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Abstract

A gravitational microlensing event occurs when a foreground star passes near our line of site

to a background source star. The foreground star acts as a lens, perturbing the image of the

source star and amplifying the apparent intensity. Because the lens is in motion relative to the

source star, the amplification is a function in time, resulting in a characteristic microlensing

light curve. If the lens happens to have a planetary companion, the resulting light curve will

be perturbed due the planet and the characteristics of the binary system can be ascertained.
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Introduction

Gravitational lensing was first proposed by Albert Einstein during the preparation of his

theory of general relativity. He noted that because massive objects curve spacetime, the

path of light passing near those massive objects will bend light around them. In fact, it was

gravitational lensing that made Einstein a household name as the deflection of light around

the sun was used to test his theory during a solar eclipse. Since that time, gravitational

lensing has become an indispensable tool for astronomers. This thesis focuses on a special

class of gravitational lensing known as microlensing and examines some of the techniques

used.

The field of gravitational lensing can be broken down into three basic regimes: strong

lensing, weak lensing, and microlensing.[26] Strong lensing is characterized by a lens creating

very substantial image distortions culminating in multiple images, large luminous arcs, and

occasionally Einstein rings. These image distortions can be seen through telescopes. Figure

1 shows a particularly clear example of a large arc nearly forming an Einstein ring taken by

the Hubble Telescope.

Weak lensing is characterized by small deviations in the image of background galaxies

and galaxy clusters. The lensed images of background sources are still resolvable, however

statistical analysis is necessary to determine if gravitational lensing is taking place. This is

because the images are not distorted enough to differentiate between gravitational lensing

and the regular orientation of a galaxy.

The final regime, microlensing, is characterized by very small deviations in the path of

8



Figure 1: A Hubble image of a gravitational lens. A foreground galaxy lenses a background
galaxy resulting in a large luminous arc around the lens.

light rays. The images formed are similar to that of strong lensing, but are too small to

resolve with current generation of telescopes. This doesn’t exclude microlensing from being

incredibly useful. The microlensing effects that can be measured, namely the amplification

of a source star’s brightness, is used to determine information about the lens such as mass

and distance from the earth. While strong and weak lensing focus primarily on the images

formed by gravitational lensing, microlensing focuses exclusively on the amplification of the

background source.

Gravitational lensing due to the close alignment of a foreground lens and a background

source star, what we now call microlensing, was first published by Einstein in 1936.[8] How-

ever, he dismissed the practicality of microlensing, stating that ”there is no great chance

of observing this phenomenon.” Of course, he is correct in that the probability of close

alignment of two stars within our galaxy is on the order of 10−6. Thus, the field of gravita-

tional microlensing lay dormant until the publication of Paczynski’s paper on the subject.[23]

Paczynski recognized that the advent of CCDs and the high speed computing required to

analyze their images made it possible to observe a large number of stars simultaneously. He

concluded that such a survey would make it possible, and likely, that microlensing could

indeed be observed in modern times.

Microlensing was first used to search for Massive Compact Halo Objects (MACHO),

which are dark stars in the outer ring of our galaxy.[2] At the time, MACHOs were thought
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to be a significant contribution to dark matter within our galaxy. Large scale surveys were

conducted and thousands of microlensing events have since been observed, although the idea

that MACHOs contribute to dark matter has largely been discredited.

Even before the first microlensing events were observed, Mao and Paczynski suggested

that microlensing could be used to exoplanets orbiting around lens.[20] A planet has a

characteristic effect on the overall amplification of a source star and thus could be detected

using similar techniques to that of the MACHO search. Gould and Loeb considered this

and developed a ”two tier” procedure for detecting planetary microlensing events.[16] First,

a single survey monitors a large number of stars in the galactic bulge, searching for the

signature amplification due to the primary lens. Second, an alert is put out to a large number

of observatories to monitor the event continuously for many days. Since the implementation

of this procedure, 44 planets have been detected by microlensing.

Chapter 1 introduces the necessary principles of general relativity required to derive the

deflection angle of light around a star, beginning with the basic mathematical constructs of

differential geometry and their applications to general relativity. The geodesic equation is

introduced to describe the path of a light ray in curved spacetime. The Schwarzschild metric

is then used to calculate the deflection angle of a light ray.

Chapter 2 introduces the basic geometry of a single lens microlensing event. The single

lens microlensing event is used as the building block to more complicated models discussed

in later chapters. Common nomenclature present in modern microlensing literature is intro-

duced, as well as the degeneracy present in the basic model.

Chapter 3 introduces two new measurable quantities by relaxing the assumptions made

in the single lens case described in Chapter 2, namely, the angular Einstein radius and the

projected Einstein radius. Techniques for measuring the angular Einstein radius, and the

projected Einstein radius are discussed leading to a complete solution to a microlensing

event.

Chapter 4 discusses the application of microlensing to discovering exoplanets. The lens

10



equation and amplification due to a single lens is generalized to N bodies. A detailed

description of a binary lens is discussed, introducing the additional structure called critical

and caustic curves. A detailed discussion of caustic curves in planetary events are described

as well as their effect on the light curve of an event.
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Chapter 1

Deflection angle of light

This chapter will focus on deriving the deflection angle of a light ray passing near a massive

object. This requires the use of General Relativity. As such, most of this chapter will be

devoted to defining some of the fundamental concepts of differential geometry. We start

with a basic explanation of differential geometry which deals with smoothly curved surfaces

(manifolds).

1.1 Manifolds

Much of physics revolves around the vector space R3, or more generally, Rn. Flat space is

intuitive and easy to work with. We understand how to differentiate and integrate in Rn,

among other things. General Relativity requires the use of other more generalized spaces

known as manifolds, of which Rn is the simplest example. Simply put, a manifold is a

smoothly curved space (the surface of sphere for example), but locally it ”looks like” Rn.

We describe a manifold by smoothly overlapping these locally flat regions together.[5]

To be a little more precise, a manifold is a set M . We map a subset U ⊂M into Rn where

we can assign coordinates to the points in U . In this way, we can cover M with multiple

overlapping coordinate maps called charts to describe the entire manifold. The collection of

coordinate charts is referred to as an atlas.
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Figure 1.1: A point in the subset U ⊂M is mapped to a point in Rn.

1.2 Tangent space

Now that we have an idea of what a manifold is, we need to introduce the concept of a

tangent space. The tangent space, Tp, is a vector space associated with a single point, P , in

the manifold M . The vectors in tangent space are directional derivatives tangent to a curve,

f , parameterized by λ, at the point P . Thus we can write a vector in the tangent space,

v ∈ TP , as,

v =

(
∂f

∂λ

)
=

n∑
i

(
dxi

dλ

∂

∂xi

)
f =

n∑
i

(
viei
)
f (1.1)

where vi = dxi/dλ and ei = ∂/∂xi. The basis vectors ei are known as the coordinate basis.

The vector, v, can be written as,

v =
n∑
i

(
viei
)

(1.2)

with the understanding that v is the tangent vector to a curve f on the manifold. We can

introduce a new notation to make writting out vectors easier. The compenents of a vector

have an upper index and the basis vectors have a lower index. Whenever an upper and lower

index is repeated, the summation over that index is implied. This is known as the Einstein

summation convention. Using this convention, we can write the vector v as,

v =
n∑
i

viei = viei (Enstein summation convention) (1.3)
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1.3 Metric tensor

The metric tensor, g, is an important concept in General Relativity. It allows us to compute

the scalar product of two vectors v and u by,[5]

g(v, u) = v · u (1.4)

We can expand the vectors v and u using their basis to get,

g(v, u) = g(viei, u
jej) = g(ei, ej)viuj = gijv

iuj (1.5)

where gij are the scalar products of the basis vectors, also called the coefficients of the metric

tensor. In four-dimensional spacetime, the metric tensor can be reresented as a 4×4 matrix,

gij =



g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33


(1.6)

The metric tensor can be used to define the line element ds in space-time. If we insert the

infinitesimal change in position vector into the metric tensor, we get,

ds2 = g(du, du) = g(duiei, du
jej) = gijdu

iduj (1.7)

A particularly important example of a line element in Minkowski space-time, the analog of

flat Euclidean space in special relativity. The metric tensor in minkowski space-time is given

14



as,

gij =



−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.8)

and thus the line element is,

ds2 = −c2dt2 + dx2 + dy2 + dz2 (1.9)

where c is the speed of light and dt is an infinitesimal change in time between two events.

We classify the line elements by their signature, i.e by the signs of the terms in the line

element. In this thesis, we will use the signature (−,+,+,+), although we can also write

Equation 1.9 using the signature (+,−,−,−) which is common in quantum field theory. The

signature distinguishes between space-like intervals, for which ds2 > 0, time-like intervals, for

which ds2 < 0, and light-like intervals, for which ds2 = 0. We will be interested in light-like

intervals in deriving the deflection angle of light.

1.4 Covarient derivative

Consider the derivative of a vector v with respect to a parameter λ. By expanding the vector

in terms of its basis vectors, we can write the derivative as,[5]

dv

dλ
=

d

dλ
(viei) =

dvi

dλ
ei + vi

dei
dλ

=
∂vi

∂xj
vjei + vi

∂ei
∂xj

vj (1.10)

In Cartesian coordinates, ∂ei
∂xj

= 0 since the basis vectors are constant. However, when

we have curved coordinates, the basis vectors will change. Introducing a new symbol, the

connection coefficients Γj,

∂ei
∂xj

= Γkijek (1.11)
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tells us how the basis vectors change over the manifold. Then we can write Equation 1.10

as,

dv

dλ
=
∂vi

∂xj
∂xj

∂λ
ei + Γkijv

i∂x
j

∂λ
ek (1.12)

Changing the indices in the second term (i→ k and k → i), we can write this as, [5]

dv

dλ
=

(
∂vi

∂xj
∂xj

∂λ
+ Γikjv

k ∂x
j

∂λ

)
ei (1.13)

The connection coefficients can be found by using the metric tensor and its inverse,[5]

Γikj =
1

2
gi`
(
∂gj`
∂xk

+
∂gk`
∂xi
− ∂gkj
∂x`

)
(1.14)

Equation 1.13 defines the covarient derivative, denoted Duv, as the derivative of the vector

v is taken in the direction of the vector u.[5]

Duv =

(
∂vi

∂xj
∂xj

∂λ
+ Γikjv

k ∂x
j

∂λ

)
ei (1.15)

If we take the covarient derivative in the direction of v, namely Dvv, we get,

Dvv = 0 (1.16)

This is known as the geodesic equation. It is the generalization of a ”straight line” in curved

spacetime, thus it gives the path of a light ray (or free falling particle). In terms of the

components, the geodesic equation reads,

∂vi

∂xj
∂xj

∂λ
+ Γikjv

k ∂x
j

∂λ
= 0 (1.17)

or equivalently,

d2xi

dλ2
+ Γikj

∂xk

∂λ

∂xj

∂λ
= 0 (1.18)
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The fact that Dvv = 0 constrains the parameter λ to be an affine parameter. In other words,

as you translate the vector v along the manifold, so long as you keep the vector parallel and

of the same magnitude, you define the path along the manifold and in doing so, define the

parameter of the path. For a time-like curve, (i.e. massive particles) the parameter λ is the

proper time, τ . For light-like paths, the proper time does not work because τ = 0. However,

if we find a path such that a curve parametarized by λ such that Dvv = 0 is true, then

any parameter of the form aλ + b is also an affine parameter. Thus, there is no preferred

parameter for light-like curves. We are free to choose any parameter so long as the curve

follows Dvv = 0.

1.5 Schwarzschild metric

The metric is found for a particular spacetime by solving Einstein’s field equations. Because

we are interested in the spacetime outside of a star, Einstien’s field equations take the simple

form,[5]

Rµν = 0 (1.19)

These equations are called the Vacuum field equations and Rµν is the Ricci tensor. The Ricci

tensor is related to what is called the curvature tensor by,[5]

Rµν = Rλ
µλν (1.20)

The curvature tensor is a four dimensional tensor which describes the curvature at a point

in spacetime. We find the curvature tensor from the connection coefficients by,[5]

Rλ
µρν =

∂

∂ρ
Γλνµ −

∂

∂ν
Γλρµ + ΓλρσΓσνµ − ΓλνσΓσρµ (1.21)

Because stars are spherically symmetric, we want the spacetime which solves Equation 1.19

to be spherically symmetric as well. For the moment, consider the Minkowski metric in
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spherical coordinates,[5]

ds2
flat = −cdt2 + dr2 + r2(dθ2 + sin2 θdφ2) (1.22)

A general metric which preserves spherical symmetry is a metric of the form,[5]

ds2 = −A(r)cdt2 +B(r)dr2 + C(r)r2(dθ2 + sin2 θdφ2) (1.23)

where A(r), B(r), and C(r) are arbitrary functions of the radial coordinate r and preserve

the metric signature (−,+,+,+). To find the functions A(r), B(r), and C(r), we solve

Einstien’s field equations by first finding the connection coefficients using Equation 1.14,

then calculating the curvature tensor using Equation 1.21, and finally, finding the Ricci

tensor using Equation 1.20. This requires a lot of work and calculation, but the solution you

get is known as the Schwarzschild metric, given by,[5]

ds2 = −
(

1− RS

r

)
c2dt2 +

(
1− RS

r

)−1

dr2 + r2(sin2 θdφ2 + dθ2) (1.24)

which describes the spacetime outside of spherically symmetric, non-rotating masses, where

RS = 2Gm/c2. The Schwarzschild metric is an excellent approximation for describing the

spacetime outside of stars and planets which will be useful for deriving the deflection angle

of light. Here we will discuss some of the properties of the Schwarzschild geometry.

When r = RS, we see that the second term in Equation 1.24 diverges. This is a coor-

dinate singularity which can be resolved by changing the coordinates. RS is known as the

Schwarzschild radius which is where the event horizon for a black hole is formed. If we let

r → ∞, the metric reduces to flat Minkowski spacetime. Because the outside radius of a

planet or star is much greater than the Schwarzschild radius, spacetime can be considered

essentially flat with a small perturbation from Minkowski space. We will take advantage of

this later.
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Due to the spherical symmetry of the Schwarzschild metric, the path of a free falling

particle will not depend on the angle θ. This means we are free to choose any value of θ. If

we choose θ = π/2, the metric reduces to,

ds2 = −
(

1− RS

r

)
c2dt2 +

(
1− RS

r

)−1

dr2 + r2dφ2 (1.25)

This is the form we will use to derive the deflection angle of light.

Using Equation 1.14, we find the connection coefficients for the Schwarzschild metric.

Using the labels (t, r, θ, φ) in place of (0,1,2,3), we find the non-zero connection coefficients

to be,

Γrrr =
1

2

RS

r3
(r −RS) Γttr = −Γrtt =

RS

2r(r −RS)

Γθrθ = Γφrφ =
1

r
Γrθθ = Γrφφ = −(r −RS)

1.6 Deflection Angle of light around a star or planet

Figure 1.2: The geometry of a light ray passing near a spherically symmetric mass. ∆φ is
the total change in the angle φ, α̂ is the change in angle of the path of the light ray, and rm
is the point of closest approach of the light ray to the mass, called the impact parameter.

In order to derive the deflection angle of light around a star or planet, we first need to

solve the geodesic equation given in Equation 1.18. The geodesic equation gives the four

second-order differential equations. We will only need two of them in order to find the
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deflection angle. The geodesic for the t coordinate is given by,

ẗ+
RS

r(r −RS)
ṙṫ = 0 → d

dλ

[(
1− RS

r

)
ṫ

]
= 0 (1.26)

and the geodesic equation for φ is given by,

φ̈+
2

r
φ̇ṙ = 0 → d

dλ

(
r2φ̇
)

= 0 (1.27)

The terms inside of the brackets in Equations 1.26 and 1.27 must be equal to constant values,

thus we can write,

(
1− RS

r

)
ṫ = a (constant) (1.28)

r2φ̇ = b (constant) (1.29)

We have an additional constraint that ds2 = 0 for light rays, thus from Equation 1.25 we

have

−
(

1− RS

r

)
c2dt2 +

(
1− RS

r

)−1

dr2 + r2dφ2 = 0 (1.30)

Combining Equations 1.28, 1.29, and 1.30, along with scaling the parameter λ such that

a = c2, we have

ṙ2 = 1− b2

r2

(
1− RS

r

)
(1.31)

What we are looking for is a way to relate the change in φ as a function of r. We do this by

combining the result from Equation 1.31 with Equation 1.29 to get

dφ =
b

r2

[
1− b2

r2

(
1− RS

r

)]−1/2

dr (1.32)

We can now find the total deflection angle by integration. As shown in Figure 1.2, if a light
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ray comes from r =∞, the total change in φ, ∆φ, is given by,

∆φ = 2

∫ rm

∞

b

r2

[
1− b2

r2

(
1− RS

r

)]−1/2

dr (1.33)

where rm is the point of closest approach of the light ray to the star, typically called the

impact parameter. The impact parameter results in an inflection point along the path of the

light ray where,

dr

dφ
=

b

r2

[
1− b2

r2

(
1− RS

r

)]−1/2

= 0 (1.34)

This relation allows us to solve for the constant b:

b = rm

(
1− RS

rm

)−1/2

(1.35)

Combining with Equation 1.33 and making the substitution u = rm/r gives the total change

in φ as,

∆φ = 2

∫ 1

0

[
1− u2 − RS

rm
(1− u3)

]−1/2

du (1.36)

The minimum value rm can take on is the radius of the star or planet. Thus, rm � RS.

We can expand the integrand in Equation 1.36 for small values of RS/rm, keeping only the

linear terms to give,

∆φ = 2

∫ 1

0

[
1√

1− u2
− RS

2rm

(u3 − 1)

(1− u2)3/2

]
du = π +

2RS

rm
(1.37)

From the geometry is Figure 1.2, we can define the deflection angle α̂ to be,

α̂ = ∆φ− π =
2RS

rm
(1.38)

We arrive at the final form for the deflection angle by recalling that RS = 2Gm/c2,

α̂ =
4Gm

c2rm
(1.39)
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Because we made the approximation that rm � RS, the deflection angle is only valid for

small angles. This is a good approximation for the deflection angle outside of stars and

planets.
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Chapter 2

Basic Microlensing

In chapter one, we derived the deflection angle of a light ray passing near a spherically

symmetric massive object. Microlensing concerns itself with the light rays deflected by a

massive object that reach an observer (either a satellite or an observatory on Earth). In

this chapter, we define the microlensing geometry and explore how the source appears from

the observer’s perspective. In the process, we also define the assumptions, vocabulary, and

observable parameters of microlensing events.

2.1 Geometry of a Lensing Event

Figure 2.1 depicts the geometry of a lensing event.[26] Consider a source star, S, a distance

DS from an observer. We define the source sphere, SS, as the sphere of radius DS centered

about the observer. The source star lies on the surface of the sphere. A spherically symmetric

lens, L, lies in between the source star and the observer at a distance DL away from the

observer. We define a second sphere, the lens sphere SL, as sphere of radius DL centered

on the observer with the lens on the surface of the sphere. We define a third sphere, the

observer’s sphere SO, as a sphere a small distance away from the observer compared with

DL that sphere acts as the sky the observer sees. A line can be extended from the observer

through the position of the lens that intersects the source sphere at a point N . This is called
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Figure 2.1: The geometry of a microlensing event. The source star, assumed to be a point
source, lies in the source sphere SS of radius DS while a lens, assumed to be a point lens,
lies in the lens sphere SL of radius DL. The observer’s sky is the sphere SO. The red line
depicts the path of a light ray originating from the source star as it passes near the lens,
deflected by an angle α̂. The point I ′ is the position of the image the observer sees at an
angle θ with respect to the optic axis. The angle β is the angular lens-source separation.

the optic axis and is used as a reference.

A light ray emanating from the source star passing near the lens is deflected through a

point I on the lens sphere. Asymptotes are drawn from the source star and the observer,

intersecting at a point I ′ on the lens plane. The angle α̂ is the total angle of deflection of

the light ray as defined in Chapter 1. The dotted line drawn from the observer to the source

is the path a light ray would take to reach the observer were it not for the lens. This serves

to define the angle β, the angular position of the source with respect to the optic axis. The

angle β is known as the angular lens-source separation as seen from the observer’s sphere.

The angle θ is the angle of the incoming light ray with respect to the point I, known as the

image position in the observer’s plane.

Observed microlensing events take place within our galaxy.[23] This means the radius

of the lens sphere and source sphere, DL and DS, are very large. Because α̂ is small, θ

and β are also small. Thus, using a small angle approximation, the three spheres defined

above are essentially flat in the region of interest. We can replace the spheres with planes,

as depicted in Figure 2.2. In addition, the difference between the points I and I ′ in Figure
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Figure 2.2: The geometry of the thin lens approximation used in microlensing events. A
source star lies in the source plane SS and a lens lies in the plane SL. The red line is the
path of a light ray originating from a source star a distance DS from an observer O. The
deflection angle α̂ is due to the lens L a distance DL from the observer. The light passes the
lens with an impact parameter r. The angle θ is the position of an image of the source star
as seen from the observer. The angle β is the lens-source separation.

2.1 is negligible, i.e., I ≈ I ′.[26] This allows us to consider all of the deflection taking place

within the lens plane, SL. This is known as the ”thin lens approximation” and is analogous

to the thin lens approximation in optics. Figure 2.2 also shows the impact parameter r. The

observer plane, SO, is redefined as the plane in which the observer lies. All of the planes are

perpendicular to the optic axis.

2.2 Lens Equation for a Single Lens

Our goal now is to relate the observed image positions of the source with respect to the actual

source position in the presence of a point lens. This is known as the ”lens equation.”[26]

From the geometry in Figure 2.2, we can write

βDS = θDS − α̂(DS −DL) (2.1)
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The impact parameter rm = DLθ, thus we can write α̂ from Equation 1.39 in terms of θ as,

α̂ =
4Gm

c2DLθ
(2.2)

Inserting Equation 2.2 this into 2.1 and dividing both sides by DS gives,

β = θ − 4GM

c2θ

DS −DL

DSDL

(2.3)

Defining a new variable, the reduced deflection angle,

α(θ) =
4GM

c2θ

DS −DL

DSDL

= α̂
(DS −DL)

DL

(2.4)

we can rewrite Equation 2.3 in a simple form,[26][21][25]

β = θ − α(θ) (2.5)

The lens equation can be thought of as a mapping from the angular position of the source

in the source plane to the angular positions of the images in the lens plane. This mapping

is not in general one-to-one as we will see below.

2.3 Einstein Ring

A special case occurs when the observer, lens, and source align. The lens-source separation

β = 0 and Equation 2.3 can be written as,

θ = α =
(DS −DL)

DSDL

4Gm

c2θ
(2.6)
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Solving for the image position, θ, gives a special quantity,

θ = θE ≡

√
(DS −DL)

DSDL

4Gm

c2
(2.7)

Because the observer, lens, and source are aligned along the optic axis, the image is not a

single point, but a ring of light around the lens. This ring is known as the Einstein ring with

an angular radius θE known as the angular Einstein radius.

The typical mass of a lens in an observed microlensing event is on the order of the mass

of our sun, i.e. a solar mass. Given a source star 8 kpc away from the earth, the angular

Einstein radius of a solar mass lens 4 kpc away from earth is,[21]

θE =

√
(8 kpc− 4 kpc)

(8 kpc)(4 kpc)

4MG

c2
≈ 1 milliarcsecond

The Rayleigh criterion gives the minimum aperture size of a telescope required to resolve

this Einstein ring to be

D =
1.22λ

sin(2θE)
≈ 60 m

This is too large to be feasible, thus the Einstein rings in microlensing events are unobservable

with current technology.

It is occasionally useful to consider the Einstein ring projected into the source sphere along

with the physical Einstein radius instead of the angular radius. Projecting the Einstein ring

into the source plane or the lens plane allows us to define the physical Einstein radius, as

shown in Figure 2.3.

rE = θEDL (Lens plane) (2.8)

r̂E = θEDS (Source plane) (2.9)

27



Figure 2.3: The Einstein Ring projected into the source plane SS and the lens plane SL.

While these distances have different physical lengths, they can be considered equivalent if

the are measured relative to the Einstein radius within the respective plane.

2.4 Multiple Images

Relaxing the condition that β = 0 allows for the fact that microlensing events are unlikely

to align as in the previous case. The geometry for the general case is only slightly more

complicated than for the β = 0 case. Returning to the Equation 2.3 and plugging in the

deflection angle, the lens equation can be written in the simple form, [25]

θ2 − βθ − θ2
E = 0 (2.10)

Solving Equation 2.10 for any fixed position of the source β 6= 0 allows us to find values for

the corresponding images the observer will see. The images will be at angular positions,

θ± =
β

2
± θE

√
1 +

β2

4θ2
E

(2.11)
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which correspond to two images of the source. The θ+ will always be located outside of the

Einstein Ring and θ− will always be inside.[19] This is shown in Figure 2.4.

Figure 2.4: Two images, I+ and I−, are formed when β > 0. The first image is formed
outside of the Einstein ring while the second is formed inside of the Einstein ring. The
Einstein ring has been projected into the source plane for clarity.

The angular separation of the two images is given by,[21]

4θ = θ+ − θ− = 2θE

√
1 +

β2

4θ2
E

(2.12)

hence when β < θE, the difference between the images is on the order of the diameter of the

Einstein ring and the images will not be observable.

2.5 Amplification

Thus far, we have discussed two modifications to the image of a light source that cannot

be observed directly for lenses of interest to this thesis, i.e stars or planets. However, the

deflection of light by a lens can produce a change in the apparent brightness of a source

resulting from a distortion of the solid angle in which an object is seen.

The flux of an image of an infinitesimal source is the product of the surface brightness
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of the source and the solid angle dΩ it subtends. Since the gravitational deflection of a light

ray does not affect the surface brightness but does affect the shape of the solid angle, the

flux will change as the light ray is deflected. This change in flux is observable. We define the

amplification to be the ratio of the observed solid angle to the solid angle had no deflection

taken place. [25][21]

A =
dΩ

dΩ0

(2.13)

Figure 2.5: A surface element in polar coordinates on the source plane, SS, is mapped to the
lens plane, SL resulting in two images.

In general, the solid angle is given as dΩ = dS/r2 where dS is the surface area of the

solid angle and the r is the distance from the observer. From Figure 2.5, we can calculate

A± =
dΩ

dΩ0

=
θ±dθ±
βdβ

(2.14)

Using Equation 2.11, we find that,

A± =
1

2
± β2 + 2θ2

E

2β
√
β2 + 4θ2

E

(2.15)

As stated previously, the images cannot be resolved. We can, however, find the overall
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amplification from the two images.

A = |A+|+ |A−| =
β2 + 2θ2

E

β
√
β2 + 4θ2

E

(2.16)

As β →∞, A+ → 1 and A− → 0. Physically, this corresponds to the lens being far from the

source and no amplification occurs. As β → 0, the Total amplification diverges to infinity.

This corresponds to when the lens is aligned with the source, producing an Einstein ring. In

reality, observed microlensing events do not exhibit infinite amplification. This is an artifact

of assuming a point source.[28] Assuming a finite source leads to a finite magnification and

is discussed later.

2.6 Scaling the Parameters of a Microlensing Event

While the Einstein ring is not observable, we can treat the Einstein ring for a particular mi-

crolensing event as an intrinsic property of the lens. In other words, a lens has an associated

angular Einstein ring radius, θE, regardless if the Einstein ring is formed or not and we can

define the scale of microlensing events by normalizing the parameters involved with regard

to θE. In doing so, we can simplify the equations we have discussed thus far.

We define the reduced angular lens-source separation u as

u =
β

θE
(2.17)

and the reduced image position y,

y =
θ

θE
(2.18)

With these definitions, the angular Einstein ring radius is simply 1 for all microlensing events.

The image positions are then given by,

y± =
u

2
±
√

1 +
u2

4
(2.19)
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and the total amplification by,

A =
u2 + 2

u
√
u2 + 4

(2.20)

These definitions will be used for the remainder of this chapter.

2.7 Single Lens Light Curve

The amplification of a source star by a lens itself is not useful for determining if microlensing

is taking place because we need to know the intensity of the star when the lens is not present.

Luckily, objects in our galaxy are in constant motion which results in the source and lens

having a relative velocity to each other.

Figure 2.6: A lens, L, moves with some velocity v⊥ perpendicular to an observer. The
lens-source separation u changes with time. u0 is the minimum lens-source separation.

Consider a lens moving with a perpendicular velocity v⊥ relative to the observer, as

depicted in Fingure 2.6. As the lens moves past the apparent position of the source star, the

lens-source separation, u, changes in time. From Figure 2.6, we can write the lens-source

separation in time as,[23]

u(t) =

√
u2

0 +
v⊥
rE

2

(t− t0)2 (2.21)

where u0 is the minimum lens-source separation and t0 is the time when u0 occurs. We can

define a new parameter tE as the time it takes the lens to move a distance equal to the
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physical Einstein radius, rE.[23]

tE ≡
rE
v⊥

(2.22)

The parameter tE sets the time scale of a microlensing event. Time scales of microlens-

ing events can range from days to months, although typical events last for a few weeks.

Combining the time scale, tE, into Equation 2.21, u can be written as,

u(t) =

√
u2

0 +

(
t− t0
tE

)2

(2.23)

As the lens moves across the sky, the images of the source move as well. Recall from

Equation 2.19 that two images are produced, one inside the Einstein ring and one outside

the Einstein ring. The path of the images is depicted in Figure 2.7. The Einstein ring is

depicted by the dashed line. The source is positioned at the center of the Eisntein ring. The

path of the lens is in blue while the images of the the source are in red.

Figure 2.7: (a) A source (blue) moves across the sky with the lens centered at the origin.
The images of the source (red) for each source position are shown. The arrows indicate the
direction of the image motion as the source moves across near the lens. Two separate images
are formed and move along the outside and inside of the Einstein ring. (b) A light curve
corresponding to the source motion near a lens.
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Thus far, we have assumed that the lens is in motion relative to the observer and the

source. While this is physically true, it is conceptually useful to assume that the lens is

stationary and that the source is in motion across the sky. Mathematically, nothing changes.

Further discussion will assume this to be the case.

Combining Equation 2.23 with Equation 2.20 gives the time dependent amplification of

the source. Figure 2.8 shows light curves for various minimum lens-source separations.

Figure 2.8: Right : The path of a lens moving across the sky for different minimum lens-source
separations. Left :The light curve produced for different minimum lens-source separations.
The colors of the curves correspond to the colors of lens path.

2.8 Observing a Microlensing Event

Microlensing events are quite rare. If we were to watch a single star, we would expect to wait

roughly 100,000 years to see an event.[23] But, if we monitor 100 million stars simultaneously,

we can expect to see many microlensing events a year. One such microlensing survey is

conducted by the Optical Gravitational Lensing Experiment (OGLE) monitoring the galactic

bulge where the star population is dense. The survey looks for an increase in intensity from

a star and alerts observatories around the world of possible microlensing events. The data

is then collected and fit using the single lens model described above.

Three parameters can be determined from fitting the data: the maximum amplification,

Amax, the time of maximum amplification t0, and the time scale of the event ,tE. Of these
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three parameters, only tE is related to information about the lens itself. Unfortunately, tE

depends on the mass of the lens, relative velocity of the lens, and the distance to the lens

in a convoluted way. Without direct knowledge of the distance to the lens and how fast it

is moving, statistical methods must be used to determine a range of possible masses of the

lens.

One of the first candidates for an observed microlensing events was recorded by the

MACHO Project in 2003.[2] The group observed the event in two different light spectra,

red (630nm - 760nm) and blue (450nm - 630nm). They found Amax = 6.68 ± 0.11, t0 =

433.55± 0.04 days, and tE = 33.0± 0.26 days. Figure 2.9 shows the data collected.
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Figure 2.9: Top panel shows light amplification data for blue bandpass (450nm - 630nm).
The smooth curve is the best-fit amplification model derived previously. t̂ corresponds to tE
in the notation used for this thesis. The middle panel is the same for red bandpass (630nm
- 760nm). The bottom panel is the color light curve, showing the ratio of red to blue flux,
normalized so that the median is unity.
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Chapter 3

Breaking the Microlensing

Degeneracy

In Chapter 2, we described the light curve produced by a point source star being lensed by

a point lens. From the light curve, we can determine Amax, t0, and tE. The time scale, tE, is

the only parameter that contains any information about the lens itself, but it is related to the

physical characteristics of the lens in a convoluted way leading to a degeneracy. While the

simple microlensing model outlined previously describes a majority of microlensing events,

some observed events deviate dramatically from the light curve discussed in Chapter 2.

These deviations occur when one or multiple assumptions used in deriving the single lens

amplification breaks down. The resulting light curves are generally classified as anomalous.

By measuring these anomalies, it is possible to break at least some of the degeneracy in tE.

The rest of this thesis will be devoted to three of the most common sources of anomalies;

finite source effects in high magnification events, parallax measurements, and binary lenses.

Binary lenses will be discussed in chapter 4. This Chapter will be devoted breaking the

microlensing degeneracy by measuring finite source effects in high magnification events. In

addition, space-based satellite parallax effects will be discussed.
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3.1 Finite Source Effects

As previously mentioned, the assumption of a point source leads to diverging amplification

as u0 → 0. Of course, stars in our galaxy are not point sources and their physical size

becomes important as lens-source separation u0 becomes small enough that the lens passes

over the face of the star. By taking the size of the star into account, it becomes possible

to measure the angular Einstein radius, θE. Measurements of θE are important because of

the constraint it puts on the physical properties of the lens. Recall that we defined the time

scale of the event, tE, as,

tE ≡
rE
v⊥

=
DLθE
v⊥

(3.1)

We define a new parameter, the relative velocity of the source, µrel ≡ v⊥/DL.[13] With this

definition and Equation 3.1, we can rewrite θE as,[32]

θE = µreltE (3.2)

By measuring tE and θE from an observed light curve, we can calculate µrel. The question

becomes how we go about calculating θE from a light curve involving finite source effects.

We begin by treating the star as a disk.[28] The star has some angular radius, θ∗, which

can be measured from the source star’s temperature and Stefan-Boltzmann law, and thus

is assumed to be a known quantity.[14] By normalizing the size of the star to the angular

Einstein radius, we define a normalized angular radius of the star, ρ, as,

ρ ≡ θ∗
θE

(3.3)

For simplicity, we assume that the surface brightness is constant across the face of the

star. As the source moves across the sky, the lens passes over the face of the star, as depicted
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in Figure 3.1. Consider the amplification of a single point on the face of the star, given by

A(u′) =
u′2 + 2

u′
√
u′2 + 4

(3.4)

where u′ is the separation of the lens from the point. We can relate u′ to the center of the

disk by using the law of cosines to give,

u′ = u2 + r2 − 2ur cosφ (3.5)

where u is the distance of the lens from the the center of the source, r is the distance to

the point from the center of the source, and φ is the angle between u and r as depicted in

Figure 3.1. By averaging the amplification over the entire face of the star, we can calculate

Figure 3.1: Shows a lens L passing over the face of a star in which the size of the star must
be taken into account. A star is assumed to be a disk with a reduced radius, ρ.The lens
source separation, u, is defined from the center of the star. The separation, u′, is the lens
source separation of the lens and an arbitrary point on the star. r is the distance between
the arbitrary point and the center of the star and φ is the angle between u and r.

the total amplification of the source. We integrate the amplification A(u′) over the entire

face of the star, and then divide by the area of the star to give the total amplification, A∗,

of the source.

A∗(u, ρ) =

∫
S
A(u′)dS∫
S
dS

=
1

πρ2

∫ 2π

0

dφ

∫ ρ

0

rA[u2 + r2 − 2ur cos θ]dr (3.6)
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Because the source is in motion, the amplification will depend on time as,

u′(t) =

√
u′20 +

(
t− t0
tE

)2

where u′0 is the minimum separation between the lens and the point of interest in Figure 3.1.

The light curve produced by a finite source differs greatly from that of the point source light

curve when the lens source separation is on the order of the size of the source. For small u0,

instead of the amplification diverging, the light curve is smoothed out, as depicted in Figure

3.2.

Figure 3.2: An example of the light curve produced when the finite size of a star is taken
into account is shown by the orange curve. The blue curve is the point-source light curve
described in chapter 1.

The central region of the light curve contains information about how long it takes the lens

to pass across the face of the source star. The turning points of the light curve correspond

to when the lens enters and exits the face of the star and thus we find the time it takes the

lens to traverse the source, T , to be the time between these turning points on the curve.[22]

Relating T to other variables of interest is done by examining the geometry of the problem,

depicted in Figure 3.3.

The source is moving across the sky with a velocity v⊥. The time it takes the lens to

traverse halfway across the face of the star is T/2. Thus we can relate the normalized radius
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Figure 3.3: Geometry of the lens L passing over the face of the star. From this geometry,
we can solve for T , the time for the lens to cross the face of the star.

of the star, ρ, to T by,[18][6]

T = 2tE

√
ρ2 − u2

0 (3.7)

where tE and u0 are determined from the overall shape of the curve, as in the points source

case. Combining Equations 3.1 and 3.7, θE is calculated by,

θE = θ∗

[(
T

2tE

)2

+ u2
0

]−1/2

(3.8)

To be more precise, the assumption that a star has constant surface brightness is not

exactly true, as a real star is brightest near the center and darkens on the outer limb.

This effect is known as ”limb darkening” and should be taken into account when making

microlensing measurements. Stars will have different brightness profiles, and the profile can

be determined by fitting different models of limb darkening to microlensing data.

The first observation of finite source effects in a microlensing event was observed by Global

Microlensing Alert Network (GMAN) and analyzed by Alcock et al.[1] They analyzed the

light curve using the point source model described in Chapter 2, the constant brightness

model described in this section, and a limb darkening model. Figure 3.4 shows the observed

light curve and Figure 3.5 shows the results for the three fit models.
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Figure 3.4: An observed event by Alcock et al.[1] This event was the first event observed
in which finite source effects needed to be taken into account. The dashed line shows the
trajectory of the lens over the source star. The observation data is shown without a best fit
line.

Figure 3.5: Table of measured parameters from a finite source event analyzed by Alcock et
al.[1]

3.2 Microlensing Parallax

The simple light curve described in Chapter 1 also assumes that the motion of the earth is

constant with respect to source star. While this assumption holds for microlensing events

with short duration, during a long microlensing event (on the order of a couple of months),

the earth’s motion around the sun becomes important. The earth’s orbital motion produces

a parallax effect with respect to the lens and the source star, resulting in an asymmetric

light curve. One such light curve was observed by Alcock et. al, depicted in Figure 3.6.[3]
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As with finite source effects, parallax effects allow for further degeneracy breaking from the

simple light curve. However, because microlensing events are typically on the order of a few

weeks, not months, observing the parallax effect due to the Earth’s orbital motion is quite

rare.

Figure 3.6: A microlensing parallax event observed by Alcock et al.[3] caused by the earths
rotation around the sun. The best fit curve is shown by the black curve, while the basic
microlensing light curve is shown by the dashed curve for reference.

It is possible to create a parallax effect by observing an event simultaneously from two

positions. This is typically done by observing a microlensing event using a satalite, as was

suggested by Refsdal in 1966, although it is sometimes possible to observe parallax effect in

very high magnification events from two positions on Earth.[24][11] Refsdal concluded that

if a microlensing event could be observed from at least two separate locations, the mass

and distance to the lens could be constrained. This is because light curves observed from

different perspectives will differ in magnification, but will have the same Einstein crossing

time. Thus, comparing the light curves from different positions allows for a determination

in the parameters of interest.[17]

Gould suggested parallax measurements could be used to measure the radius of the

Einstein ring projected into the observer plane.[12] To project the Einstein radius into the

observer’s plane, it is useful to reverse the geometry used in Chapter 2, as depicted in Figure

3.7.[15]

From Figure 3.7, we can relate the physical Einstein radius in the observer plane, r̃E, to
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Figure 3.7: Shows the geometry of projecting the physical Einstein ring radius, rE, from
the lens plane into the observer plane. The physical Einstein ring radius projected into the
observer plane is denoted r̃E.

the Einstein radius in the lens plane, rE, and source plane by,

r̃E =
DS

(DS −DL)
rE =

DL

(DS −DL)
r̂E (3.9)

As Gould suggested, the parallax effect can be used to determine r̃E of a particular event.

Consider a satellite in the observer plane positioned at some distance dsat away from Earth.

The light curve observed from the satellite will differ from the light curve observed from

the Earth, as shown in Figure 3.8. This is due to the fact that the satellite is viewing

the event from a different angle than that of the Earth which causes a different lens-source

separation. We will denote the lens-source separation from the Earth and the satellite as

the two dimensional vectors ~u(t) and ~u′(t), respectively. Figure 3.9 shows the different

trajectories of the source as it passes near the lens as seen from the Earth and the satellite.

The addition of a second observer allows measurement of the separation between these two

trajectories. We denote the trajectory separation, ∆~u, defined as,[12]

∆~u = ~u′(t)− ~u(t) (3.10)
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Figure 3.8: Example of the difference in observed light curves by the Earth (orange) and a
satellite (Blue).

We can write the individual lens-source separations as,[12]

~u(t) = ~u0 +
(t− t0)

rE
~v⊥, ~u′(t) = ~u′0 +

(t− t′0)

rE
~v⊥ (3.11)

where ~v⊥ is the velocity of the source perpendicular to the observer plane. We cannot

determine the vectorial trajectory separation, ∆~u, from the light curves. However, we can

determine the maginitude of the trajectory separation by,

∆u =
√

(∆u0)2 + (∆t0)2 (3.12)

where ∆u0 = u′0 ± u0 and ∆t0 = (t′0 − t0)/tE and tE = rE/v⊥. Because u0, u
′
0, t0, t

′
0, and

tE are determined from the individual light curves, ∆u can be determined. There is a two

fold degeneracy in the measurement of ∆u arising from two possible minimum lens-source

separations because we have no way of determining whether the two trajectories of the source

occur on the same side or opposite sides of the lens, as shown in Figure 3.9. This degeneracy

can be completely resolved if the event is observed by a second satellite. This is because the

comparison of the light curves between the earth and the second satellite will produce two

values of ∆u0, only one of which will agree with the values obtained from Earth and the first
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satellite.

Figure 3.9: Shows four possible trajectories of the source near a lens as observed by the Earth
and a satellite. These four possibilities result in a 4-fold degeneracy of ∆~u. The magnitude,
∆u has 2-fold degeneracy.

We can also write ∆~u in terms of the satellite Earth separation ~dsat. From the geometry

shown in Figure 3.10, we can relate ~dsat to ∆~u by,

~φ =
~dsat
DL

= − r̂E∆~u

(DS −DL)
(3.13)

Taking the magnitude of Equation 3.13, we can write,[12]

dsat
∆u

= r̃E (3.14)

Thus, with knowledge of how far away our satellite is from earth, we can determine ∆u using

the observed light curves from the Earth and the satellite and then measure the physical

Einstein radius projected into the observer plane.

The first space-based microlens parallax measurement was observed using the Spitzer

telescope in 2014 and analyzed by Yee et.al.[31] Figure 3.11 shows the data collected from

ground based observatories and Spitzer. The source star was located within the galactic

disk, thus an approximate velocity of 250 km/s could be estimates for the star. Under
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Figure 3.10: The geometry of a space based parallax event. A satellite is a distance ~dsat from
the earth in the lens plane. The apparent lens-source separation as perceived by the Earth is
~u, while the apparent lens-source separation as perceived by the satellite is ~u′. Multiplying
by r̂E projects the lens-source separation from each into the source plane. The difference in
the apparent lens-source separations is Delta~u.

this assumption, the mass of the lens and the distance to the lens were estimated to be

m = 0.23± 0.07M� and DL = 3.1± 0.4 kpc, respectively.

3.3 Complete Solutions to a Microlensing Event

While the mass and distance to the lens can be constrained by assuming the velocity of the

lens based on where the source star is located in the galaxy, for some events, as was done

by Yee et. al., it is possible to determine all of the parameters directly from observation. In

the previous sections, we have developed methods for determining θE in high magnification

events and r̃E in all events with the use of satellites. If satellites are used observe high

magnification events, we can measure both θE and r̃E for the a single event, allowing us to

directly calculate the mass of the lens by,

θE r̃E =
4Gm

c2
(3.15)
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Figure 3.11: A microlensing event as seen from the Earth (observation data shown in blue)
and the Spitzer satellite (observation data shown in red). Dashed blue line shows the best
fit curve extended outside the observation range of the Spitzer satellite.

In addition, the distance to the lens can be resolved with knowledge of the distance to the

source star by equation 3.9,

r̃E =
DS

(DS −DL)
rE =

DSDL

(DS −DL)
θE

The velocity of the lens is found from the relative velocity,

µrel =
θE
tE

=
v⊥
DL

. (3.16)

Zhu et al. observed one such event. Figure 3.12 shows the data collected from earth ob-

servatories and by the Spitzer telescope, along with the best fit curves.[33] The light curve

from earth was seen as a high magnification event, while the light curve from Spitzer had a

comparatively large minimum lens source separation. The mass of the lens 45± 7MJ , where

MJ is a Jupiter mass. The distance to the lens was found to be 5.9 ± 1.9 kpc. This star is

determined to be a brown dwarf star.
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Figure 3.12: A high magnification event observed from earth and the Spitzer satellite ob-
served by Zhu et al.[33]
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Chapter 4

Exoplanetary Microlensing

Today, microlensing is primarily used to detect planets. We have seen that as a source

moves relative to a lens, the images of the source move as well. If the lens is a binary system

consisting of a star and a planet, the image of the source star may coincide with the position

of the planet. The image of the source is essentially lensed a second time, producing a

significant deviation to the single lens light curve discussed thus far. It is these deviations

to the light curve that allow microlensing to be used to detect planets.

The addition of a second mass to the lens increases the complexity considerably because

it adds additional parameters to the lens equation, namely the mass ratio of the lens, q,

and the star-planet separation, d, and the angle the source moves across the sky relative to

the lens-star axis, φ. In this section, we discuss the formulation of a general lens equation

for N lenses, and give a detailed description of binary lens systems. We then discuss how

measurements of the mass ratio and the star-planet separation can be measured from the

light curve.

4.1 General Lens Equation

Because the the deflection angle of light passing near a massive object depends linearly on

the mass, the deflection angle can be linearly superimposed. This enables us to write the
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general lens equation for N point masses located in the lensing plane.

In order to see how this works in practice, consider a binary lens system consisting of

two lenses m1 and m2, where m1 is a distance DL from the observer. We define the lens

plane as the plane passing through m1 perpendicular to the observer. The position of m2 is

projected into the lens plane and a coordinate system (y1, y2) is defined. This allows us to

write the position of the lenses in the lens plane as the vectors ~θ1 for m1 and ~θ2 for m2. [27]

The source plane is defined as the plane through a source star a distance DS from the

observer perpendicular to the optic axis, i.e perpendicular to the a line from the observer

through the origin of the lens plane. We define a coordinate system (u1, u2) in the source

plane such that it is parallel to the coordinate system in the lens plane. The origin of this

coordinate system is the intersection of the optic axis in the source plane. The position of

the source is given by the vector ~β.

A light ray originating from the source and passing through the lens plane will be deflected

by some amount. Because the the deflection angle of light passing near a massive object

depends linearly on the mass, the deflection angle can be linearly superimposed.[26] This

means the total deflection angle of the light ray passing through the lens plane is the sum of

the deflection angles of the individual masses. In terms of the coordinate system defined in

the lens plane, for a light ray intersecting the lens plane at a position ~θ, the total deflection

angle is given by

~̂α(~θ) =
4Gm1

c2DL

~η1

|~η1|2
+

4Gm2

c2DL

~η2

|~η2|2
=

4Gm1

c2DL

~θ − ~θ1

|~θ − ~θ1|2
+

4Gm2

c2DL

~θ − ~θ2

|~θ − ~θ2|2

The lens equation is written as

~β = ~θ − DS −DL

DS

~̂α(~θ)
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Defining ~α(~θ) = DSDL

DS−DL

c2

4G
~̂α(~θ), the lens equation becomes,

~β = ~θ − ~α(~θ) = ~θ −m1

~θ − ~θ1

|~θ − ~θ1|2
−m2

~θ − ~θ2

|~θ − ~θ2|2

This can be further generalized to N lenses as,

~β = ~θ −
N∑
i

mi

~θ − ~θi
|~θ − ~θi|2

We can normalize the angles in the lens equation with respect to the angular Einstein radius

defined as,

θE ≡

√
(DS −DL)

DSDL

4GM

c2
(4.1)

whereM ≡
∑
mi is the total mass of the lensing system. By making the following definitions,

~u =
~β

θE
, ~y =

~θ

θE
, εi =

mi

M

we can write the lens equation as

~u = ~y −
N∑
i

εi
~y − ~yi
|~y − ~yi|2

(4.2)

where ~u is the source position relative to the optic axis (or angular lens-source separation) ~y

is the position of the image, and ~yi are the positions of the lens in the lens plane relative to

the origin. The lens equation can be written as an N + 2 degree polynomial and therefore

solving the lens equation gives N + 2 image locations. We solve the lens equation for N = 2,

i.e., the binary lens, below.
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4.2 Amplification of Multiple Lenses

The lens equation can be thought of as a two dimensional mapping between the position of

the source and the positions of the images. The Jacobian of this mapping is given by,

det J = det

(
∂~u

∂~y

)
= det

∂u1
∂y1

∂u1
∂y2

∂u2
∂y1

∂u2
∂y2


Recall that we defined the amplification of the source due the microlensing as the ratio of

the solid angle of the source in the lens plane to the solid angle in the source plane,

A =
dΩ

dΩ0

This is because the shape of the solid angle changes due to different points along the solid

angle being deflected by slightly different angles along the surface. This causes a warping of

the solid angle in the lens plane. The amount that the area of the solid angle changes as it

passes through the lens plane is given by the determinant of the Jacobian. In other words,

we can relate the size of the solid angle in the source plane to the size of the solid angle in

the lens plane by dΩ0 = det JdΩ. The amplification of the source is then given by

Aj =
1

det J

∣∣∣∣
z=zj

(4.3)

where Aj is evaluated at the position of a particular image position zj. As with the single

lens, the individual images are not observable and, instead we will be interested in the total

amplification of the images. This is given by,

A =
N∑
j

|Aj| (4.4)
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As the lens system moves near the line of sight of the source star, the amplification will

change producing a light curve. This light curve will differ drastically from the light curve

we discussed in section 2.

4.3 Complex Coordinates

It is common practice to write the lens equation in complex coordinates instead of the vector

coordinates we defined above.[30] Defining ~u = (u1, u2) and ~y = (y1, y2), we can redefine these

coordinates into complex coordinates as,

ζ = u1 + iu2

z = y1 + iy2

and rewrite the lens equation to give,

ζ = z −
N∑
i

εi
z̄ − z̄i

(4.5)

where z̄ is the complex conjugate of z which arise from the identity,

z

|z|2
=

z

zz̄
=

1

z̄
(4.6)

By solving for z we can find the positions of the images produced by the lenses, as was

done with the single source previously. This is done by rewriting the lens equation as a

complex polynomial. This results in a (N2 + 1) order complex polynomial which is only

solvable analytically for N = 1. Numerical techniques must be used in order to solve for the

image positions for N > 1.

54



The determinant of the Jacobian in complex coordinates takes the form,[30]

det J = det

∂ζ
∂z

∂ζ
∂z̄

∂ζ̄
∂z

∂ζ̄
∂z̄

 =

∣∣∣∣∂ζ∂z
∣∣∣∣2 − ∣∣∣∣∂ζ∂z̄

∣∣∣∣2 . (4.7)

Combining with Equation 4.5 gives,

det J = 1−
∣∣∣∣∂ζ∂z̄

∣∣∣∣2 (4.8)

An important property of microlensing (and gravitational lensing in general) is that some

source positions can result in a diverging amplification. From Equation 4.3, this occurs when

the Jacobian is equal to zero or when,

∣∣∣∣∂ζ∂z̄
∣∣∣∣2 = 1. (4.9)

The possible image positions in which this is true are given by,

∂ζ

∂z̄
= eiφ (4.10)

where φ ranges from 0 to 2π. The set of curves created by solutions to Equation 4.10 define

a set of curves in the lens plane known as critical curves. Mapping the critical curves to the

source plane produces what are known as caustic curves. The importance of caustic curves

in multi-lens systems cannot be overstated, and will be discussed in more detail below.
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4.4 Binary Lens

The binary lens is of particular interest because of the ability to use microlensing to find

exoplanets orbiting around a lens. The lens equation for a binary system is given by,

ζ = z − ε1
z̄ − z̄1

− ε2
z̄ − z̄2

(4.11)

The amplification of a particular image is found by Equation 4.8. The critical curves for a

binary lens are found by solving Equation 4.10 which has the form,

∂ζ

∂z̄
=

ε1
(z̄ − z̄1)2

+
ε2

(z̄ − z̄2)2
= eiφ (4.12)

Conjugating Equation 4.12 and clearing the fractions, we obtain a 4th order polynomial in

z,

ε1(z − z2)2 + ε2(z − z1)2 = (z − z1)2(z − z2)2e−iφ (4.13)

Solving Equation 4.13 for values of φ ranging from 0 to 2π produces the the possible positions

of the images in the lens plane where the source appears infinitely magnified, known as critical

curves. The positions of the source are found by mapping the critical curves back to the

source plane, Equation 4.11, producing the caustic curves.

A binary system has one, two, or three closed caustic curves. Which of these three

possibilities is exhibited depends on the mass ratio and separation of the of the binary

system, defined as,

q ≡ ε1
ε2

=
m1

m2

, d ≡ |z1 − z2| (4.14)

where m1 and m2 are the actual masses of the two objects. Figure 4.3 shows how the star

source separation d, affects the shape of the critical and caustic curves , while Figure 4.4

shows how critical and caustic curves when the mass ration q changes.
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Figure 4.1: The regimes of a binary microlensing event are shown with respect to the mass
ratio q and the star-planet separation d. The curves depict the boundary between each
regime.

The three possible caustic topologies can be classified into regimes called ”close”, ”inter-

mediate”, and ”wide” binary systems.[27] For a given mass ratio, q, the value of d for which

the regime changes from close to intermediate is defined by, [9]

q

(1 + q)2
=

(1− dc)2

27d8
c

(4.15)

and the value of d for which the regime changes from intermediate to wide is defined by

dw =
(1 + q1/3)3/2

√
1 + q

(4.16)

For d < dc, this defines the close regime and produces two closed caustic curves, for dc ≤

d < dw, this defines the intermediate regime and produces one closed caustic curve, and

for d > dw this defines the wide regime and produces three closed caustic curves. The

three caustic regimes are depicted in Figure 4.1 where Equations 4.15 and 4.16 determine

the boundary between each region. When q = 1, the critical values of the separation are

dc = 2−1/2 and dw = 2. The critical and caustic curves in these cases are shown in Figure
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4.2.

Figure 4.2: Critical and caustic curves when the star-planet separation is equal to the critical
values,d = dW and d = dC . The mass ratio is set to q = 1.
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Figure 4.3: Critical and caustic curves for increasing values of the star-planet separation, d.
The mass ratio is set to q = 1.
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Figure 4.4: Critical and caustic curves for increasing values of the mass ration, q. The
star-planet separation is set to d = 0.8.
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4.5 Planetary Systems

For binary systems with the mass ratio q � 1 (corresponding to a planetary system), the

intermediate regime is relatively small and contained to planet-star separations near d = 1.

This is advantageous because the close and wide binary regimes will produce separate caustic

curves associated with the parent star and the planet.[9] Below, we discuss the close and

wide regimes in more detail and describe possible light curves that can result.

4.5.1 Central Caustics

For both the close and wide binary regimes, one caustic is always located near the position

of the parent star. This caustic is known as the central caustic with a shape similar to that

of an arrow which points toward the companion planet. The light curve of a source passing

near the central caustic differs in shape depending on which part of the caustic the source

passes near. A source passing near the back end of the central caustic perpendicular to

the star-planet axis will exhibit a U-shape caused by the cups of the caustic (Figure 4.6b) ,

while a a source passing near the front tip of the caustic forms a single bump (Figure 4.6a).

A source passing parallel to the star-planet axis near the central caustic will show little

deviation from the single lens light curve, unless a caustic crossing takes place.[7] Figure 4.5

shows how the central caustic changes with d.

The central caustic is invariant under the transformation d → d−1, which means the

central caustic formed in the wide regime (d > dw) is indistinguishable from the central

caustic formed in the close regime (d−1 < dc).[7] For example, as shown in Figure 4.5, a

central caustic formed for d = 1.67 is the same as the central caustic formed for d = 0.6.

Thus, the light curves formed by a source passing near a central caustic is degenerate in d.
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Figure 4.5: A central caustic shown for various values of d.
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Figure 4.6: The top left plot shows a central caustic for q = .001 and d = 1.25. The blue
dots show the trajectory of a source near the central caustic. The bottom left plot shows an
overall light curve for both trajectories. Plot (a) shows a zoomed in light curve of the source
trajectory (a) and Plot (b) shows a zoomed in light curve of the source trajectory (b).

4.5.2 Planetary Caustics

The close binary regime exhibits three caustics; the central caustic and two caustics known

as planetary caustics. These planetary caustics have a triangular shape and form on the

opposite side of the central caustic from the position of the planet.. They form symmetrically

about the star-planet axis, with the distance between them increasing with decreasing d.[9]

A source passing through the large region between the planetary caustics will form a light

curve with a decrease in amplification (Figure 4.7b,c), while a source passing within a small

region on the outside of the caustics will increase in magnification.[9]

The wide binary regime forms two caustics; the central caustic and one planetary caustic,

shown in Figure 4.7d. The planetary caustic forms on the star-planet axis on the same side

of the central caustic as the planet. The light curve exhibits bumps passing very near the

cups of this caustic, and has little effect to the light curve if the source passes further away.
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Figure 4.7: Plot (a) shows a close regime planetary caustic with q = 0.001 and d = 0.8.
The blue dots show the trajectory of a source passing through the center of the planetary
caustics. Plot (b) shows the resulting overall light curve and plot (c) shows a zoomed in
region of the light curve. Plot (d) shows a wide regime planetary caustic where a source
crosses the planetary caustic. The resulting light curve is shown in plot (e) and plot (f) is a
zoomed in region of the light curve.

4.6 Binary Lens Images

The images formed by a binary system can be found by solving Equation 4.11. It is useful

to rewrite Equation 4.11 as a 5th order polynomial in z. This is done by allowing the

lenses to be placed along the real axis with z2 = −z1, and defining m = (m1 + m2)/2 and
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∆m = (m2 −m1)/2. Taking the complex conjugate of Equation 4.11 and substituting the

expression for z̄ back into Equation 4.11 results in the polynomial of the form,[29]

p5(z) =
5∑
j

cjz
j = 0 (4.17)

where the coefficients cj of the polynomial are given by,[29]

c5 = z2
1 − ζ̄2

c4 = −2mζ̄ + ζζ̄2 − 2∆mz1 − ζz2
1

c3 = 4mζζ̄ + 4∆mζ̄z1 + 2ζ̄2z2
1 − 2z4

1

c2 = 4m2ζ + 4m∆mz1 − 4∆mζζ̄z1 − 2ζζ̄2z2
1 + 4∆mz3

1 + 2ζz4
1

c1 = −8m∆mζz1 − 4(∆m)2z2
1 − 4m2z2

1 − 4mζζ̄z2
1 − 4∆mζ̄z3

1 − ζ̄2z4
1 + z6

1

c0 = z2
1 [4(∆m)2ζ + 4m∆mz1 + 4∆mζζ̄z1 + 2mζ̄z2

1 + ζζ̄2z2
1 − 2∆mz3

1 − ζz4
1 ]

In general, this polynomial cannot be solved analytically so numerical techniques must be

used to solve for the images. It is important to note that, while solving p5(z) produces up

to five solutions, not all of these solutions actually solve the lens equation.[29] Depending on

the position of the source, two of the solutions may not correspond to the source positions

in the lens equation. Thus there are either three or five solutions. If the source is outside of

a caustic, there will be three real solutions. If the source is inside of a caustic, then all five

solutions are valid. This is depicted in Figure 4.8.

4.7 Planetary Caustic Crossings

When a source passes through a caustic region during a microlensing event, the light curve

produced has a very characteristic shape due to the sudden change in the number of images

produced by the lens. These events are called caustic crossings. As the source enters a
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Figure 4.8: The position of the images for two source positions. When the source is outside
of a caustic, 3 images are formed. When the source is within a caustic, five images are
formed.

caustic region, the total number of images changes from three to five and the light curve

exhibits a discontinuous increase in magnification, followed by a smooth decrease inside the

caustic region. As the source exits the caustic region, the opposite behavior takes place with

a smooth increase in magnification followed by a discontinuous decrease as the source crosses

the caustic curve. The light curve then has two large peaks with a U-shape in between the

peaks, as shown in Figure 4.7e,f. This is particularly advantageous for planetary caustic

crossings. The light curve from planetary crossings allows one to determine the mass ratio

of the lens and separation of the star and planet essentially by eye.

For planetary caustic crossings, it is useful to consider a complementary picture of what

is occurring during these events.[10] Consider the path of the images produced by the lens

system as a source moves across the sky. If a planet is located near the Einstein Ring of the

parent star, as an image moves behind the planet, the planet acts as another lensing event

resulting in a second amplification of the image.

We can treat the amplification due to the planet as analogous to the single lens am-

plification discussed above. We define the angular Einstein ring radius of the planet, θE,p,
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Figure 4.9: A diagram of how a planet can effect the image of a source during a microlensing
event.

as,

θE,p =

√
(DS −DL)

DSDL

4m1G

c2
(4.18)

and the Einstein crossing time of the planet, tE,p, as,

tE,p =
θE,p
µrel

(4.19)

The parent star has its own angular Einstein ring radius and Einsein crossing time defined

by,

θE =

√
(DS −DL)

DSDL

4m2G

c2
(4.20)

tE =
θE
µrel

(4.21)

67



respectively. The ratio of the Einstein crossing times of the planet and its parent star

give,[9][10]

tE,p
tE

=

√
m1

m2

=
√
q (4.22)

tE is found by the overall shape of the light curve, while tE,p is found by considering the

planet amplification in isolation. In this way, the approximate mass ratio of the binary

system is determined.

Because the image of the source passing the planet must be near the position of the

planet in order to affect the overall light curve, we are able to determine the star-planet

separation of the binary system from planetary caustic crossings as well. The separation, d,

can be written as,[9][10]

d = y ± up

where we define up = {u2
0 + [(t0,p − t0)/te]

2}1/2 to be the position of the source during the

planetary perturbation, t0,p. Note that there is a degeneracy in d. The third parameter that

can be determined is the angle of the source trajectory relative to the star-planet axis, φ,

by,[9][10]

α = sin

(
u0

up

)

The above equations are not exact, but serve useful for defining initial curve fitting pa-

rameters. The actual lensing parameters are found more accurately from the curve fitting

routine.

For central caustic crossings, determining the lens parameters is not nearly as straight

forward as for planetary caustic crossings. However, an understanding of the central caustic

properties discussed above does enable one to guess initial fitting parameters.[9][10]
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4.8 Determining Planet and Parent Star Masses

Detecting a planetary microlensing event requires the source to pass very near the caustics

produced by a planetary system. This is essentially the same condition for finite source

effects to become measurable. For most planetary microlensing events, we can deduce the

angular Einstein radius of the system, θE, in much the same way that is done for single lens

events. This was done by Bond et. al.[4] Figure 4.10 shows the observed light curve from

the event. The event was a planetary caustic crossing. The mass ratio was found to be

q = .0039 ± .0011 while the star-planet separation was found to be d = 1.12. Using finite

source effects, θE = 520± 80µas.

Figure 4.10: An observed binary microlensing event by Bond et. al.

Using satellites in conjunction with finite source effects allows for the determination of the

mass of the planet in a binary system. This was done to analyze a light curve by Zhu.[34]

The mass of the star and planet where found to be 0.94 ± 0.17 M� and 0.355 ± 0.079

M�, respectively. Figure 4.11 shows a closeup of the caustic crossing from both Earth

observatories and the Spitzer telescope.
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Figure 4.11: An observed binary microlensing event. The black curve is the best fit from
data observed from earth while the red curve is the best fit from data observed from the
Spizter telescope.
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