
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2017 

Application of the Fisher Dimer Model to DNA Condensation Application of the Fisher Dimer Model to DNA Condensation 

John C. Baker III 
VCU 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Applied Statistics Commons, Biological and Chemical Physics Commons, and the Other 

Physics Commons 

 

© John C. Baker 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/4791 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarscompass.vcu.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/196?utm_source=scholarscompass.vcu.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarscompass.vcu.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarscompass.vcu.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4791?utm_source=scholarscompass.vcu.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c©John C. Baker, May 2017

All Rights Reserved.



APPLICATION OF THE FISHER DIMER MODEL TO DNA CONDENSATION

A submitted in partial fulfillment of the requirements for the degree of Master of

Science at Virginia Commonwealth University.

by

JOHN C. BAKER

B.S. Longwood University, 2009

Director: Marilyn F. Bishop and Tom McMullen,

Department of Physics

Virginia Commonwewalth University

Richmond, Virginia

May, 2017



Acknowledgements

Thank you to my advisers for putting up with me for too many years. To my

family for never giving up on me. And to my friends, for helping me relax when

things were overwhelming.

i



TABLE OF CONTENTS

Chapter Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Partition Function as a Trace of Operators . . . . . . . . . . . . . . 3

2.1 Defining the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Simplifying the Hamiltonion . . . . . . . . . . . . . . . . . . . . . 5

2.3 Finding the Correct Generating Function . . . . . . . . . . . . . . 6

3 Ensuring Even Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 The Parity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 A New Numbering System . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Proving f and p are Even . . . . . . . . . . . . . . . . . . . . . . . 24

4 The Pfaffian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 The Pfaffian as a Sum . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 A Trace of Operators Expressed as a Pfaffian . . . . . . . . . . . . . . . 35

5.1 Complementary Operators and Their Properties . . . . . . . . . . 36

5.2 Operators with Homogeneity . . . . . . . . . . . . . . . . . . . . . 39

5.3 The Trace of the Product Gives the Same Terms as the Pfaffian . . 41

5.4 The Sign in the Product . . . . . . . . . . . . . . . . . . . . . . . . 48

6 The Partition Function as a Pfaffian . . . . . . . . . . . . . . . . . . . . 53

6.1 Equating the General Trace to the Trace in the State Function . . 53

6.2 Equating the State Function to the Pfaffian . . . . . . . . . . . . . 55

7 Evaluation of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . 59

ii



7.1 The Formulation of the Block Matrix . . . . . . . . . . . . . . . . 61

7.2 Finding the Eigenvectors and Eigenvalues . . . . . . . . . . . . . . 64

7.3 Block Diagonalizing the Matrix D . . . . . . . . . . . . . . . . . . 69

7.4 Changing the Form of Dq . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 The General Form of tαβ . . . . . . . . . . . . . . . . . . . . . . . 74

7.6 Finding tαβ When α = β . . . . . . . . . . . . . . . . . . . . . . . 77

7.7 Defining the Partition Function . . . . . . . . . . . . . . . . . . . . 79

8 Analysis of the Partition Function . . . . . . . . . . . . . . . . . . . . . 87

8.1 A Change in Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 The Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.3 One-Dimensional Partition Function . . . . . . . . . . . . . . . . . 92

9 The Calculation of the Entropies . . . . . . . . . . . . . . . . . . . . . . 96

9.1 The Entropy of Monomers and Holes . . . . . . . . . . . . . . . . . 96

9.2 The Entropy of Monomers, Dimers, and Holes . . . . . . . . . . . 98

10 Plots of the Entropy, Average Occupation, and Total Charge . . . . . . . 101

10.1 Lattice Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.2 The Fisher Model of Dimers . . . . . . . . . . . . . . . . . . . . . 106

11 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . 111

11.1 Conclusions and Results . . . . . . . . . . . . . . . . . . . . . . . . 111

11.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix B Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.1 The Trace and Cyclic Interchange . . . . . . . . . . . . . . . . . . 114

iii



LIST OF FIGURES

Figure Page

1 Lattice-gas representation of “dimers”. The lattice-gas model consid-

ers all particles to occupy a single lattice site. Dimers which lie parallel

to the surface should occupy two lattice sites. . . . . . . . . . . . . . . . . 2

2 Possible dimer occupation along the edge of a DNA helix. To correctly

model DNA condensation the dimers which lie parallel to the surface

must occupy two sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 This figure shows a possible lattice configuration for x-dimers, y-dimers,

and z monomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 A 3× 4 lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 A lattice point k and the bonds to its four nearest neighbor sites. . . . . . 9

6 The superimposition of Fig. 5 onto a 1 × 2 lattice giving all of the k

and their nearest neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 A simple square lattice with four points. Each row is numbered in the

Cartesian style, left to right. . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 A possible lattice configuration for a 3×4 lattice numbered in a zig-zag

pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 The one-dimensional array corresponding to unfolding the 3×4 lattice

in Fig. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 The trivial completely paired array where the number of intersections,

f , is zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11 The first intermediate step of pairing off the lattice in Fig. 9 inter-

changing points until the arc representing the operator pair A1,8A8,1

spans array points 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 An array with arcs drawn from the s = 0 row to the s = 1 row of Fig. 9. . 24

iv



13 The addition of arcs from the s = 1 row to the s = 2 row causes intersections 24

14 The arbitrary row 2u and its neighboring rows. . . . . . . . . . . . . . . . 25

15 Arcs drawn for pairs of rows where the even row is the lower of the pair. . 25

16 The addition of arcs for pairs of rows where the lower row is odd. The

intersection points are colored red. . . . . . . . . . . . . . . . . . . . . . . 26

17 A lattice with a single dimer for demonstration purposes. . . . . . . . . . 26

18 An array with only one dimer. . . . . . . . . . . . . . . . . . . . . . . . . 26

19 A single dimer connecting two points in an arbitrarily sized array. . . . . 28

20 A 4× 3 lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

21 A two row lattice that will be cut in half along the dashed line to

produce a one-dimensional lattice. Afterwards, the y-dimers can be

considered to be monomers and pairs of x-dimers to be single x-dimers. . 92

22 The entropy of the lattice-gas representation of an occupied lattice as

a function of binding energy. . . . . . . . . . . . . . . . . . . . . . . . . . 103

23 The occupation of species of the lattice gas model of dimers. . . . . . . . 105

24 The charge on the lattice as a function of the binding energy . . . . . . . 106

25 The plot of the two entropies given by the lattice-gas model and the

Fisher model of dimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

26 The average occupation of species in the Fisher model of dimers show-

ing species mixing even at large negative binding energy. . . . . . . . . . 109

27 A comparison of the total charge vs.the binding energy on the lattice

between the lattice-gas model and the Fisher model. . . . . . . . . . . . . 110

v



Abstract

APPLICATION OF THE FISHER DIMER MODEL TO DNA CONDENSATION

By John C. Baker

A submitted in partial fulfillment of the requirements for the degree of Master of

Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2017.

Director: Marilyn F. Bishop and Tom McMullen,

Department of Physics

This paper considers the statistical mechanics occupation of the edge of a sin-

gle helix of DNA by simple polymers. Using Fisher’s exact closed form solution for

dimers on a two-dimensional lattice, a one-dimensional lattice is created mathemat-

ically that is occupied by dimers, monomers, and holes. The free energy, entropy,

average occupation, and total charge on the lattice are found through the usual sta-

tistical methods. The results demonstrate the charge inversion required for a DNA

helix to undergo DNA condensation.

vi



CHAPTER 1

INTRODUCTION

Investigations have shown that under the appropriate conditions DNA molecules un-

dergo DNA condensation [1–5]. This process, wherein the DNA chain rolls into a

tight toroid, can not happen spontaneously because the phosphate groups along the

edges of of the helix create an overwhelming net negative charge. However, condensa-

tion will occur in a solution of polyvalent cations, which will bind to the edges of the

DNA molecule, causing instances of charge inversion along the chain [1]. The charge

inversion creates enough positive or neutral sites that the DNA molecule naturally

compacts itself into a toroid.

Understanding the statistical mechanics of the binding of the cations to the DNA

chain will give insight to the origins of complex life. This paper is intended as a first

step in determining the effects geometry has on the entropy, occupation, and overall

charge of the lattice. As such, the DNA strand, which is very much longer than it is

wide, is considered to be an infinite one-dimensional lattice. It is to be filled by the

simplest of all polymers: the dimer.

Bishop and McMullen used a similar approach in applying the lattice-gas model

to the questions of DNA condensation and demonstrated that charge inversion can

take place[6]. They are currently working on formulating an entropy from their find-

ings.

However the lattice-gas model lacks any considerations of the geometry inherent

in attaching a dimer flat against edge of a lattice because it considers each particle

to be occupying a single lattice site (See Fig. 2). In an attempt to determine the
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Fig. 1.: Lattice-gas representation of “dimers”. The lattice-
gas model considers all particles to occupy a single lattice
site. Dimers which lie parallel to the surface should occupy
two lattice sites.

Fig. 2.: Possible dimer occupation along the edge of a DNA
helix. To correctly model DNA condensation the dimers
which lie parallel to the surface must occupy two sites.

effects geometry has on the statistical mechanics this paper will draw upon the work

done by Fisher on dimers [7]. The difference between the lattice-gas consideration of

an occupied DNA strand and the more realistic representation of dimers is shown in

Figs. 1 and 2.

Fisher correctly modeled how a rectangular lattice can be completely filled with

dimers. His paper will be used to create a lattice of two rows which will then be

mathematically cut in half between to create a model similar to Fig. 2.

This work seeks to show that charge inversion and DNA condensation will happen

when the geometry of the lattice is taken into account. Additionally it is meant to

serve as an introduction to applied statistical mechanics. As such much of Fisher’s

mathematics is carefully worked out herein. An understanding of these methods may

be necessary to work on the binding of polymers which are larger than dimers to the

DNA molecule.
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CHAPTER 2

THE PARTITION FUNCTION AS A TRACE OF OPERATORS

Consider a plane rectangular lattice of m rows and n columns and N = mn lattice

sites. The lattice is populated entirely by Nx horizontal x-dimers, Ny vertical y-

dimers, and Nz monomers so that every site is occupied and no sites are occupied

more than once, as seen in Fig. 3. When the lattice is completely filled, called the

close packed limit, it can be said that the number of particles on the lattice is

2Nx + 2Ny +Nz = mn (2.1)

This is a particular treatment of the lattice gas model. All the thermodynamics of

such a system can be derived from the configurational grand partition function,

ZG = Tr
[
e−β(H−

∑
α µαNα)

]
, (2.2)

where H is the Hamiltonian operator and Nα is the number operator for the species

α. The µα parameter is the chemical potential. The species α in the system are the

x-dimers, y-dimers, and z monomers.

2.1 Defining the Hamiltonian

The Hamiltonian of a system will usually have a kinetic p2

2m
term followed by a

couple of different potential energy terms. In this situation there would be a potential

term for single-particle interactions and one for many-particle interactions. The work

following this section will be hard enough without a convoluted Hamiltonian so only

single-particle interactions are used. Coulomb repulsive and attractive forces are also

3



Fig. 3.: This figure shows a possible lattice configuration for x-dimers, y-dimers, and z monomers.

excluded since they are many particle interactions. It might be possible to treat them

as a single particle mean field interaction, but that is outside the purview of this work.

This leaves a Hamiltonian that, when acting on a state, gives the potential energy

of binding associated with that state. This potential energy should only depend on

the number of particles of each species that are occupying the lattice. So for any

given state Ψ

H |Ψ〉 = E (Nx, Ny, Nz) |Ψ〉 , (2.3)

The state Ψ represents a possible arrangement of dimers and monomers on a lattice

(Fig. 3). Because interaction terms are ignored, this energy should be simply

E (Nx, Ny, Nz) = ExNx + EyNy + EzNz. (2.4)

Here Ex and Ey is the energy per dimer lying on the lattice in the x and y directions,

respectively, and Ez is the energy per monomer. Based on the above equation any two

states with the same number of dimers and monomers Nx, Ny, Nz, will necessarily

have the same energy. This leads to many degenerate states that have different lattice

configurations with the same number of respective particles.

From statistical mechanics the partition function of such a system can be written

4



as

ZG = Tr {exp [−β (ExNx − µxNx + EyNy − µyNy + EzNz − µzNz)]} , (2.5)

which can be made to be more descriptive by splitting the exponentials up according

to the species of particles. Thus

ZG = Tr
[
e−βNx(Ex−µx)e−βNy(Ey−µy)e−βNz(Ez−µz)

]
. (2.6)

2.2 Simplifying the Hamiltonion

From quantum mechanics Eq. (2.6) can be written as

ZG =
∑
i

〈Ψi| e−Nxβ(Ex−µx)e−Nyβ(Ey−µy)e−Nzβ(Ez−µz)
i |Ψi〉 . (2.7)

Here Ψi represents a possible pattern of placing the dimers and monomers on the

lattice. Since there is no way to differentiate between configurations that have the

same number of Nx, Ny, and Nz there will necessarily be some degeneracies. The

degeneracy factor for a lattice with mn = N lattice sites is represented by the term

gmn (Nx, Ny, Nz).

The grand partition function ZG can now be written as a sum over the number

of particles instead of over the number of states,

Zmn =
∑

Nx,Ny ,Nz

gmn (Nx, Ny, Nz) e
−Nxβ(Ex−µx)e−Nyβ(Ey−µy)e−Nzβ(Ez−µz), (2.8)

where Zmn = ZG is the grand partition function associated with an m×n lattice. This

form of the partition function is mathematically and physically the same as Eq. (2.7).

The factor e−Nxβ(Ex−µx) is, thermodynamically, the activity of the x-dimers, and

likewise for the y-dimers and z-monomers. For simplicity these activities will be

5



denoted as x, y, and z to arrive at

Zmn =
∑

Nx,Ny ,Nz

gmn (Nx, Ny, Nz)x
NxyNyzNz . (2.9)

This shows that a generating function for Zmn must be found that depends only

activities of the different species.

2.3 Finding the Correct Generating Function

To determine the correct generating function for monomers and dimers on a

lattice it will be useful to first look at systems comprised solely of identical monomers

without interactions. The case where there is one species of monomer is quite trivial.

Imagine filling N lattice sites with N red balls. There are N ! ways of placing the

balls on the lattice and since the balls are all alike, N ! ways of rearranging the balls

that will result in the same configuration. Of course

N !

N !
= 1, (2.10)

and so there is only one way to completely fill a lattice with indistinguishable red

balls.

When there are two species of monomer, say red balls and blue balls, the same

starting point is used. There are (Nb + Nr)! = N ! ways to fill the N sites of the

lattice where Nr and Nb are the numbers of red and blue balls respectively. This

N ! is divided by Nr!, the number of ways to swap red balls and still have the same

configuration, then by Nb!, the number of ways to swap blue balls without changing

the configuration. Doing so gives

N !

Nb!Nr!
, (2.11)

6



which, since the lattice is completely filled, N = Nr +Nb, can be written as

N !

(N −Nr) !Nr!
. (2.12)

This counting expression would be the degeneracy factor gN (Nr, Nb) that would ap-

pear in the partition function that describes a lattice filled with red and blue balls.

The state function for this situation is

ZN =
∑
Nr,Nb

gN (Nr, Nb) r
NrbNb =

∑
Nr,Nb

N !

Nr! (N −Nr) !
rNrbNb . (2.13)

By the binomial theorem, this can be written as

ZN = (b+ r)N , (2.14)

which can be considered a generating function for red and blue balls on a lattice.

With a similar argument for three species of re, blue, and green balls, the degen-

eracy factor is

gN (Nr, Nb, Ng) =
N !

Nr!Nb!Ng!
. (2.15)

Then the state function is

ZN =
∑

Nr,Nb,Ng

N !

Nr!Nb!Ng!
rNrbNbgNg , (2.16)

where the right hand side is the definition of the multinomial theorem. This can then

be expressed as

ZN = (r + b+ g)N , (2.17)

which is a generating function for three species of balls. Note that equivalently the

green balls could be replaced with holes in the lattice. Additionally the power of N

could be expressed as a product of N factors.

From these results it can be surmised that the proper form of Zmn for a lattice

7



Fig. 4.: A 3× 4 lattice.

filled with monomers and dimers will be a product over N = mn sets of sums, where

each sum is over the of species occupying the lattice points. From this point, the

method for determining Zmn is essentially guess and check until the function that

gives the correct physical relationships is found. In the case of a lattice with mn

points, each lattice site, k, can be considered to be occupied by a monomer or half

of a dimer, which will be called a half-dimer. A half-dimer can be directed out from

point k in any of four directions: right, left, up, or down. Later it will be required

that the other half be attached to a nearest neighbor site.

An example configuration of 12 lattice sites arranged in a 3× 4 lattice is shown

in Fig. 4. In this figure, it would make no sense to consider connections, for example,

from point 1 to points other than 2 or 8 because the length of a dimer is approximately

the distance between nearest neighbors. The non-Cartesian numbering scheme of the

lattice points in Fig. 4 is explained later. Thus the sum of species shall be limited to

the nearest neighbors of the point k.

For any point k, the diagram in Fig. 5 will be used determine the nearest neigh-

bors. Superimposing this diagram on the lattice in Fig. 4 shows that point 7 has the

nearest neighbors `1 = 6, `2 = 8, `3 = 10, and `4 = 2.

Based on the intuition gained from this section and the previous section the best

8



Fig. 5.: A lattice point k and the bonds to its four nearest neighbor sites.

guess for the form of a generating function for monomers and dimers on a lattice is

Zguess
mn =

mn∏
k=1

[
zkI + xk,`1

1/2 + xk,`2
1/2 + yk,`3

1/2 + yk,`4
1/2
]
, (2.18)

where xk`1
1/2 indicates the half-dimer from k in the direction of the neighbor `1.

As an example, the factor for k = 2 would be
[
z2I + x2,3

1/2 + x2,1
1/2 + y2,7

1/2 + 0
]
.

Note that at a lattice edge, where no bond can exist, a zero is used in place of the

appropriate half-dimer in the sum.

However, upon taking the product in Eq. (2.18) there will be cross-terms that ap-

pear that make no physical sense (e.g x1,2
1/2x5,6

1/2) because dimers could not possibly

connect them. These unfortunate cross terms can be eliminated by introducing a set

of anticommuting operators Ai. Then any extraneous Ai operators can be eliminated

by a trace operation. The correct generating function is

Zmn(x, y, z) = t−1Tr

{
mn∏
k=1

[
zkI + xk,`1

1/2Ak,`1 + xk,`2
1/2Ak,`2

+yk,`3
1/2Ak,`3 + yk,`4

1/2Ak,`4
]}
,

(2.19)

as can be seen in Fisher’s paper in his equation 6 [7]. Here t is the dimension of the

operators Ai and of the identity matrix. The factor of t−1 is introduced to cancel out

the t that appears when the trace is taken. The sum inside the square brackets will

9



sometimes be written as

Zmn(x, y, z) = t−1Tr

{
mn∏
k=1

Vk (x, y, z)

}
, (2.20)

where

Vk(x, y, z) = zkI + xk,`1
1/2Ak,`1 + xk,`2

1/2Ak,`2 + yk,`3
1/2Ak,`3 + yk,`4

1/2Ak,`4 . (2.21)

The notation Ai is used to represent a general operator associated with bond

i. Alternatively the operators can be written as Ak,` where k labels one of the sites

which the bond is touching and ` labels a nearest neighbor where ` can be the nearest

neighbors `1 through `4 (See. Fig. 5). The Ak,` notation requires that a bond, for

example from point 1 to point 2, is represented by both A1,2 and A2,1 (Fig. 6). Since a

distinct operator is needed for each bond i, a number ν is chosen so that 4ν operators

or created. Here 4ν is equal to or greater than the number of bonds. Having extra

operators that are not necessarily associated with bonds is not a problem.

The properties of the anticommuting Ai operators are given by

AiAj + AjAi = 2Iδij. (2.22)

and

A2
i = I, (2.23)

which are the same relationships that one has for the Pauli matrices.

10



Fig. 6.: The superimposition of Fig. 5 onto a 1× 2 lattice giving all of the k and their nearest neighbors.

The properties of the trace lead tto for the following relationships:

Tr{Ai} = 0, i 6= j

Tr{AiAj} = 0, i 6= j

Tr{AiAjAk} = 0, i 6= j 6= k

Tr{A2
i } = Tr{I} = t , (2.24)

where t is the dimension of the matrix I (see Appendix A). The trace operation is

used to eliminate any term in the product that has an Ak,` operator that is not paired

with another Ak,` which has the same subscripts. Note that A1,2 = A1,2 since these

are associated with the same bond. All paired operators will reduce to I and then,

by the trace, to t.

This makes more sense with an example so consider a simple 1×2 lattice. As the

diagram to determine nearest neighbors is moved through the lattice (Fig. 6) while

taking the product the following relationships are developed.

The partition function for this case is, from Eq. (2.20),

Zmn = t−1Tr

{
2∏

k=1

Vk (x, z)

}
= t−1Tr

{
2∏

k=1

[
zkI + xk,`1

1/2Ak,`1 + xk,`2
1/2Ak,`2

]}
,

(2.25)

where mn = 2 and the y half-dimers have been excluded as the lattice has no vertical
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component. Taking the product gives

Zmn =t−1Tr

{(
z1I + x1,2

1/2A1,2

) (
z2I + x2,1

1/2A2,1

)}

= t−1Tr

{
z1z2I

2 + z1Ix2,1
1/2A2,1 + z2Ix1,2

1/2A1,2 + x1,2
1/2A1,2x2,1

1/2A2,1

}
,

(2.26)

where x1,2 = x2,1 and A1,2 = A2,1, since these correspond to the same bond. Then by

taking the trace the equation becomes

Zmn = t−1 [z1z2 (t) + x1,2 (t)] = z1z2 + x1,2. (2.27)

This reduced partition function correctly shows that the only ways to completely

fill this simple lattice are with either two monomers or with a single x-dimer. This

procedure works for larger lattices as well. Each non-vanishing term in the partition

function gives a possible lattice configuration. In general a term in the partition

function is of the form

(−1)pzk1zk2 ...zkqxkr,`rxks,`s ...yku,`uykv ,`v ...ykw,`wt, (2.28)

where p determines the parity. It is defined by the number of interchanges needed

to move all the like operators next each other so that they may reduce to I. Each

interchange creates a single negative sign.

Introducing the anticommuting operators works to eliminate unwanted cross

terms but has the unfortunate side effect that they might produce negative signs

in the terms in the partition function. To use this form of the partition function,

even parity is required in each term in the trace since none of the terms can be nega-

tive. If the parity can be proved to be always even then it can be said that Eq. (2.20)

is the correct partition function and will enumerate every possible combination of
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monomers and dimers on the lattice.
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CHAPTER 3

ENSURING EVEN PARITY

3.1 The Parity Problem

The parity of the expansion is determined by the order the factors appear in the

product since it is based on the interchange of Ak,` operators. This in turn depends

on the order that the lattice points are numbered. Under normal circumstances

one would usually number the lattice sites according to their Cartesian coordinates

(r, s). In Cartesian the first point would be at (0, 0) and r and s would increase as

r = 0, 1, 2, ..., n − 1 and s = 0, 1, 2, ...m − 1. The formula for lattice point k would

then be

k = sn+ r + 1, (3.1)

which results in the common numbering scheme where each row is labeled in increasing

order from left to right and bottom to top.

Some busy work with small lattices will show that this more obvious scheme

of numbering lattice points will not resolve the parity problem. Some signs remain

negative. Consider the 4× 4 matrix in Fig. 7. From Eq. (2.20) the partition function

for this case is

Fig. 7.: A simple square lattice with four points. Each row is numbered in the Cartesian style, left to right.
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Z2,2(x, y, z) =

t−1Tr

{
4∏

k=1

[
zkI + xk,`1

1/2Ak,`1 + xk,`2
1/2Ak,`2 + yk,`3

1/2Ak,`3 + yk,`4
1/2Ak,`4

]}
,

(3.2)

which expands as

Z2,2(x, y, z) =

t−1Tr

{(
z1I + x1,`1

1/2A1,`1 + x1,`2
1/2A1,`2 + y1,`3

1/2A1,`3 + y1,`4
1/2A1,`1

)
(
z2I + x2,`1

1/2A2,`1 + x2,`2
1/2A2,`2 + y2,`3

1/2A2,`3 + y2,`4
1/2A2,`1

)
(
z3I + x3,`1

1/2A3,`1 + x3,`2
1/2A3,`2 + y3,`3

1/2A3,`3 + y3,`4
1/2A3,`1

)
(
z4I + x4,`1

1/2A4,`1 + x4,`2
1/2A4,`2 + y4,`3

1/2A4,`3 + y4,`4
1/2A4,`1

)}
.

(3.3)

Then the diagram in Fig. 5 is superimposed over each point in the lattice to

determine the values of `1, `2, `3, and `4. It is important to note that if the points

outside of the 2× 2 lattice had been labelled they would be naturally eliminated by

not having paired operators in the trace. For simplicity, however, terms which have

subscripts that would be referencing points outside the lattice are simply set to zero.
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The result of applying Fig. 5 to the 2× 2 matrix is

Z2,2(x, y, z) = t−1Tr

{(
z1I + x1,2

1/2A1,2 + y1,3
1/2A1,3

)
(
z2I + x2,1

1/2A2,1 + y2,4
1/2A2,4

)
(
z3I + x3,4

1/2A3,4 + y3,1
1/2A3,1

)
(
z4I + x4,3

1/2A4,3 + y4,2
1/2A4,2

)}
.

(3.4)

Through the anticommutation laws described in Eq. (2.22) the Ak` operators will

eliminate all terms in which the operators are unpaired once the trace is taken. In the

next equation they have been canceled somewhat prematurely to make this product

small enough for demonstration purposes.

Z2,2(x, y, z) = t−1Tr

{(
z1z2z3z4I

4
)

+
(
z1z2I

2x3,4
1/2A3,4x4,3

1/2A4,3

)
+
(
z3z4I

2x1,2
1/2A1,2x2,1

1/2A2,1

)
+
(
z1z3I

2y2,4
1/2A2,4y4,2

1/2A4,2

)
+
(
z2z4I

2y1,3
1/2A1,3y3,1

1/2A3,1

)
+
(
x1,2

1/2A1,2x2,1
1/2A2,1x3,4

1/2A3,4x4,3
1/2A4,3

)
+
(
y1,3

1/2A1,3y2,4
1/2A2,4y3,1

1/2A3,1y4,2
1/2A4,2

)}
.

(3.5)

When doing these expansions, care must be taken to keep all the operators in

order. The operators can move through the x, y, and z factors with no problems, and

of course the identity operator can move anywhere, but moving an anticommuting

operator past an unlike anticommuting operator will create a negative sign. With

everything rearranged except the anticommuting operators, and with the powers of

16



1/2 combined this is

Z2,2(x, y, z) = t−1Tr

{(
z1z2z3z4I

4
)

+
(
z1z2I

2x3,4A3,4A4,3

)
+
(
z3z4I

2x1,2A1,2A2,1

)
+
(
z1z3I

2y2,4A2,4A4,2

)
+
(
z2z4I

2y1,3A1,3A3,1

)
+ (x1,2A1,2A2,1x3,4A3,4A4,3)

+ (y1,3y2,4A1,3A2,4A3,1A4,2)

}
.

(3.6)

The only term in which the operators need to be rearranged is the last term. All the

other terms have the operators paired. Substituting A2,4A3,1 = −A3,1A2,4 in the last

term gives

Z2,2(x, y, z) = t−1Tr

{(
z1z2z3z4I

4
)

+
(
z1z2I

2x3,4A3,4A4,3

)
+
(
z3z4I

2x1,2A1,2A2,1

)
+
(
z1z3I

2y2,4A2,4A4,2

)
+
(
z2z4I

2y1,3A1,3A3,1

)
+ (x1,2A1,2A2,1x3,4A3,4A4,3)

− (y1,3y2,4A1,3A3,1A2,4A4,2)

}
,

(3.7)

which creates a negative sign. The partition function can be reduced through the
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properties of the anticommuting operators to produce identity operators.

Z2,2(x, y, z) = t−1Tr

{
(z1z2z3z4I) + (z1z2x3,4I)

+ (z3z4x1,2I) + (z1z3y2,4I)

+ (z2z4y1,3I) + (x1,2A1,2I)

− (y1,3y2,4I)

}
,

(3.8)

and because the trace of I is t, the order of the matrix, and the trace is distributive

Z2,2(x, y, z) = (z1z2z3z4) + (z1z2x3,4)

+ (z3z4x1,2) + (z1z3y2,4)

+ (z2z4y1,3) + (x1,2x3,4)

− (y1,3y2,4) .

(3.9)

Each term here represents a possible configuration of monomers and dimers. For

example the fourth time says that the lattice can be filled by a monomers at points

1 and 3 and a y-dimer connecting points 2 and 4.

Unfornately, the final term has a negative sign in front of it, making this trace

unusable as a partition function. Kesteleyn solved this problem by affixing all y-

dimers lying on odd columns of the lattice with a negative sign [8]. Temperley noted,

in addition to Kasteleyn’s method, that one could take every other y-dimer to be of

opposite sign [9]. Fisher chose the more rigorous approach of proving that for a lattice

occupied only by dimers the parity must be even, and every term will be positive [7].

The method he used may be useful in expanding from dimers to longer polymers, and

so it is included here.

To move forward, an analogy is made to the one dimensional problem. A one

dimensional lattice can be occupied only by x-dimers and z monomers. If it were
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Fig. 8.: A possible lattice configuration for a 3× 4 lattice numbered in a zig-zag pattern.

occupied only by x-dimers, then it is trivial to prove that the parity is even since

every dimer occupies an even number of sites. Since y-dimers also occupy an even

number of sites, it seems a promising avenue to number the lattice points so that the

lattice can be “unfolded” into a one dimensional chain of lattice points.

What follows in this chapter is a proof that with a new numbering system even

parity can be assured for every lattice that is completely occupied only by dimers,

both in the x and y directions. Any monomers or holes may ruin the sign by the

fact that they are not enumerated with anticommuting operators. Unfortunately, for

the sake of parity, monomers must be excluded as a lattice element for now. This

solution is currently valid only when the lattice is completely filled with dimers.

3.2 A New Numbering System

To make a lattice that can be unfolded into a chain, every other row needs to be

numbered in the opposite direction as the previous row. Consider one configuration

of an example lattice that has every site occupied by a dimer, shown in Fig. 8. Here

the red lines are dimers. Note that every site is occupied by a dimer and no site can

have two dimers attached to it. This is called the close-packed limit z = 0.
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Fig. 9.: The one-dimensional array corresponding to unfolding the 3× 4 lattice in Fig. 8

into a one-dimensional chain.

The zig-zag numbering of points in Fig. 8 ensures that each lattice point has one

nearest neighbor that is one integer higher than it is. The lattice itself can now be

viewed as a chain which is bent to zig-zag its way upwards. In terms of the Cartesian

coordinates (r, s), shown in Fig. 8, if the lattice is placed so that the bottom left

corner is on (0, 0), then new definition of the k(r, s) for an m× n lattice is

k(r, s) =


sn+ r + 1, s even

sn+ n− r, s odd

, (3.10)

where r = 0, 1, 2, ..., n − 2, n − 1 and s = 0, 1, 2, ...,m − 2,m − 1 are the Cartesian

coordinates and n is the number of columns and m is the number of rows. This

numbering procedure causes all nonzero terms in the expansion of Eq. (2.20) to be

positive when like operators are paired. It is easy to check this for small lattices, but

a more detailed proof is required to continue.

For each term corresponding to given lattice configuration there will be N op-

erators in that term. This N must be equal to the number of lattice sites because

every bond that occupies two sites is indicated by two like operators. (e.g A1,8A8,1).

This can be seen in the terms of Eq. (3.7) that involve only dimers. These operators

and the bonds between them can be represented with a linear array of points, as seen

in Fig. 9 which is a representation of the lattice configuration of Fig. 8. This linear

array is analogous to “unfolding” the lattice into a linear chain.
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In Fig. 9, the arcs above the array connect points in the lattice in Fig. 8 that

are connected by dimers. These arcs are used to represent operators in the product

which share the same subscripts. Each of the points can be imagined as representing

the Ak,` operators. In this notation, k is the number of the current point and ` is the

number of the point to which it is connected. For example, the operator for the first

point in the array is the operator A1,8 since it is point 1 and the arc connects it to

point 8. Naturally the operator at point 8 is A8,1, which represents the other half of

the dimer that connects the points in Fig. 8. So long as the product in Eq. (2.20)

is taken carefully and in ascending order from 1 to mn, the order that the operators

appear in the terms of the trace will correspond to the order they appear in the array

in Fig. 9.

The gaps between sets of numbers are placeholders to indicate where, on the

original lattice, one row gives way to the next. The x-dimers from the original lattice

in Fig. 8 create arcs within rows. They will be called x-arcs. Similarly, y-dimers

create y-arcs, and they traverse the gaps between the sets of rows. In the limit where

z=0, every point on the lattice must be the end point of an arc.

It is important to note that some x-arcs or y-arcs that may seem possible, such

as a y-arc from point 1 to point 5 (called y(1, 5)) are precluded by the fact that the

lattice in Fig. 8 used to create the array representation can have no dimer connecting

point 1 to point 5. One must make sure that any array that is drawn represents a

real lattice configuration.

From Fig. 9, it can be also seen that the arcs may intersect each other. The

total number of intersections will be defined as f . It might be possible to stretch

arcs around to change f . For example the arc from point 3 to 4 (x(3, 4)) could be

stretched way up above y(2, 7) and y(1, 8). This stretching would necessarily always

create or eliminate an even number of intersections and will not change the parity of
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Fig. 10.: The trivial completely paired array where the number of intersections, f , is zero.

f . With this in mind it is best to always draw the arcs to minimize the number of

intersections.

Taking the trace requires that all of the operators with the same subscripts are

next to each other in the terms in the product of Eq. (3.7). Once they are paired, they

can be reduce to the identity operator and survive the trace operation. Interchanging

two unlike operators in the product corresponds to a similar interchange of points

in our linear array. A change in points involving unlike operators will change the

parity of f by creating or destroying a single intersection. This can be seen in the

interchange of points 6 and 7. Swapping like operators that are already paired does

nothing in the product and nothing in the array. An exchange of points 3 and 4 does

not change the number of intersections in Fig. 9. Thus f , the array parity, and p, the

parity of a term in the product, are related to each other. If one changes so does the

other.

It is simple to determine that, in addition to being linked, the two parities must

also have the same same sign. If all the operators in the array are paired to begin

with then f is zero and the parity is even. Since this requires no interchange of

points in the array to reorder the like operators we can conclude that all the similar

operators are already paired with their neighbors. Therefore p is even in the product

term corresponding to that array. So if f is even so too will p be even.

When talking about interchanging points in the array things can become rather

confusing. It is imperative to make sure that the initial array is set up correctly when

compared to the lattice or product term it corresponds to. After that consider the
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Fig. 11.: The first intermediate step of pairing off the lattice in Fig. 9 interchanging points until the arc representing
the operator pair A1,8A8,1 spans array points 1 and 2.

array to be its own entity. When an interchange of points is made it is literally only

an interchange of the points on the array, not the numbers labelling the array. With

this in mind the arc going from label 1 to label 2 in the array might not represent

A1,2A2,1 after interchanges are made. As an example the first step in pairing all

the operators in Fig. 9 might be to move the point at the array label 8 all the way

to the left next to array label 1 since the arc shows that those two points are like

operators and should be paired off. This takes six interchanges of points to achieve

and the result is show in Fig. 11. Note that this intermediate step to pairing off all of

the operators is an array that does not represent a valid lattice dimer configuration

because a dimer connection from 3 to 8 in Fig. 8 is not possible. This is common and

not a problem so long as the array is eventually put back into a valid configuration.

Since an interchange of points will either create or destroy a single intersection

(unless the points are already paired off by being next to each other) the parity of

f will change once for each interchange. Therefore any array that can be created

from the completely paired array via an even number of interchanges must have an

even parity and vice versa. Therefore to prove that p is always even for the close

packed limit where z = 0 we must only prove that f is always even for every array

configuration created by a valid lattice or product term in the trace.

23



Fig. 12.: An array with arcs drawn from the s = 0 row to the s = 1 row of Fig. 9.

Fig. 13.: The addition of arcs from the s = 1 row to the s = 2 row causes intersections

3.3 Proving f and p are Even

To prove that f is always even the number of intersections of intersections that

the arcs make above the array must be considered. The array in Fig. 9 will be used

to determine the behavior of the arcs before generalizing to an array of arbitrary size.

It should be noted that x-arcs can create no intersections as can be seen in Fig. 9.

In Fig. 12 the arcs from the s = 0 to s = 1 rows are shown. As is quickly evident,

these arcs can create no intersections on their own. When arcs are added from the

s = 1 row to the s = 2 row it can be seen in Fig 13 that new y-arcs will intersect each

of the previously drawn arcs at most once. As before, no intersections are created by

x-arcs.

From Fig. 13 it can be said that intersections are formed when arcs going from row

s = 0 to row s = 1 cross over those y-arcs from s = 1 to s = 2 and that intersections

are only formed when one of the arcs has an endpoint which lies between the ends of

a different arc. For example the arc from 5 to 6 has an endpoint which is between

the endpoints of the arc from 1 to 8. This is the condition under which intersections

are created.

In general intersections are created when arcs going from row s−1 to row s cross
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Fig. 14.: The arbitrary row 2u and its neighboring rows.

Fig. 15.: Arcs drawn for pairs of rows where the even row is the lower of the pair.

over those y-arcs from s to s+1. To generalize this to a lattice and array of arbitrary

size consider the row s = 2u in the arbitrarily large array of points show in Fig. 14.

The row 2u is chosen because the following explanation of how to generate this

kind of array relies on pairing adjacent rows. It will be useful to know which of the

rows in the pair is even and which is odd. To continue the rows in the array are paired

off so that every even row is the lowest row in the pairs of adjacent rows. Then the

appropriate arcs are added to connect the like operators in the pairs of rows as seen

in Fig. 15. Adding these arcs to the array will create no intersections at all in the

array just as none were created in Fig. 12.

Next the rows are re-paired so that the odd rows are the lowest in the pair. New

dashed arcs are then added. These will be the arcs that create intersections. The

intersections are highlighted in red in Fig. 16.

It was noted about Fig. 12 that when the array is drawn to minimize the number

of intersections that the most a single y-arc can intersect another single y-arc is once.

Assume all of the solid arcs are already drawn on the array. If it can be proven that

no dashed arcs, when added to the array, are intersected by an odd number of other

arcs, then f must be even. This will first be demonstrated using a single dimer on a
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Fig. 16.: The addition of arcs for pairs of rows where the lower row is odd. The intersection points are colored red.

Fig. 17.: A lattice with a single dimer for demonstration purposes.

simple lattice (Fig. 17).

The dimer on the demonstration lattice goes from an s=odd row to an s=even

row just as the dashed arcs did when added to the arbitrary array near the point

2u. When this lattice configuration is unfolded into an array it has the form seen in

Fig. 18.

Because intersections could only be formed in this example by arcs that have a

single endpoint between the points 6 and 11 on the array, the key to ensuring even

parity rests on showing that the number of these y-arcs is even.

Fig. 18.: An array with only one dimer.
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When considering the lattice configuration note that a vertical dimer always has

an even number of points between its start point and end point when taken in counting

order. This is because the two points are both the same distance from the left hand

edge of the lattice. The array, then, will have an even number of points between one

end of a y-arc and the other end. This idea can be generalize to the array of arbitrary

size. Recall the numbering scheme for lattice points from the previous section.

k(r, s) =


sn+ r + 1, s even

sn+ n− r, s odd

, (3.11)

With this it can be seen that points in the row 2u will be

k(r, 2u) = 2un+ r + 1. (3.12)

Those in row 2u− 1 are defined as

k(r, 2u) = 2un+ r + 1. (3.13)

The points in 2u+ 1 are

k(r, 2u) = 2un+ r + 1. (3.14)

Consider an arbitrary y−arc from row 2u−1 to row 2u. This arc is necessarily going

from the point 2un− r to the point 2un+ r+ 1. This can be seen in lattice notation

in Fig. 19.

The number of intermediate points spanned by the arc in the array is equal to

twice the distance the dimer in Fig. 19 is from the edge. Thus there are 2r intermediate

points, an even number, between the beginning and the end of any arbitrary y-arc

from row 2u − 1 to row 2u. Each of these 2r points must be an endpoint of an arc

because the array is completely filled with dimers.
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Fig. 19.: A single dimer connecting two points in an arbitrarily sized array.

There are three different species of arcs. There are x-arcs which occupy two

points in a single row and create no intersections.

The second species are “internal” y-arcs. These are arcs that span the same pair

of rows as the arbitrary y-arc. These arcs will arc either over or under the arc which

is being considered. If they arc under they take up two points between the endpoints

of the arbitrary arc. If they arc over then they take up no intermediate points points.

They will never intersect the arbitrary y-arc which is under consideration. These are

the other dotted lines which span two rows in Fig. 16.

The last species are “external” y-arcs. These arcs have one endpoint which lies

on the pair of rows and one end point which is in an adjacent row, either 2u − 2 or

2u+ 1. These are the only species that will create intersections. They will create an

intersection when their sole endpoint in rows 2u− 1 or 2u lies in the 2r intermediate

points bounded by the endpoints of our arbitrary arc. These are solid lines in Fig. 16.

Since the arbitrary y-arc can intersect each of these external arcs only once the

proof relies on there being an even number of external arcs that have an endpoint on

the 2r intermediate points. Because the lattice must be completely filled this can be

shown by subtracting all the other possible arcs that could occupy these 2r points.

The other two species, x-arcs and internal y-arcs, both occupy even numbers of
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points. Only those which appear under the arbitrary y-arc need to be considered.

Each of these w arcs made up of the combined number of x-arcs and internal y-arcs

will occupy 2w points. Since 2r − 2w is necessarily an even number the remaining

number of points is even. Each of these remaining points must be occupied by an

external y-arc which passes through an arbitrary y-arc only once.

An even number of y-arcs each creating single intersections with other y-arcs

creates an even number of intersections. Therefore f , and by extension, p, are even

and Eq. (2.20) is an appropriate state function for the system of dimers on a plane

lattice.

Note again that this solution is only valid for the limit in which z = 0 and the

lattice is completely filled.
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CHAPTER 4

THE PFAFFIAN

The partition function for this system can be expressed as the trace of a product of

operators. Hurst and Green pointed out that any such trace of homogeneous operators

of this form can be reduced to a Pfaffian [10]. A Pfaffian is a type of determinant that

is taken on the upper right hand triangle of an antisymmetric matrix[11]. One of the

most important properties of a Pfaffian is that its square is equal to the determinant

of the corresponding antisymmetric matrix.

D = P 2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a1,2 a1,3 a1,4 . . . a1,2h

−a1,2 0 a2,3 a2,4 . . . a2,2h

−a1,3 −a2,3 0 a3,4 . . . a3,2h

−a1,4 −a2,4 −a3,4 0
. . .

...

...
...

...
. . . . . . a2h−1,2h

−a1,2h −a2,2h −a3,2h . . . a2h−1,2h 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.1)

The Pfaffian itself is written as P = \ar,s| . A Pfaffian of order 2h is a triangular

array of h(2h-1) elements.

P =

|a1,2 a1,3 a1,4 . . . a1,2h

a2,3 a2,4 . . . a2,2h

a3,4 . . . a3,2h

. . .
...

a2h−1,2h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.2)

30



This is the upper right hand triangle of the determinant in Eq. (4.1). The Pfaffian

expansion by the first row is just like a regular determinant with the notable caveat

that both the rth row and column and the sth row and column are eliminated. Some

basic Pfaffian manipulation follows as an introduction.

Consider a Pfaffian of order 2h = 6,

P =

|a1,2 a1,3 a1,4 a1,5 a1,6

a2,3 a2,4 a2,5 a2,6

a3,4 a3,5 a3,6

a4,5 a4,6

a5,6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.3)

To expand by this by the first row, the element ar,s = a1,2 is chosen and the rth row

and column and the sth row and column are eliminated. Note the the columns and

rows in the Pfaffian are labelled according to the numbering of the columns and rows

of the corresponding antisymmetrix matrix so that the element a1,2 is actually in the

second column, s = 2. Elimination in this manner creates a minor which is then

multipled by a1,2 to give the term

a1,2 ×

|a3,4 a3,5 a3,6

a4,5 a4,6

a5,6

∣∣∣∣∣∣∣∣∣∣
. (4.4)

Every element with r, s = 1 and r, s = 2 in the original Pfaffian has been eliminated

to create the resulting minor.

In continuing the expansion recall that in a regular matrix determinant every

other term gets a negative sign. The Pfaffian has the same alternating sign in its
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expansion. The full expansion of first row terms with their minors is

P = a1,2 ×

|a3,4 a3,5 a3,6

a4,5 a4,6

a5,6

∣∣∣∣∣∣∣∣∣∣
− a1,3 ×

|a2,4 a2,5 a2,6

a4,5 a4,6

a5,6

∣∣∣∣∣∣∣∣∣∣
+ a1,4 ×

|a2,3 a2,5 a2,6

a3,5 a3,6

a5,6

∣∣∣∣∣∣∣∣∣∣
− a1,5 ×

|a2,3 a2,4 a2,6

a3,4 a3,6

a4,6

∣∣∣∣∣∣∣∣∣∣
+ a1,6 ×

|a2,3 a2,4 a2,5

a3,4 a3,5

a4,5

∣∣∣∣∣∣∣∣∣∣

(4.5)

It can be more easily seen in the full expansion that both the rth row and column

and the sth row and column are eliminated to create each minor.

To complete the Pfaffian each of these minors is expanded by their first rows

yielding

P =a1,2[a3,4a5,6 − a3,5a4,6 + a3,6a4,5]− a1,3[a2,4a5,6 − a2,5a4,6 + a2,6a4,5]

+ a1,4[a2,3a5,6 − a2,5a3,6 + a2,6a3,5]− a1,5[a2,3a4,6 − a2,4a3,6 + a2,6a3,4]

+ a1,6[a2,3a4,5 − a2,4a3,5 + a2,5a3,4]

(4.6)

Simply distributing gives

P =a1,2a3,4a5,6 − a1,2a3,5a4,6 + a1,2a3,6a4,5 − a1,3a2,4a5,6 + a1,3a2,5a4,6 − a1,3a2,6a4,5

+ a1,4a2,3a5,6 − a1,4a2,5a3,6 + a1,4a2,6a3,5 − a1,5a2,3a4,6 + a1,5a2,4a3,6 − a1,5a2,6a3,4

+ a1,6a2,3a4,5 − a1,6a2,4a3,5 + a1,6a2,5a3,4

(4.7)

This is the full expansion of the Pfaffian. Squaring it will give the determinant of the

original matrix.

The Pfaffian has been historically useful because it acts on only half of the ma-

trix. This coupled with the double elimination of rows and columns in the expansion
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ensures that each matrix element appears at most once in each term of the full ex-

pansion. It is, then, an excellent tool for counting and will save on some of the more

complicated manipulations that were required by Kac and Ward [12].

4.1 The Pfaffian as a Sum

There is a way to determine the Pfaffian without having to write down matrices

and determing their minors. For a Pfaffian of order 2h, the formula is

P =
∑

permutations

(−1)p(a`1,`2)(a`3,`4)...(a`2h−1,`2h) (4.8)

The sum is over the (2h− 1)! ! = (2h− 1)(2h− 3)× ...× 5× 3× 1 permutations that

satisfy the following two relationships:

`1 < `2, `3 < `4, ..., `2h− 1 < `2h, (4.9)

and

`1 < `3 < `5 < ... < `2h− 1, (4.10)

where `1 6= `2 6= `3... 6= `2h.

The parity, (−1)p, is found by examining the order of the subscripts. If they

are imagined to be in list form then the number of interchanges to get them into

increasing numerical order directly determines whether p is even or odd. As a proof

of concept the Pfaffian of order 2h = 6 from Eq. (4.3) is used.

To do the sum in Eq. (4.8) `1 is set to equal 1. Note that because of the in-

equalities in Eqs. (4.9) and (4.10) that `1 can never be greater than 1. The simplest

place to start working out the Pfaffian expansion is with the term in which all the

subscripts are in counting order. The term is a1,2a3,4a5,6. To find all of the terms that

begin with a1,2 the other subscripts need to be swapped around without violating the
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inequalites in Eqs. (4.9) and (4.10). The second term is −a1,2a3,5a4,6. The negative

sign is inserted because it takes and odd number of exchanges in the order of the sub-

scripts to produce this term. The last possible term starting with a1,2 is a1,2a3,6a4,5

which is positive because it takes an even number of exchanges to produce.

The three terms produced above are the first three terms in the Pfaffian expansion

in Eq. (4.7). This process is repeated with a1,3 and a1,4 as the first elements. There

should be (2h− 1)! ! = 5! !, or 15, terms in the expansion.

This has been a brief introduction to the Pfaffian. For the purposes of this paper

the most important things about a Pfaffian are that each element appears at most

once in a term and that the square of the Pfaffian is equal to the determinant of the

corresponding antisymmetric matrix. This is commonly written as

P 2 = D = |dr,s|, (4.11)

where dr,s is an element of the matrix D and

dr,r = 0, dr,s = −ds,r. (4.12)

Fisher used the notation ar,s = (r, s) which might be less cumbersome. However since

(r, s) is later used as the definition of an anticommutator ambiguity is avoided here

by maintaining the notation ar,s.
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CHAPTER 5

A TRACE OF OPERATORS EXPRESSED AS A PFAFFIAN

From Eq. (2.20) the partition function is expressed as the product of a number of

factors, each of which is an inhomogeneous combination of anticommuting operators.

In Chapter 4, it was said that Hurst and Green claimed a product of homogeneous

operators of this form can be reduced to a Pfaffian [10]. In this section it will be

proved that the inhomogeneous set of operators in Eq. (2.20) has the same property.

The Pfaffian is more convenient because it has fewer terms in its expansion than are

obtained by doing the product in Eq. (2.20) directly. In fact the number of terms in

Eq. (2.20) grows as 5mn because each factor in the product expansion is a sum that

has a monomer term and four half dimer terms.

The basic formula relating a Pfaffian to the trace of a product of operators Ur is

t−1Tr

{
2h∏
r=1

Ur

}
=

∖
υr,0υs,0 −

N∑
i=1

(−1)r+sυr,iυs,i

∣∣∣∣∣, (5.1)

where

Ur = υr,0I +
N∑
i=1

υr,iBi, (5.2)

and where the Bi follow the anticommuting laws in Eq. (2.22). Note the simliarity

between Ur and Vk = zkI + xk,`1
1/2Ak,`1 + xk,`2

1/2Ak,`2 + yk,`3
1/2Ak,`3 + yk,`4

1/2Ak,`4 .

Hurst and Green used a similar equation but assumed that υr,0 = 0 for all r.

Eventually the same will be done in this paper since the υr,0 is related to the monomer

term in Eq. (5.1), which is currently required to be zero for the sake of parity. The

Hurst and Green paper offered no formal proof of this relationship and instead stated

that it could be shown through demonstration that it gave the correct terms for their
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Pfaffian[10].

Fisher proved the relationship in Eq. (5.1) and, for the sake of completeness, that

proof is shown in this chapter. It is important to note that Fisher’s sum ranged from

i = 1 to i = 4ν in his expression that is equivalent to Eq. (5.1). If the same 4ν used

in Sec. 2.3 to label the Ai bonds then Eq. (5.1) might lead to some nonsensical rela-

tionships. It is possible that through some manner of cancellation this is the correct

index but here the index N is used until the appropriate index can be determined.

To prove that Eq. (5.1) is true, all of the operators in the trace must be turned

into homogeneous operators. Homogeneous in this case is the requirement that each

term in Ur be of the same order. Or, in other words, each term in Ur must be

multiplied by the same kind of operator. This will allow operators to be moved past

each other in the product more easily.

5.1 Complementary Operators and Their Properties

To make Ur homogeneous a set of operators that are complementary to the Bi

are introdcued. They are defined by

C0 =
N∏
j=1

Bj, (5.3)

and by

Cj = iBjC0 = −iC0Bj, (i2 = 1). (5.4)

These Cj will follow similar laws of anticommutation as Eq. (2.22) and will be in the

form

CiCj + CjCi = 2δi,j, (5.5)

and

C0
2 = I (5.6)
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These relationships must be proved true, however first the correct index on the sum

is found. The full expansion of Eq. (5.6) is

C0
2 = B1B2B3B4B5B6B7B8...BNB1B2B3B4B5B6B7B8...BN . (5.7)

To find the correct index, N , the operators must be moved past each other in the

product until all like operators are next to each other. The second B1 operator must

move N − 1 times to the left to be next to the first B1. B2 must then move N − 2

times, and so on for all the operators until the last two move left one time and then

zero times.

If N is odd, then the terms with odd subscripts must always move an even

number of times to get to the appropriate place (assuming the second set of operators

are moved left in ascending order of their subscripts every time). However those

with an even subscript must move an odd number of times. Each even subscript,

therefore, creates one negative sign. To ensure that C0
2 is positive, the number of

even subscripts in C0 must also be even, thus creating an even number of negative

signs which subsequently cancel. To ensure that the number of even subscripts is

even, N must be even.

If N is even, when moving the operators to their correct places in ascending

numerical order the odd numbered subscripts take an odd number of interchanges.

The even subscripts take an even number. Since C0
2 must be positive, there must

be an even number of odd subscripts in the expansion. Therefore N must be double

even, N = 4n, where n is an integer and is different from the number of columns in

the lattice, n. It appears this is where Fisher’s index of 4ν was derived. His ν appears

to be unrelated to the number of Ai operators that were used earlier to label every

37



bond site. Eq. (5.1) can now be written

t−1Tr

{
2h∏
r=1

Ur

}
=

∖
υr,0υs,0 −

4n∑
i=1

(−1)r+sυr,iυs,i

∣∣∣∣∣, (5.8)

where

Ur = υr,0I +
4n∑
i=1

υr,iBi. (5.9)

Limiting N in this manner is not a drawback in this situation because Vk will have

at most four nearest neighbor sites under the sum.

Now that the correct index is known it would be useful to make sure the anti-

commuting relationships are consistent. To prove Eq. (5.5) is true the definition of

Cj is plugged into it. Eq. (5.5) now becomes

(iBiC0)(iBjC0) + (iBjC0)(iBiC0) = 2δi,j, (5.10)

where i2 = −1. Multiplying together the factors of i gives

− (BiC0)(BjC0)− (BjC0)(BiC0) = 2δi,j, (5.11)

To prove that the relationship is true, the C0 should be moved to be next to each other

in order to create an identity operator. Then the relationship will be the same as

Eq. (2.22) since the Bi were defined as having the same properties as the Ai operators.

To do this, one must consider how the C0 and Bi operators move past each other.

For instance, the multiplication of a single Bj operator with a C0 is given by

BjC0 = Bj

4n∏
i=1

Bi = BjB1B2B3B4B5B6B7B8...Bj...B4n−1B4n (5.12)

For an even number of terms in C0, it takes any single Bj an even number of in-

terchanges to pass all the way through C0. Each of those interchanges will create a

negative sign except the interchange where Bj must pass through itself. This results
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in an odd number, 4n − 1, of negative signs, and so interchanging a Bj with a C0

must give a sign change. Incidentally, this proves Eq. (5.4) is correct. Returning to

Eq. (5.11), BjC0 = −C0Bj is substituted into the first term and BiC0 = −C0Bi is

substituted into the secong giving,

(BiC0)(C0Bj) + (BjC0)(C0Bi) = 2δi,j. (5.13)

After using the identity property, C2
0 = I, this turns into

(BiBj) + (BjBi) = 2δi,j, (5.14)

which is exactly the communation that there Bi were defined as following when they

were introduced in Eq. 5.2.

5.2 Operators with Homogeneity

With these complementary Ci operators, the Ui operators can be put into a

homogeneous form. This again follows from Fisher’s work but he notes that his proof

is an extension of the work done by Caianiell and Fubini on Dirac spurs[13]. The

product of operators is written as{
2h∏
r=1

Ur

}
= (U1C0)(C0U2)(U3C0)(C0U4)...(U2h−1C0)(C0U2h) =

{
2h∏
r=1

Qr

}
, (5.15)

where I = C0 has been inserted between each pair of operators. Each of the UrC0 or

C0Ur will become a single homogeneous operator named Qr. All the terms with odd

r have C0 to the right of Ur and terms with even r have C0 to the left.

Each term with r odd looks like

Ur=odd = (υr=odd,0I +
4n∑
i=1

υr=odd,iBi)C0. (5.16)
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Distributing C0 gives

Ur=odd = υr=odd,0C0 +
4n∑
i=1

υr=odd,iBiC0, (5.17)

and using the relationship in Eq. (5.4) yields

Ur=odd = υr=odd,0C0 +
4n∑
i=1

υr=odd,i(−1)iCi. (5.18)

This form is homogeneous as defined above as each team is multiplied by an operator

of the same order. By the same logic the terms with r even are

Ur=even = C0υr=even,0 +
4n∑
i=1

iCiυr=even,i. (5.19)

The even and odd versions can be rearranged and combined so long as no operators

pass through each other. This gives for r even or odd,

Ur = υr,0C0 +
4n∑
i=1

(−1)riυr,iCi. (5.20)

This is the homogeneous linear combination of operators that will be defined as Qr.

With a change of indices in the sum, Qr is

Qr =
4n∑
i=0

qr,iCi, (5.21)

where the coefficients are

qr,0 = υr,0, qr,j = i(−1)rυr,j. (5.22)

The Qr operators will follow a different anticommutation paradigm. It can be

found by setting up the anticommutation relation

QrQs +QsQr =
4n∑
i=0

qr,iCi

4n∑
j=0

qs,jCj +
4n∑
j=0

qs,jCj

4n∑
i=0

qr,iCi. (5.23)
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After some rearranging and factoring the sums this becomes

QrQs +QsQr =
4n∑
i=0

4n∑
j=0

qr,iqs,j(CiCj + CjCi). (5.24)

By Eq. (5.5), the operator term on the right can be written in terms of a Kronecker

delta,

QrQs +QsQr =
4n∑
i=0

4n∑
j=0

qr,iqs,j2δij. (5.25)

Evaluating the sum over j with the Kronecker delta gives

QrQs +QsQr = 2
4n∑
i=0

qr,iqs,i (5.26)

The notation can be made a little more compact by defining the anticommutator

(r, s):

(r, s) =
4n∑
i=0

qr,iqs,i, (5.27)

and finally the anticommutation relationship for the Qr operators is

QrQs +QsQr = 2(r, s). (5.28)

5.3 The Trace of the Product Gives the Same Terms as the Pfaffian

Now that each operator Ur has been manipulated into the homogeneous form Qr,

the product of operators can be shown to expand with the same rules as the Pfaffian

expansion in Sec. 4.1. The product of operators is

2h∏
r=1

Qr = Q1Q2Q3Q4Q5...Q2h. (5.29)

This product is under the trace in Eq. (5.1) and the trace is invariant under cyclic

permutations of products of matrices. With this in mind the next step will be to cycle

Q1 from the beginning of this product to the end of the product to determine how
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this new product acts under the trace operation. Each interchange of operators will

be accompanied by the anticommutation relationship givien in Eq. (5.28). Changing

the order of Q1 and Q2 in Eq. (5.29) gives

Q1Q2Q3Q4Q5...Q2h = (−1)Q2Q1Q3Q4Q5...Q2h + 2(1, 2)Q3Q4Q5...Q2h, (5.30)

which was found by manipulating Eq. (5.28) into the form Q1Q2 = −Q2Q1 + 2(1, 2)

and then appending the rest of the product over Qr to the right hand side of the

anticommutation relation.

The term on the left hand side is simply the product of all the Qr. The first term

on the right has Q1 displaced one place and this term can be written as

(−1)Q2Q1

2h∏
r=3

Qr = (−1)Q2Q1Q3Q4Q5...Q2h. (5.31)

Using the same anticommutation rule to exchange the positions of Q1 and Q3 gives

(−1)Q2Q1

2h∏
r=3

Qr = (−1)[(−1)Q2Q3Q1Q4Q5...Q2h + 2(1, 3)Q2Q4Q5...Q2h]. (5.32)

Plugging this back into Eq. (5.30) yields

2h∏
r=1

Qr = (−1)2Q2Q3Q1Q4Q5...Q2h + 2(1, 2)Q3Q4Q5...Q2h

− 2(1, 3)Q2Q4Q5...Q2h.

(5.33)

A pattern begins to appear here. The first term on the right shows the correct

position of Q1 as it moves through the product and it is multiplied by −1 for each

interchange. Each new interchange creates an anticommutator, as seen in the other

terms on the right hand side. The commutators that have been already created are

multiplied by the products of all the Qr and Qs that are not included in that (r, s)

anticommutator. The signs of the anticommutator terms are determined by whether
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s is odd or even. Therefore, after the 2h − 1 interchanges needed to move Q1 from

one end of the product to the other, the equation can be expressed in terms of the

sum over all the commutators (1, s) as,

2h∏
r=1

Qr = (−1)2h−1Q2Q3Q4Q5...Q2hQ1

+ 2
2h∑
s=2

(−1)s(1, s)Q2Q3...Qs−1Qs+1...Q2h.

(5.34)

The trace can now be taken on both sides of this equation. Since the trace is in-

variant under cyclic interchange, Q1 can be moved back to the front of the product.

Additionally 2h− 1 is always odd. Therefore the trace of the product of Qr is

Tr

{
2h∏
r=1

Qr

}
= Tr

{
−Q1Q2Q3Q4Q5...Q2h

}

+ Tr

{
2

2h∑
s=2

(−1)s(1, s)Q2Q3...Qs−1Qs+1...Q2h

}
.

(5.35)

Moving the first term on the right hand side to the left hand side will cancel out the

factor of 2. The sum over s and the sign factor can be pulled out of the trace on the

right hand side to give

Tr

{
2h∏
r=1

Qr

}
=

2h∑
s=2

(−1)s(1, s)Tr

{
Q2Q3...Qs−1Qs+1...Q2h

}
. (5.36)

At this point the process of carrying Q1 all the way through the product has

pulled out the anticommutator (1, s) on the right hand side, but the left hand side

has remained the same product. The sum on the right will contain every possible

anticommutator (1, s) as s goes from 2 to 2h. If the elements of the Pfaffian are

of the form ar,s = (r, s) then the anticommutator (1, s), where 2 ≤ s ≤ 2h, looks

like the first row of the Pfaffian. Even the negative sign appears in the correct place

with every other term being negative. However this is not a sufficient proof yet. The
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process needs to be iterated on the remaining product on the right hand side. There

are two cases. Either s = 2, which is exactly the same process, or s > 2 in which case

there is a gap in the product and the sign of the result needs to be investigated. If

the part of the right hand side of Eq. (5.36) that is in the sum is defined as

O(s) = (−1)s(1, s)Tr

{
Q2Q3...Qs−1Qs+1...Q2h

}
, (5.37)

then for s = 2

O(2) = (1, 2)(−1)2Tr

{
Q3Q4...Q2h

}
. (5.38)

Moving Q3 through the entire product on the right hand side will give a similar result

the movement of Q1 through the entire product. After this operation the product on

the right hand side produces the anticommutator (t, u). Then O(2) becomes

O(2) = (1, 2)
2h∑
u=4

(−1)u(3, u)Tr

{
Q4Q5...Qu−1Qu+1...Q2h

}
. (5.39)

This can be plugged back into the full product to give

Tr

{
2h∏
r=1

Qr

}
= (1, 2)

2h∑
u=4

(−1)u(3, u)Tr

{
Q4Q5...Qu−1Qu+1...Q2h

}
. (5.40)

It is obvious here that if the lowest possible value is always chosen to fill in the

anticommutator then this product will produce the term (1, 2)(3, 4)...(2h−1, 2h) and

that the term will be positive because the second argument of each anticommutator

is even.

The expansion of the product is more interesting when s > 2 because of the gap

this produces in the middle of the product on the right hand side which produces a

change in the sign. When u > s the sign will be as above where the anticommutator

earned a (−1)u in front of it. However when u < s the sign will be (−1)u+1 to account
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for the missing operator in the Qs place that was removed by the first anticommutator.

The product expansion of the two cases combined can be written as

Tr

{
2h∏
r=1

Qr

}
=

2h∑
s=2

(−1)s(1, s)

×


2h∑
u=3

(−1)u(t, u) (u > s)

2h∑
u=3

(−1)u+1(t, u) (u < s)

× Tr

{
Qτ ...Qu−1Qu+1...Qs−1Qs+1...Q2h

}
,

(5.41)

where Qτ is used as a placeholder representing the lowest value yet to be taken by

an anticommutator and where the positions of the missing operators in the product,

Qu and Qs might not appear in the order shown here. Though it is not shown here,

when s > 2 it must be true that t = 2 because the Qτ is necessarily Q2 in that case.

Additionally when s = 2 then t = 3. Note this this t is not the same t that was

used to define the size of Ai anticommuting operators. The first argument of each

anticommutator is determined by the first operator in the product used to produce

that anticommutator based on how the process of pulling commutators out is defined.

The next anticommutator which can be pulled out of the product on the right

hand side is called (v, w). It adds further complications to the signs because, while v

takes the value of τ , w can greater than both s and u, or between them, or less than

both. Each of these will have a different parity term given respectively by (−1)w,

(−1)w+1, (−1)w+2. Because of the complications caused by tracking all these signs,

the problem of the sign convention is left to the next section. For the rest of this

section the Sign (Sgn) function will be used to prevent the formulae from becoming

45



overloaded with multiple cases for each possible sign. Thus

Tr

{
2h∏
r=1

Qr

}
=

2h∑
s=2

Sgn(s)(1, s)
2h∑
u=3
u6=s,t

Sgn(u)(t, u)
2h∑
w=4

w 6=s,t,u,v

Sgn(w)(v, w)

× Tr

{
Qτ ...Qu−1Qu+1...Qw−1Qw+1...Qs−1Qs+1...Q2h

}
,

(5.42)

where, again, the missing operators in the product might not occur in the order above.

This is the same pattern used to define the Pfaffian expansion in Sec. 4.1, which can

be seen from the expansion of this product. In each case the first argument in each

anticommutator must be larger than the first term in the previous anticommutator,

r < t < v..., since it is determined by the lowest remaining value in the product, Qτ .

The second argument in each anticommutator must be larger than the first argument

in that same anticommutator, r < s, t < u, v < w. These are the same rules used

in the Pfaffian expansion. Commutators can continue to be pulled out of the product

in this manner until only two Qr remain in the product, which will be named QA and

QΩ. The remaining trace on the right hand side is

Tr

{
QAQΩ

}
. (5.43)

These final two operators are handled by breaking them into their coefficients to give

Tr

{
QAQΩ

}
= Tr

{
4n∑
i=0

qA,iCi

4n∑
j=0

qΩ,jCj

}
, (5.44)

which can be expanded even further using the definition of Cj in Eq. (5.4) yielding

Tr

{
QAQΩ

}
= Tr

{
4n∑
i=0

qA,iiBiC0

4n∑
j=0

qΩ,jiBjC0

}
. (5.45)
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Again, using the properties of Eq. (5.4), this can be rearranged in the form

Tr

{
QAQΩ

}
= Tr

{
− (i2)

4n∑
i=0

4n∑
j=0

qA,iqΩ,jBiC0C0Bj

}
, (5.46)

which, since C2
0 = I, reduces to

Tr

{
QAQΩ

}
=

4n∑
i=0

4n∑
j=0

qA,iqΩ,jTr

{
BiBj

}
, (5.47)

The anticommutation rules in Eq. (2.24) state that Tr

{
BiBj

}
= 0 when i 6= j.

Otherwise it is equal to t, the dimension of the identity matrix I = B2
j . The trace on

the right hand side can be replaced with a Kronecker delta.

Tr

{
QAQΩ

}
=

4n∑
i=0

4n∑
j=0

qA,iqΩ,jδijt. (5.48)

Taking the sum over j and moving the t to the other side gives

t−1Tr

{
QAQΩ

}
=

4n∑
i=0

qA,iqΩ,i. (5.49)

The right hand side is exactly the definition given for the anticommutator in

Eq. (5.27). Therefore

t−1Tr

{
QAQΩ

}
= (qA,i, qΩ,i), (5.50)

where A is greater than the first argument of every anticommutator that was already

removed from the sum, and where Ω is greater that A. It is important for the next

section that these last two operators contribute no sign to the term that includes

them since they are removed without swapping. This completes the proof that the

expansion of the product of operators gives the same terms as the expansion of the

Pfaffian. The next section will deal with making sure both expansions give the same

sign.
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5.4 The Sign in the Product

If, in the Pfaffian, the elements ar,s are defined as

ar,s = (r, s), (5.51)

then, as was shown in Sec. 5.3 the trace in Eq. (5.1) has the same terms as the

Pfaffian expansion of (r, s). If the signs of the terms in the trace can be determined

in the same manner as the signs in the Pfaffian expansion, then that is sufficient

proof of the relationship given in Eq. (5.1). In the Pfaffian, the sign of each term was

determined by determining the number of interchanges it would take to put all of the

subscripts in counting order. The subscripts of the elements match the arguments of

the commutators (r, s), and so it must be determined whether the sign of the terms

can be found by interchanging the arguments of the commutators until they are in

counting order. This section will show that this is the case. Though the exponents

do not directly count the number of interchanges required to achieve counting order,

they do completely account for the parity that would be required for each argument,

in a term of this expansion consisting of a product of commutators, to be put into

counting order.

As can be seen in Eq. (5.41), the sign of a particular term is determined by

(−1)s ×


(−1)u, (u > s)

(−1)u+1, (u < s)

. (5.52)
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This relationship continues into the (v, w) anticommutator with the sign given by

(−1)s×


(−1)u, (u > s)

(−1)u+1, (u < s)

×


(−1)w, (w > s, u)

(−1)w+1, (s < w < u) or (u < w < s)

(−1)w+2, (w < s, u)

. (5.53)

The sign of each new anticommutator depends on how many of the previous com-

mutators contain a number in the second argument which is higher than the second

argument in the new anticommutator. This can be seen in the remaining trace in

Eq. (5.41), which is shown below,

Tr

{
Qτ ...Qu−1Qu+1...Qw−1Qw+1...Qs−1Qs+1...Q2h

}
. (5.54)

If a new anticommutator is taken out, the first argument will be Qτ . The second ar-

gument can be any operator whose subscript follows the rules expanding the product,

or the rules for expanding the Pfaffian. Note again that the order in which the gaps

appear in the product above is arbitrary for the moment.

The first step is to show that the term with all of the arguments in counting

order has even parity because this is true for the Pfaffian term with all the subscripts

in counting order. The term is

(1, 2)(3, 4)(5, 6)...(2h− 1, 2h), (5.55)

and the parity is definitely even. The sign contributed by each anticommutator comes

from the s of the anticommutator and each s is an even number when the term is

completely ordered. The positions of the numbers in the completely paired term will

be called the “correct” positions for this section. It takes an even number of swaps

to move a number from a position of one parity to a position of like parity. It takes
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an odd number of interchanges to move to a position of opposite parity. This means

that any term which can be reduced to, or created from, the “correct” term via an

even number of interchanges must have even parity and be a positive. Of course if an

odd number of interchanges is required, then the term is negative. This is the same

rule used in the Pfaffian expansion.

Since the sign of each term is determined by the argument in the s place of

each anticommutator, it must be shown that counting order can be achieved only

through moving the numbers in the s positions to their correct positions. This is

easy to realize since the products are created using the same inequality rules as the

Pfaffian. Therefore all of the arguments in r positions will already be in ascending

order. Consider

(1, 5)(2, 4)(3, 6)(7, 8), (5.56)

which has r arguments 1, 2, 3, and 7. This restriction on r means the only arguments

that could possibly not be in ascending order are those in s positions. Moving all of

the numbers in the s positions to their correct positions will necessarily force all of

the r to be correct because of the inequality rules.

Now consider the general term

(r, s)(t, u)(v, w)...(2h− 1, 2h). (5.57)

The sign contributed by the first anticommutator is (−1)s. This checks whether the

number s is odd or even. If it is even, it will take an even number of interchanges to

move it to its correct spot. If odd, then it will take an odd number of swaps. This is

the correct relationship because in the fully correct term the numbers occupying the

places s, u, w, ..., 2h must all be even.

The second anticommutator has two possible signs. If u > s then the sign is
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(−1)u. This is because u is not shifted any positions in the general term by moving s

through it. This corresponds to a product of Q’s that has no gap that Qu must pass

through. If s > u then the sign is (−1)u+1. The plus one comes from the fact to the

move everything to the correct position s must pass through u. This will naturally

shift u one place to the left. Therefore if u were even, it would take an odd number

of interchanges is move it to the correct spot, and so the total sign contribution of

the anticommutator would be odd, and vice versa.

The same logic can be applied to w. It will either be shifted zero, one, or two

places in Eq. (5.57) by numbers that are greater than it being to the left of it in the

general product of anticommutators. This is sufficient to show that even though the

sign terms do not track how many total interchanges are required, they do correctly

track the parity required by considering whether the number in question is even or

odd and then determining how the other numbers shift it around as they move.

Two things should be noted about this section. The first is that while each of

the arguments is being interchanged in order to arrange the arguments into counting

order they might create a term that is not possible with the inequality rules. Just as

with the shifting of the arcs in Sec. 3.2, this is permissible so long as the starting term

was valid and the ending term is valid. The second is that the exchanges between

arguments were done by starting at the left of each term and moving the numbers

which were not in counting order to the right until they were in what would be

considered their “correct” positions in counting order. However, this is not necessary

since there are an even number of arguments in each term. The sign should end up

the same either way. Starting at the left and moving arguments to the right was the

simplest method, and the most appropriate, given how the commutators and their

signs were produced.

Now that both the sign and the terms themselves are proven to the same as the
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Pfaffian expansion, it can be said that

t−1Tr

{
2h∏
r=1

Qr

}
= \(r, s)|, (5.58)

where (r, s) is the anticommutator in Eq. (5.27). If Eqs. (5.27) and (5.22) are sub-

stituted into Eq. (5.58) along the definitions of all of the commutators given Eqs.

(5.21), (5.3), and (5.4) it can be seen that Eq. (5.1) is true.
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CHAPTER 6

THE PARTITION FUNCTION AS A PFAFFIAN

In Chapter 5 it was seen that the partition function can be expressed as a Pfaffian.

The partition function for a lattice completely covered only in dimers is

Zmn = t−1Tr

{
mn∏
k=1

Vk

}

= t−1Tr

{
mn∏
k=1

[
xk,`1

1/2Ak,`1 + xk,`2
1/2Ak,`2 + yk,`3

1/2Ak,`3 + yk,`4
1/2Ak,`4

]}
,

(6.1)

where `1 to `4 represent the nearest neighbors of the point k, as in Fig 5. The zkI term

has be dropped for the sake of parity, which means that there will be no monomers

occupying the lattice. This form of the partition function is large and unwieldy. In

a 3 × 4 lattice the product is taken from k = 1 to k = 12 and will give a total of

412 = 16, 777, 216 terms, which must then be paired and eliminated in the trace. By

contrast the Pfaffian related to this term will have (2h− 1)! ! = (11)! ! = 10395 terms.

Part of the purpose behind using the Pfaffian is to take advantage of this drastic

reduction in order of magnitude when determining possible states of a lattice.

6.1 Equating the General Trace to the Trace in the State Function

With the general case for the relationship between the Pfaffian and the trace of

a product of anticommuting operators proven, the next step is to see what the form

the Pfaffian takes when applied to the specific set of operators used in this paper. In
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general it can be stated that

Zmn =t−1Tr

{
mn∏
k=1

[
xk,`1

1/2Ak,`1 + xk,`2
1/2Ak,`2 + yk,`3

1/2Ak,`3 + yk,`4
1/2Ak,`4

]}

= t−1Tr

{
2h∏
r=1

υr,0I +
4n∑
i=1

υr,iBi

}
=

∖
υr,0υs,0 −

4n∑
i=1

(−1)r+sυr,iυs,i

∣∣∣∣∣,
(6.2)

where υr,0 = 0 for all r by the fact that the state function has no monomers. To

make these have more similar forms, a generalized symbol for the half-bonds in the

state functions is introduced. χk,`j represents the bonds xk,`1
1/2, xk,`2

1/2, yk,`3
1/2, and

yk,`41
1/2. Then the state function becomes

Zmn = t−1Tr

{
mn∏
k=1

4∑
j=1

χk,`jAk,`i

}

= t−1Tr

{
2h∏
r=1

4n∑
i=1

υr,iBi

}
=

∖
−

4n∑
i=1

(−1)r+sυr,iυs,i

∣∣∣∣∣.
(6.3)

The two traces are starting to look similar so a discussion of the Pfaffian is post-

poned. It is immediately obvious that r must equal k and that 2h must equal mn.

Though it was not stated explicitely before, mn must be even because the lattice is

to be complately filled with dimers. The idea that mn is even is reinforced by the

properties of the Pfaffian. The Pfaffian must have an even order, 2h, because it is

defined as the upper right triangle of an antisymmetric matrix. The determinant of

an antisymmetrix matrix vanishes if the number of rows and columns is odd. Since

the Pfaffian has one fewer rows than the matrix, the Pfaffian is only defined if there

are an odd number of columns in it (2h− 1). The order of the Pfaffian is determined

by the related antisymmetrix matrix. The formula for the partition function can now

be written

Zmn = t−1Tr

{
mn∏
k=1

4∑
j=1

χk,`jAk,`i

}
= t−1Tr

{
mn∏
k=1

4n∑
i=1

υr,iBi

}
, (6.4)
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where the Bi are defined as following the same anticommutation rules as Ai. To make

the general form on the right equal the partition function on the left, the sum over

all bonds,
∑4n

i=1 υr,iBi, must be converted to a sum only over nearest neighbors. This

is done be defining i = k`i and setting n = 1. This would cause the υ to take the

subscripts υk,k,`i . The double labeling in k is unnecessary and therefore dropped. The

formula can now be written

Zmn = t−1Tr

{
mn∏
k=1

4∑
j=1

χk,`jAk,`i

}
= t−1Tr

{
mn∏
k=1

4∑
i=1

υk,`iAk,`i

}
. (6.5)

It can clearly be seen that υk,`i must be equal to χk,`j . The two traces are now equal.

It must now be determined how the changes affect the form in the Pfaffian.

6.2 Equating the State Function to the Pfaffian

The transformations applied to the general trace in the previous section can be

be applied directly to the Pfaffian∖
−

4n∑
i=1

(−1)r+sυr,iυs,i

∣∣∣∣∣. (6.6)

The main difficulty lies in converting the sum over all bonds, which would include

bonds that dimers can not possibly occupy, to a sum over nearest neighbors. The

Pfaffian lacks the anticommuting operators which paired to give 0 or 1 in the trace,

depending on whether the bond is even possible.

The problem can be demonstrated quickly. If the changes were applied directly,

then the Pfaffian would have the form∖
−

4∑
i=1

(−1)k+`υk,`iυ`,`i

∣∣∣∣∣, (6.7)

where s = `, and ` is any point on the lattice greater than k because s > r was

defined in the Pfaffian expansion. Immediately there is a problem. The `i are the
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nearest neighbors to k, and so the second υ is indicating a bond that goes from any

point ` to the nearest neighbors of k.

Even if the `i are considered to be the nearest neighbors to the subscript with

which they are paired, this form fails. Imagine a simple lattice with two points. The

Pfaffian would be ∖
−

2∑
i=1

(−1)1+2lυ1,`iυ2,`i

∣∣∣∣∣. (6.8)

To be correct, the Pfaffian must return the term x1,2 just as the trace would. However

there is no way for υ1,`i to equal υ1,2 while υ2,`i equals υ2,1 (recall that x1,2
1/2 = x2,1

1/2),

because Figs. 5 and 6 shows that the υ2,`i should pick the half bond to its own right.

It will not be pointing from 2 to 1.

To fix this the definition of the anticommutator (r, s) must be slightly modified.

Setting up the same anticommuting rules from before gives

QrQs +QsQr =
4n∑
i=0

qr,iCi

4n∑
j=0

qs,jCj +
4n∑
j=0

qs,jCj

4n∑
i=0

qr,iCi. (6.9)

Now the changes that were made earlier in the traces must also be made to this

anticommuting rule. Specifically r = k, s = ` are substituted in and the sums should

be taken over i, while the arguments of the sums undergo the change i = k`i to make

the terms correspond to nearest neighbors. Substituting gives

QkQ` +Q`Qk =
4∑
i=0

qk,`iCk`i

4∑
j=0

q`,`jC`,`j +
4∑
j=0

q`,`jC`,`j

4∑
i=0

qk,`iCk,`i , (6.10)

where, as before, anything that was labeled with the same subscript twice has had

the extra subscript eliminated. Like terms can be factored giving

QkQ` +Q`Qk =
4∑
i=0

4∑
j=0

qk,`iq`,`j(Ck`iC`,`j + C`,`jCk,`i). (6.11)

To get to Eq. (5.26), a Kronecker delta δi,j was used to eliminate one of the sums.
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This is not the proper way to proceed when the sum must be over nearest neighbors.

Instead a term is required that will give 1 when k`i = k`j and zero otherwise (the

order of the subscripts doesn’t matter). Instead of the Kronecker delta, a new symbol

is defined.

(Ck`iC`,`j + C`,`jCk,`i) = 2Γk,`, (6.12)

where Γk,` is equal to 1 if a dimer bond could exist between the points k and ` and

is 0 otherwise. Then

QkQ` +Q`Qk = 2(k, `), (6.13)

where the anticommutator (k, `) is

(k, `) =
4∑
i=1

4∑
j=0

qk,`iq`,`jΓk,`. (6.14)

The anticommutator can then be returned to the form

(k, `) = −
4∑
i=1

4∑
j=0

(−1)k+`υk,`iυ`,`iΓk,`. (6.15)

It can be seen by investigating small lattices that the factor (−1)k+` must be −1.

Dimer bonds can only exist from an odd point to an even point on the lattice or vice

versa. Therefore the anticommutator is

(k, `) = Γk,`

4∑
i=1

4∑
j=0

υk,`iυ`,`i . (6.16)

Because of the Γk,` factor, no matter what order the two sums are evaluated, the only

nonzero will be those for which υk,`i = υ`,`i . The anticommutator must therefore be

equivalent to

(k, `) = Γk,`υk,`
2. (6.17)
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The partition function can now be correctly written as a Pfaffian with the form

Zmn = t−1Tr

{
mn∏
k=1

4∑
j=1

χk,`jAk,`i

}
=

∖
Γk,`υk,`

2

∣∣∣∣∣, (6.18)

where υk,` = χk,`j can be substituted to give

Zmn = t−1Tr

{
mn∏
k=1

4∑
j=1

χk,`jAk,`i

}
=

∖
Γk,`χk,`j

2

∣∣∣∣∣. (6.19)

It can be said that χk,`j = xk,`ξl,` + yk,`ηk,`, where ξk,` and ηk,` are 1 or 0 depending

on whether an x or y bond exists. This is possible because one part of the sum must

always be zero. Therefore

Zmn = t−1Tr

{
mn∏
k=1

4∑
j=1

χk,`jAk,`i

}
=

∖
(xk,`ξl,` + yk,`ηk,`)

∣∣∣∣∣. (6.20)

To appreciate that is is the correct form consider a simple one dimensional lattice

with four points, all of which are oriented in the x direction. The Pfaffian expansion

of (k, `) is

\(k, `)|= (1, 2)(3, 4)− (1, 3)(2, 4) + (1, 4)(2, 3), (6.21)

where it can be quickly seen that the last two terms will not survive the Γk,` operation.

The first term gives x1,2x3,4 which is the only possible filled lattice for this particular

one dimensional case.

One of the interesting properties of the combination of the Pfaffian and the zig-

zag pattern for numbering lattice rows is that every term in the Pfaffian expansion

that is negative will be eliminated by Γk,`. This is necessary for the Pfaffian to be a

state function. This property further reduces the number of terms that need to be

investigated by about half. If the same 3× 4 lattice example at the beginning of this

chapter is used, the terms are further reduced from 10395 terms to (2h−1)!!−1
2

= 5198.
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CHAPTER 7

EVALUATION OF THE DETERMINANT

In Ch. 4 it was stated that one of the most important properties of the Pfaffian is

that its square is equal to the determinant of the corresponding antisymmetric matrix,

specifically

P 2 = |D|= \ar,s|. (7.1)

Matrix manipulation is harder to do in the Pfaffian form, and so the Pfaffian will be

used to build an antisymmetric matrix. The new matrix, D, will then be manipulated

to find a general form for the state function via

Zmn
2 = P 2 = |D|. (7.2)

The state function is given as

Zmn = \(k, `)|, (7.3)
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whose form will vary slightly. The Pfaffian will generally take a form similar to

|x y

x y
. . . ...

x y

y

x y

x y
. . . ...

x y

y

x y

x y
. . . ...

x y

y

x

x
. . .

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.4)

where the blank spaces in the matrix are filled with zeroes. This is the Pfaffian that

would be created by making each term the anticommutator (k, `) and then doing the

Γk,` operation. The subscripts have been removed from the x and y elements since

the partition function only cares about the numbers of x and y and not their position

on the lattice. If they need to be recovered they are simply the element discriptors

in the matrix corresponding to this Pfaffian.
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Fig. 20.: A 4× 3 lattice

7.1 The Formulation of the Block Matrix

To better understand the placement of the x and y elements in the Pfaffian and

corresponding matrix consider the lattice in Fig. 20. The state function in Pfaffian

form for this lattice is

|x y

x y

y

x y

x y

y

x y

x y

y

x

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.5)
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where all the blanks are filled with zeroes which have been left out to ease visibility.

The x’s appear only down the diagonal edge of the matrix. There will be n − 1 x’s

between each y because the n horizontal points in the lattice can be connected by

n− 1 bonds. A y appears on the diagonal when the numbers in the counting scheme

jump up to the next row of the lattice. This then repeats down the diagonal. Each y

on the diagonal is part of a set of y’s extending counter to the diagonal. The number

of y’s in each set is equal to m − 1, which is the total number of possible vertical

bonds in a lattice column.

A Pfaffian can be quickly constructed for any lattice by filling in only those

places in the Pfaffian where a bond could exist with the appropriate x or y element.

Completing the Pfaffian determinant will give the state function of that lattice. This

is fine to do by hand for smaller lattices but for very large lattices a more general

form is required. To find this requires finding the general form of the determinant of

the antisymmetrix matrix corresponding with the Pfaffian. As an example the matrix
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associated with the above Pfaffian is

Z2
mn =



0 x y

−x 0 x y

−x 0 y

−y 0 x y

−y −x 0 x y

−y −x 0 y

−y 0 x y

−y −x 0 x y

−y −x 0 y

−y 0 x

−y −x 0 x

−y −x 0



. (7.6)

This matix can be written as a tridiagonal block matrix of the form

Z2
mn =



X Y

−Y X Y

−Y X Y

−Y X


, (7.7)

where

X =

 0 x 0

−x 0 x

0 −x 0

 , (7.8)

and where

Y =

0 0 y

0 y 0

y 0 0

 . (7.9)
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The general case for the block matrix, called D, is

D =



X Y

−Y X
. . .

. . . . . . Y

−Y X


, (7.10)

where

X =



0 x

−x 0
. . .

. . . . . . x

−x 0


, (7.11)

and where

Y =

 y
...

y

 . (7.12)

The block matrix D is an m ×m block matrix composed of blocks which are n × n

in size.

7.2 Finding the Eigenvectors and Eigenvalues

The matrix D is a tridiagonal antisymmetric matrix. These kind of matrices

generally all have some eigenvectors and eigenvalues, and much of the following could

be avoided with some clever shortcuts. However for the sake of completeness each of

the eigenvalues and eigenvectors will be worked out. For a tridiagonal matrix it is

usually easier to find the eigenvectors before the eigenvalues because the eigenvalue

equations will appear in the form of a difference equation. The eigenvectors are those

vectors U that satisfy

DU = λU, (7.13)
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where U is a vector with elements u` with ` going from 1 to m. So

DU =



X Y

−Y X
. . .

. . . . . . Y

−Y X Y

−Y X





u1

...

u`
...

um


=



Xu1 + Y u2

...

−Y u`−1 +Xu` + Y u`+1

...− Y um−1 +Xum


. (7.14)

The eigenvectors can be found by examining the rows of Eq. (7.14), which are given

by

Y u`+1 +Xu` − Y u`−1 = λu`, (7.15)

with the boundary conditions

u0 = um+1 = 0. (7.16)

A difference equation of this sort has solutions in the form eiθ` and e−iθ`. An

adjustment should be made to the form e−iθ` to ease the math later. It is better to

specify that, since ` is always positive, that the negative must come from the angular

argument of the exponent. The eigenvectors can thus be written in the form

u` = Aeiθ` +Bei(π−θ)`. (7.17)

By using the boundary conditions, B can be found in terms of A, where

u0 = 0 = A+B, (7.18)

and so,

B = −A. (7.19)

The eigenvector can now be written as

u` = A[eiθ` − ei(π−θ)`]. (7.20)
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At this point either of the two terms in u` could be used to find the eigenvalues.

Naturally it is easiest to use the first term as it is less complicated. It is plugged into

the difference equation above to give

Y eiθ(`+1) +Xeiθ` − Y eiθ(`−1) = λeiθ`, (7.21)

where the A has already been cancelled from both sides. To solve for λ both sides

are divided by eiθ` to give

Y eiθ +X − Y e−iθ = λ. (7.22)

This is easily reduced to

λ = X + 2iY sin θ, (7.23)

using the relationship between exponential and trig functions.

The second boundary condition places limits on θ. It is um+1 = 0, which gives

um+1 = A[eiθ(m+1)l − ei(π−θ)(m+1)] = 0. (7.24)

After dividing by A and moving the second term across the equal sign this becomes

eiθ(m+1) = ei(π−θ)(m+1). (7.25)

Then natural log can be taken on both sides to giving

iθ(m+ 1) = i(π − θ)(m+ 1) + 2πiq (7.26)

where q = 1, 2, 3, ...,m. The new term 2πiq is added because the natural log is many-

valued in the complex plane. This new term counts the number of full rotations about

the origin in the complex plane. In general ew+2iπ = ew. Making sure this term is

included guarantees that every possible eigenvector is represented. From this point
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it is simple to solve for θ. It is renamed θq as a reminder that it is many-valued.

θq =
π

2
+

πq

m+ 1
. (7.27)

These are the values of θ that are solutions to the difference equation according to

the boundary conditions. The eigenvectors can now be written as

u`q = A[eiθq` − ei(π−θq)`], (7.28)

with eigenvalues given by

λq = X + 2iY sin θq. (7.29)

To determine the value of A the eigenvectors uq,` must be normalized. This is most

easily done after a change in form. First the expanded form of θq is plugged into the

eigenvectors giving

u`q = A[ei(
π
2

+ πq
m+1

)` − ei(π−(π
2

+ πq
m+1

))`], (7.30)

which has exponents that can be split up into

u`q = A[e
iπ`
2 e

iπq`
m+1

` − e
iπ`
2 e−

iπq`
m+1 ]. (7.31)

The term e
iπ`
2 can be factored out. The remaining difference in exponentials is related

to the sine function. The form of the eigenvectors is now

u`q = Ae
iπ`
2 [2i sin

πq`

m+ 1
]. (7.32)

Euler’s formula reveals that e
iπ`
2 is equal to i` which gives

u`q = 2Ai`+1 sin
πq`

m+ 1
. (7.33)

This form is simple to normalize. It is done through the usual method of normalizing
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via complex conjugates:
m∑
`=1

u∗`qu`q = 1. (7.34)

The values of u`q∗ and u`q can be plugged in producing

m∑
`=1

(
2A(−i`+1) sin

πq`

m+ 1

)(
2A(i)`+1 sin

πq`

m+ 1

)
= 1, (7.35)

which reduces to
m∑
`=1

4|A|2(−i)`+1(i)`+1 sin2 πq`

m+ 1
= 1. (7.36)

It can be easily proved that (−i)`+1(i)`+1 always equals 1. Therefore

4|A|2
m∑
`=1

sin2 πq`

m+ 1
= 1. (7.37)

The half-angle identity for sin2 x can be used to manipulate this further. It gives

2|A|2
m∑
`=1

(
1− cos

2πq`

m+ 1

)
= 1. (7.38)

In general if a sum is taken over 1 it will give

N∑
n=1

1 = N. (7.39)

Using this in the normalization yields

2|A|2
[
m−

m∑
`=1

cos

(
2πq`

m+ 1

)]
= 1. (7.40)

Mathematica was used to evaluate the remaining sum over cosines; it is equal to −1.

Thus

2|A|2(m+ 1) = 1, (7.41)

and solving for A easily gives

|A|= 1

2

√
2

m+ 1
, (7.42)
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after rationalizing 1√
2
. Assuming A to be real, the normalized eigenvectors are

u`q =

√
2

m+ 1
i`+1 sin

πq`

m+ 1
, (7.43)

and the eigenvalues associated with these eigenvectors are given by

λq = X + 2iY sin θq, (7.44)

where θq = π
2

+ πq
m+1

and q goes from 1 to m.

7.3 Block Diagonalizing the Matrix D

To reduce the difficulty in taking the determinant of D it is necessary to use the

eigenvectors to complete the diagonalization. This can be done through the unitary

transformation

U†DU = D̄, (7.45)

where U† is the conjugate transpose of U and D̄ is the diagonalized matrix. The ma-

trix U is composed of the elements u`q with ` increasing downwards and q increasing

to the right so that

U =



u11 . . . u1q . . . u1m

...
. . .

u`1 u`=q,`=q
...

. . .

um1 umm


. (7.46)

The conjugate transponse is found by reflecting U across its main diagonal and then

taking the complex conjugate of every element. The math can be check but here a

shortcut is taken. It is known that when diagonalizing a matrix with its eigenvectors
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the diagonal will have the eigenvalues corresponding to those eigenvectors.

D̄ =



X + 2iY sin(θ1)

X + 2iY sin(θ2)

X + 2iY sin(θ3)

. . .

X + 2iY sin(θm)


.

(7.47)

The state function now takes the form

Zmn
2 = |D|= |D̄|=

m∏
q=1

Dq (7.48)

where

Dq = X + 2iY sin(θq), (7.49)

is an n× n matrix because both X and Y are n× n.

7.4 Changing the Form of Dq

The block diagonal matrix D̄ has elements Dq where each Dq has the form

Dq =



0 x 2i sin(θq)y

−x 0 x 2i sin(θq)y

−x . . . ...

... . . . x

2i sin(θq)y −x 0 x

2i sin(θq)y −x 0


. (7.50)

This form is still hard to work with. It would be better to diagonalize X. The

process of finding the eigenvectors and eigenvalues is exactly the same as the process

of diagonlizing D with the exception that the diagonal is filled with zeros. However
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applying the unitary transformation is tricky because whatever actions are performed

on X must also be performed on 2iY sin(θq) because they are both part of Dq.

The normalized eigenvectors of X are

ukr =

√
2

n+ 1
ik+1 sin

πrk

n+ 1
, (7.51)

where n is the number of rows or columns in X and where k and r are analogous to

the ` and q, respectively, from the eigenvector uq`. These eigenvectors were found in

the same way the eigenvectors for D were found. Similar boundary conidtions apply:

u0r = un+1,r = 0. The eigenvalues of X are

λr = 2ix sin(φr), (7.52)

where

φr =
π

2
+

πr

n+ 1
. (7.53)

Now X is diagonlized by the same type of unitary transform

V †XV = X̄, (7.54)

where X̄ is a diagonal matrix with its eigenvectors down the diagonal. the matrix V

is made up of the elements ukr and looks like

V =



u11 . . . u1r . . . u1n

...
. . .

uk1 uk=r,k=r

...
. . .

un1 unn


. (7.55)

The same unitary transformation that diagonalizes X must be applied to the

matrix Y . The transform is V †2i sin(θq)Y V = Ȳ , where Ȳ is the transformed matrix.
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Written out in matrix form, this transform is
u∗11 . . . u∗n1

...
. . .

u∗1n u∗nn

 2i sin(θq)

 y
...

y



u11 . . . u1n

...
. . .

un1 unn

 = Ȳ (7.56)

The first thing to do is to factor out 2iy sin(θq) and divide it to the other side giving

Ȳ

2iy sin θq
=


u∗11 . . . u∗n1

...
. . .

u∗1n u∗nn


 1

...

1



u11 . . . u1n

...
. . .

un1 unn

 . (7.57)

The antidiagonal matrix of all ones on the right hand side will act to create a mirror

image of any matrix it is multiplied by. If multiplied by a matrix that precedes it

then it will reflect that matrix horizontially across. When operating on a matrix to

the right of it that matrix is flipped vertically. The equation can now be written

Ȳ

2iy sin θq
=


u∗11 . . . u∗n1

...
. . .

u∗1n u∗nn



un1 unn

...
...

u11 . . . u1n

 , (7.58)

where

ukr =

√
2

n+ 1
ik+1 sin

πrk

n+ 1
. (7.59)

The expansion of Eq. (7.58) is large, and so only the first term in the resulting matrix

is considered, which will be called t11, where tαβ is an element in the matrix Ȳ
2iy sin θq

.

This first element is

t11 = u∗11un1 + u∗21un−1,1 + u∗31un−2,1 + ...+ u∗n1u11. (7.60)
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The second element in the first row will be the term

t12 = u∗11un2 + u∗21un−1,2 + u∗31un−2,2 + ...+ u∗n1u12. (7.61)

From these the pattern for a general element can be seen. It can be written as

tr,r′ =
n∑
k=1

u∗kruk′r′ =
2

n+ 1

n∑
k=1

(−i)k+1 sin

(
πrk

n+ 1

)
(i)k

′+1 sin

(
πr′k′

n+ 1

)
, (7.62)

where the unconjugated matrix has been given prime indices to distinguish between

the two sets of variables. The terms k and k′ are related through

k′ = n− k + 1, (7.63)

which can be determined by examining the terms in some resulting tr,r′ matrices in

Mathematica. Thus tr,r′ can be written

tr,r′ =
2

n+ 1

n∑
k=1

(−i)k+1 sin

(
πrk

n+ 1

)
(i)n−k+1+1 sin

(
πr′(n− k + 1)

n+ 1

)
. (7.64)

Further investigation of some small matrices will reveal that r and r′ are not only

variables but also indicate the position of the element in the resulting tr,r′ matrix.

They will be renamed as r = α and r′ = β, since they can now be said to label

elements in the resulting matrix. From this a general element is

tαβ =
2

n+ 1

n∑
k=1

(−i)k+1 sin

(
παk

n+ 1

)
(i)n−k+1′+1 sin

(
πβ(n− k + 1)

n+ 1

)
. (7.65)

The constant can be factored out of the sum to give the form

tαβ =
2in+3

n+ 1

n∑
k=1

(−1)k+1 sin

(
παk

n+ 1

)
sin

(
πβ(n+ 1− k)

n+ 1

)
. (7.66)
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7.5 The General Form of tαβ

When investigating small lattices with terms in this form using Mathematica,

it can be seen that all the terms are zero except those that lie on the antidiagonal

from the bottom left of the matrix to the upper right. To show that this is true

requires further manipulation from the form above. First the product of sines should

be turned into a sum of cosines via the identity sinu sin v = 1
2
[cos(u−v)−cos(u+v)].

This gives

tαβ =
in+3

n+ 1

n∑
k=1

{
(−1)k+1

[
cos

(
παk

n+ 1
− πβ(n+ 1− k)

n+ 1

)
− cos

(
παk

n+ 1
+
πβ(n+ 1− k)

n+ 1

)]}
,

(7.67)

which can be put into exponential form as

tαβ =
in+3

n+ 1
Re

[
n∑
k=1

{
(−1)k+1

(
e
i(παk−πβ(n+1−k))

n+1 − e
i(παk+πβ(n+1−k))

n+1

)}]
, (7.68)

where Re indicates that that the real part of the sum is required so that Re [eix] =

Re [cos(x) + i sin(x)] = cos(x). Because β has to be a whole number eiπβ = e−iπβ =

cos(πβ) = (−1)β and a factor of e±
πβ(n+1)
n+1 can be pulled out of each exponential in

the form of (−1)β.

tαβ =
in+3

n+ 1
Re

[
n∑
k=1

{
(−1)k+1(−1)β

(
e
iπαk+iπβk

n+1 − e
iπαk−iπβk

n+1

)}]
, (7.69)

A factor of (−1)k is now moved into the exponentials. The sign terms are then

factored of the sum and a matrix element is now

tαβ =
in+3

n+ 1
(−1)(−1)βRe

[
n∑
k=1

{(
−e

iπα+iπβ
n+1

)k
−
(
−e

iπα−iπβ
n+1

)k}]
, (7.70)
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The form of the exponentials are very nearly geometric progressions, which can be

solved using Eq. (26) in Dwight which is given below [14].

n∑
k=1

rk−1 =
rn − 1

r − 1
. (7.71)

To manipulate the exponentials in the elements into the correct form a single expo-

nential from the product of k exponentials is factored out giving

tαβ =
in+3

n+ 1
(−1)(−1)βRe

[(
−e

iπα+iπβ
n+1

) n∑
k=1

(
−e

iπα+iπβ
n+1

)k−1

−
(
−e

iπα−iπβ
n+1

) n∑
k=1

(
−e

iπα−iπβ
n+1

)k−1
]
.

(7.72)

The terms in the sum are transformed using the Dwight relationship and this becomes

tαβ =
in+3

n+ 1
(−1)β+1Re

(−e iπα+iπβn+1

) (−e iπα+iπβn+1

)n
− 1(

−e
iπα+iπβ
n+1

)
− 1

−
(
−e

iπα−iπβ
n+1

) (−e iπα−iπβn+1

)n
− 1(

−e
iπα−iπβ
n+1

)
− 1

 .
(7.73)

Distributing the exponentials in each term will cause the first exponential in each

numerator contain n+1
n+1

and reduce to siimpler exponentials as

tαβ =
in+3

n+ 1
(−1)β+1Re

(−1)n+1
(
eiπα+iπβ

)
+ e

iπα+iπβ
n+1(

−e
iπα+iπβ
n+1

)
− 1

−
(−1)n+1

(
eiπα−iπβ

)
+ e

iπα−iπβ
n+1(

−e
iπα−iπβ
n+1

)
− 1

 .
(7.74)

By Euler’s Formula the first term in each numerator reduces to (−1)α+β+n+1 and

(−1)α−β+n+1 respectively, and pulling a minus sign out of the denominator of each

term gives

tαβ =
in+3

n+ 1
(−1)β+1Re

[
−(−1)α+β+n+1 + e

iπ(α+β)
n+1

1 + e
iπα+iπβ
n+1

+
(−1)α−β+n+1 + e

iπ(α−β)
n+1

1 + e
iπα−iπβ
n+1

]
.

(7.75)

The denominator of the first term in the brackets is discontinuous at α+ β = n+ 1,

and so this geometric expansion can not be solved for instances when α+ β = n+ 1.
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Those instances will be in the next section.

Moving forward from here depends on whether the exponents of the sign terms

inside the Re operation are odd or even. If α + β is even then α − β must also be

even so both terms inside the square brackets have the same parity in the first term

in their numerators. When α+ β + n+ 1 and α− β + n+ 1 are both even, it is easy

to see that tαβ reduces to

tαβ =
in+3

n+ 1
(−1)β+1Re [(−1)− (−1)] = 0. (7.76)

When α + β + n + 1 and α − β + n + 1 are both odd the situation is more

complicated. The first terms in each of the numerators equal −1, and the expression

simplifies to the form

tαβ =
in+3

n+ 1
(−1)β+1Re

[
−e

iπ(α+β)
n+1 − 1

e
iπ(α+β)
n+1 + 1

+
e
iπ(α−β)
n+1 − 1

e
iπ(α−β)
n+1 + 1

]
. (7.77)

From here the numerators and denominators are close to being sines and cosines.

The factor e−
iπ(α+β)
2(n+1) is multiplied both the numerator and denominator of the first

exponential term, and e−
iπ(α−β)
2(n+1) is multiplied on the top and bottom of the second

term. This is not an uncommon trick and multiplying by these factors gives

tαβ =
in+3

n+ 1
(−1)β+1Re

[
−e

iπ(α+β)
2(n+1) − e−

iπ(α+β)
2(n+1)

e
iπ(α+β)
2(n+1) + e−

iπ(α+β)
2(n+1)

+
e
iπ(α−β)
2(n+1) − e−

iπ(α−β)
2(n+1)

e
iπ(α−β)
2(n+1) + e−

iπ(α−β)
2(n+1)

]
. (7.78)

Now both terms in brackets have a sine in the numerator and a cosine in the denom-

inator. Since eix − e−ix = 2i sinx and eix + e−ix = 2 cos x, tαβ is

tαβ =
in+3

n+ 1
(−1)β+1Re

−2i sin
(

(α+β)π
2(n+1)

)
2 cos

(
(α+β)π
2(n+1)

) +
2i sin

(
(α−β)π
2(n+1)

)
2 cos

(
(α−β)π
2(n+1)

)
 . (7.79)

Because each term inside the Re operation is purely imaginary this is identically 0.

Therefore the matrix Ȳ
2iy sin θq

will be zero everywhere except those elements where
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α + β = n + 1. These elements in the matrix could not be determined through this

method because they cause a singularity in a denominator. They will be determined

in the next secion

7.6 Finding tαβ When α = β

To show the behavior of the elements of tαβ when α = β, one must backtrack to

the general form

(tαβ)α+β=n+1 =
2in+3

n+ 1

n∑
k=1

(−1)k+1 sin

(
παk

n+ 1

)
sin

(
πβ(n+ 1− k)

n+ 1

)
, (7.80)

and plug in α = n+ 1− β to get

(tαβ)α+β=n+1 =
2in+3

n+ 1

n∑
k=1

(−1)k+1 sin

(
π(n+ 1− β)k

n+ 1

)
sin

(
πβ(n+ 1− k)

n+ 1

)
.

(7.81)

It is useful to break the arguments of the sines into pieces to look for identities. This

gives

(tαβ)α+β=n+1 =
2in+3

n+ 1

n∑
k=1

(−1)k+1 sin

(
πk − πβk

n+ 1

)
sin

(
πβ − πβk

n+ 1

)
. (7.82)

The trigonometric identity sin(u−v) = sinu cosu−cosu sin v allows this to be written

as

(tαβ)α+β=n+1 =
2in+3

n+ 1

n∑
k=1

(−1)k+1

[
sin (πk) cos

(
πβk

n+ 1

)
− cos (πk) sin

(
πβk

n+ 1

)]
×
[
sin (πβ) cos

(
πβk

n+ 1

)
− cos (πβ) sin

(
πβk

n+ 1

)]
.

(7.83)
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Because k and β are both integers this reduces to

(tαβ)α+β=n+1 =
2in+3

n+ 1

n∑
k=1

(−1)k+1

[
(−1)k+1 sin

(
πβk

n+ 1

)][
(−1)β+1 sin

(
πβk

n+ 1

)]
=

2in+3

n+ 1
(−1)β−1

n∑
k=1

sin2

(
πβk

n+ 1

)
,

(7.84)

where the change in signs occurs via (−1)k+1(−1)k+1(−1)β+1 = (−1)2k(−1)3(−1)β =

(−1)β+1 = (−1)β−1. Now the trig identity 2 sin2 (u) = 1− cos (2u) is used to give

(tαβ)α+β=n+1 =
in+3

n+ 1
(−1)β−1

n∑
k=1

[
1− cos

(
2πβk

n+ 1

)]
, (7.85)

which has been seen before in solving the normalization of uq`, and Mathematica was

used to determine that this sum is n+ 1, therefore

(tαβ)α+β=n+1 = in+3(−1)β−1. (7.86)

Recalling that in = in mod 4 allows this to be written

(tαβ)α+β=n+1 = in−1(−1)β−1. (7.87)

These are the terms that appear on the antidiagonal in Ȳ . The terms anywhere other

than the antidiagonal are zero. Recall that β indicates the column of the element in

the n× n matrix Ȳ . The matrix can finally be written as

Ȳ = 2iysin(θq)



in−1(−1)n−1

...

in−1(−1)2−1

in−1(−1)1−1


. (7.88)

The matrix Dq = X+2i sin(θq)Y can now be expressed as Dq = X̄+2i sin(θq)Ȳ ,
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where X̄ is the diagonalized matrix X with its eigenvalues on the diagonal and where

Ȳ is the antidiagonal matrix in Eq. (7.88). Then, written explicitely, Dq is

Dq =



2ix sin(φ1) (−1)n−12iny sin(θq)

2ix sin(φ2) (−1)n−22iny sin(θq)

. . . ...

... . . .

(−1)12iny sin(θq) 2ix sin(φn−1)

(−1)02iny sin(θq) 2ix sin(φn)


.

(7.89)

Fisher called this matrix a cruciform matrix, with nonzer elements only on the diag-

onal and antidiagonal.

7.7 Defining the Partition Function

As stated before, the state function is found by

Zmn
2 = |D|= |D̄|=

m∏
q=1

|Dq|, (7.90)

where D is the tridiagonal block matrix, D̄ is the diagonalized block matrix, and the

Dq are the cruciform matrices above which occupy the diagonal of D̄. The determi-

nant of Dq can be determined by expanding by the first row of the matrix and then in

each minor expanding by the last row. Then each new minor is expanded by the first

row and each of the resulting minors by their bottom rows. This repetition creates

b1
2
(n+ 1)c factors of the type (d11dnn − d1ndn1). The brackets bxc indicate the floor

function, which gives the highest interger lower than x.

It is not immediately obvious that this is the correct expansion. To get a better
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idea consider the general cruciform matrix C̄

|C̄|=



d11 d1,n

d22 d2,n−1

. . . ...

... . . .

dn−1,2 dn−1,n−1

dn1 dnn


. (7.91)

The expansion begins with the first row as

|C̄|= d11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d22 d2,n−1 0

. . . ...

... . . .

dn−1,2 dn−1,n−1

0 dnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)n−1d1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d22 d2,n−1

. . . ...

... . . .

dn−1,2 dn−1,n−1

dn1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(7.92)

where the only two elements in row one are multiplied by their minors. A factor of

(−1)n−1 is necessary to get the correct sign since it depends on the number of rows

in the matrix. Then the remaining minors are expanded by their bottom rows. Note

80



that this minor has n− 1 rows, since its first row was eliminated,

|C̄|= d11dnn

∣∣∣∣∣∣∣∣∣∣∣∣∣

d22 d2,n−1

. . . ...

... . . .

dn−1,2 dn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)n−2(−1)n−1d1ndn1

∣∣∣∣∣∣∣∣∣∣∣∣∣

d22 d2,n−1

. . . ...

... . . .

dn−1,2 dn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(7.93)

Notice that the second term in this expansion dn1 was in the n − 1 row and first

column and so there is an additional term of (−1)(n − 2). In general, when taking

a determinant, a negative sign is included with any element whose row and column

positions sum to an odd number. The first term in the expansion of |C̄| will always

be positive because the subscripts of the elements on the main diagonal always sum

to an even number. The sums of the row and column numbers of the elements on the

antidiagonal will depend on whether n is odd or even. However if the matrix C̄ has

an odd number of rows and columns, then the minor obtained by expanding by a row

will have an even number of rows and columns and vice versa. Therefore either the

element in the position d1n will have a negative sign or the one in position dn1 will

have a negative sign but they will not both have one. The sign of the second term

is then always negative, since (−1)n−1(−1)n−2=-1. After factoring out the remaining
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determinant, the expansion by the first row can be written as

|C̄|= (d11dnn − d1ndn1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

d22 d2,n−1

. . . ...

... . . .

dn−1,2 dn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7.94)

The remaining determinant is expanded in the same way. This process is repeated

until the matrix is fully expanded. The only thing to be aware of at this point is that

if the matrix has odd dimension, the final remaining determinant will be of a single

term.

If the cruciform matrix related to the state function is expanded in this manner

it is found that first iteration is

|Dq|= {[2ix sin(φ1)][2ix sin(φn)]− [(−1)n−12iny sin(θq)][(−1)02iny sin(θq)]}×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

2ix sin(φ2) (−1)n−22iny sin(θq)

. . . ...

... . . .

(−1)12iny sin(θq) 2ix sin(φn−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(7.95)

A second iteration gives

|Dq|= {[2ix sin(φ1)][2ix sin(φn)]− [(−1)n−12iny sin(θq)][(−1)02iny sin(θq)]}

× {[2ix sin(φ2)][2ix sin(φn−1)]− [(−1)n−22iny sin(θq)][(−1)12iny sin(θq)]}

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

2ix sin(φ3) (−1)n−32iny sin(θq)

. . . ...

... . . .

(−1)22iny sin(θq) 2ix sin(φn−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(7.96)
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which is enough to see the pattern in the terms in the resulting product. In general

it can be said that

|Dq|=
bn
2
c∏

s=1

{
[2ix sin (φs)][2ix sin (φn+1−s)]− (−1)n−s(−1)s−1 [2iny sin (θq)]

2}

×


1, n even{

2ix sin
(
φ (n+1)

2

)
+ (−1)n−

(n+1)
2 2iny sin (θq)

}
, n odd

, (7.97)

where s is a placeholder positive integer for now. When n is odd, the center term of

the matrix is multiplied after the product is taken. This is what the last term is in

the odd expansion.

Ideally a product is needed that is a product of r over the entire matrix n, but

the extra term in the middle for odd matrices disallows a single product expression

over r. Recall that r was the original subscript to φ and that s is just a placeholder.

To make the change to a product over r, the expression must be rewritten. The factor

of i(n−1)2 pulled out of the square in the second term. Then a factor of i2 is pulled

out of all of the terms. This leaves

|Dq|=
bn
2
c∏

s=1

(i2)
{

[2x sin (φs)][2x sin (φn+1−s)]− (−1)n−1(i)(n−2)2 [2iy sin (θq)]
2
}

×


1, n even{

2ixsin
(
φ (n+1)

2

)
+ (−1)

(n−1)
2 2iny sin (θq)

}
, n odd

. (7.98)

Because of the behavior of i when exponentiated the sign terms inside the bracket

reduce via (−1)n−1(i)(n−2)2 = (−1)n−1(i)2n−4 = (−1)n−1(i)2n = (−1)n−1(−1)n = −1.
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The sign wil always be −1 since i2 = −1. Therefore Dq can be written as

|Dq|= (−1)b
n
2
c
bn
2
c∏

s=1

{
[2x sin (φs)][2x sin (φn+1−s)] + [2iy sin (θq)]

2}

×


1, n even{

2ixsin
(
φ (n+1)

2

)
+ (−1)

(n−1)
2 2iny sin (θq)

}
, n odd

, (7.99)

where i2 has been moved outside of the product.

The next step in working toward a sum over r is to factor the first bracketed

term. This yields

|Dq|= (−1)b
n
2
c
bn
2
c∏

s=1

{[2x sin (φs) + 2iy sin (θq)] [2x sin (φn+1−s) + 2iy sin (θq)]}

×


1, n even{

2ixsin
(
φ (n+1)

2

)
+ (−1)

(n−1)
2 2iny sin (θq)

}
, n odd

,

(7.100)

where s skips over n+1
2

in the odd case for the moment. To arrive at this factorization

it is necessary to realize, from Eq. (7.53), that sin(φs) = − sin(φn+1−s) which makes

the cross terms cancel. This is proved below. Since φs = π
2

+ πs
n+1

,

sin(φn+1−s) = sin

(
π

2
+
π(n+ 1− s)

n+ 1

)
. (7.101)

After splitting the fraction up this is

sin(φn+1−s) = sin

(
π

2
+
π(n+ 1)

n+ 1
− πs

n+ 1

)
, (7.102)

which becomes

sin(φn+1−s) = sin

(
π

2
+ π − πs

n+ 1

)
. (7.103)
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Through the trig identity sin(u± v) = sinu cos v ± cosu sin v it can be said that

sin(φn+1−s) = sin
(π

2

)
cos

(
π − πs

n+ 1

)
+ cos

(π
2

)
sin

(
π − πs

n+ 1

)
. (7.104)

This is quickly reduced to

sin(φn+1−s) = cos

(
π − πs

n+ 1

)
. (7.105)

Then by cos(u± v) = cosu cos v ∓ sinu sin v the relationship is expressed as

sin(φn+1−s) = cos(π) cos

(
πs

n+ 1

)
+ sin(π) sin

(
πs

n+ 1

)
, (7.106)

which reduces to

sin(φn+1−s) = − cos

(
πs

n+ 1

)
. (7.107)

A factor of sin
(
π
2

)
is introduced and then the relationship sin(u± v) = sinu cos v ±

cosu sin v is used in reverse giving

sin(φn+1−s) = − sin

(
π

2
+

πs

n+ 1

)
= sin (φs) . (7.108)

This relationship causes all of the cross terms to cancel out and allows the factoring

of the first term in the product of Dq.

This relationship is also useful for reducing the extra term in the odd expansion.

In the case where s = n+1
2

it is shown here that sin(φs) = 0.

sinφs = sin(φn+1
2

) = − sin

(
π

2
+

π

n+ 1

n+ 1

2

)
= sin(π) = 0. (7.109)

The term
{

2ixsin
(
φ (n+1)

2

)
+ (−1)

(n−1)
2 2iny sin (θq)

}
can now be easily manipulated.

The first term is 0 by the relationship above. Now the factor (−1)
(n−1)

2 in in front of

the sin(θq) needs to be investigated. First say

(−1)
(n−1)

2 in = (i2)
(n−1)

2 in = (i)2n−n−1in = (i)2n(i)−1. (7.110)
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Then becuase i−1 = −i, and because this is the case where n is odd, i2n = −1 the

above product reduces to

(−1)
(n11)

2 in = i. (7.111)

Now the leftover term in the odd expansion can be written as 2iy sin (θq). The product

can be written as a single product from r = 1 to n instead of being split into cases

and instead of going to bn
2
c.

|Dq|= (−1)b
n
2
c2n

n∏
r=1

[x sin (φr) + iy sin (θq)], (7.112)

where a 2 has been factored out of each term in the product, giving a 2n out front..

The two different sines, sin(φr) and sin(φn+1−r) will take opposite signs as r goes from

1 to bn
2
c. In this form of Dq the term sin(φr) will take all of the values that were

formerly split between the combination of the two sines because the product now goes

to n.

The arguments in Dq can be reduced slightly. By the trig identity sin(u± v) =

sinu cos v ± cosu sin v, any angle in the form
(
π
2

+ πs
n+1

)
can be written as cos

(
πr
n+1

)
.

Combining this with the definition of the state function in Eq. (7.90) gives

Zmn
2 =

m∏
q=1

(−1)b
n
2
c2n

n∏
r=1

[
x cos

(
πr

n+ 1

)
+ iy cos

(
πq

m+ 1

)]
. (7.113)

After pulling the terms between the products out, the state function is

Zmn
2 = (−1)mb

n
2
c2mn

m∏
q=1

n∏
r=1

[
x cos

(
πr

n+ 1

)
+ iy cos

(
πq

m+ 1

)]
. (7.114)
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CHAPTER 8

ANALYSIS OF THE PARTITION FUNCTION

Eq. (7.114) is the exact partition function of a finite m × n lattice as a product of

mn terms. If both n and m are odd, then there is a term in the product for which

r = 1
2
(n + 1) and q = 1

2
(m + 1), which means that both the x and y parts vanish

identically. The whole product is then multiplied by zero correctly reflecting the fact

that a lattice with an odd number of points can not be occupied solely by dimers.

Therefore the lattice is required to have an even number of points and either m or n

or both must be even.

Because eventually the entropy will be required, it would be best to have a

parition function that is not squared. If it is assumed that n is even, the partition

function can be manipulated into a more useable form. Holding n even instead of m

is an arbitrary choice.

8.1 A Change in Form

Moving the 2 back inside the products makes the partition function take the

form

Zmn
2 = (−1)mb

n
2
c
m∏
q=1

n∏
r=1

[
2x cos

(
πr

n+ 1

)
+ 2iy cos

(
πq

m+ 1

)]
. (8.1)

In the case where m is odd, and focusing only on the product over q, it is possible to

write this as

Zn=even
m=odd

2 = (−1)mb
n
2
c
m∏
q=1

n∏
r=1

[
a+ 2iy cos

(
πq

m+ 1

)]
, (8.2)
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where a = 2x cos
(
πr
n+1

)
. Comparing the factor with q = 1 to the factor with q = m−1

in the cosine shows that one of those terms is the negative of the other via

cos

(
πm

m+ 1

)
= cos

(
π − π

m+ 1

)
= − cos

(
π

m+ 1

)
(8.3)

This relationship holds for the pair q = 2 and q = m − 1 and so on. Thus for each

term in the product there will appear a complex conjugate of that term. The only

exception is the unpaired term where cos
(
πm
m+1

)
= cos

(
π
2

)
= 0, and so that term must

be written separately. With the terms paired off, the product can be cut in half.

Zn=even
m=odd

2 = (−1)mb
n
2
c

{
n∏
r=1

bm
2
c∏

q=1

[
a2 −

(
2iy cos

(
πq

m+ 1

))2
]}{

n∏
r=1

(a+ 0)

}
. (8.4)

Plugging for a gives

Zn=even
m=odd

2 = (−1)mb
n
2
c

{
n∏
r=1

bm
2
c∏

q=1

[
4x2 cos2

(
πr

n+ 1

)
+ 4y2 cos2

(
πq

m+ 1

)]}{ n∏
r=1

2x cos

(
πr

n+ 1

)}
.

(8.5)

The last product reduces to xn(−1)
n
2 via the identity

∏n−1
k=1 cos kπ

n
=

sin πn
2

2n−1 , as can be

seen here,

n∏
r=1

2x cos

(
πr

n+ 1

)
= 2nxn

n∏
r=1

cos

(
πr

n+ 1

)
= 2nxn

sin π(n+1))
2

2n
= xn(−1)

n
2 . (8.6)

The sign factor (−1)
n
2 may be combined with the already existing sign factor to cancel

as (−1)mb
n
2
c(−1)

n
2 = 1 when n is even and m is odd. Then

Zn=even
m=odd

2 = xn
n∏
r=1

bm
2
c∏

q=1

[
4x2 cos2

(
πr

n+ 1

)
+ 4y2 cos2

(
πq

m+ 1

)]
. (8.7)

Using the same sort of expansion over the n as was used for the product over m gives

Zn=even
m=odd

2 = xn

n
2∏

r=1

bm
2
c∏

q=1

[
4x2 cos2

(
πr

n+ 1

)
+ 4y2 cos2

(
πq

m+ 1

)]2

. (8.8)
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As before, each cosine was paired with its conjugate. However, since the cosines in

this case were already squared the negative signs vanished. Also, since n is taken to

be even, there is no point at which the argument of the cosine is π
2
, and so there is

no extra unpaired term, as there was when the product over m was cut in half. Now

the square root is taken on both sides and the square cosines are manipulated by the

the half-angle identity cos2 x = 1
2
(1 + cos 2x) to yield

Zn=even
m=odd

= 2
n
2
bm

2
cx

n
2

n
2∏

r=1

bm
2
c∏

q=1

[
x2 + y2 + x2 cos

(
2πr

n+ 1

)
+ y2 cos

(
2πq

m+ 1

)]
. (8.9)

In the case for which m is even, the solution follows the same process. The key

differences are that the product over m will not have an unpaired term when m is

even and the sign term in Zmn reduces identically to 1. Thus the partition function

is

Zmn = 2
n
2
bm

2
c

n
2∏

r=1

bm
2
c∏

q=1

[
x2 + y2 + x2 cos

(
2πr

n+ 1

)
+ y2 cos

(
2πq

m+ 1

)]
×1 m even

×xn2 m odd

.

(8.10)

8.2 The Free Energy

The entropy is found by Ssite = − ∂
∂T

ΩG, where ΩG = −kBT ln [ZG] . The natural

log of ZG is the grand canoncial potential of the system. In the case of the system

used here, where the chemical potential is a constant, it will be a Gibbs free energy

called G. The free energy is needed to find the entropy and so it is derived in this

section. For a large lattice, the limiting behavior of the partition function is

Zmn(x, y) ∼ [Z(x, y)]mn. (8.11)
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Upon taking the natrual log of both sides this becomes

ln[Z(x, y)] = lim
m,n→∞

1

mn
ln[Zmn(x, y)], (8.12)

in the limit as m and n go to infinity. If a factor of −kBT were included then this

would be the free energy per lattice site which is written as

Gsite = −kBT lim
m,n→∞

1

mn
ln[Zmn(x, y)], (8.13)

For this limit it is assumed that m is even. For a large lattice adding or sub-

tracting a single row will have very little overall effect on the statistical mechanics.

Now Eq. (8.10) is expressed in the limit of large lattices as

Gsite = −kBT lim
m,n→∞

1

mn
ln

2
n
2
m
2

n
2∏

r=1

m
2∏

q=1

x2 + y2 + x2 cos

(
2πr

n+ 1

)
+ y2 cos

(
2πq

m+ 1

) .
(8.14)

The logarithm of a product can be written as the sum of logarithms so this is

Gsite = −kBT lim
m,n→∞

1

mn

mn
4

ln 2 + ln

n
2∏

r=1

m
2∏

q=1

x2 + y2 + x2 cos

(
2πr

n+ 1

)
+ y2 cos

(
2πq

m+ 1

) .
(8.15)

In the limit as m goes to infinity, m+ 1→ m. The arguments of the cosine terms can

be rewritten. Also since the log of a product is the sum of logs, this can be written

as

Gsite = −kBT lim
m,n→∞

1

mn

mn
4

ln 2 +

n
2∑

r=1

m
2∑

q=1

ln

(
x2 + y2 + x2 cos

(
2πr

n

)
+ y2 cos

(
2πq

m

)) .
(8.16)

Infinite sums may be converted to integrals via the rule from basic calculus that∫ b

a

f(x)dx =
k∑
i=1

f(x∗i )∆x, (8.17)
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where x∗i = a+ i∆x and ∆x = b−a
k

, in the limit as k →∞. Working first on the sum

over r as given by

lim
n→∞

n
2∑

r=1

ln

(
x2 + y2 + x2 cos

(
2πr

n

)
+ y cos

(
2πq

m

))
, (8.18)

the limts of the resulting integral can be found by plugging in the limits of the sum.

When r = 1, cos
(

2πr
n

)
is the same as cos(0), and so the lower limit of the integral is

0. By the same argument the upper limit is b = π. Combining Eqs. (8.17) and (8.18)

with the information so far gives

∫ π

0

f(α)dα = lim
n→∞

n
2∑

r=1

f

(
0 +

π − 0
n
2

r

)
π − 0

n
2

, (8.19)

where α = 2πr
n

. This can be further reduced to

∫ π

0

f(α)dα = lim
n→∞

n
2∑

r=1

f

(
2πr

n

)
2π

n
, (8.20)

Since the only argument inside the natural log of Eq. (8.18) that depends on r is the

same argument 2πr
n

the above equation allows a conversion of Eq. (8.18) from a sum

to an integral at this point. The some is solved for to obtain

lim
m→∞

n
2∑

r=1

f

(
2πr

n

)
=

n

2π

∫ π

0

f(α)dα =
n

2π

∫ π

0

ln

(
x2 + y2 + x2 cosα + y2 cos

(
2πq

m

))
(8.21)

This can now be plugged back into Eq. (8.16). The same process is applied to the

sum over q and the natural log of the partition function can be written

Gsite = −kBT
1

mn

[
mn

4
ln 2 +

n

2π

m

2π

∫ π

0

∫ π

0

ln
(
x2 + y2 + x2 cosα + y2 cos β

)
dαdβ

]
,

(8.22)
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Fig. 21.: A two row lattice that will be cut in half along the dashed line to produce a one-dimensional lattice.
Afterwards, the y-dimers can be considered to be monomers and pairs of x-dimers to be single x-dimers.

or, distributing 1
mn

,

Gsite = −kBT
ln 2

4
+

2

(2π)2

∫ π

0

∫ π

0

ln
(
x2 + y2 + x2 cosα + y2 cos β

)
dαdβ. (8.23)

This is as far as this paper will treat the close packed limit of both x and y. Fisher

has an excellent analysis of the results that will not be reiterated here. Instead the

case of x-dimers, y-dimers and monomers on the edge of a strand of DNA will be

considered.

8.3 One-Dimensional Partition Function

While there are more simple ways to to determine the statistical mechanics of one-

dimensional lattices, the preceding work is more mathematically interesting and may

be valuable in moving on to polymers longer than dimers. Recall that in this thesis the

interest lies charge inversion. Specifically, inversion caused by dimers parallel to the

edge of the DNA strand and perpendicular to the DNA strand. If a two-dimensional

lattice were to be cut in half down the middle, as seen in Fig. 21, it would be a good

representation of this kind of system.

If the lattice were cut horizontally across the middle, then each vertically paired

x-dimer in the two row lattice will appear as a single x-dimer in the one row lattice.

This can be represented mathematically by replacing each x Eq. (8.10) by x(1/2). For

this section, each y-dimer would appear as a monomer, which is a change from y to
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z in the equation. When m = 2

Zn(x, z) = 2
n
2

n
2∏

r=1

1∏
q=1

[
x+ z2 + x cos

(
2πr

n+ 1

)
+ z2 cos

(
2πq

3

)]
. (8.24)

Since the product over q has only one factor it can be easily evaluated, giving

Zn(x, z) = 2
n
2

n
2∏

r=1

[
x+ z2 + x cos

(
2πr

n+ 1

)
− z2

2

]
. (8.25)

Combining terms in the 2
n
2 into the product produces

Zn(x, z) =

n
2∏

r=1

[
2x+ z2 + 2x cos

(
2πr

n+ 1

)]
. (8.26)

Again the limiting behavior for large lattices is

Zn(x, z) ∼ [Z(x, z)]n, (8.27)

which means that

ln[Z(x, z)] = lim
n→∞

1

n
ln[Zn(x, z)]. (8.28)

This is, again, related to the free energy per lattice site, which can be used to find

the entropy per lattice site, Gsite = −kBT ln[ZG]. Plugging in Zn gives

Gsite = −kBT lim
n→∞

1

n
ln

 n
2∏

r=1

2x+ z2 + 2x cos

(
2πr

n+ 1

) . (8.29)

As before, the limit allows the change n+ 1 ∼ n and the natural log allows a change

from a product to a sum. The formula is now

Gsite = −kBT lim
n→∞

1

n

n
2∑

r=1

ln

[
2x+ z2 + 2x cos

(
2πr

n

)]
. (8.30)

Using the same conversion as in Eq. (8.17) to convert this sum to an integral with
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ω = 2πr
n

yields the integral

Gsite = −kBT
1

2π

∫ π

0

ln
[
2x+ z2 + 2x cos (ω)

]
dω. (8.31)

This integral is exactly solvable using G.R. (4.224.9)[15] which says∫ π

0

ln[a+ b cos(x)]dx = π ln

[
a+
√
a2 − b2

2

]
, a ≥ |b|> b. (8.32)

Evaluating the integral gives

Gsite = −kBT
1

2π
π ln

[
(z2 + 2x) +

√
(z2 + 2x)2 − (2x)2

2

]
. (8.33)

Expanding inside the square root gives

Gsite = −kBT
1

2
ln

[
z2 + 2x+

√
z4 + 4xz2 + 4x2 − 4x2

2

]
. (8.34)

Multiplying the argument of the natural log by 2
2

and factoring a z2 from the square

root allows this to be written as

Gsite = −kBT
1

2
ln

[
2z2 + 2z

√
z2 + 4x+ 4x

4

]
, (8.35)

which completes the square in the numerator. This can be factored into

Gsite = −kBT
1

2
ln

(z +
√
z2 + 4x

2

)2
 . (8.36)

By the rules of the natural log the exponent is brought down in front to cancel with

the 1
2
. The final form is

Gsite = −kBT ln

[
1

2

(
z +
√
z2 + 4x

)]
. (8.37)

This form will be used as a representation of the edge of a strand of DNA in solution.

A y-dimer is analytically the same as a monomer in the formulation of the problem
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in this one-dimensional case, since it occupies a single site on the lattice.
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CHAPTER 9

THE CALCULATION OF THE ENTROPIES

This chapter is concerned with the calculation of the per-site entropy of the system

with only monomers and of the one-dimensional system with monomers and dimers.

When doing calculations of real applications, one must always allow for unfilled lattice

sites. Without vacancies, or holes, in the lattice, equations will not properly show

how the combination of binding energy and chemical potential affects how the lattice

is filled.

9.1 The Entropy of Monomers and Holes

From Sec. 2.3, the solution for the partition function of the monomer only lattice

was shown to be

Z(r, b, g)N = (r + b+ g)N . (9.1)

In the limit as N becomes large the limiting behavior of that lattice is

Z(r, b, g)N ∼ Z(r, b, g)N , (9.2)

and as before in the limit as N →∞ this becomes

ln [Z(r, b, g)N ] = lim
N→∞

1

N
ln
[
Z(r, b, g)N

]
= lim

N→∞

1

N
ln
[
(r + b+ g)N

]
, (9.3)

which, through the properties of the natural log, can be written as

ln [Z(r, b, g)N ] = ln [r + b+ g] . (9.4)
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This is related to the free energy per lattice site by the term −kBT and can be used

to find the entropy per lattice site. The entropy is given by

Ssite = − ∂

∂T
ΩG, (9.5)

where

ΩG = −kBT ln [ZG] = − 1

β
ln [ZG] . (9.6)

The entropy per lattice site is

Ssite = − ∂

∂T
−
{

1

β
ln [r + b+ g]

}
, (9.7)

where this can be changed to the partial derivate with respect to β, where β = 1
kBT

giving

Ssite =
∂

∂β

{
1

β
ln [r + b+ g]

}
∂β

∂T
. (9.8)

Applying the same assumptions to r, b, and g that were applied to x, y, and z in the

formulation of the Hamiltonian gives the activities of r = e−β(Er−µr), b = e−β(Eb−µb),

and g = e−β(Eg−µg). The per site entropy is now

Ssite = −kBβ2 ∂

∂β

{
1

β
ln
[
e−β(Er−µr) + e−β(Eb−µb) + e−β(Eg−µg)

]}
. (9.9)

This can be expanded by the product rule of differentiation as

Ssite = −kBβ2

{
ln
[
e−β(Er−µr) + e−β(Eb−µb) + e−β(Eg−µg)

] ∂
∂β

1

β

+
1

β

∂

∂β
ln
[
e−β(Er−µr) + e−β(Eb−µb) + e−β(Eg−µg)

]}
.

(9.10)

For convenience the exponents can be compressed by defining γa = Ea − µa. The

partials are taken while remembering that Z(r, b, g) = (r + b+ g), resulting in

Ssite = −kBβ2

{
− 1

β2
ln [Z(r, b, g)] +

1

β

1

Z(r, b, g)
[−rγr − bγb − gγg]

}
. (9.11)
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After distrubuting a −β2 this is finally written as

Ssite = kB

{
ln [Z(r, b, g)] +

rβγr
Z(r, b, g)

+
bβγb

Z(r, b, g)
+

gβγg
Z(r, b, g)

}
. (9.12)

This is the entropy per lattice site for a system filled with three kinds of monomers,

red, blue, and green. It is simple enough to see the pattern to create the entropy if

more species of monomer are required. If vacancies are required then the species g

can be considered to be. In this case e−β(Eg−µg) = 1 and γg = 0 as the binding energy

and chemical potential of a vacancy, or hole, are both zero. The entropy of a system

with two species of monomer and holes occupying the lattice can be expressed as

Ssite = kB

{
ln [Z(r, b, 1)] +

rβγr
Z(r, b, 1)

+
bβγb

Z(r, b, 1)

}
, (9.13)

where the term gβγg
Z(r,b,1)

is dropped because γg is zero. This might be more appropriately

written as

Ssite = kB

{
ln [Z(r, b)] +

rβγr
Z(r, b)

+
bβγb
Z(r, b)

}
, (9.14)

where

Z(r, b) = (r + b+ 1), (9.15)

and where it is assumed that there must be vacancies for this equation to represent

a real world physical system. This form of the entropy is analogous to the lattice-gas

model of dimers filling the edge of the DNA lattice. Each particle is considered as a

monomer that can occupy a single site.

9.2 The Entropy of Monomers, Dimers, and Holes

The addition of vacancies to the monomer-dimer model in Eq. (8.37) is done by

considering the monomer terms inside Gsite = − 1
β

ln
[

1
2

(
z2 +

√
z2 + 4x

)]
to instead

be a combination of species, each of which could occupy a single point. Specifically,
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that there are z monomers and h holes. This is now written as

ln[Z(x, z, h)] = ln

[
1

2

(
(z + h) +

√
(z + h)2 + 4x

)]
. (9.16)

As in the monomer-hole problem in the previous section, the chemical potential and

the energy of a hole are both taken to be zero, and so h = 1. It can be said that

ln[Z(x, z, 1)] = ln

[
1

2

(
z + 1 +

√
(z + 1)2 + 4x

)]
. (9.17)

Just as before, the negative partial derivative with respect to β is taken with the

conversion factor of ∂β
∂T

to give the per site entropy as

Ssite =
∂

∂β

{
1

β
ln

[
1

2

(
e−βγz + 1 +

√
(e−βγz + 1)2 + 4e−βγx

)]} ∂β

∂T
. (9.18)

By the product rule this is

Ssite =

{
1

β

∂

∂β
ln

[
1

2

(
e−βγz + 1 +

√
(e−βγz + 1)2 + 4e−βγx

)]
+ ln

[
1

2

(
e−βγz + 1 +

√
(e−βγz + 1)2 + 4e−βγx

)]
∂

∂β

1

β

}
∂β

∂T
.

(9.19)

After a few iterations of the chain rule this gives

Ssite = −kBβ2

{
1

β

1

Z(x, z)

(
1

2

)(
−zγz +

2(z + 1)(−zγz)− 4xγx

2
√

(z + 1)2 + 4x

)
+ ln [Z(x, z)]

(
1

β

)}
.

(9.20)

The −β2 can be distrbuted into the braces and the factors outside of the parentheses

can be distributed inside to give the form

Ssite = kB

{
ln [Z(x, z)] +

zβγz
2Z(x, z)

+
z2βγz

2Z(x, z)
√

(z + 1)2 + 4x

+
zβγz

2Z(x, z)
√

(z + 1)2 + 4x
+

xβγx

Z(x, z)
√

(z + 1)2 + 4x

}
,

(9.21)
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where

Z(x, z, 1) = Z(x, z) =
1

2

(
z + 1 +

√
(z + 1)2 + 4x

)
. (9.22)
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CHAPTER 10

PLOTS OF THE ENTROPY, AVERAGE OCCUPATION, AND

TOTAL CHARGE

At this point it is possible to draw comparisons between the lattice-gas model and

the Fisher dimer model. There should be a great difference between the two entropies

since the Fisher model takes into account which sites are excluded from further oc-

cuptaion by the geometry and therefore changes the number of ways in which the

particles may be arranged on the lattice. Plots for the for the average occupation of

species will also be given in this section and from these occupation plots the total

charge of the lattice can be calculated.

10.1 Lattice Gas

As stated in the introduction to this paper the lattice-gas model considers all

particles to be monomers occupying single sites. To make them appear as dimers the

model assigns the monomers different energies. Fig. 1 shows an example of how this

model considers sites to be occupied. The appropriate entropy to use is that with

two types of monomers and holes which was given in Eq. (9.14) as

Ssite = kB

{
ln [Z(r, b)] +

rβγr
Z(r, b)

+
bβγb
Z(r, b)

}
, (10.1)

where

Z(r, b) = (r + b+ 1). (10.2)

The activities of the monomers are r = e−β(Er−µr), and b = e−β(Eb−µb) and γr =

Er − µr, and γb = Eb − µb. If the lattice is considered to be filled by two of different
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types they could be described as being attached perpendicular to the direction of the

lattice or parallel to it. To attempt to model dimers with the lattice-gas model some of

the monomers are considered to be parallel to the lattice and some perpendicular. The

monomers which are considered to be perpendicular are given half the binding energy

when compared to those lying parallel. This can be represented mathematically as

z⊥ = e−β(0.5E−µ) and z‖ = e−β(E−µ) where z⊥ and z‖ are monomers in the lattice-

gas model that are taken to be perpendicular or parallel to the edge of the lattice

respectively. The entropy is written as

Ssite = kB

{
ln
[
Z(z⊥, z‖)

]
+
z⊥(0.5βE − βµ)

Z(z⊥, z‖)
+
z‖(βE − βµ)

Z(z⊥, z‖)

}
, (10.3)

where

Z(z⊥, z‖) = z⊥ + z‖ + 1. (10.4)

A factor of βµ = 0.79 for a dimer is used. This comes from a pending paper

by Bishop and McMullen but is derived using the work of Nguyen and Shklovskii

on the energy of polyelectrolytes in solution[16]. Nguyen and Shklovskii show that

the chemical potential of a free polyelectrolyte in solution can be expressed as the

self-energy of a rigid rod. Following through their calculations with dimers will result

in a βµ of 0.79 when a lattice constant of ∼ 0.68nm is used. The result of the entropy

calculation as a function of βE is shown in Fig. 22.

Fig. 22 reveals that as βE becomes very positive or very negative there are fewer

ways to occupy the lattice. This makes sense because if the binding energy is very

positive the lattices resists binding and will be filled mostly by holes. At large negative

values for βE the number of ways to effectively rearrange the particles on the lattice

also decreases because the lattice will become occupied by only one species. Since

this is a model with dimers represented by monomers and all other effects are ignored
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Fig. 22.: The entropy of the lattice-gas representation of an occupied lattice as a function of binding energy.

the lattice should tend to be occupied by the species with the highest binding energy

as βE becomes more and more negative. This is of course the species zparallel.

The average occupation of a species can be calculated. It is defined here as

〈Na〉 =
1

Zmn

∑
N

gmnNae
−β

∑
a(Ea−µa)Na . (10.5)

This is exactly the partial of the state function in this paper with respect to its

chemical potential multiplied by a factor of 1
βZmn

. For example if the average number,

〈N〉, of the species x is required then

∂

∂µx
Zmn =

∂

∂µx

∑
Nx,Ny ,Nz

gmn(Nx, Ny, Nz)x
NxyNyzNz . (10.6)

Since everything other than the exponent of xNX = e−β(Ex−µx)Nx is a constant the

partial derivative gives

∂

∂µx
Zmn =

∑
Nx,Ny ,Nz

gmn(Nx, Ny, Nz)x
NxyNyzNz(βNx). (10.7)
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Thus it can be said that in general

〈Na〉 =
1

β

1

Zmn

∂

∂µa
Zmn. (10.8)

The number of particles considered to occupy the lattice in the parallel and

perpendicular directions along with the holes in the lattice can be calculated using

the correct parital derivative of the function

Z(z⊥, z‖) = z⊥ + z‖ + 1. (10.9)

However in order to compute the occupation of holes it is necessary to have this in

the form

Z(z⊥, z‖, zh) = z⊥ + z‖ + zh, (10.10)

where zh = e−β(Eh−µh), even though for a hole, the energy and chemical potential are

necessarily equal to each other. Then the partial with respect to µzh is

∂

∂µzh
Z(z⊥, z‖, zh) =

∂

∂µzh

(
z⊥ + z‖ + zh

)
, (10.11)

which yields, when Eh − µh = 0,

∂

∂µzh
Z(z⊥, z‖, zh) = βzh = β. (10.12)

The occupation for holes is thus

〈Nzh〉 =
1

β

1

Z(z⊥, z‖, zh)
β =

1

Z(z⊥, z‖, zh)
. (10.13)

Similar steps are taken for z⊥ and z‖ giving

〈Nz⊥〉 =
z⊥

Z(z⊥, z‖, zh)
, (10.14)
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Fig. 23.: The occupation of species of the lattice gas model of dimers.

and

〈Nz‖〉 =
z‖

Z(z⊥, z‖, zh)
. (10.15)

These are plotted in Fig. 23 with a dashed line representing the sum of the three

occupations which should, and does, total to one.

Fig. 23 demonstrates that as the binding energy becomes more negative the

lattice is overwhelmingly occupied by those particles that are considered to be parallel

because they have twice the binding energy of the perpendicular particles. As the

energy becomes increasingly positive holes begin to dominate the lattice because the

lattice repels all likely candidates for binding.

The total charge on the lattice can be calculated from the the occupation. These

are particles which are binding to the outside edge of a strand of DNA which, on its

own, is entirely negatively charged. Thus a hole would represent a negative charge.

A parallel dimer is considered to be two positive charges lying flat on the lattice

and cancelling two negative charges and would therefore appear to be neutral. A

perpendicular dimer creates a net positve charge by virtue of having only one of its
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Fig. 24.: The charge on the lattice as a function of the binding energy

positive charges attached to the lattice and the other hanging off the lattice into the

solution. The total charge in units of the magnitude of the charge of an electron is

Total Charge = z⊥ + zh. (10.16)

Plotting gives Fig. 24, which indicates that in the lattice-gas model, as the bind-

ing energy becomes increasingly negative, the charge on the lattice trends toward

neutrality.

10.2 The Fisher Model of Dimers

The results in Sec. 9.2 allow an investigation into the entropy of a lattice occupied

by two species of dimers and by holes. This can be done because a monomer would

occupy the same number of lattice sites as a perpendicular dimer. A picture of this

situation is given in Fig. 2.
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The entropy in this case is

Ssite = (kB)

{
ln
[
Z(x‖, z⊥)

]
+

z⊥βγz⊥
2Z(x‖, z⊥)

+
z2
⊥βγz⊥

2Z(x‖, z⊥)
√

(z⊥ + 1)2 + 4x‖

+
z⊥βγz⊥

2Z(x‖, z⊥)
√

(z⊥ + 1)2 + 4x‖
+

x‖βγx‖

Z(x‖, z⊥)
√

(z⊥ + 1)2 + 4x‖

}
,

(10.17)

where

Z(x‖, z⊥) =
1

2

(
z⊥ + 1 +

√
(z⊥ + 1)2 + 4x‖

)
. (10.18)

To mantain consistency with the previous section, the perpendicular and parallel

subscripts have been added. The activties are z⊥ = e−β(0.5E−µ) and x‖ = e−β(E−µ).

With these substituted, the entropy is plotted in Fig. 25 with the resultfor the lattice-

gas model plotted as a dashed line for comparison. Note that if E is the binding energy

of a parallel dimer, the energy of a perpendicular dimer would be half as big since

only one of the two atoms in the dimer isbound. This is the same as was used for the

lattice-gas model.

While the entropy for the lattice gas model trended twoard zero as the binding

energy became more negative (because it was only occupied by z‖) the Fisher model

approaches a positive finite entropy. This indicates that even as the lattice becomes

incredibly attractive, it is still occuped by a mixture of species of dimer.

The occupation numbers for each of the types of particles is calculated in the same

manner as they were calculated in the previous section, with one notable exception.

In the lattice-gas model the formula for the average number of a particle can be taken

to be the occupation number of that particle on the lattice, because each particle is

actually a monomer. However, in the Fisher model, the average number of parallel

dimers will not be the occupation number. Any number of parallel dimers which

are selected actually occupy twice that number of lattice sites. Thus the occupation
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Fig. 25.: The plot of the two entropies given by the lattice-gas model and the Fisher model of dimers.

for parallel dimers will be twice the average number of parallel dimers. Since the

derivations for each type are so similar only the average for xparallel is worked out

below. To start

〈Nx‖〉 =
1

β

1

Z

∂

∂µx‖
Z, (10.19)

where

Z(x‖, z⊥) =
1

2

(
z⊥ + 1 +

√
(z⊥ + 1)2 + 4x‖

)
, (10.20)

or, if working on 〈Nzh〉, then

Z(x‖, z⊥, zh) =
1

2

(
z⊥ + zh +

√
(z⊥ + zh)2 + 4x‖

)
. (10.21)

Combining this information gives

〈Nx‖〉 =
1

β

1

Z(x‖, z⊥)

∂

∂µx‖

1

2

(
z⊥ + 1 +

√
(z⊥ + 1)2 + 4x‖

)
, (10.22)
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Fig. 26.: The average occupation of species in the Fisher model of dimers showing species mixing even at large negative
binding energy.

which reduces to

〈Nx‖〉 =
x‖β

Z(x‖, z⊥, zh)
√

(z⊥ + 1)2 + 4x‖
. (10.23)

Then as it was stated above the parallel dimers occupy two lattice sites, and so the

occupation number for this must doubled

2〈Nx‖〉 =
2x‖β

Z(x‖, z⊥, zh)
√

(z⊥ + 1)2 + 4x‖
. (10.24)

The occupation for the other types of particles is found by simply taking their averages

without doubling in this same manner. The plot for the total occupation under the

Fisher model along with a dashed line to check that the total occupation of the lattice

is equal to one is shown in Fig. 26.

In the Fisher model, the total number of holes vanishes to zero as the binding

energy becomes more and more negative. However, the lattice is still filled with a

mix of parallel and perpendicular dimers. This mixing is what leads to the positive
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Fig. 27.: A comparison of the total charge vs.the binding energy on the lattice between the lattice-gas model and the
Fisher model.

constant entropy per lattice site in Fig. 25.

The total charge of the lattice of the Fisher model can be calculated via

Total Charge = z⊥ + zh, (10.25)

which is plotted in Fig. 27.

The total charge is probably the most physically important difference between

the two models. In the Fisher model, the lattice becomes positive as the binding

energy trends negatively. The lattice will be occupied by mostly neutral sites caused

by parallel dimers but any leftover single sites that cannot be occupied by parallel

dimers will pick up a perpendicular dimer and become a positive site. This is in

contrast to the lattice-gas model which, since it is actually filling the lattice with

monomers, will become filled with the higher binding energy “parallel” monomers

and eventually become neutral.
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CHAPTER 11

CONCLUSIONS AND FUTURE DIRECTIONS

11.1 Conclusions and Results

The main body of this paper is meant as an introduction into applied statistical

mechanics and as such much of it expounds the work of Fisher and of others who

have come before. Despite being introductory, this paper comes to some conclusions

that are physically relevant. In the lattice gas model, the charge was seen to become

neutral as the lattice became more attractive. But the Fisher model has the lattice

becoming positively charged. This is more in line with what is physically true for

polymers in solution. The charge on the lattice should not trend toward neutral.

In fact it could even have what Nguyen, Grosberg and Shklovskii termed a, “Giant

Inversion of Charge,” where the net charge after charge inversion is greater than the

original charge on the lattice [17]. Although the result here does not demonstrate such

a massive charge inversion, it is a step in the right direction from a simple lattice-gas

treatment of the problem.

Additionally, the mathematics in this paper have some relevence to the Ising

model, which is what gave birth to much of the work of Fisher[7, 9, 10, 12, 18].

The Ising model is one of a lattice occupied by magnetic particles that can be either

spin up or spin down. The particles interact with each other and create chains and

groups of oriented magnetic fields. Attempts at solutions to the Ising model drove

the introduction of Pfaffians into the toolbox of the physicist.
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11.2 Future Directions

Trying to directly count the lattice combinations, as was done in this paper

through the Pfaffian, has been a long standing problem in combinatorics and graph

theory in addition to being physically relevant. The method used in this paper of

creating a generating function and converting it to a Pfaffian works for trimers with

the exception of proving the sign is always positive for any lattice configuration of

trimers. Proving the sign is always positive would be an interesting puzzle that, if

solved, would allow these techniques to quickly find the entropy and total charge on a

lattice in the presence of trimers. Additionally, steps have been made recently in work-

ing with two-dimensional lattices that have both monomers and dimers. Most notably

Allegra and Fortin used Grassmanian algebra to formulate an exact fermionic solution

to lattices filled with both monomers and dimers as a product of two Pfaffians[19].

112



Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia
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Appendix B

MATHEMATICS

B.1 The Trace and Cyclic Interchange

In Eq. (2.24) the following relationships are given:

Tr{Ai} = 0,

Tr{AiAj} = 0,

Tr{AiAjAk} = 0,

Tr{A2
i } = Tr{I} = t,

(B.1)

where t is the dimension of the resulting matrix I. These relationships are true

because the trace is invariant under cyclic interchange. If there are an odd number

of operators in the trace then a new pair of operators AtAt = I is introduced. Take

the first relationship as an example

Tr{Ai} = Tr{AiAtAt} = Tr{−AtAiAt} = −Tr{AtAiAt}. (B.2)

If the operators are now cycled then the result of the trace will not change

Tr{Ai} = −Tr{AtAiAt} =
cycle
−Tr{AiAtAt} = −Tr{Ai} = 0, (B.3)

where the only way for the trace to equal its own negative is for it to be zero. A

similar process is done if there are an even number of operators in the trace but

instead of introducing an entirely new operator an operator that already exists in the
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trace is chosen. In the second relationship this is

Tr{AiAj} = Tr{AiAjAjAj}− = Tr{AjAiAjAj} =
cycle
−Tr{AiAjAjAj} = −Tr{AiAj} = 0.

(B.4)
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