model different aspects of anxiety (Ramos and Mormede, 1998) that are controlled by 

unique mechanisms. This is supported by quantitative trait loci (QTL) studies showing that 

different models of anxiety have overlapping, but separate genetic underpinnings (Griebel et al, 

2000; Henderson et al, 2004; Turri et al, 2001).  

In conclusion, these experiments demonstrate distinct roles of (non-α4)α6β2*nAChRs 

and α4α6β2*nAChRs in behaviors relevant to nicotine addiction, namely reward and anxiety-

like behavior. (non-α4)α6β2*nAChRs appear to be sufficient to regulate nicotine’s rewarding 

properties, while both (non-α4)α6β2*nAChRs and α4α6β2*nAChRs modulate different aspects 

of anxiety-like behavior. This data expands on the existing literature to further elucidate which 

nAChR subtypes regulate some of nicotine’s addictive properties.  
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Chapter 5 – Oral operant ethanol self-administration in the absence of explicit cues, food 

restriction, water restriction and ethanol fading in C57BL/6J male mice 

 
Published: Stafford AM, Anderson SM, Shelton KL, Brunzell DH (2015) Psychopharmacology 

232(20):3783-95 

INTRODUCTION 
	  
Alcohol abuse is a pervasive problem worldwide (WHO, 2011). Genetics play a major role in 

vulnerability to alcohol use disorder (AUD) (Gillespie et al, 2012; Prescott and Kendler, 1999; 

Schuckit and Smith, 1996), and understanding the molecular mechanisms that underlie ethanol 

(EtOH) use phenotypes may lead to novel treatment and prevention of AUD and alcoholism. 

Alcohol consumption is motivated by environmental and psychosocial factors that are difficult to 

control in human experiments; hence, animal models are ideal for isolating biological and 

environmental factors which contribute to behaviors that promote EtOH use.  

Mouse EtOH consumption models are commonly used to investigate the genetic and 

pharmacological mechanisms of EtOH endophenotypes (Rhodes and Crabbe 2003; Tabakoff and 

Hoffman, 2000). In mice, EtOH ingestion is typically measured using bottle choice paradigms or 

drinking-in-the-dark (DID) (Rhodes et al, 2005; Ryabinin et al, 2003). These non-operant self-

administration models respectively assess EtOH preference compared to a vehicle solution and 

achieve high levels of EtOH intake but have been criticized as being less effective at assessing 

EtOH reinforcement (Tabakoff et al, 2000). Operant self-administration paradigms measure the 
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ability of positive reinforcers (e.g. EtOH) to increase the likelihood that a human or animal 

subject will exert effort to obtain the reinforcer.  

Operant self-administration methods in rats (e.g. Augier et al, 2014; Cannady et al, 2013; 

Doyon et al, 2013a; van Erp and Miczek, 2007) and mice (e.g. Cunningham et al, 2000; Elmer et 

al, 1986; Ford, 2014; Middaugh et al, 1999a; Risinger et al, 1998; Samson, 1986) often utilize 

strategies such as food and water restriction to promote operant EtOH self-administration, which 

may introduce factors other than EtOH reinforcement (e.g. thirst, caloric intake). Gradual fading 

of sweetener (from high to low concentrations) and EtOH (from low to high concentrations) 

mimics the evolution of human patterns of alcoholic drink preference (Duncan et al, 2012) and 

has demonstrated success in promoting EtOH self-administration in mice (e.g. Elmer et al, 1986; 

Middaugh et al, 1999a; Risinger et al, 1998). Other models provide EtOH in the home cages of 

rodents to facilitate operant EtOH self-administration (Rodd et al, 2002). From the perspective of 

understanding the biology of the progression of EtOH use, however, it would be advantageous to 

employ a procedure that enables independent observation of how EtOH dose and length of 

exposure might impact EtOH reinforcement and physiological measures. A between-subject 

design using vehicle controls would also be advantageous for studies assessing the effects of 

EtOH self-administration on neuroplasticity. Another advantage of a between-subject design is 

that initial sensitivity to EtOH-associated sedation and reward (i.e., liking), which are predictive 

of heavy drinking and escalation of EtOH use in humans (King et al, 2011; Schuckit et al, 1996), 

may be assessed in mice during initial exposure to EtOH.  

Environmental factors such as sweeteners and cues are physiologically relevant to 

promoting EtOH administration in humans (Dager et al, 2014; Dager et al, 2013; Garland et al, 

2012; King et al, 2011; O'Connor and Colder, 2009; Petit et al, 2013; Schuckit et al, 1996; 
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Sjoerds et al, 2014) and hence are of interest to study in rodent models in a controlled fashion. 

Explicit cues and flavorants become secondary reinforcers when paired with drug (Browne et al, 

2014; Brunzell et al, 2006) and may have reinforcing effectiveness on their own in rodents 

(Browne et al, 2014; Olsen and Winder, 2009; Regier et al, 2012). The development of an EtOH 

self-administration model in the absence of contingent sweeteners and cue presentation would 

facilitate isolation of biological factors which drive the primary reinforcing effects of EtOH in 

the absence of cues and sweeteners. The present studies controlled for sweetener that was paired 

with EtOH by providing EtOH in water or saccharin solution using a weekly overnight mouse 

model of oral operant EtOH self-administration that did not involve explicit cues, food 

restriction, water restriction, or the gradual fading of EtOH. The availability of a water bottle in 

the operant conditioning chamber further enabled comparison of water bottle and liquid dipper 

intake in order to assess the potential rewarding properties of EtOH under these conditions when 

compared against vehicle control subjects. 

MATERIALS AND METHODS 
	  
Subjects 
 
Fifty-four adult, male, C57BL/6J mice (Jackson Labs, Bar Harbor, ME) aged 14–17 weeks at the 

initiation of training were used for this study. Mice were group housed (4–5 per cage) in a 

temperature- and humidity-controlled vivarium. They were housed under a 12 h light/dark 

schedule (lights on at 0600 hours) and had ad libitum access to food and water. Experimental 

protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at 

Virginia Commonwealth University and were in accordance with the Guidelines for the Care and 

Use of Laboratory Animals, as set forth by the National Institutes of Health.  

 
Apparatus  
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Operant EtOH self-administration procedures were conducted in mouse operant conditioning 

chambers (21.6 cm × 17.8 cm × 12.7 cm; Med Associates, St. Albans, VT) housed inside sound-

attenuating cabinets with a ventilation fan. Each chamber was equipped with two retractable 

levers placed 2.5 cm above the floor. One lever, designated active, resulted in the presentation of 

a liquid dipper that provided 0.01 ml of fluid; the other lever, designated inactive, had no 

consequence when depressed. The liquid dipper was located within a magazine equidistant 

between the two levers and equipped with a photobeam sensor to record head entries into the 

magazine during the presence or absence of the liquid dipper presentation. A 100 mA house 

light, located 11 cm above the floor on the opposite wall, was on during the session. A water 

bottle with sipper tube provided ad libitum access to water during EtOH self-administration 

sessions, and food pellets were placed on the floor. Med PC IV software and Med Associates 

interfacing controlled liquid dipper presentations and recorded active and inactive lever pressing, 

liquid dipper reinforcers earned, and magazine entries during the presence (correct entry) and 

absence (incorrect entry) of liquid dipper presentation. Data were collected in 15 min time bins.  

 
Drugs 
 
EtOH was diluted in tap water or 0.2% saccharin (SAC) in tap water and provided to mice for 

voluntary oral intake. Naltrexone was diluted in SAL and administered i.p. at a volume of 0.1 ml 

per 30 g mouse immediately prior to overnight EtOH self-administration sessions. 

 
Magazine training  
 
Mice received 80 liquid dipper presentations of 0.01 ml of SAC solution on a variable time 30 s 

schedule (13–47 s range). Mice were trained to a criterion of at least 20% magazine entry during 
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dipper presentations or for up to three training sessions. Magazine training took place during the 

light cycle between 1300 and 1500 hours.  

 
Acquisition of lever pressing  
 
Next, mice underwent acquisition of lever pressing in the absence of EtOH to assure that all 

groups of mice demonstrated reliable lever pressing and goal tracking behavior prior to their first 

exposure to EtOH. Mice were trained during 16 h overnight sessions to lever press for SAC 

dipper presentations. Sessions began between 1700 and 1800 hours. Active lever pressing for 

SAC was maintained on FR1 for the first 20 reinforcers, FR2 for the 20 subsequent reinforcers, 

and FR4 for the 10 subsequent reinforcers. For the remainder of the session, the FR4 schedule 

was shifted to a variable ratio (VR) 5 schedule (1–12 range). Training continued for two to five 

sessions until animals pressed the active lever at least 40 times and showed at least 100 s of head 

entry into magazine during fluid dipper presentation. 

 
Weekly, overnight EtOH sessions  
 
After meeting training criteria, mice underwent 16 h overnight operant self-administration 

sessions once every 7 days for 9 weeks. Individual mice lever pressed on a VR5 schedule of 

reinforcement maintained by 0, 3, 10, or 15% EtOH (v/v). Independent groups of mice were 

reinforced with EtOH in SAC vehicle (n=4–5/dose) or tap water vehicle (n=5–9/ dose). Due to 

limited availability of operant conditioning chambers, each experiment was completed in three to 

four replicates. A subset of mice reinforced with EtOH in water was subsequently administered 

1.25 mg/kg i.p. naltrexone or vehicle (weeks 10–11) in a counterbalanced order prior to EtOH 

self-administration. These tests were subsequently repeated with 0.3 mg/kg i.p. naltrexone or 

vehicle (weeks 12–13). These naltrexone doses have been previously shown to decrease rodent 
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operant self-administration of EtOH (Hay et al, 2013; Middaugh et al, 2000). Performance 

following the two saline sessions was averaged for analysis. Self-administration measures and 

EtOH intake were assessed during the first hour of the session, when peak naltrexone levels were 

most likely achieved (Wang et al, 2004). For all experiments, estimated drinking from the liquid 

dipper was calculated by multiplying the number of correct head entries (magazine head entry at 

the time of liquid dipper presentation) by 0.01 ml. Total EtOH dose consumed was estimated by 

multiplying intake volume by the EtOH concentration available for self-administration. The 

estimated total dose of EtOH self-administered was correlated with blood EtOH concentrations 

(BEC) on subsequent weeks upon completion of behavioral testing. Water bottle fluid intake was 

determined by measuring bottle weights immediately before and after each session. A separate 

dummy water bottle, located inside of the sound-attenuating cabinet, was weighed before and 

after each session to correct for water bottle drippage. Reinforcers earned and active lever 

presses provided measures of reinforcement. Response accuracy was determined by the 

percentage of active lever presses: active/ (active+inactive lever presses). Bouts of responding 

were evaluated during the overnight session using a skewness equation below, where x=each 

individual time bin value in the sample, xi=the average of the time bin values, n=sample size, and 

s=standard deviation of the sample. The percentage of fluid intake from the liquid dipper 

(Operant:ad libitum choice) was calculated by comparing estimates of liquid dipper intake to 

total fluid intake: liquid dipper fluid intake/ (water bottle+liquid dipper fluid intake). 
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Blood ethanol concentration analysis  
 
For validation of the g/kg EtOH estimate, trunk blood was collected after 30 min of self-

administration from a separate group of mice reinforced with 15% EtOH in SAC (n=4). 

Additionally, blood samples were collected at 4 or 6 h into the session from a subset of mice 

reinforced with 0, 3, 10, or 15% EtOH in water (n=5/dose) and 15% EtOH in SAC (n=4) by 

submandibular sampling using 5 mm Goldenrod Animal Lancets (MEDIpoint, Mineola, NY). 

Samples were collected into BD Microtainer sampling tubes containing EDTA and 50 µl whole 

blood aliquots were immediately pipetted into 20 ml headspace gas chromatography vials 

containing deionized water, 500 mg NaCl, and 1-propanol internal standard. Sample vials were 

tightly sealed and stored at −20°C until analysis. Blood samples were tested for EtOH 

concentration using an Agilent model 6890 gas chromatograph (GC) equipped with a flame 

ionization detector (FID), 0.53 mm ID Rtx BAC-1 capillary column (Restek, Bellefonte, PA) and 

CTC CombiPal headspace autosampler (Leap Technologies, Carrboro, NC). Samples were 

incubated and shaken for 10 min at 70°C prior to automated injection. The GC parameters were 

1 ml headspace injection volume, 2/1 split ratio, 5 min sample run time, injector temperature 

200°C, oven temperature isothermal 50°C, detector temperature 200°C, helium carrier gas flow 

rate 40 ml/min, nitrogen makeup gas flow rate 18 ml/min, hydrogen flame flow rate 25 ml/min, 

and FID air flow rate 300 ml/min. Data were collected and analyzed by Clarity GC software 

(Apex Data Systems, Prague, CZ) using a linear regression analysis with no weighting. EtOH 

concentrations were calculated by the internal standard method. A seven-point calibration curve 

preceded the analysis of blood EtOH concentrations. Quality control EtOH standards at 

concentrations similar to those found in the test samples were interspersed at regular intervals 

with blood samples. 
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Statistical analysis  
 
SPSS software was used for all statistical analyses. Statistical analyses assessed reinforcers 

earned, active lever presses, percent active lever presses, EtOH consumed, skewness, and 

operant:ad libitum choice using 2×4×9 (water/SAC vehicle×EtOH concentration×session) 

repeated measures ANOVAs with vehicle and EtOH concentration as between-subject factors 

and weekly session as a repeated measure, within-subject factor. Separate 3×4 (naltrexone 

dose×EtOH concentration) repeated measures ANOVAs assessed reinforcers earned, active lever 

presses, and EtOH consumed following naltrexone administration with naltrexone dose as a 

within-subject factor and EtOH concentration as a between-subject factor. Significant 

interactions that included vehicle were followed by independent ANOVAs for SAC and water 

vehicle mice and pairwise comparisons across vehicle groups where relevant. Significant main 

effects were further assessed using Dunnett’s post hoc tests; significant interactions were 

assessed using two-tailed t-tests. Planned comparisons compared session 1 to session 9 across 

EtOH concentrations. Estimates of EtOH intake were compared against BEC using a two-tailed 

Pearson correlation. The criterion for significance was set at p<0.05. Data points more than 2 

standard deviations from the mean were considered outliers and excluded from analysis. 

RESULTS 
	  
Operant self-administration of EtOH in SAC versus water vehicle  
 
There was no significant difference between groups of mice on measures of reinforcers earned, 

active lever pressing, response accuracy, or head entries during dipper presentation for SAC 

prior to receiving any EtOH (Table 5.1).  
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Table 5.1 – Acquisition of lever pressing maintained by 0.2% saccharin (SAC) 
reinforcement 
 

  
Mean reinforcers earned, active lever presses, response accuracy (ratio of active lever 
presses:total lever presses), and ratio of correct head entries:reinforcers earned are depicted for 
all groups of mice at completion of training with 0.2% saccharin (SAC) reinforcement prior to 
initiation of ethanol (EtOH) in water or EtOH in SAC self-administration. SEM is shown in 
parentheses. 
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For EtOH self-administration, there was a significant interaction of vehicle by EtOH 

concentration by session for reinforcers earned (F24,336=4.635, p<0.001) and active lever presses 

(F24,336=4.525, p<0.001). Across EtOH sessions, mice that received EtOH in SAC vehicle 

showed concentration-dependent changes in EtOH reinforcement and intake as measured by a 

significant interaction of session by EtOH concentration for reinforcers earned (F24,112=1.701, 

p<0.05) and active lever presses (F24,112=1.768, p<0.05) (Figure 5.1). Animals receiving SAC 

vehicle and 3% EtOH in SAC, but not mice receiving higher concentrations of EtOH in SAC, 

showed significant increases in reinforcers earned and active lever presses across sessions 

(p<0.05). Of mice reinforced with EtOH in SAC, only mice reinforced with 15% EtOH differed 

on reinforcement measures from SAC vehicle controls. By the ninth week of EtOH exposure, 

mice receiving 15% EtOH in SAC earned significantly fewer reinforcers (t6= 2.632, p<0.05) and 

provided fewer lever presses (t6=2.544, p<0.05) than animals receiving SAC vehicle. In contrast, 

mice reinforced with EtOH in water vehicle showed a main effect of EtOH concentration on 

reinforcers earned (F3,28= 9.667, p<0.001) and active lever presses (F3,28=9.045, p<0.001), 

revealing that mice receiving 15% EtOH in water showed evidence of EtOH reinforcement as 

measured by significantly greater reinforcers earned and active lever presses compared to water 

vehicle control mice (p<0.001) (Figure 5.1). There was a significant interaction of session by 

EtOH concentration for reinforcers earned (F24,224=3.95, p<0.001) and active lever presses 

(F24,224=3.79, p<0.001) demonstrating that mice receiving 15% EtOH in water also showed an 

escalation of reinforcers earned (t8=−4.164, p<0.01) and active lever presses (t8=−4.519, p<0.01) 

across sessions. In the absence of SAC vehicle used during lever training, water and 3 and 10% 

EtOH mice showed significant decreases in reinforcers earned and lever pressing across sessions 

(p<0.05). SAC vehicle mice earned significantly more reinforcers and made significantly more 
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lever presses than water vehicle mice (p<0.001) (note y-axis break for water vehicle mice), 

demonstrating that SAC was reinforcing and may have precluded observation of EtOH 

reinforcement in mice receiving SAC vehicle. Mice on average showed high levels of response 

accuracy, >80%, but SAC vehicle mice achieved an overall higher level of response accuracy 

than water vehicle mice (F1,32=22.456, p<0.001).   
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Figure 5.1 – 0.2% saccharin (SAC) vehicle masked ethanol (EtOH) reinforcement, while 
15% EtOH in water was reinforcing in mice. Reinforcers earned and active lever presses are 
shown for mice reinforced with a–d) 0% (n= 4), 3% (n=5), 10% (n=5), and 15% EtOH (n=5) in 
0.2% saccharin (SAC) or e–h) 0% (n= 9), 3% (n=9), 10% (n=5), and 15% EtOH (n=9) in water 
vehicle across weekly sessions, highlighting differences between sessions 1 and 9. Data are 
presented as means±SEM. *p<0.05 compared to 0% EtOH controls during the same session; 
#p<0.05 compared to the same concentration on session 1.  
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Intake of EtOH in SAC versus water vehicle  
 
Estimates of g/kg EtOH intake were validated via positive correlation with BEC in a subgroup of 

mice reinforced with 15% EtOH in SAC (r=0.959; Figure 5.2).  

 

 
 
Figure 5.2 – Estimates of g/kg ethanol (EtOH) consumption is positively correlated with 
blood EtOH concentrations (BEC). a) Cumulative estimated g/kg EtOH consumption is 
depicted across a 16 hour oral operant EtOH self-administration session for a subset of mice 
reinforced with 3% EtOH in water (n=5), 10% EtOH in water (n=5), 15% EtOH in water (n=5), 
and 15% EtOH in 0.2% saccharin solution (SAC) (n=4). b) Estimates of g/kg EtOH consumption 
correlated with BEC in an independent cohort of mice that self-administered 15% EtOH in SAC 
during a 30 minute session. c) During overnight sessions, estimates of g/kg EtOH consumption 
correlated with BEC in mice that self-administered 3% EtOH in water, 10% EtOH in water, 15% 
EtOH in water, or 15% EtOH in SAC at a 4 hour and d) 6 hour time point. Mice reinforced with 
15% EtOH in SAC achieved BEC that was similar to legally intoxicating doses in humans. Mice 
reinforced with EtOH in water showed much lower levels of EtOH intake; correlation analysis of 
mice that received EtOH in water only also resulted in a significant correlation of estimated g/kg 
EtOH intake with BEC at a 4 hour (r=0.688) and 6 hour (r=0.626) time point (p’s<0.05).  
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There was a significant main effect of EtOH concentration on g/kg EtOH consumed 

(F2,31=74.037, p<0.001), indicating that higher concentrations of EtOH resulted in more g/kg 

EtOH consumed independent of session or vehicle. Reflective of more reinforcers earned and 

active lever presses, SAC vehicle mice ingested more g/kg EtOH than water vehicle mice 

(F1,31=113.575, p<0.001), as measured by a main effect of vehicle on this measure (Figure 5.3). 

A significant interaction of vehicle by EtOH concentration by session for EtOH intake 

(F16,248=4.656, p<0.001) showed that SAC and water vehicle also differentially impacted EtOH 

intake across sessions. Consistent with significant increases in reinforcers earned and active lever 

presses, mice reinforced with 15% EtOH in water also showed a significant increase in g/kg 

EtOH consumed (t8=−3.383, p<0.05) across EtOH session. In contrast, mice reinforced with 3% 

EtOH in water (t8=3.078, p<0.05) and 10% EtOH in water (t4=6.383, p<0.01) showed decreases 

in EtOH consumed across sessions that paralleled declines in reinforcers earned and active lever 

presses in these groups. To the contrary, SAC vehicle appeared to promote escalation of low-

dose EtOH intake as measured by increases in g/kg EtOH ingested by 3% EtOH mice on session 

9 compared to session 1. No differences of total fluid consumed or body weights were detected 

between groups (Table 5.2). 
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Figure 5.3 – Ethanol (EtOH) consumed (g/kg) in 0.2% saccharin (SAC) or water vehicle. 
EtOH consumed is shown for mice reinforced with 3, 10, and 15 % EtOH in a–b) 0.2 % 
saccharin (SAC, n=4–5/group) or c–d) water vehicle (n=5–9/group) across weekly sessions, 
highlighting differences between sessions 1 and 9. Data are presented as means±SEM. *p<0.05 
compared to 3% EtOH during the same session; #p<0.05 compared to the same concentration on 
session 1.  
 
 
 
 
 
Table 5.2 – Mean total fluid consumption and body weight 
 

 
Mean daily total fluid intake (ml) and average body weights (g) are depicted for groups of mice 
receiving EtOH in 0.2% SAC or EtOH in water. Total fluid volume was calculated as the sum of 
water bottle fluid consumed and liquid dipper fluid consumption estimates for mice. SEM is 
shown in parentheses. 
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Assessing the accuracy of estimated g/kg EtOH consumption in mice  
 
EtOH consumed was estimated from magazine head entry occurring only during liquid dipper 

presentation. Mice showed concentration-associated increases in BEC (Table 5.3). There was a 

significant correlation between estimates of EtOH consumption and BEC at both the 4 h 

(r=0.773, p<0.001) and 6 h (r=0.652, p=0.001) time points, to support that mice were drinking 

EtOH during magazine entries (Figure 5.2). 

 

 

 

 

Table 5.3 – BECs in mg/ml at 4 h and 6 h time points 

 
Mean BEC are depicted for subsets of mice reinforced with EtOH in water or 0.2% SAC. SEM is 
shown in parentheses.   
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Bouts of responding as measured by skewness during overnight sessions  
 
In order to assess patterns of responding, skewness of lever presses per 15 min time bin was 

calculated and averaged for each EtOH concentration group in SAC and water vehicle studies. 

As with reinforcers earned, active lever presses and g/kg EtOH intake, vehicle impacted 

skewness as indicated by a significant vehicle by EtOH concentration interaction (F3,42=9.547, 

p<0.001) (Figure 5.4). Skewness measures within-subject variability in responding so that a low 

skewness value indicates a steady pattern of lever pressing and a high skewness value captures 

bouts of lever pressing via identification of a pattern of responding that includes more extreme 

peaks and troughs. There was a main effect of EtOH concentration (F3,14=4.627, p<0.05) and a 

significant interaction of EtOH concentration by session (F24,112=1.607, p<0.05) for skewness in 

mice receiving EtOH in SAC vehicle. Initial skewness scores reflected that mice showed similar 

patterns of lever pressing during session 1 but 15% EtOH in SAC mice showed significantly 

more bouts of responding than SAC vehicle mice in the final session as measured by elevated 

skewness (t6=−3.414, p<0.01) (Figure 5.4). Mice receiving 3 and 10% EtOH did not differ from 

SAC controls.  

In mice reinforced with EtOH in water, there was a main effect of EtOH concentration 

(F3,28=5.606, p<0.01) for skewness (Fig. 5.4). Post hoc analysis revealed a significant difference 

in skewness between mice receiving 15% EtOH and water vehicle subjects (p<0.05). Unlike 

mice receiving 15% EtOH in SAC, mice receiving 15% EtOH in water exhibited a decrease in 

skewness or more stable responding than mice reinforced with water alone. The difference in 

pattern of responding between 15% EtOH in SAC and 15% EtOH in water mice may be due to 

the significantly greater g/kg EtOH consumed when 15% EtOH was delivered in SAC versus in 

water vehicle. There was an increase in skewness observed in water vehicle compared to SAC 
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vehicle patterns of self-administration. This could be an artifact of time spent drinking from the 

ad libitum water bottle, as water vehicle mice, but not SAC vehicle mice, achieved most of their 

fluid intake from this alternative source. 
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Figure 5.4 – Active lever pressing is more skewed in mice maintained on 15% ethanol 
(EtOH) in 0.2% saccharin (SAC). Skewness about the mean for active lever pressing are 
shown for mice receiving 0, 3, 10, and 15 % EtOH in a–b) 0.2 % saccharin (SAC, n=4–5/group) 
or c–d) water vehicle (n=5–9/group). Data are presented as means± SEM. *p<0.05 compared to 
0% EtOH during the same session; #p<0.05 compared to the same concentration during session 
1.  
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Operant: ad libitum fluid choice  
 
Liquid dipper solution intake was compared to ad libitum water bottle fluid intake to assess the 

rewarding properties of the vehicle and EtOH reinforcers in these experiments. Operant:ad 

libitum choice was calculated as percentage of liquid dipper fluid intake compared to total fluid 

intake. There was a main effect of vehicle for this measure (F1,42=82.314, p<0.001), revealing 

that despite having to work for liquid presentation, mice reinforced with fluids containing SAC 

vehicle consumed most of their total fluid intake from the liquid dipper, in contrast to mice 

reinforced with water vehicle, who ingested most of their fluid from the freely available water 

bottle (Figure 5.5). There was a significant interaction of vehicle by EtOH concentration by 

session for operant:ad libitum choice (F24,336=2.503, p<0.001). In animals reinforced with EtOH 

in SAC (F24,112=1.88, p<0.05) and water (F24,224=2.881, p<0.001), there was an interaction of 

session by EtOH concentration on operant:ad libitum choice scores, revealing that mice 

receiving SAC vehicle (t3=−3.681, p<0.05) and 3% EtOH in SAC (t4=−2.85, p<0.05) showed 

significant increases in operant:ad libitum choice across sessions, whereas mice reinforced with 

3% (t8=2.376, p<0.05) and 10% EtOH in water (t4=7.909, p<0.01) showed decreases in 

operant:ad libitum choice scores across sessions that were consistent with decreases in lever 

pressing following removal of the SAC reinforcer used during lever acquisition training. 

Independent of vehicle, mice reinforced with 15% EtOH showed a significantly greater 

percentage of liquid dipper fluid intake than vehicle mice (p<0.05), suggesting that this 

concentration of EtOH was rewarding. As early as session 1, mice reinforced with 15% EtOH in 

SAC showed a significantly greater percentage of their fluid intake from the liquid dipper 

compared to vehicle controls; 15% EtOH in water mice required extended training to reveal an 

increase in operant:ad libitum choice scores compared to vehicle control subjects 
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Figure 5.5 – Operant:ad libitum choice measures depend on vehicle and/or ethanol (EtOH) 
concentration. Operant:ad libitum choice measures are shown for mice receiving 0, 3, 10, and 
15 % EtOH in a–b 0.2 % saccharin (SAC, n= 4–5/group) or c–d water vehicle (n=5–9/group). 
Data are presented as means±SEM. *p<0.05 compared to 0% EtOH during the same session; 
#p<0.05 compared to the same concentration during session 1.  
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Effect of naltrexone on operant responding maintained by EtOH in water  
 
To assess the ability of our operant self-administration model to detect the effects of established 

treatment drugs with known effectiveness in reducing human alcohol intake, vehicle or 0.3 or 

1.25 mg/kg i.p. naltrexone was administered immediately before operant EtOH self-

administration with reinforcers earned, active lever pressing, and g/kg EtOH intake as dependent 

measures. During the first hour of the session, there was a significant interaction of naltrexone 

treatment (saline, 0.3, or 1.25 mg/kg naltrexone) by EtOH concentration on reinforcers earned 

(F6,32=3.788, p<0.01) and EtOH consumed (F4,24= 7.918, p<0.01). Mice reinforced with 15% 

EtOH in water showed significant reductions in reinforcers earned following 0.3 mg/kg 

(t4=2.409, p<0.05) and 1.25 mg/kg (t4=2.94, p<0.05) i.p. naltrexone treatment compared to when 

mice received saline vehicle injection. At the highest concentration of EtOH, 1.25 mg/kg 

naltrexone also reduced g/kg EtOH consumed (t4=3.538, p<0.05) (Figure 5.6). Similar trends for 

active lever pressing did not return a significant interaction. Planned t-tests showed that 1.25 

mg/kg naltrexone significantly reduced active lever pressing of mice reinforced with 15% EtOH 

in water compared to when they were injected with saline (t4=−2.169, p<0.05). Naltrexone had 

no effect on reinforcers earned, active lever presses, or EtOH consumed in water vehicle mice, 

demonstrating the specificity of naltrexone’s effects on EtOH reinforcement. There was no 

significant effect of naltrexone on response accuracy during EtOH reinforcement. Consistent 

with reports indicating a limited 1 h bioavailability of naltrexone in mice (Wang et al, 2004), 

there was no effect of naltrexone detected by the end of the session (Figure 5.7). 
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Figure 5.6 – Naltrexone decreases ethanol (EtOH) reinforcement and consumption in mice 
maintained on 15% EtOH in water. a) Reinforcers earned, b) active lever presses, and c) g/kg 
EtOH intake are shown for mice reinforced with 0 % (n=4), 3 % (n=5), 10 % (n=5), and 15 % 
(n=5) EtOH in water during the first hour of the session following pretreatment with 0.9 % saline 
vehicle or 0.3 or 1.25 mg/kg i.p. naltrexone. Data are presented as means±SEM; *p<0.05 
compared to the same EtOH concentration following i.p. saline vehicle injection. 
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Figure 5.7 – Time course of naltrexone’s effects on responding and ethanol (EtOH) 
consumed. Reinforcers earned, active lever presses and g/kg EtOH consumed are shown for a 
subset of mice that received 0, 0.3 and 1.25 mg/kg i.p. naltrexone in a counterbalanced fashion 
immediately prior to their oral operant EtOH self-administration sessions. Naltrexone led to 
significant reductions in reinforcers earned, active lever pressing and g/kg EtOH consumed. This 
effect was limited to the first hour of self-administration, when naltrexone has been shown to 
peak in the plasma and brains of mice (Wang et al. 2004, “Basal signaling activity of µ opioid 
receptor in mouse brain: role of narcotic dependence”, JPET 308: 512-520). *p<0.05 vs. 0 mg/kg 
naltrexone of same EtOH concentration. 
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DISCUSSION 
	  
Our results confirm previous reports that EtOH is reinforcing in C57BL/6J mice (Kelley and 

Middaugh, 1996; Middaugh et al, 1999a; Risinger et al, 1998). This observation was vehicle and 

concentration dependent. Mice ingested a range of concentrations of EtOH, but only mice 

receiving 15% EtOH in water vehicle showed evidence of EtOH reinforcement as measured by 

reinforcers earned and active lever presses compared to vehicle control mice. In the present 

study, EtOH reinforcement occurred in the absence of an added flavorant, explicit EtOH-paired 

cues, or food/water restriction, supporting the conclusion that lever pressing in these studies was 

motivated by the primary reinforcing effects of EtOH. These studies further showed an 

escalation of EtOH in water self-administration over weeks of exposure at this high 

concentration, suggesting that the overnight, weekly self-administration procedure used in these 

studies shows a progression of EtOH intake. Pretreatment with naltrexone attenuated EtOH 

reinforcers earned, lever pressing, and g/kg EtOH consumed in mice reinforced with 15% EtOH 

in water, suggesting that the present model in C57BL/6J mice may have potential predictive 

validity for therapeutic effectiveness.  

Mice reinforced with EtOH in a SAC vehicle solution consumed nearly twice the EtOH 

compared to mice reinforced with the same concentrations of EtOH in water. C57BL/6J mice in 

these studies showed levels of EtOH consumption that are comparable to selectively bred high 

alcohol drinking rats (Bell et al, 2008). The SAC sweetener also supported escalation of lever 

pressing for 3% EtOH in SAC across weeks of exposure, an effect not observed in mice that 

received 3% EtOH in water vehicle. Despite this, mice reinforced with EtOH in SAC solution 

did not meet criteria of EtOH reinforcement as measured by significantly increased reinforcers 

earned or lever pressing compared to SAC vehicle mice. This appears to be due in part to a 
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ceiling effect resulting from the reinforcing effects of SAC. Previous research shows that 

saccharin has primary reinforcing properties in C57BL/6J mice on its own (e.g. Cason and 

Aston-Jones, 2013; Messier and White, 1984). It is therefore interesting that mice reinforced 

with 15% EtOH in SAC earned significantly fewer reinforcers and active lever presses than SAC 

vehicle controls, suggesting that this concentration of EtOH may reduce the reinforcing effects of 

SAC. Previous oral operant EtOH self-administration studies implementing the sucrose fading 

technique using a within-subject design in rats have similarly shown that increasing the 

concentration of EtOH produces concentration-dependent decreases in operant responding 

(Gonzales et al, 2004; Grant and Samson, 1985; Samson, 1986; Samson et al, 1988). Although it 

is possible that this high concentration of EtOH may have reduced the palatability of the SAC 

vehicle (Davison et al, 1976; Dudek, 1982), this conclusion is not supported by operant: ad 

libitum choice measures, which show that mice reinforced with 15% EtOH in SAC ingested a 

greater percentage of their fluid intake from the liquid dipper than mice reinforced with SAC 

vehicle alone. Concentration-dependent increases in g/kg EtOH in SAC consumed suggest that 

mice reinforced with 15% EtOH may have been titrating their dose of EtOH or that ingestion of 

nearly 8 g/kg of EtOH led to sedation in these mice (Blednov et al, 2014; Santos et al, 2013; 

Sharko and Hodge, 2008). This latter interpretation is supported by BEC of 0.8 mg/ml achieved 

in some of these mice as well as by skewness measures, which revealed that higher 

concentrations of EtOH in SAC, but not water, resulted in bouts of lever pressing followed by 

periods of quiescence in 15% EtOH mice compared to SAC vehicle subjects. This pattern of 

responding would not have been predicted based on the VR schedule of reinforcement used in 

these studies, which typically promotes a steady state of responding (Baum, 1993; Ferster and 

Skinner 1957). Bouts of responding in nonhuman primates predict the development of sustained 
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patterns of heavy drinking (Grant et al, 2008). It is of further interest that skewness increased 

across weeks of exposure for 15% EtOH in SAC mice while g/kg intake remained stable, 

suggesting that mice sensitized to this behavioral effect of EtOH intake. 

Sweetener greatly increases the palatability of EtOH and, as such, encourages alcohol 

intake in humans (Kidorf et al, 1990). SAC sweetener appeared to facilitate responding for low-

dose EtOH as demonstrated by a significant escalation of reinforcers earned, lever presses, and 

g/kg EtOH intake in mice reinforced with 3% EtOH in SAC but not in mice reinforced with 3% 

EtOH in water. When mixed with SAC, mice found all EtOH doses rewarding as measured by 

overall higher operant:ad libitum choice scores than those achieved with EtOH in water. 

Although 15% EtOH in SAC mice did not earn significantly more reinforcers than SAC vehicle 

control mice, significantly higher operant:ad libitum choice scores reflected that they did appear 

to drink a greater percentage of liquid from the dipper compared to SAC controls, suggesting that 

the 15% EtOH concentration was rewarding. This observation was evident as early as session 1. 

Longitudinal studies in human drinkers indicate that alcohol subjective reward or liking is one of 

the best predictors for escalation of binge drinking (King and Byars, 2004a; King et al, 2016; 

King et al, 2002). It is therefore interesting that mice reinforced with 15% EtOH in SAC vehicle 

achieved BEC consistent with the legal definition of intoxication in humans. Despite this, mice 

reinforced with 15% EtOH in SAC did not demonstrate an escalation of responding as was 

evidenced in mice reinforced with 3% EtOH in SAC or with 15% EtOH in water. Although 

reinforcement was not confirmed compared to SAC vehicle controls, this model of EtOH in SAC 

self-administration could be used to promote high levels of voluntary operant EtOH drinking in 

the C57BL/6J mouse strain that is commonly used as a background for transgenic and null 

mutant genetic manipulations. 
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Using water vehicle unmasked EtOH reinforcement in mice receiving the highest 

concentration of EtOH. EtOH reinforcement is a precursor to AUD and alcohol dependence 

(Tabakoff and Hoffman, 2013). Consistent with subjective reports in humans, it is interesting 

that sub-intoxicating levels of EtOH intake led to reinforcement in this paradigm (King et al, 

2011; King et al, 2002; McKee et al, 2009). Mice reinforced with 15% EtOH in water not only 

displayed a greater number of reinforcers earned and active lever presses compared to water 

vehicle controls, but they also showed a small but significant escalation of responding across 

exposure sessions. This weekly model of EtOH exposure mimics early patterns of alcohol intake 

observed with AUD in humans (Holdstock et al, 2000; King et al, 2004a; King et al, 2002). In 

rodents, intermittent EtOH exposure promotes an escalation of EtOH intake coined the alcohol 

deprivation effect (ADE) (Khisti et al, 2006; Rodd et al, 2003; Spanagel and Holter, 1999). 

Escalation of responding observed following abstinence from other drugs of abuse is referred to 

as an incubation effect to reflect changes in underlying brain processes that support the 

development of drug dependence (Grimm et al, 2001). It is not clear if chronic exposure, 

extended exposure sessions, protracted periods of abstinence, or all these factors are required for 

observation of ADE/incubation. Most studies in mice involve extended periods of EtOH 

exposure of at least 14 days (Bell et al, 2006; McBride and Li, 1998). In the present studies, 

where mice had weekly overnight access to EtOH, escalation of EtOH reinforcement and 

consumption first became evident during the seventh EtOH self-administration session for mice 

reinforced with 15% EtOH in water and as early as the third session in mice reinforced with 3% 

EtOH in SAC. During EtOH self-administration, it is not clear if residual responding maintained 

by SAC may have promoted a threshold level of EtOH intake necessary to engender reinforcing 

effects and later escalation of responding in mice reinforced with 15% EtOH in water and 3% 



	   142	  

EtOH in SAC. Reductions in responding of mice reinforced with water vehicle and a significant 

difference between control mice and mice reinforced with 15% EtOH in water demonstrate that 

prior saccharin exposure alone was not sufficient to support reinforcement, however. 

Reinforcing effects of EtOH in water were reduced in these studies by the EtOH 

treatment therapeutic, naltrexone (O'Malley et al, 2007; O'Malley et al, 2003). This opioid 

antagonist has previously been shown to decrease mouse operant responding maintained by 

EtOH (Middaugh et al, 1999b; Navarrete et al, 2014) and mouse EtOH intake during DID and 

two-bottle choice paradigms (Kamdar et al, 2007; Phillips et al, 1997). In the absence of any 

effect on water vehicle controls, naltrexone was effective at inhibiting 15% EtOH in water intake 

at sub-intoxicating doses consistent with its therapeutic profile in alcoholics. 

In summary, these studies accomplished some, but not all, of the goals hoped to be 

achieved. Importantly, mice reinforced with 15% EtOH in water showed significantly greater 

responding than vehicle mice in the absence of food or water restriction; this finding suggests 

that EtOH has primary reinforcing properties that are not driven by thirst or caloric incentives. In 

the absence of EtOH fading, the between-subject design revealed an escalation of responding of 

mice reinforced with 15% EtOH in water and 3% EtOH in SAC that was not evident in other 

groups of mice. Together, the present data demonstrate that EtOH is reinforcing in the absence of 

contingent sweetener, but that contingent sweetener may facilitate responding of low-dose EtOH. 

Although the complete removal of all cues was not possible given the noise produced by the 

dipper mechanism and the scent of the EtOH, these studies were accomplished without the 

addition of more explicit tone and light cues that can serve as primary reinforcers and engage the 

dopamine system (Caggiula et al, 2001; Olsen et al, 2009; Olsen and Winder, 2012). Future 

studies may build upon this experimental design to test the regulation of cues on EtOH 
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reinforcement and reward. It was hoped that the between-subject design would lend itself to 

detection of initial sensitivity to EtOH concentration that might predict later behaviors (King et 

al, 2011; King et al, 2016; King et al, 2002; Schuckit et al, 1996). Unfortunately, prior training 

for SAC alone reinforcement may have overshadowed detection of differences in EtOH 

reinforcers earned and lever pressing between groups of mice during the first oral operant EtOH 

self-administration session. The addition of a water bottle in the operant conditioning chamber 

enabled operant: ad libitum choice measures, however, which revealed that mice reinforced with 

15% EtOH in SAC ingested more of their fluid intake from the liquid dipper compared to SAC 

vehicle control mice on week 1. Interestingly, this group of mice achieved intoxicating levels of 

EtOH during later sessions as measured by estimates of EtOH intake and confirmed by BEC 

levels >1.0 mg/ml. The high levels of BEC achieved in mice reinforced with 15% EtOH in SAC 

may serve as a model for heavy EtOH use, even if these mice do not show an escalation of 

dosing across weeks of exposure or evidence of EtOH reinforcement as compared to SAC 

vehicle controls. 

These studies establish a mouse model of oral operant EtOH self-administration that does 

not employ explicit cues, EtOH fading, food deprivation, or water deprivation to signal or 

promote ingestion of EtOH. Omission of these potentially confounding variables may be 

advantageous for studies designed to assess the genetic and biological mechanisms of EtOH use. 

As explicit cues and flavorants are important contributors to EtOH use in humans and animals 

alike, future studies can further manipulate these factors to explore the full biological 

complexities of behaviors that support EtOH use. Escalation of EtOH responding and 

consumption further provides a biological model to assess the neurochemical and molecular 

underpinnings that support elevations in EtOH reinforcement. The responsiveness of mice in 
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these studies to naltrexone further supports the predictive validity of this model for detection of 

drugs with therapeutic effectiveness for treatment of AUD as well as for understanding the 

genetic and neurobiological underpinnings of EtOH reinforcement. 
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Chapter 6 – Contribution of α6β2 subunit containing nicotinic acetylcholine receptors to 

ethanol reinforcement in mice 

 

INTRODUCTION 
	  
Alcohol abuse is a significant health concern across the globe. In 2014, WHO ranked alcohol 

abuse among the top five risk factors for disease, disability, and death (WHO, 2014). A better 

understanding of the mechanisms underlying alcohol’s addictive effects is greatly needed, as 

treatment for alcohol use disorders (AUDs) has only proved modestly successful. Comorbid 

nicotine and alcohol abuse is highly prevalent; these two legal recreational drugs are the most 

common co-abused drugs (Sussman et al, 2011). As many as 96% of alcoholics also smoke 

tobacco (Ayers et al, 1976; De Leon et al, 2007; Falk et al, 2006; Marks et al, 1997; Miller et al, 

1998) and smokers are more likely to binge drink, consume more alcohol, and are more likely to 

meet DSM-V criteria for an AUD compared to non-smokers (Britt et al, 2013; Carmody et al, 

1985; DiFranza et al, 1990; McKee et al, 2013). The high rate of nicotine and alcohol co-abuse 

suggests that these two drugs share a common mechanism of action in the brain.  

Both nicotine and ethanol (EtOH) independently activate the mesolimbic dopamine (DA) 

pathway through nicotinic acetylcholine receptor (nAChR)-dependent mechanisms. This 

interaction elicits stimulation of DA neurons in the ventral tegmental area (VTA), ultimately 

leading to an increase in nucleus accumbens (NAc) DA release, a process associated with the 

rewarding and reinforcing properties of most abused drugs (Hendrickson et al, 2013). It has been 
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well established that β2 subunit containing nicotinic acetylcholine receptors (β2*nAChRs; * 

indicates possible assembly with other subunits) are involved in many abuse-related effects of 

nicotine (Brunzell et al, 2015). However, studies investigating the role of β2*nAChRs in the 

behavioral and neurochemical effects of EtOH have generated mixed results. The β2-selective 

antagonist, DHβE or genetic knockdown of the β2 subunit has no effect on EtOH intake and 

preference (Dawson et al, 2013; Kamens et al, 2010a; Kuzmin et al, 2009), EtOH self-

administration (Kuzmin et al, 2009; Le et al, 2000), or associated EtOH-induced accumbal DA 

release (Ericson et al, 2003; Larsson et al, 2002) in rodent studies. However, varenicline, a 

partial agonist at β2*nAChRs, does reduce ethanol consumption (Feduccia et al, 2014; 

Hendrickson et al, 2010; Kamens et al, 2010b; Santos et al, 2013; Steensland et al, 2007) and 

operant self-administration in rodents (Bito-Onon et al, 2011; Steensland et al, 2007). 

Varenicline does not have an effect on EtOH-associated NAc DA release in rats however 

(Feduccia et al, 2014). These pharmacological findings are perhaps complicated by a lack of 

β2*nAChR subtype selectivity.  

β2 primarily assembles with the α4 and α6 subunits to make functional α4β2*, α6β2* 

and α4α6β2*nAChRs. α6β2*nAChRs are of particular interest, as this subtype is selectively 

expressed in catecholaminergic nuclei, being enriched along the reward-related mesolimbic DA 

pathway (Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996). Intra-VTA infusion 

of the α6-selective antagonist, α-Conotoxin MII (α-Ctx MII) reduces EtOH intake and 

preference (Larsson et al, 2004), EtOH self-administration (Kuzmin et al, 2009), and associated 

EtOH-induced activation of the mesolimbic DA pathway (Larsson et al, 2004; Liu et al, 2013b). 

These effects of α-Ctx MII could be due to antagonism of α3β2*nAChRs in the VTA, as α-Ctx 

MII binds to these nAChRs as well. In contrast, α6 null mutant mice (α6KO) show no 
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differences compared to WT mice for measures of EtOH intake and preference (Guildford et al, 

2016; Kamens et al, 2012). But, α6KO mice do show a loss of high dose EtOH reward 

sensitivity in CPP (Guildford et al, 2016) and associated reductions in EtOH-induced stimulation 

of VTA DA neurons (Liu et al, 2013b).	  Complementary to null mutant strategies, α6β2*nAChR 

gain-of-function (α6L9’S) mice show increases in EtOH intake and conditioned place preference 

(CPP) compared to WT mice (Powers et al, 2013). However, no known studies have investigated 

how genetic manipulation of the α6 subunit affects EtOH’s reinforcing effects. Thus, these 

studies sought to further characterize the role of α6β2*nAChRs in EtOH reinforcement using a 

mouse model of oral, operant EtOH self-administration in WT, α6HET, and α6KO mice. 

MATERIALS AND METHODS 
	  
Subjects  
 
Adult male wild type (WT) (n=11), α6 heterozygous (α6HET) (n=13), and α6 subunit null 

mutant mice (α6KO) (n=12) were used in these studies. α6KO mice were backcrossed to 

C57BL/6J WT mice for at least 10 generations. WT, α6HET, and α6KO mice were produced by 

heterozygous breeder pairs. Mice were housed in a temperature- and humidity-controlled 

vivarium in polycarbonate cages with Teklad corncob bedding (catalog number 7092). They 

were housed under a 12 h light/dark schedule (lights on at 6:00 a.m.) and had ad libitum access 

to food (Teklad LM-485 Mouse/Rat Sterilizable Diet, catalog number 7012) and water. 

Experimental protocols were approved by the Institutional Animal Care and Use Committee 

(IACUC) at Virginia Commonwealth University and were in accordance with the Guidelines for 

the Care and Use of Laboratory Animals, as set forth by the National Institutes of Health.  

 
Drugs 
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EtOH was diluted in tap water and provided to mice for voluntary oral intake. For rotarod and 

locomotor experiments, EtOH was diluted in double deionized water and administered 

intraperitoneal (i.p.) at a volume of 0.3 ml/30 g.  

 
Operant ethanol self-administration 
 
Apparatus  
 
Operant EtOH self-administration procedures were conducted in mouse operant conditioning 

chambers (21.6 cm × 17.8 cm × 12.7 cm; Med Associates, St. Albans, VT) housed inside sound-

attenuating cabinets with a ventilation fan. Each chamber was equipped with two retractable 

levers placed 2.5 cm above the floor. One lever, designated active, resulted in the presentation of 

a liquid dipper that provided 0.01 ml of fluid; the other lever, designated inactive, had no 

consequence when depressed. The liquid dipper was located within a magazine equidistant 

between the two levers and equipped with a photobeam sensor to record head entries into the 

magazine during the presence or absence of the liquid dipper presentation. A 100 mA house 

light, located 11 cm above the floor on the opposite wall, was on during the session. A water 

bottle with sipper tube provided ad libitum access to water during EtOH self-administration 

sessions, and food pellets were placed on the floor. Med PC IV software and Med Associates 

interfacing controlled liquid dipper presentations and recorded active and inactive lever pressing, 

liquid dipper reinforcers earned, and magazine entries during the presence (correct entry) and 

absence (incorrect entry) of liquid dipper presentation. Data were collected in 15 min time bins.  

 
Magazine training  
 
Mice received 80 liquid dipper presentations of 0.01 ml of SAC solution on a variable time 30 s 

schedule (13–47 s range). Mice were trained to a criterion of at least 20% magazine entry during 
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dipper presentations or for up to three training sessions. Magazine training took place during the 

light cycle between 1300 and 1500 hours.  

 
Acquisition of lever pressing  
 
Next, mice underwent acquisition of lever pressing in the absence of EtOH to assure that all 

groups of mice demonstrated reliable lever pressing and goal tracking behavior prior to their first 

exposure to EtOH. Mice were trained during 16 h overnight sessions to lever press for SAC 

dipper presentations. Sessions began between 1700 and 1800 hours. Active lever pressing for 

SAC was maintained on FR1 for the first 20 reinforcers, FR2 for the 20 subsequent reinforcers, 

and FR4 for the 10 subsequent reinforcers. For the remainder of the session, the FR4 schedule 

was shifted to a variable ratio (VR) 5 schedule (1–12 range). Training continued for two to five 

sessions until animals pressed the active lever at least 40 times and showed at least 100 s of head 

entry into magazine during fluid dipper presentation. 

 
Weekly, overnight EtOH sessions  
 
After meeting training criteria, mice (n=5-7 per group) underwent 16 h overnight operant self-

administration sessions once every 7 days for 10 weeks. Individual mice lever pressed on a VR5 

schedule of reinforcement maintained by 0, 3, 10, or 15% EtOH (v/v). Due to limited availability 

of operant conditioning chambers, each experiment was completed in two replicates. Reinforcers 

earned and active lever presses provided measures of reinforcement. Response accuracy was 

determined by the percentage of active lever presses: active/total(active+inactive lever presses). 

For all experiments, estimated drinking from the liquid dipper was calculated by multiplying the 

number of correct head entries (magazine head entry at the time of liquid dipper presentation) by 

0.01 ml as has been shown previously to correlate well with BEC (Stafford et al, 2015). Total 
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EtOH dose consumed was estimated by multiplying intake volume by the EtOH concentration 

available for self-administration, only when mice had their head in the magazine during EtOH 

delivery.  

 
Rotorod 

Mice were habituated to an accelerating rotorod (5-45 rpm in 300 s) to reliably achieve at least 

60 s without falling. The next day, mice first received i.p. injections of saline (SAL) and 

immediately tested for latency to fall. Mice then received 2 g/kg i.p. EtOH injections and were 

tested for latency to fall at 0, 15, 30, 45, and 60 min post-injection.  

 
Locomotor assay 
 
The locomotor assay was conducted in a polycarbonate cage (33 cm x 21 cm) under dim 

lighting. On the first day, mice were habituated to the locomotor chamber for 15 min. The 

following day, mice received i.p. injections of SAL or 2 g/kg EtOH and were immediately placed 

in the locomotor chamber for 15 min. Distance traveled was measured using Anymaze tracking 

software.  

 
Statistical analysis  
 
All data were analyzed using SPSS. Active lever presses, reinforcers earned, and lever pressing 

accuracy data were analyzed using a 2x3x6 (EtOH concentration x genotype x session) repeated 

measures analysis of variance (ANOVA). EtOH consumed was analyzed using a 3x6 (genotype 

x session) repeated measures ANOVA. Significant EtOH concentration x genotype x session 

interactions were further assessed using one-way ANOVAs to examine differences in active 

lever presses and reinforcers earned during session 7 for each genotype separately, and paired t-

tests using a Bonferroni correction examined differences between sessions 2 and 7 for each 
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genotype. Session 2 was used in analysis of the data, instead of session 1, as there appeared to be 

residual responding for 0.2% saccharin that was used during training. This residual responding 

disappeared by session 2. A 3x5 (genotype x timepoint) repeated measures ANOVA was used to 

analyze rotorod performance. A 2x3 (EtOH dose x genotype) ANOVA was used to analyze 

locomotor activity. The criterion for significance was set at p<0.05 for all analyses.  Data points 

more than 2 standard deviations from the mean were considered outliers and excluded from 

analysis. 

RESULTS 
	  
Active Lever Presses 

A 2x3x6 repeated measures ANOVA revealed a main effect of session (F5,140=3.086, p=0.011) 

and EtOH concentration (F1,28=13.734, p=0.001), as well as interactions of EtOH concentration 

by session (F5,140=6.379, p<0.001), genotype by session (F10,140=2.328, p=0.014), and EtOH 

concentration by genotype by session (F10,140=1.91, p=0.048) for active lever presses (Figure 

6.1a-b). WT (p=0.009) and α6KO mice (p=0.029) maintained on 15% EtOH showed 

significantly elevated levels of active lever presses compared to water control mice, suggesting 

that these mice found EtOH reinforcing by the last session (session 7). However, α6HET mice 

maintained on 15% EtOH did not show significant elevations of active lever presses by session 7 

compared to vehicle controls (p=0.472), demonstrating that α6HET mice did not find EtOH 

reinforcing. WT mice reinforced with 15% EtOH also showed a significant elevation in 

responding across sessions (t4=-7.615, p=0.002) that was not observed in α6HET or α6KO mice 

maintained on 15% EtOH  (p’s>0.05). A 2x3x6 repeated measures ANOVA revealed no main 

effects or interactions for lever pressing accuracy, revealing that genotype and EtOH 
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concentration had no effect on accuracy and that accuracy remained stable over sessions (Figure 

6.1e-f).  

 
Reinforcers Earned 

A 2x3x6 repeated measures ANOVA revealed a main effects of session (F5,140=2.738, p=0.022) 

and  EtOH concentration (F1,28=14.096, p=0.001), and interactions of EtOH concentration by 

session (F5,140=6.696, p<0.001), genotype by session (F10,140=2.306, p=0.015), and EtOH 

concentration by genotype by session (F10,140=1.911, p=0.048) for reinforcers earned (Figure 

6.1c-d). WT (p=0.008) and α6KO mice (p=0.029) maintained on 15% EtOH showed 

significantly greater levels of reinforcers earned compared to water control mice, suggesting that 

these mice found EtOH reinforcing by the last session. However, α6HET mice maintained on 

15% EtOH did not differ from water control mice, indicating that α6HET mice did not find 

EtOH reinforcing (p=0.472). Only WT mice maintained on 15% EtOH showed an increase in 

reinforcers earned across weeks of training (t4=-6.848, p=0.002).   
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Figure 6.1 –α6β2*nAChR expression modulates ethanol (EtOH) reinforcement. a) Active 
lever presses over weekly, overnight EtOH self-administration sessions for WT (0%: n=5; 15%: 
n=5), α6HET (0%: n=6; 15%: n=7), and α6KO mice (0%: n=6; 15%: n=5). b) Active lever 
presses for sessions 2 and 7. c) Reinforcers earned across weekly, overnight EtOH self-
administration sessions. d) Reinforcers earned for sessions 2 and 7. e) Lever pressing accuracy 
across weekly, overnight EtOH self-administration sessions. f) Lever pressing accuracy for 
sessions 2 and 7. * p<0.05 vs. 0% EtOH of same genotype; ^ p<0.05 vs. week 2 of same group. 
Data are expressed as mean ± SEM.  
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EtOH consumed 

A 3x6 repeated measures ANOVA revealed a main effect of session (F5,70=3.738, p=0.005) for 

EtOH consumed (Figure 6.2a-b), revealing that EtOH consumption increased over sessions 

independent of genotype. However, there was no main effect of genotype (F2,14=1.242, p=0.319) 

and no significant interaction of genotype by session (F10,70=1.742, p=0.088), demonstrating that 

EtOH consumed did not differ between genotypes. There were also no main effects or 

interactions for % correct head entries (Figure 6.2 c-d) for which EtOH consumption is based.  
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Figure 6.2 –α6β2*nAChR expression does not significantly affect ethanol (EtOH) intake. 
a) EtOH consumed (g/kg) over weekly, overnight EtOH self-administration sessions for WT 
(n=5), α6HET (n=5), and α6KO mice (n=5). b) EtOH consumed (g/kg) for sessions 2 and 7. c) 
Percent correct magazine entries over weekly, overnight EtOH self-administration sessions. d) 
Percent correct magazine entries for sessions 2 and 7. Data are expressed as mean ± SEM. 
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Rotorod 

A 3x5 repeated measures ANOVA revealed a main effect of time (F4,132=22.322, p<0.001), 

demonstrating that 2 g/kg i.p. EtOH administration impaired rotorod performance as expected. 

However, there was no main effect of genotype (F2,33=0.085, p=0.919) and no interaction of 

genotype by time (F8,132=0.543, p=0.822), suggesting that rotorod performance was not impacted 

by genotype (Figure 6.3a). 

 
Locomotor activity 

A 2x3 ANOVA revealed a main effect of EtOH dose (F1,30=14.846, p=0.001), showing that 2 

g/kg i.p. EtOH increased locomotor activity independent of genotype. However, there was no 

main effect of genotype (F2,30=0.091, p=0.913) and no interaction of genotype by EtOH dose 

(F2,30=0.7261, p=0.492), showing that locomotor activity did not differ between the genotypes 

(Figure 6.3b).  
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Figure 6.3 –α6β2*nAChR expression does not appear to be involved in the ataxic or 
locomotor effects of ethanol (EtOH). a) Latency to fall off the rotorod for WT (n=11), α6HET 
(n=13), and α6KO mice (n=12) in response to 2 g/kg i.p. EtOH. b) Distance traveled in WT 
(saline: n=5; EtOH: n=6), α6HET (saline: n=6; EtOH: n=7), and α6KO mice (saline: n=6; 
EtOH: n=6) in response to saline or 2 g/kg i.p. EtOH. Data are expressed as mean ± SEM. 
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DISCUSSION 
 
The present study investigated the contribution of α6β2*nAChRs to EtOH reinforcement using 

genetic reduction (α6HET) or deletion (α6KO) of α6β2*nAChR expression in mice. A number 

of studies have used the α6KO mice to elucidate the role of α6β2*nAChRs in EtOH intake, 

preference, and reward (Guildford et al, 2016; Kamens et al, 2012). To our knowledge however, 

this is the first study where EtOH reinforcement has been investigated in α6HET and α6KO 

mice using operant self-administration. Using our model of oral, operant EtOH self-

administration (Stafford et al, 2015), we showed that WT mice showed EtOH reinforcement as 

measured by greater active lever presses and reinforcers earned compared to water control mice, 

while α6HET mice did not show EtOH reinforcement, as no difference between α6HET mice 

reinforced with 0% and 15% EtOH was observed for active lever presses and reinforcers earned. 

These results indicate that α6β2*nAChR expression modulates EtOH reinforcement. 

Curiously, we demonstrated that EtOH has similar reinforcing efficacy in α6KO mice compared 

to WT mice, where WT and α6KO mice maintained on 15% EtOH showed similar levels of 

lever pressing during operant EtOH self-administration. This is consistent with previous studies 

reporting similar EtOH preference and intake using two-bottle choice or drinking-in-the-dark 

(DID) in WT and α6KO mice (Guildford et al, 2016; Kamens et al, 2012). However, it was 

unexpected that reducing α6β2*nAChR expression by approximately half in the α6HET mice 

would prevent EtOH reinforcement while knocking out α6β2*nAChRs in α6KO mice would 

have no effect. α6KO mice do exhibit a decrease in EtOH reward sensitivity, where 2.0 and 3.0 

g/kg EtOH conditioned a place preference in WT mice, but α6KO mice only expressed CPP at 

2.0 g/kg EtOH (Guildford et al, 2016). It is possible that there is a similar shift in the dose 

response curve for operant EtOH self-administration. It is also possible that there is a 
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compensatory mechanism responsible for the lack of effect in α6KO mice, where another 

nAChR subtype may be compensating for the absence of α6β2*nAChRs to promote EtOH 

reinforcement in α6KO mice. Although the preponderance of evidence from binding studies 

suggests that there is no compensation of nAChRs in the knockout mice, one study reports that 

[3H]epibatidine binding, which has affinity for α7, α3β2*, α3β4*, α4β2*, α6β2*nAChRs 

(Badio and Daly, 1994; Champtiaux et al, 2002), is unchanged in α6KO mice, suggesting that 

there may be compensation of another nAChR subtype in these mice (Champtiaux et al, 2003).  

It is interesting that estimated EtOH consumed was not significantly different between 

the three genotypes as was seen with active lever presses and reinforcers earned, although there 

are non-significant trends for greater EtOH intake in WT and α6KO mice compared to α6HET 

mice similar to the other measures. Non-significant trends could indicate that this study is 

underpowered and warrants addition of additional subjects. This estimation of g/kg EtOH intake 

is based on the assumption that mice drink the reinforcer when they make a correct magazine 

entry (entry during liquid dipper presentation). Alternatively, this dichotomy between lever 

presses and reinforcers earned, and EtOH intake could be a result of mice making not making 

correct head entries every time they earn a liquid dipper presentation of EtOH. However, there 

were no significant differences between genotypes for measures of correct head entries. 

In contrast to our present results in α6KO mice, previous studies using intra-VTA 

infusion of the α6-selective antagonist, α-Ctx MII, report reductions in EtOH intake and 

preference in rodents (Larsson et al, 2004), as well as in EtOH self-administration in rats 

(Kuzmin et al, 2009). Intra-VTA α-Ctx MII also reduces EtOH-induced activation of VTA DA 

neurons (Liu et al, 2013b) and EtOH-induced DA release in mice (Larsson et al, 2004), effects 

that are associated with EtOH’s rewarding and reinforcing properties. These paradoxical findings 
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could be attributed the fact that intra-VTA α-Ctx MII inactivates α6β2*nAChRs in one brain 

region, while α6KO mice lack α6β2*nAChRs throughout the whole brain. This could suggest 

that α6β2*nAChRs is discrete brain regions oppose each other to regulate EtOH reinforcement. 

Measuring these behaviors following intracerebroventricular (i.c.v.) infusion of α-Ctx MII can 

provide information about brain systemic inactivation that more closely resembles global α6 

knockout. If results from i.c.v. α-Ctx MII studies remain different from studies in α6KO mice, 

this may further suggest a compensatory mechanism in these genetic mutants, as discussed 

above. It should be noted that α-Ctx MII also binds to α3β2*nAChRs, which are expressed in 

the VTA as well; it is therefore possible that effects of α-Ctx MII may be mediated by 

α3β2*nAChRs. Conotoxin derivatives more selective for α6β2*nAChRs, such as α-Ctx PIA 

(Dowell et al, 2003) could test whether α-Ctx MII effects are mediated by α6β2* versus 

α3β2*nAChRs. 

Our operant EtOH self-administration paradigm used in these studies provided mice with 

intermittent access to EtOH once per week. Intermittent EtOH exposure promotes escalation of 

EtOH intake, which is referred to as the “alcohol deprivation effect” (ADE) (Khisti et al, 2006; 

Rodd et al, 2003; Spanagel et al, 1999). This effect reflects neuroadaptations thought to support 

the transition to dependence (Ron and Barak, 2016). The ADE is considered a model of alcohol 

seeking, loss of control, or relapse. Similarities exist between ADE in rodents and humans, 

giving it face validity as a model for these behaviors associated with dependence (Martin-Fardon 

and Weiss, 2013). As we have previously reported in mice on the C57BL/6J background strain 

(Stafford et al, 2015), there was a small but significant elevation of responding in WT mice 

across weeks of exposure. While α6KO mice did not differ from WT littermates in measures of 

EtOH self-administration, neither α6HET nor α6KO mice exhibited escalation of responding 
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across weekly self-administration sessions. This suggests that α6β2*nAChRs are involved in the 

escalation of operant EtOH intake. 

The interesting genotypic effects on EtOH self-administration observed in these studies 

did not appear to result from different sensitivities to EtOH’s ataxic and locomotor effects, as 

there was no difference between the three genotypes in rotorod performance or locomotor 

activity in response to 2 g/kg i.p. EtOH. This interpretation is supported by data showing that 

EtOH metabolism is not different between WT, α6HET, and α6KO mice (Kamens et al, 2012). 

α6KO mice have been shown to be more sensitive to the sedative effects of EtOH, taking longer 

to recover their righting reflex in response to 4.1 g/kg i.p. EtOH (Kamens et al, 2012). However, 

this bolus dose of EtOH is much higher than the mice would have achieved during overnight oral 

operant self-administration in our experiments.  

In conclusion, these data suggest that α6β2*nAChR expression modulates EtOH 

reinforcement. Moreover, our data demonstrate a role for α6β2*nAChRs in the escalation of 

EtOH intake seen following intermittent exposure. The present studies expand on previous data 

to further implicate α6β2*nAChRs in behaviors relevant to alcohol abuse and dependence.  
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Chapter 7 – Concluding Discussion: Implications and Future Directions 

 
 

An accumulation of evidence suggests that activation of mesolimbic α6β2*nAChRs promotes 

nicotine-stimulated mesolimbic DA activity and associated behaviors relevant to nicotine 

addiction, namely nicotine self-administration and place conditioning (Brunzell et al, 2010; 

Champtiaux et al, 2003; Gotti et al, 2010; Grady et al, 2002; Kulak et al, 1997; Liu et al, 2012; 

Pons et al, 2008; Salminen et al, 2007; Salminen et al, 2004; Sanjakdar et al, 2015; Wickham et 

al, 2013; Zhao-Shea et al, 2011). These previous studies utilizing pharmacological and genetic 

techniques to inactivate α6β2*nAChRs demonstrate the necessity of this nAChR subtype. 

However, little progress has been made in the development of α6β2*nAChR-selective agonists 

that can selectively activate these receptors to demonstrate their sufficiency (Drenan et al, 2008). 

Thus, in vivo studies in this dissertation first aimed to use α6L9’S gain-of-function mice as a 

way to selectively activate α6β2*nAChRs to determine if activation of α6β2*nAChRs is 

sufficient to promote NAc DA release and nicotine CPP, a model of nicotine reward. 

Our in vivo microdialysis studies in awake, behaving mice showed that α6L9’S mice 

exhibited elevated levels of basal NAc DA compared to WT mice, suggesting that activation of 

α6β2*nAChRs is sufficient to promote NAc DA release. Consistent with previous in vitro 

reports (Cohen et al, 2012), this effect is presumably a result of α6β2*nAChR hyperexcitability 

in response to endogenous ACh. In support of this hypothesis, it appears that endogenous activity 

at α6β2*nAChRs in the VTA promotes basal NAc DA release, as local VTA infusion of α-Ctx 
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MII blocked basal DA levels in the NAc of α6L9’S mice. This endogenous cholinergic tone is 

presumably from inputs projecting from either the pedunculopontine or laterodorsal tegmental 

nucleus, as studies show that these cholinergic inputs to the VTA control NAc DA release (Blaha 

et al, 1996; Lanca et al, 2000; Lester et al, 2008; Xiao et al, 2016). To confirm this, future 

studies using local infusion of a viral vector to selectively express channel rhodopsin YFP in 

mice with a CHAT CRE promotor could be used to optogenetically stimulate VTA cholinergic 

inputs from the peduncopontine and laterodorsal tegmental nuclei, which we predict would 

increase NAc DA levels. Based on our data, it is expected that antagonizing α6β2*nAChRs in 

the VTA with local infusions of α-Ctx MII would block this effect. For consistency across our 

present studies, we used α-Ctx MII, a putative selective antagonist of α6β2*nAChRs. But, this 

antagonist also blocks the activity of α3β2*nAChRs (Cartier et al, 1996), which are also 

expressed in the VTA, albeit at lower levels compared to α6β2*nAChRs. There are conotoxin 

derivatives that are more selective for α6β2*nAChRs compared to α3β2*nAChRs, like α-Ctx 

PIA (Dowell et al, 2003), that we could use in future studies to more selectively antagonize 

α6β2*nAChRs in the VTA.  

It has also been reported that optogenetic stimulation of striatal cholinergic interneurons 

elicits DA release from NAc DA terminals, which is blocked by the β2-selective antagonist, 

DHβE (Cachope et al, 2012; Threlfell et al, 2012). This indicates that ACh released from these 

interneurons acts at β2*nAChRs to promote DA release independent of DA neuron firing. DHβE 

binds to both α4β2* and α6β2*nAChRs with similar potency (Grady et al, 2010; Papke et al, 

2008). Together with these previous data, our present microdialysis results in α6L9’S mice 

suggest that activity of NAc cholinergic interneurons could stimulate α6β2*nAChRs on DA 

terminals to promote DA release. To test this hypothesis, local NAc infusions of α-Ctx MII 
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could be used in combination with optogenetic studies to assess if α6β2*nAChR antagonism 

blocks NAc DA release stimulated by NAc cholinergic activity. Compared to the high expression 

of α6β2*nAChRs, there is not a prevalence of α3β2*nAChRs in the NAc, so effects of α-Ctx 

MII in this brain area are likely due to antagonism of α6β2*nAChRs. Further supporting this, 

genetically deleting the α3 subunit in mice does not affect α-Ctx MII binding in the NAc 

(Whiteaker et al, 2002), while α-Ctx MII binding completely disappears in this brain area of 

α6KO mice (Champtiaux et al, 2002). Effects of endogenous cholinergic signaling are relevant 

to nicotine addiction, as evidence has implicated these processes in abuse-related effects of 

nicotine (e.g. Avena et al, 2012; Hoebel et al, 2007; Lanca et al, 2000; Rada et al, 2001; Xiao et 

al, 2016). Moreover, human imaging studies have shown that basal DA tone is also related to 

smoking, as it is enhanced in the striatum of smokers compared to non-smokers (Brown et al, 

2012; Fehr et al, 2008). 

Similar to observations of elevated α6L9’S basal NAc DA levels, we expected that 

α6L9’S mice would show an enhanced response to nicotine as has been previously reported in 

α6L9’S synaptosome preparation studies (Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 

2008), to suggest that stimulation of α6β2*nAChRs by nicotine also promotes NAc DA release 

in vivo. However, nicotine had no effect on NAc DA levels in WT or α6L9’S mice (Appendix 

A). There are several possibilities that may explain the failure to replicate the in vitro studies 

showing elevated DA release following nicotine exposure (Cohen et al, 2012; Drenan et al, 

2010; Drenan et al, 2008). In an effort to use behaviorally relevant doses of nicotine, we 

employed an escalating nicotine dose regimen, where mice first received a lower, rewarding dose 

of nicotine (0.1 mg/kg i.p.), followed 45 minutes later by a higher, anxiogenic dose of nicotine 

(0.5 mg/kg i.p.). This time course should be sufficient to support desensitization of nAChRs after 
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the first, lower nicotine dose (Grady et al, 2012). Desensitization by the lower dose of nicotine 

could have precluded any observable increase in DA levels in response to the higher nicotine 

dose, which has been shown to increase NAc DA levels (Champtiaux et al, 2003; Jerlhag and 

Engel, 2011; Picciotto et al, 1998). This interpretation is supported by previous studies 

demonstrating the nicotine desensitizes nAChRs, blocking effects of subsequent nicotine 

administration (Anderson et al, 2015; Buccafusco et al, 2007; Hulihan-Giblin et al, 1990; Sharp 

and Beyer, 1986). However, desensitization may have recovered before the second, higher dose 

of nicotine was administered in our studies (Grady et al, 2012). 

It is also possible that our technique was not sensitive enough to detect changes in DA 

levels in response to nicotine. Even with drugs of abuse such as cocaine that result in robust DA 

release in the NAc, it is typical that doses that are higher than those required to observe behavior 

are required to observe changes in DA. Moreover, nicotine’s effect on DA release is subtle, so 

use of a more time-sensitive technique, like fast scan cyclic voltammetry (FSCV) may be 

warranted in this case. In our experiments, we quantified DA levels from dialysis samples 

collected every 15 minutes. FSCV has much greater temporal resolution compared to 

microdialysis, with the ability to detect changes in DA levels on a sub-second time scale (Chefer 

et al, 2009). Future studies using in vivo FSCV in WT and α6L9’S mice have the potential to 

detect subtle nicotine-associated changes in DA release in real time to further evaluate if 

stimulation of α6β2*nAChRs supports nicotine-stimulated DA release. 

While we were not able to detect any effect of nicotine on NAc DA levels, behaviorally, 

we did observe that α6L9’S mice were hyperactive in response to nicotine compared to WT 

littermates during nicotine CPP training. The mesolimbic DA pathway is known to play a role in 

drug-induced locomotor activation, providing a behavioral model that can assess the activity of 
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this pathway (Phillips and Shen, 1996; Wise and Bozarth, 1987), and antagonism of DA 

receptors with pimozide (King et al, 2004b), as well as 6-OHDA lesions of the NAc (Clarke et 

al, 1988) and VTA (Louis et al, 1998) can block the locomotor stimulating effects of nicotine. 

Our findings are consistent with previous findings which showed hyperactivity in α6L9’S mice 

in response to nicotine (Berry et al, 2015; Cohen et al, 2012; Drenan et al, 2010; Drenan et al, 

2008), further suggesting that stimulation of α6β2*nAChRs promotes the locomotor activating 

effects of nicotine. This data provides a clue that α6L9’S mice may show an elevated DA 

response to nicotine in vivo that our current techniques were not capable of detecting as 

discussed above.  

It is well known that most drugs of abuse, including nicotine, activate the mesolimbic DA 

pathway, ultimately resulting in an increase in NAc DA release (Di Chiara et al, 1988), a process 

known to be involved in nicotine’s rewarding and reinforcing properties (Corrigall et al, 1992; 

Sellings et al, 2008). We observed a leftward shift in the dose response curve for α6L9’S 

nicotine CPP, suggesting that stimulation of α6β2*nAChRs is sufficient for nicotine’s rewarding 

properties. As α6L9’S mice showed both enhanced basal NAc DA levels and left-shifted 

nicotine CPP, it would appear that augmented reward behavior in α6L9’S mice results from 

enhanced NAc DA release.  Future nicotine CPP experiments should test this directly using a DA 

receptor antagonist. Unfortunately, our pilot studies using doses of SCH 23390, a DA1 receptor 

antagonist, reported in the literature (and lower) were unable to find a dose that did not promote 

aversion on its own. DA signaling could be manipulated in other ways including the use of 

optogenetic or chemogenetic inhibition of DA neurons, or 6-OHDA lesions. It would also be 

informative to quantify NAc DA levels during nicotine CPP to test whether nicotine exposure 

alters DA levels during the training phase of CPP, and further whether changes in DA 
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corresponds with expression of CPP during the test, where mice are in a drug-free state. We 

attempted this but ultimately abandoned the experiment when it was clear that the sensitivity of 

the microdialysis preparation was not detecting nicotine-stimulated changes in NAc DA levels. It 

would also be informative to record in vivo VTA DA neuron firing using electrophysiology at 

baseline and in response to nicotine, as in vitro ACh- and nicotine-stimulation of VTA DA 

neuron activity is enhanced in α6L9’S midbrain slices (Drenan et al, 2008; Engle et al, 2013; 

Powers et al, 2013).  

Expanding on previous findings demonstrating the necessity of α6β2*nAChRs for 

nicotine CPP (Jackson et al, 2009; Sanjakdar et al, 2015), our findings indicate that this nAChR 

subtype is sufficient for the rewarding properties of nicotine. However, there are two subclasses 

of α6β2*nAChRs and their individual contributions to nicotine reward have yet to be elucidated. 

Therefore, subsequent studies in this dissertation used an α6L9’S x α4KO cross to differentiate 

the contributions of α4α6β2*nAChRs and (non-α4)α6β2*nAChRs to nicotine reward behavior. 

As with α6L9’S mice, nicotine doses sub-threshold for nicotine CPP in WT mice were capable 

of supporting nicotine CPP in L9’S-α4KO mice, suggesting that α4 is not required to assemble 

with α6 to promote nicotine CPP, but rather that (non-α4)α6β2*nAChRs promote this abuse-

related behavior. This result was not expected, as both α6L9’S and α4L9’A (Tapper et al, 2004) 

gain-of-function mice show enhanced nicotine CPP. Moreover, α4α6β2*nAChRs, which have 

the highest known sensitivity to nicotine, are the only receptors in brain that ought to be 

activated by physiologically relevant levels of nicotine (Exley et al, 2008; Kuryatov et al, 2011; 

Liu et al, 2012; Salminen et al, 2007; Salminen et al, 2004). Indeed, the α4α6β2*nAChRs are 

persistently activated in VTA slices at concentrations of nicotine (300 nM) achieved in smokers 

that typically desensitize other nAChRs (Liu et al, 2012). In vitro slice studies have reported that 
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enhanced α6L9’S DA neuron firing and DA release requires the α4 subunit (Drenan et al, 2010; 

Engle et al, 2013). DA-associated behavior also requires the α4 subunit, as enhanced nicotine-

stimulated locomotor activity observed in α6L9’S mice was reversed when the α4 subunit was 

deleted (Drenan et al, 2010). Future microdialysis studies comparing α6L9’S mice to α6L9’S-

α4KO mice are planned to test which α6β2*nAChR subclass (α4α6β2* or (non-

α4)α6β2*nAChRs) supports in vivo elevations of NAc DA release observed in α6L9’S mice, as 

measurements of DA in α6L9’S-α4KO mice have only been performed in vitro. If these future 

studies corroborate the in vitro data to demonstrate that α4α6β2*nAChRs are required for in 

vivo NAc DA release, this would suggest that different α6β2*nAChR subtypes are involved in 

DA release and nicotine reward, as our CPP studies implicate (non-α4)α6β2*nAChRs in 

nicotine reward behavior. It would thus appear that nicotine reward behavior may not be 

regulated by α6β2*nAChR modulation of NAc DA release; future studies could investigate 

other mechanisms by which α6β2*nAChRs control nicotine reward behavior. The noradrenergic 

system has also been implicated in drug addiction (Ouzir and Errami, 2016; Weinshenker and 

Schroeder, 2007). Being that α6β2*nAChRs are also located on NE projection neurons in the 

locus coeruleus (Le Novere et al, 1996; Lena et al, 1999), it would be appropriate to determine 

whether α6β2*nAChRs in the locus coeruleus are involved in nicotine reward using local 

infusions of α6β2*nAChR-selective antagonists. If so, microdialysis studies could further be 

used to quantify NE release in brain regions receiving NE projections from the locus coeruleus to 

elucidate whether NE activity is involved in nicotine reward.  

To expand on our initial CPP study, we were interested in determining the 

neuroanatomical locus where α6β2*nAChRs modulate nicotine reward behavior. α6β2*nAChRs 
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are enriched along the mesolimbic pathway, on VTA DA neuron soma and on DA projection 

terminals in the NAc (Champtiaux et al, 2002; Klink et al, 2001; Le Novere et al, 1996), brain 

regions associated with drug reward. Previous studies have shown that antagonizing 

α6β2*nAChRs specifically in the NAc blocks nicotine CPP in mice (Sanjakdar et al, 2015). Our 

studies expanded on this to show that activation of α6β2*nAChRs in the NAc shell subdivision, 

where acute nicotine elicits a preferential initial increase in DA (Pontieri et al, 1996), are 

involved in nicotine reward behavior in WT mice. This is consistent with previous data from our 

lab demonstrating that NAc shell α6β2*nAChRs are important for nicotine self-administration in 

rats (Brunzell et al, 2010).  

Interestingly, intra-NAc shell α-Ctx MII had no effect on nicotine reward behavior in 

α6L9’S mice. Initially, we thought that a higher dose of α-Ctx MII was needed to decrease 

α6L9’S α6β2*nAChR function given their hypersensitivity to agonists (Drenan et al, 2008). 

However, increasing the dose of α-Ctx MII from 10pmol to 20 pmol was not effective in 

blocking nicotine CPP in α6L9’S mice. Based on this, it does not appear that the α-Ctx MII dose 

response curve is shifted in α6L9’S mice to explain the lack of effect in these gain-of-function 

mice. However, we need to do a more complete dose response curve with additional doses of α-

Ctx MII in future studies to definitively conclude that there is no shift in the α6L9’S mice. 

Another explanation for the lack of effect of α-Ctx MII on nicotine CPP in α6L9’S mice lies in 

the fact that α6L9’S mice are heterozygous, so that only some of the α6β2*nAChRs are 

hypersensitive. If the hypersensitive α6β2*nAChRs are not antagonized by α-Ctx MII the same 

as WT α6β2*nAChRs (i.e. different affinity or potency of α-Ctx MII in α6L9’S mice), the 

hypersensitive α6β2*nAChRs may be masking the effect of α-Ctx MII at the normal 
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α6β2*nAChRs. Previous studies have shown that α-Ctx MII blocks enhanced DA neuron firing 

and DA release observed in α6L9’S mice (Drenan et al, 2008), but no known studies have been 

done to assess binding affinity and potency of α-Ctx MII in α6L9’S mice, which should be 

investigated in future studies. Given that increasing the dose of α-Ctx MII had no effect on 

nicotine CPP in α6L9’S mice, we hypothesized that hyperactivity of α6β2*nAChRs on VTA 

DA projection neurons may have been overcoming any effect of blocking these receptors on DA 

terminals the NAc shell. This hypothesis was supported by data suggesting for the first time that 

VTA α6β2*nAChRs are also important for nicotine reward behavior in mice.  

In addition to reward behavior, we observed that intra-VTA α-Ctx MII attenuates NAc 

DA release in α6L9’S mice, indicating that α6β2*nAChR regulation of DA neuron firing, 

ultimately resulting in DA release from terminals in the NAc, may drive the enhanced reward 

phenotype seen in α6L9’S mice. As discussed above, further investigation into a causative role 

between DA activity and reward would confirm this hypothesis. Future studies should also 

utilize a more selective α6β2*nAChR antagonist, as discussed previously, to rule out effects of 

α3β2*nAChR in supporting nicotine CPP. 

Together with previous findings, these preclinical data demonstrate that reduction of 

α6β2*nAChR function may be an effective therapeutic strategy for treatment of nicotine 

addiction, as activating α6β2*nAChRs promotes behaviors and associated neurochemistry 

related to nicotine addiction, while inhibiting α6β2*nAChRs reduces these effects. Current 

approved smoking cessation aids such as nicotine replacement therapy and varenicline are only 

modestly successful, indicating a need for novel therapeutic targets. Varenicline, which is a full 

agonist at α7 nAChRs and a partial agonist at β2*nAChRs, is more efficacious compared to 
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NRT (Wu et al, 2006), indicating that the selectivity of these compounds predicts their 

effectiveness. Therefore, a more selective target such as α6β2*nAChRs may prove to be more 

effective for smoking cessation. While α-Ctx MII and its derivatives don’t cross the blood brain 

barrier, a potent and selective α6β2*nAChR antagonist (r-bPiDI) that crosses the blood brain 

barrier and reduces nicotine-elicited DA release and nicotine reinforcement has been recently 

established as a potential compound for treatment of smoking cessation (Beckmann et al, 2015).	  

It is promising that α6β2*nAChRs have a highly restricted expression pattern in 

catecholaminergic nuclei in the brain (Champtiaux et al, 2002; Klink et al, 2001; Le Novere et 

al, 1996), being enriched in areas associated with addiction (e.g. VTA, NAc). A molecular target 

with more selective expression could reduce adverse side effects associated with varenicline that 

may arise from activity at nAChRs that may more generally control processes such as cognition, 

mood, and motivation (Brunzell and Picciotto, 2009b; Levin et al, 2006). However, it should be 

noted that α6β2*nAChRs are also expressed in the visual system on retinal ganglion cells 

(Champtiaux et al, 2002; Clarke and Pert, 1985; Marks et al, 2010; Whiteaker et al, 2000). It is 

possible that targeting α6β2*nAChRs may have unwanted effects related to the visual system, 

though it is encouraging that genetic manipulation of the α6 subunit does not appear to have an 

effect on this system in rodents (Champtiaux et al, 2002).  

It is also encouraging that α6β2*nAChRs have been associated with nicotine use and 

dependence in humans. Candidate gene studies demonstrate that polymorphisms in the gene 

cluster encoding the α6 and β3 subunits are associated with measures of nicotine dependence, 

such as cigarettes per day, FTND scores, positive subjective response to nicotine, and smoking 

initiation (Culverhouse et al, 2014; Hoft et al, 2009; Saccone et al, 2009; Saccone et al, 2010; 

Saccone et al, 2007; Stevens et al, 2008; Thorgeirsson et al, 2010; Wang et al, 2014a; Zeiger et 
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al, 2008). These findings further indicate that targeting α6β2*nAChRs may prove successful for 

treatment of tobacco dependence.  

Of note, these studies are limited, only focusing on behavioral and neurochemical effects 

of acute nicotine exposure. These acute effects are important to study, as the initial rewarding 

effects of drugs are thought to be important in the initial development of addiction (Wise and 

Koob, 2014), and initial responses to abused drugs can predict risk for later development of drug 

dependence (de Wit et al, 2012). In fact, mood and subjective states induced by a drug is used by 

the FDA as the primary indicator of its abuse liability (Balster and Bigelow, 2003). Further 

studies examining how α6β2*nAChRs are involved in the chronic effects of nicotine, such as 

maintenance of self-administration and withdrawal behavior, have the potential to provide a 

more comprehensive understanding of the contributions of α6β2*nAChRs to nicotine 

dependence. Previous studies using genetic and pharmacological inhibition strategies have 

shown that α6β2*nAChRs regulate nicotine self-administration maintenance, where rodents are 

exposed to nicotine chronically (Brunzell et al, 2010; Exley et al, 2011; Gotti et al, 2010), and 

nicotine withdrawal behaviors (Jackson et al, 2009), which arise after abstinence from chronic 

exposure to nicotine. Future studies examining nicotine self-administration and withdrawal in 

α6L9’S mice would nicely complement this existing literature to elucidate how activation of 

α6β2*nAChRs effects these behaviors associated with nicotine dependence. Rodent behavioral 

models where animals will increase drug self-administration with extended access to the drugs or 

upon initiation of withdrawal are also of interest, as these models are thought to reflect on the 

transition to dependence (Koob and Le Moal, 2008). Future studies could test the effect of 

α6β2*nAChR antagonism and α6 null or gain-of-function mutations in these models to assess 

whether α6β2*nAChRs are involved in this transition. 



	   173	  

In addition to the pleasurable effects of nicotine, nAChRs also regulate anxiety-like 

behavior. Using the α6L9’S mice, our anxiety studies assessed the contribution of α6β2*nAChR 

activation to basal anxiety-like phenotypes. While these studies were done in the absence of 

nicotine, this is still relevant to nicotine addiction, as studies have shown that smokers 

experience anxiety more intensely than non-smokers (Fidler et al, 2009; Parrott, 1999; Perkins et 

al, 1992) and stress can lead to escalation of smoking and relapse (Shiffman et al, 1997; Skara et 

al, 2001). These behaviors reflect on emotional states that occur in the absence of nicotine that 

may promote tobacco use. Evidence suggests that elevations in cholinergic tone could support 

anxiety (Hart et al, 1999; Kolasa et al, 1982; Lamprea et al, 2000; Luo et al, 2013; Mineur et al, 

2013; Power et al, 2002; Revy et al, 2014) and blockade of β2*nAChR supports relief from 

basal anxiety-like phenotypes (Anderson et al, 2012). Our studies show that activation of 

α6β2*nAChRs is sufficient for expression of basal anxiety-like behavior, while stimulation of 

α4β2*nAChRs reduces anxiety-like behavior, possibly working in opposition to α6β2*nAChRs.  

Subsequent studies were performed to differentiate the contributions of (non-α4)α6β2* 

and α4α6β2*nAChRs to basal anxiety-like behavior. We originally hypothesized that activation 

of α4α6β2*nAChRs promotes anxiogenesis, as this nAChR is the most sensitive to nicotine 

(Exley et al, 2008; Kuryatov et al, 2011; Salminen et al, 2007; Salminen et al, 2004) and is 

persistently activated by low concentrations of nicotine that desensitize most other nAChRs (Liu 

et al, 2012). Given that the α6L9’S and α4L9’A gain-of-function mutations produced opposite 

effects on anxiety-like behavior in our studies, demonstrating that α6β2* and α4β2*nAChRs 

appear to act in opposition in the EPM and open field assays, however, we expected that (non-

α4)α6β2*nAChRs would be responsible for α6β2*nAChR regulation of basal anxiogenic-like 

behavior. Consistent with this hypothesis, α6L9’S-α4KO mice did not differ from α6L9’S mice, 
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suggesting that the α4 subunit is not required for assembly in α6β2*nAChRs to support 

anxiogenic-like behavior in the open field assay. However, our light-dark results were 

inconsistent, as activation of α4α6β2*nAChRs appeared to promote trending increases in 

anxiety-like behavior in the light-dark test. As discussed, it was unexpected that 

α4α6β2*nAChRs would promote anxiogenic-like behavior considering the opposite effects of 

the α6L9’S and α4L9’A gain-of-function mutations in the EPM and open field tests (see Chapter 

3). However, these opposing effects were absent in the light-dark test, as α6L9’S mice showed 

increases in anxiety-like behavior, but there was no change in α4L9’A mice. This could explain 

why α4 and α6 appear to work together in the α4α6β2*nAChR conformation to regulate 

anxiogenesis in the light-dark test, but not the open field or EPM assays.  

The effect of α6β2*nAChR hyperactivity may be stronger than that of α4β2*nAChRs, as 

cholinergic hyperactivity in the amygdala (Power et al, 2002) and hippocampus (Luo et al, 2013; 

Mineur et al, 2013) promotes anxiety-like behaviors in rodent studies. While α6β2*nAChRs are 

not expressed in these brain areas at substantial levels, hyperactive cholinergic tone in other 

brains areas, such as the NAc, may similarly promote anxiety-like behavior. One study found 

that the anxiolytic drug buspirone reduced ACh levels in the NAc (Kolasa et al, 1982), 

suggesting that cholinergic hyperactivity in this region may also promote anxiety-like behavior. 

Future optogenetic studies stimulating NAc cholinergic interneurons can test this hypothesis. It 

would also be interesting to use optogenetics to stimulate noradrenergic neurons in the locus 

coeruleus as well. α6β2*nAChRs are enriched in the locus coeruleus (Le Novere et al, 1996; 

Lena et al, 1999), which has been implicated in anxiety-like behavior (Chmielarz et al, 2013; Itoi 

et al, 2011; Mazzone et al, 2016; McCall et al, 2015). If we find that cholinergic tone in the NAc 

or noradrenergic activity in the locus coeruleus regulates anxiety-like phenotypes in our future 
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studies, subsequent studies could assess a potential role for α6β2*nAChRs in these brain areas 

using local brain infusions of α6β2*nAChR-selective antagonists.  

While α6L9’S mice exhibited an anxiogenic-like phenotype compared to WT littermates, 

genetic deletion of the α6 subunit had no effect on anxiety-like behavior, suggesting that 

α6β2*nAChRs are not necessary for expression of this behavior. This is somewhat unexpected 

as i.c.v. infusion of α-Ctx MII reduces nicotine withdrawal-induced anxiety-like behavior in 

mice (Jackson et al, 2009). It is possible that our anxiety assays were not stressful enough to 

reveal an effect of reduced α6β2*nAChR function. Future studies providing an external stressor 

(e.g. restraint stress) may uncover an effect in these anxiety tasks in α6KO mice. Given the 

results from studies assessing nicotine withdrawal-associated anxiety-like behavior in response 

to α-Ctx MII (Jackson et al, 2009), it would be interesting to assess the effect of nicotine 

withdrawal on anxiety-like behavior in α6L9’S mice to determine whether activation of 

α6β2*nAChRs exacerbates this behavior. Studies assessing α6β2*nAChR function in relation to 

withdrawal-induced anxiety-like behavior are important, as nicotine withdrawal is known to 

contribute to relapse (Le Foll and Goldberg, 2009). It will also be important to assess anxiety-

like behavior in response to genetic deletion of α4 as we did in α6KO mice. We would expect to 

see a decrease in anxiety-like behavior in α4KO mice, as previous studies have shown that 

selectively deleting the α4 subunit in VTA DA neurons blocks the anxiolytic efficacy of low 

dose nicotine (McGranahan et al, 2011). A decrease in α4KO mice without an effect in α6KO 

mice would suggest that DHβE produces its anxiolytic effects primarily through interaction with 

α4β2*nAChRs.  
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In our studies assessing basal and nicotine-associated anxiety-like behavior, we observed 

divergent findings, where different α6β2*nAChR subtypes contribute to this behavior based on 

the model of anxiety. The seemingly paradoxical findings generated from the open field and 

light-dark experiments are perhaps explained by previous QTL studies reporting that different 

anxiety models have overlapping, but separate genetic influences (Griebel et al, 2000; Henderson 

et al, 2004; Turri et al, 2001), suggesting that these models measure different aspects of anxiety 

that have unique underlying mechanisms. It would be informative to perform future studies 

assessing (non-α4)α6β2* and α4α6β2*nAChR contributions to anxiety-like behavior using 

other behavioral models (e.g. elevated plus maze, marble burying, novelty-induced hypophagia, 

the social interaction test) to more comprehensively understand how α6β2*nAChRs are involved 

in anxiety, which is a complex, multidimensional behavior.  

These studies investigating the role of α6β2*nAChRs in regulation of anxiety-like 

behavior indicate that targeting this nAChR subtype for smoking cessation to reduce nicotine’s 

rewarding effects (as discussed above) may also help with anxiety symptoms that can trigger 

relapse and escalation of tobacco use (Shiffman et al, 1997; Skara et al, 2001), as well as those 

which arise from withdrawal (Le Foll et al, 2009). Our studies show that genetically reducing 

α6β2*nAChR function has no effect on basal anxiety-like behavior, so inhibition of 

α6β2*nAChRs ought not provide adverse emotive effects from a smoking cessation therapeutic 

standpoint. As discussed, these assays may not have been stressful enough to reveal an effect of 

the α6 null mutation as discussed; future studies could provide a stressor prior to testing anxiety-

like behavior in α6KO mice. We can also give brain infusions of selective α6β2*nAChR 

antagonists to complement the genetic studies and determine neuroanatomical loci where 

α6β2*nAChRs regulate anxiety-like behavior. Candidate brain regions for α6β2*nAChR 
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regulated anxiety-like behavior include the mesolimbic pathway and the locus coeruleus, two 

areas involved in stress- and anxiety-related phenotypes where α6β2*nAChRs are selectively 

expressed. It is important to further characterize the effect of α6β2*nAChR inhibition in order to 

determine whether reducing α6β2*nAChR function may be an effective therapeutic strategy for 

smoking cessation, as it would be a concern if inhibiting α6β2*nAChRs increases anxiety-like 

behavior.	  It is promising that one study reports that i.c.v. infusion of α-Ctx MII reduced 

withdrawal-associated anxiety-like behavior (Jackson et al, 2009).  

Finally, these studies sought to determine whether α6β2*nAChRs are important for 

EtOH reinforcement in mice, as alcohol is another abused legal drug that is commonly co-abused 

with nicotine. First, we developed a mouse model of oral, operant EtOH self-administration. 

Consistent with previous reports (Kelley et al, 1996; Middaugh et al, 1999a; Risinger et al, 

1998), EtOH was reinforcing in C57BL/6J WT mice. This model expanded on previous models 

to specifically allow for assessment of EtOH’s primary reinforcing effects, as EtOH self-

administration took place in the absence of added sweetener, explicit EtOH-paired cues, and 

food or water restriction, factors used in previous models. We compared EtOH reinforcement at 

multiple concentrations of EtOH between-subject, comparing them to water controls, instead of 

using an EtOH fading procedure, which is commonly used in other models, where EtOH 

concentrations are gradually increased to promote self-administration. In the development of this 

model, we also detected subtle, but significant escalation of EtOH self-administration in WT 

mice, similar to what has been observed in previous studies following intermittent exposure to 

EtOH, termed the alcohol deprivation effect (ADE) (Khisti et al, 2006; Rodd et al, 2003; 

Spanagel et al, 1999). Further, our model appears to have predictive validity for therapeutic 
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effectiveness, as naltrexone decreased operant responding and EtOH intake in WT mice 

maintained on 15% EtOH.  

Admittedly, this model of oral, operant EtOH self-administration is not without 

limitations. We chose not to pair explicit cues with presentation of EtOH reinforcers, but it is 

possible that the sound of the liquid dipper mechanism serves as a cue. While we were able to 

estimate EtOH consumption in g/kg using correct magazine entry measurements, which was 

positively correlated with BECs at various time points (30 m, 4 h, 6 h), this model does not allow 

for exact determination of EtOH consumption. Mice can put their head in the magazine without 

ingesting the EtOH reinforcer. The use of technology such as a lickometer would be useful for 

more precise measurements of EtOH intake. Another limitation of this model involves the use of 

a sweetener during acquisition of lever pressing behavior. While sweetener was not available 

with EtOH, 0.2% saccharin was used to train mice to lever press for the liquid dipper reinforcer. 

It is possible that there was some residual responding for saccharin, even after it was taken away 

and replaced with an EtOH solution, which could confound interpretation of reinforcement. 

However, control mice maintained on water showed reductions in responding by the second 

EtOH self-administration session, while 15% EtOH maintained significantly higher levels of 

responding and even promoted subtle increases across weekly self-administration sessions. 

Therefore, it is unlikely that prior exposure to saccharin supported reinforcement on its own. 

Future studies could attempt to use water instead of saccharin during lever pressing acquisition in 

order to eliminate any confounds produced by exposure to saccharin, as it is possible that 

residual responding for saccharin after its removal could promote initial consumption of EtOH, 

leading to maintenance of self-administration. 
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Antagonizing α6β2*nAChRs locally into the VTA produces reductions in operant EtOH 

self-administration in rats (Kuzmin et al, 2009). However, no known studies have examined the 

effect of α6 genetic deletion on operant EtOH self-administration. In these mouse genetic studies 

complementing the pharmacological studies, we used our model of oral operant EtOH self-

administration in WT, α6HET, and α6KO mice to further assess α6β2*nAChR contributions to 

EtOH reinforcement. Consistent with studies showing that genetically deleting the α6 subunit 

has no effect on EtOH intake or preference in mice (Guildford et al, 2016; Kamens et al, 2012), 

α6KO mice showed similar levels of 15% EtOH self-administration compared to WT littermates. 

Based on the lack of effect in α6KO mice, it was unexpected that EtOH reinforcement was not 

observed in α6HET mice. A lack of EtOH reinforcement in α6HET mice suggests that 

expression of α6β2*nAChRs does modulate the reinforcing effects of EtOH. α6KO mice may 

show shifts in the dose response curve as has been seen previously in EtOH CPP studies 

(Guildford et al, 2016). Future studies are planned to establish a full dose response curve for 

EtOH self-administration in these mice to assess whether α6KO mice show a similar shift to 

explain the lack of effect in α6KO, but not α6HET mice at 15% EtOH. Alternatively, these 

interesting divergent effects in α6HET versus α6KO mice may be a result of compensation by 

other nAChR subtypes for the complete lack of α6 subunits in α6KO mice. Future 

autoradiography binding studies are planned to assess potential compensation in these mice.  

Further, future studies are planned to assess oral operant EtOH self-administration in 

α6L9’S mice to complement our studies in α6 loss-of-function mice and assess whether 

cholinergic hyperactivity at α6β2*nAChRs promotes EtOH reinforcement. As reduced 

α6β2*nAChR function appears to decrease EtOH reinforcement, we predict that selective 
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activation of α6β2*nAChRs in α6L9’S mice will enhance EtOH reinforcement. This would 

support previous data reporting enhanced EtOH intake and place conditioning in these gain-of-

function mice (Powers et al, 2013). In addition to EtOH’s behavioral effects, α6β2*nAChRs 

have also been implicated in the neurochemical effects of EtOH. Intra-VTA infusion of α-Ctx 

MII reduces EtOH-induced activation of the mesolimbic DA pathway (Larsson et al, 2004; Liu 

et al, 2013b) and α6KO mice show reductions in EtOH-induced stimulation of VTA DA neurons 

(Liu et al, 2013b). Future studies could also assess EtOH-associated VTA DA neuron activation 

and NAc DA release using in vivo electrophysiology and microdialysis or cyclic voltammetry in 

α6L9’S mice to determine if activation of α6β2*nAChRs supports these neurochemical effects 

related to EtOH abuse. If these studies in α6L9’S mice demonstrate that activation of 

α6β2*nAChRs promotes EtOH reinforcement and associated neurochemistry, we would expand 

these studies to differentiate the role of (non-α4)α6β2* and α4α6β2*nAChRs using the α6L9’S-

α4KO mice.  

These studies have established a role for α6β2*nAChRs in abuse-related effects of 

nicotine and alcohol separately. In addition to their independent use, these legal drugs are the 

most widely co-abuse drugs (Sussman et al, 2011). Future studies are planned to assess the effect 

of systemic nicotine administration on EtOH reinforcement using our model of oral operant 

EtOH self-administration. Studies show that nicotine enhances EtOH reinforcement in humans 

(McKee et al, 2013) and in rodent models of self-administration (Doyon et al, 2013b). If nicotine 

increases EtOH self-administration as expected, subsequent experiments will assess the role of 

α6β2*nAChRs on this effect using α6L9’S, α6HET and α6KO mice, as well as intracranial 

infusions of α6β2*nAChR-selective antagonists. Given that our studies and others have 

independently implicated α6β2*nAChRs in abuse-related effects of nicotine and alcohol, we 
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predict that genetically and pharmacologically reducing α6β2*nAChR function would abolish 

nicotine-elicited increases in EtOH self-administration, while genetically enhancing 

α6β2*nAChR function would exaggerate the effect of nicotine on EtOH reinforcement. While 

cigarette use has declined, the rate of nicotine and alcohol co-dependency remains high, likely 

due to the emergence of e-cigarettes. Thus, there is a great need to identify novel treatment 

options for this new generation of co-abusers (Tarren and Bartlett, 2017). It is important to begin 

to better understand the mechanisms underlying the cormorbidity of nicotine and alcohol use in 

order to identify potential therapeutic targets that may be efficacious in treating the co-abuse of 

these drugs. 

Overall, the studies in this dissertation provide evidence that activation of α6β2*nAChRs 

promotes neurochemical and associated behaviors that are related to nicotine addiction. Given 

the recent popularity of e-cigarettes, especially among adolescents who are particularly 

vulnerable to developing dependence issues (Lamb et al, 2016), it is important to identify novel 

therapeutic targets for nicotine dependence; our preclinical data, together with previous studies, 

indicate that targeting α6β2*nAChRs may prove successful. Additionally, α6β2*nAChRs 

appear to regulate effects of EtOH that are related to alcohol dependence, providing evidence 

that targeting these receptors may also be effective for treatment for AUDs. Further, the fact 

α6β2*nAChRs similarly effect nicotine and alcohol abuse-related phenotypes suggests that 

targeting this class of nAChRs may be effective in treating the common co-abuse of these drugs. 

It is promising that human genetic studies implicate α6β2*nAChRs in multiple measures of 

nicotine and alcohol dependence independently, supporting our preclinical rodent data. The 

development of techniques that are able to image α6β2*nAChR binding and expression in the 

human brain and how this is related to addiction phenotypes would be a tremendous 
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advancement in the field to better understand if these receptors are directly involved in the 

effects of nicotine and alcohol, independently and together, that promote dependence in humans. 

It is hopeful that these preclinical studies will advance our understanding of mechanisms 

underlying independent abuse of alcohol and nicotine so that more effective treatments may be 

developed in the future.  
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Appendix A 

 
Nicotine had no significant effect on nucleus accumbens (NAc) dopamine (DA) levels in wild 

type (WT) or α6β2*nAChR gain-of-function (α6L9’S) mice 
 
 
 

 
 

WT and α6L9’S mouse NAc DA levels were measured using in vivo microdialysis following 
intraperitoneal (i.p.) injections of saline, 0.1 mg/kg, and 0.5 mg/kg nicotine. NAc DA levels 

remained elevated in α6L9’S mice compared to WT mice as with basal measurements. However, 
saline and both doses of nicotine had no effect on NAc DA levels in WT or α6L9’S mice.   
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