
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2017

IMPROVING THE PERFORMANCE AND TIME-PREDICTABILITY OF IMPROVING THE PERFORMANCE AND TIME-PREDICTABILITY OF

GPUs GPUs

Yijie Huangfu

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer and Systems Architecture Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/4930

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4930&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarscompass.vcu.edu%2Fetd%2F4930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4930?utm_source=scholarscompass.vcu.edu%2Fetd%2F4930&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©Yijie Huangfu, May 2017

All Rights Reserved.

IMPROVING THE PERFORMANCE AND TIME-PREDICTABILITY OF GPUS

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

YIJIE HUANGFU, PH.D. VIRGINIA COMMONWEALTH UNIVERSITY, MAY 2017

Director: Wei Zhang, Ph.D.

Professor, Department of Electrical and Computer Engineering

Virginia Commonwewalth University

Richmond, Virginia

May, 2017

i

Acknowledgements

I thank my advisor, Prof. Wei Zhang. I am grateful for the opportunity of work-

ing with Prof. Zhang in this Ph.D. program, where I received excellent training and

insightful guidance and feedback from him. With his diligence and preciseness, Prof.

Zhang sets up a model for young academics to follow to succeed. I also appreciate

Prof. Zhang’s supportive attitude in encouraging me to explore research ideas and

career opportunities.

Dr. Carl Elks, Dr. Preetam Ghosh, Dr. Weijun Xiao and Dr. Qiong Zhang,

who also nicely serve on my committee, are appreciated for their highly suggestive

feedback and comments to my research plan proposal. I also thank their efforts and

patience in accommodating my proposal and dissertation defense dates to their tight

schedules.

I thank my friends Elaine and Bob Metcalf, Susie and Bud Whitehouse, Kate

and Lex Strickland, Jan and Jim Fiorelli, Geoffrey and Eunice Chan, Kun Tang, Tao

Lyu and Qianbin Xia for being a huge and wonderful part in my life at Richmond. It

is such a blessing to know them and to have them as friends.

I thank my parents for giving me life and the abilities and educations, with which

I can survive and thrive. I thank my parents in law for their unfailing supports,

without which I could not finish my Ph.D. program. I thank my daughter Claire for

bring joy, hope and noisy peace to the family. Specially, I thank my wife Xiaochen,

who is always supportive and encouraging and is forever the source of my energy for

pursuing excellence.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

Abstract .

1 Introduction . 1

1.1 Background . 1

1.2 GPU L1 Data Cache Bypassing 3

1.3 GPU L1 Data Cache Access Reordering 3

1.4 WCET Timing Model for GPU Kernels 4

1.5 WCET Analysis of Shared Data LLC in integrated CPU-GPU

Architecture . 4

1.6 Dissertation Organization . 5

2 GPU Architecture and GPGPU Programming Model 6

2.1 GPU Architecture . 6

2.2 GPGPU Programming Model . 7

3 Profiling-Based GPU L1 Data Cache Bypassing 9

3.1 Introduction . 9

3.2 Related Work . 10

3.3 Profiling-Based GPU L1 data Cache Bypassing Method 11

3.3.1 Global Memory Access Utilization 11

3.3.2 Global Memory Reuse Time 13

3.3.3 Heuristic for GPU Cache Bypassing 14

3.4 Evaluation Results . 16

4 Warp-Based Load/Store Reordering for Better Time-Predictability in

GPU L1 Data Cache . 19

4.1 Introduction . 19

4.2 Related Work . 20

4.3 Dynamic Behaviors in GPU . 21

iii

4.3.1 Dynamic Warp Scheduling 21

4.3.2 Out-of-Order Execution . 21

4.3.3 Independent Execution Among Warps 22

4.4 GPU L1 Data Cache Access Reordering Framework 23

4.4.1 Challenges of GPU Execution on Cache Timing Analysis . . 23

4.4.2 Issues of Regulating the Warp Scheduling Orders 24

4.4.3 The Load/Store Reordering Framework 24

4.4.4 Compiler-Based Kernel Analyzer 25

4.4.5 Architectural Extension for Warp-Based Load/Store Reordering 29

4.4.6 GPU L1 Data Cache Miss Rate Estimation 34

4.4.6.1 Limitation of the GPU L1 Data Cache Timing Analyzer 36

4.5 Evaluation Results . 37

4.5.1 Performance Results . 37

4.5.2 GPU L1 Data Cache Miss Rate Estimation Results 38

5 Timing Model for Static WCET Analysis of GPU Kernels 41

5.1 Introduction . 41

5.2 Related Work . 42

5.3 GPU WCET Analysis with Predictable Warp Scheduling 43

5.3.1 Pure Round-Robin Scheduler Timing Model 43

5.3.2 Code Segment Issuing and Execution Latency Timing Models 46

5.3.3 Static GPU Kernel Analyzer 50

5.3.3.1 Warp Scheduling Order 51

5.3.3.2 Number of Coalesced Memory Accesses 51

5.3.3.3 Number of Competing SMs 53

5.4 Evaluation Results . 57

6 Static WCET Analysis on Last Level Data Cache in Integrated CPU-

GPU Architecture . 61

6.1 Introduction . 61

6.2 Related Work . 62

6.3 Reuse Distance . 63

6.4 Shared LLC Analysis . 64

6.4.1 The Integrated CPU-GPU Architecture Under Analysis . . . 64

6.4.2 Simple Shared Data LLC Analysis Method 64

6.4.3 Access Interval Based Shared Data LLC Analysis Method . . 67

6.5 WCET Analysis of GPU Kernels with Shared Data LLC Esti-

mation Results . 71

iv

6.6 Evaluation Results . 72

6.6.1 Experimental Methodology 72

6.6.1.1 Simulator . 72

6.6.1.2 Benchmarks . 73

6.6.1.3 Assumptions . 74

6.6.2 Experiment Results . 75

6.6.2.1 Shared Data LLC Miss Rate Estimation Results . . . 75

6.6.2.2 WCET Estimation Results of GPU Kernels 77

7 Conclusions . 80

7.1 Profiling-Based GPU L1 Data Cache Bypassing 80

7.2 Warp-Based Load/Store Reordering for Time-Predictability Im-

provement . 81

7.3 Static WCET Analysis Timing Model for GPUs 82

7.4 Static WCET Analysis on Shared Data LLC in CPU-GPU Ar-

chitectures . 82

7.5 Future Work . 83

References . 84

Appendix A Publication . 96

v

Abstract

IMPROVING THE PERFORMANCE AND TIME-PREDICTABILITY OF GPUs

By Yijie Huangfu, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2017

Major Director: Wei Zhang, Professor, Electrical and Computer Engineering

Graphic Processing Units (GPUs) are originally mainly designed to accelerate

graphic applications. Now the capability of GPUs to accelerate applications that can

be parallelized into a massive number of threads makes GPUs the ideal accelerator for

boosting the performance of such kind of general-purpose applications. Meanwhile

it is also very promising to apply GPUs to embedded and real-time applications as

well, where high throughput and intensive computation are also needed.

However, due to the different architecture and programming model of GPUs, how

to fully utilize the advanced architectural features of GPUs to boost the performance

and how to analyze the worst-case execution time (WCET) of GPU applications are

the problems that need to be addressed before exploiting GPUs further in embedded

and real-time applications. We propose to apply both architectural modification and

static analysis methods to address these problems. First, we propose to study the

GPU cache behavior and use bypassing to reduce unnecessary memory traffic and

to improve the performance. The results show that the proposed bypassing method

can reduce the global memory traffic by about 22% and improve the performance

by about 13% on average. Second, we propose a cache access reordering framework

based on both architectural extension and static analysis to improve the predictabil-

ity of GPU L1 data caches. The evaluation results show that the proposed method

can provide good predictability in GPU L1 data caches, while allowing the dynamic

warp scheduling for good performance. Third, based on the analysis of the architec-

ture and dynamic behavior of GPUs, we propose a WCET timing model based on a

predictable warp scheduling policy to enable the WCET estimation on GPUs. The

experimental results show that the proposed WCET analyzer can effectively provide

WCET estimations for both soft and hard real-time application purposes. Last, we

propose to analyze the shared Last Level Cache (LLC) in integrated CPU-GPU ar-

chitectures and to integrate the analysis of the shared LLC into the WCET analysis

of the GPU kernels in such systems. The results show that the proposed shared data

LLC analysis method can improve the accuracy of the shared LLC miss rate estima-

tions, which can further improve the WCET estimations of the GPU kernels.

CHAPTER 1

INTRODUCTION

1.1 Background

In the past decade or so, Graphics Processing Units (GPUs), originally designed

to accelerate graphical computation, have rapidly become a popular platform for

high-performance parallel computing. Modern GPUs can support massive parallel

computing with thousands of cores and extremely high-bandwidth external memory

systems. The single-instruction multiple-thread (SIMT) programming model used by

GPUs well matches the underlying computing patterns of many high-performance

embedded applications, including imaging, audio, video, military, and medical appli-

cations [1]. At the same time, GPUs are increasingly used in System-on-Chips (SoCs)

for mobile devices, for example ARM’s Mali graphics processor [2], the NVIDIA

Tegra[3] and the DRIVE PX platform [4].

GPUs can also provide considerable benefits to a variety of real-time applications

that demand high throughput and energy efficiency. In particular, GPUs are promis-

ing for many computation-intensive hard real-time and safety-critical applications

such as medical data processing [5], autonomous auto navigation [6], vision-based

aircraft controls [7] and human pose recognition [8]. All these applications need to

meet strict deadlines and require high system throughput, making GPUs the ideal

potential computing engines for them.

There are efforts made to explore the performance and energy benefits of the

heterogeneous CPU-GPU architectures. For instance, the management method in [9]

employs a unified Dynamic Voltage Frequency Scaling (DVFS) approach to further

1

reduce the power consumption for 3D mobile games. Studies have also been done on

real-time image processing in different types of applications based on the CPU-GPU

architecture[10][11][12]. Besides the real-time image processing field, moreover, the

CPU-GPU architecture is more and more used in other real-time applications, e.g.

the NVIDIA PX 2 self-driving car computing platform[4] using the Tegra[3] chips.

And, with the development of the general purpose GPU programming model and the

CPU-GPU architectures, it is expected that such architectures will be widely used in

all kinds of different real-time applications, e.g. computer vision, automation control

and robotics.

However, many GPU architecture features designed for improving the average-

case performance are harmful to the time-predictability feature of the system. There-

fore, before exploiting the computing power of GPUs in these applications, the im-

pacts of these advanced GPU architecture features in time-predictability and perfor-

mance need to be analyzed and studied accordingly. One example is the usage of

cache memories. In CPUs, cache memories help to reduce the speed gap between

the processor cores and the main memory, by exploiting the spacial and temporal

localities. GPU applications, nevertheless, are different in spacial and temporal lo-

calities, which leads to the first problem of how to better utilize the cache memory

in GPUs. According to the time-predictability of GPUs, the advanced architecture

features, such as dynamic scheduling and out-of-order execution, make it very hard, if

not impossible, to estimate the WCET of GPU applications, since at run-time there

are usually thousands of warps scheduled and executed dynamically. Furthermore,

the trend of building and utilizing the integrated CPU-GPU architectures raises the

problem of how to model the behavior of the shared resources in such architectures,

e.g., the shared Last Level Cache (LLC), so that the behavior of the whole chip in

the worst case can be better modeled.

2

1.2 GPU L1 Data Cache Bypassing

The first topic is about using cache bypassing to study the impact of the GPU L1

data cache on the performance and finding a way to use the GPU L1 data cache more

effectively. We comparatively evaluate the GPU performance without and with the

cache memory. We find that unlike CPU caches, GPU applications tend to exhibit

low temporal and/or spatial locality in the L1 data cache. On average, the GPU

with the L1 data cache actually leads to worse performance than the one without the

L1 data cache. However, this does not necessarily imply that caches should not be

used for real-time GPU computing. By examining the GPU application behavior and

architectural features, we propose to use GPU L1 data cache bypassing methods to

filter out the GPU cache accesses that are detrimental to performance, so that the

cache can be used in a more effective way.[13]

1.3 GPU L1 Data Cache Access Reordering

Secondly, the dynamic warp scheduling operations in GPUs can benefit the

average-case performance of general-purpose GPU (GPGPU) applications. But such

a kind of dynamic behaviors is hard to be analyzed statically. Therefore, we propose

a warp-based load/store reordering framework that is based on collaborative static

analysis and architectural extensions in GPUs to improve the predictability of the

GPU L1 data caches. The proposed framework supports dynamic warp scheduling

while reordering the load/store instructions to enable safe and accurate timing anal-

ysis for L1 GPU data caches. As a result, the predictability is improved without

putting constraints on the dynamic warp scheduling behaviors, which helps to keep

good average-case performance.[14]

3

1.4 WCET Timing Model for GPU Kernels

The third effort is to build a timing model and static analyzer for the purpose

of GPU WCET analysis and estimation. We proposed to employ a predictable pure

round-robin scheduling policy, based on which a timing model is built for GPGPU

kernels. With this timing model, a static analyzer is built to analyze the assembly

codes of the GPGPU kernels and to give their WCET estimations. Building such

a kind of low-level timing model of a processor architecture requires detailed docu-

mentation of the processor, which is usually unavailable for GPUs. Furthermore, the

proposed methods involve changes in the architecture. Therefore, the detailed and

configurable GPU simulator GPGPU-Sim [15] is used to implement and evaluate the

proposed model and analyzer.

1.5 WCET Analysis of Shared Data LLC in integrated CPU-GPU Ar-

chitecture

The last work is to improve the time-predictability of the integrated CPU-GPU

architectures. Specifically, the focus in this work is the shared Last Level Cache

(LLC). The method of Access Interval regulations is used to improve the time-

predictability of the shared data LLC, according to the cache miss rate estimations.

The improved miss rate estimations are then integrated into the WCET timing model

for better WCET estimations of GPU kernels. The gem5-gpu[16] simulator is used to

implement the integrated architecture with shared LLC and to evaluate the impact

of the shared LLC in such systems.

4

1.6 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 briefly introduces

the background information about the GPU architecture and GPGPU programming

model. In Chapter 3, the profiling-based GPU L1 data cache bypassing is present to

illustrate how the GPU L1 data caches can be used in a more effective way. Chapter 4

talks about a reordering framework, which is based on both architectural extensions

and static analysis, and how this framework can improve the predictability of the

GPU L1 data cache. A timing model for WCET analysis of GPU kernels that is

based on a predictable warp scheduling policy is introduced in Chapter 5, after which

a static WCET analysis technique for the shared data LLC in the integrated CPU-

GPU architecture is discussed in Chapter 6. In Chapter 7, the conclusions are made.

5

CHAPTER 2

GPU ARCHITECTURE AND GPGPU PROGRAMMING MODEL

2.1 GPU Architecture

Fig. 1 shows the basic architecture of a NVIDIA GPU1, which has a certain

number of Streaming Multiprocessors (SMs), e.g., 16 SMs in Fermi architecture[17].

All the SMs share the L2 cache, through which they access the DRAM global memory.

Other parts, like the interface to host CPUs, are not included in Fig. 1.

L2 Cache

.SM SM SM SM SM SM

.SM SM SM SM SM SM

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Fig. 1. GPU Architecture[17]

Fig. 2 shows the architecture of an SM, which contains a group of Shader Pro-

cessors (SPs, also called CUDA processor or CUDA core). Each SP has the pipelined

integer arithmetic logic unit and floating point unit, which execute the normal arith-

metic instructions, while the Special Function Units (SFUs) execute the transcenden-

tal instruction, such as sin, square root, etc. Besides the computing functional units,

there are several L1 caches for instruction, data, texture data and constants. The

register file contains a huge number of registers shared by all the SPs and SFUs, while

the warp scheduler and dispatching unit choose among the active warps and collect

1The NVIDIA CUDA GPU terminologies are used in this dissertation.

6

the operands needed and send the warp to execution.

Instruction Cache

Constant
Cache

Texture
Cache

L1 Data
Cache

. .
 .

Dispatching Unit

Registers File

SFU

. .
 .

LD/ST

. .
 .

SP SP SP SP

SP SP SP SP

SFU LD/ST

Warp Scheduler

Fig. 2. SM Architecture[17]

2.2 GPGPU Programming Model

With the support of a massive number of cores, GPUs use the SIMT execution

model to allow a big number of threads to execute in parallel. A GPGPU pro-

gram, which is also called a GPU kernel, can be written in either CUDA C[18] or

OpenCL[19]. A GPU kernel is configured and launched by a host CPU. Through

the configuration of the kernel, the host CPU tells the GPU how many threads there

are in the execution of the kernel and what the hierarchy of the threads is like. The

hierarchy of a kernel has two levels; the dimensions in kernel grid (how many kernel

blocks there are in a kernel grid) and in kernel block (how many threads there are in

a kernel block). For example, the kernel in Fig. 3 has 64 (2× 4× 8) kernel blocks in

the kernel grid and 512 (32× 16× 1) threads in one kernel block.

The kernel code describes the function and behavior of a single thread, based on

the position of this thread in the hierarchy of the kernel, e.g., thread and block IDs.

7

dim3 grdDim(2, 4, 8);
dim3 blkDim(32,16, 1);
Kernel<<<grdDim, blkDim>>>(...);

Fig. 3. GPU Kernel Configuration Example

The most common way is to use the thread and block IDs to calculate the indices,

which each thread uses to access a certain array, so that the threads work on different

parts of the data in parallel. In the execution of a GPU kernel, a kernel block is

assigned to an SM and stays there until finishing its execution. 32 threads in a kernel

block are grouped together as the basic scheduling and execution unit, which is called

a warp. The threads in the same warp execute the same instruction together in the

SIMT model. Therefore, a GPU kernel instruction is also called a warp instruction.

8

CHAPTER 3

PROFILING-BASED GPU L1 DATA CACHE BYPASSING

3.1 Introduction

To exploit the localities in GPGPU applications and boost the average-case per-

formance, both the L1 data cache and the unified L2 cache are included in modern

GPUs. Although the cache memory can effectively hide the access latency for data

with good temporal and/or spatial locality for both CPUs and GPUs, GPGPU ap-

plications may exhibit divergent memory access patterns from traditional CPU ap-

plications. Moreover, the recent study shows that GPU caches have counter-intuitive

performance trade-offs [20]. Therefore, it is important to explore the techniques to

use the on-chip cache memories effectively to boost GPU performance and/or energy

efficiency. In particular, for embedded and mobile GPU applications, it is also cru-

cial to develop cost-effective optimization methods for improving performance and/or

energy efficiency.

To address this problem, we comparatively evaluate the GPU performance with-

out and with the cache memory. As the first step toward studying time predictability

of GPU caches, we focus on the L1 data cache. we find that unlike CPU caches, GPU

applications tend to exhibit low temporal and spatial locality in the L1 data cache.

On average, the GPU with the L1 data cache actually leads to worse performance

than the one without the L1 data cache. However, this does not necessarily imply

that caches should not be used for real-time GPU computing.

By examining the GPU application behavior and architectural features, we pro-

pose a profiling-based cache bypassing method to filter out the GPU cache accesses

9

that are detrimental to performance. The evaluation results show that the cache

bypassing method improves the performance adequately as compared to the GPU

without using the cache, because the rest of GPU memory accesses with good tem-

poral and spatial locality can still efficiently exploit the L1 data cache. Therefore,

employing the L1 data cache can still benefit real-time GPU applications in terms of

the average-case performance; however, time-predictable architecture or static timing

analysis techniques need to be developed to use the GPU caches deterministically for

high-performance real-time computing.

3.2 Related Work

Cache bypassing has been extensively studied for CPUs in the past. Some archi-

tectures have introduced ISA support for cache bypassing, for example HP PA-RISC

and Itanium. Both hardware-based [21][22][23][24][25] and compiler-assisted [26][27]

cache bypassing techniques have been proposed to reduce cache pollution and improve

performance. However, most CPU cache bypassing approaches use hit rates as perfor-

mance metrics to guide cache bypassing, which may not be applicable to GPUs due to

the distinct architectural characteristics and the non-correlation of GPU performance

with data cache hit rates [28].

Mekkat et al. [29] proposed Heterogeneous LLC (Last-Level Cache) Management

(HeLM), which can throttle GPU LLC accesses and yield LLC space to cache sensitive

CPU applications. The HeLM takes advantage of the GPUs tolerance for long memory

access latency to provide an increased share of the LLC to the CPU application for

better performance. There are several major differences between HeLM and my work.

HeLM targets the shared LLCs in integrated CPU-GPU architectures, while my work

focuses on bypassing the L1 data caches in GPUs. Moreover, HeLM is a hardware-

based approach that needs additional hardware extension to monitor the thread-level

10

parallelism (TLP) available in the GPU application. In contrast, my cache bypassing

method is a software-based approach that leverages profiling information statically,

which is simple and low cost and is particularly useful for embedded and mobile

GPUs. Moreover, my method is complementary to the hardware-based HeLM, which

can be used in conjunction with HeLM to further improve the GPU performance or

energy efficiency in the integrated CPU-GPU architecture.

GPU Cache Bypassing. Jia et al. [28] characterized application performance on

GPUs with caches and proposed a compile-time algorithm to determine whether each

load should use the cache. Their study first revealed that unlike CPU caches, the

L1 cache hit rates for GPUs did not correlate with performance. Recently, Xie et al.

[30] studied a compiler-based algorithm to judiciously select global load instructions

for cache access or bypass. Both Jia and Xie’s approaches can achieve performance

improvement through cache bypassing. However, both approaches make cache by-

passing decisions based on each global load instruction, which can access a variety of

data addresses with diverse temporal and spatial locality. In contrast, our method

is based on data addresses, not load instructions. This gives us finer-grained control

on which data to be cached or bypassed to further enhance performance and energy

efficiency.

3.3 Profiling-Based GPU L1 data Cache Bypassing Method

3.3.1 Global Memory Access Utilization

The 32 threads in a warp access the global memory in a coalesced pattern.

Assuming that each thread needs to fetch 4 bytes, if the data needed by each thread

are well coalesced, this load operation can be serviced by one 128-byte transaction, as

shown in Fig. 4 (a). In this case, all the data in the memory transaction are useful,

11

thus the utilization rate (or efficiency) of this load, which represents the percentage

of bytes transferred from global memory that are actually used by the GPU, is 100%

(128/128). However, when the memory access pattern changes a little bit, as shown

in Fig. 4 (b) and (c), the address range becomes 96 to 223, which spans across the

boundary of 128 bytes. In this case, two 128-byte transactions are needed to transfer

the data needed by the threads. Thus the utilization rates of these two transactions

are 25% and 75% respectively, resulting in a 50% (128/256) overall utilization rate.

This indicates half of the memory traffic, generated by this two load operations, are

useless and unnecessary if they are not reused, which may degrade both performance

and energy efficiency for GPGPU computing.

0 31

128 255
(a)

Threads

Memory Address

0 31

96 223
(b)

Threads

Memory Address128

0 31

96 223
(c)

Threads

Memory Address128

Fig. 4. Examples of different memory access patterns with different utilization

rates.[13]

The example of low load utilization rates in Fig. 4 may be caused by improper

mapping between threads and memory addresses, which, sometimes but not always,

can be avoided through the effort of programmers. However, the divergences in the

12

CUDA kernel, which are caused by the algorithms and are generally hard to eliminate,

can also lead to such load operations with low utilization rates.

3.3.2 Global Memory Reuse Time

The GPGPU applications usually operate on a massive amount of data. However,

the cache line usage among the data with different addresses may differ significantly.

This is not only because GPGPU applications can exhibit irregular data access pat-

terns, but also because the effective L1 data cache space per SP is too small. Thus

even if some data are reused within a warp, they may have been replaced from the

cache by other data from the same warp or from other warps from the same thread

block before they can be reused, resulting in cache misses and hence increasing global

memory accesses.

Fig. 5 shows the data reuse distribution in the L1 data cache across different

SMs for the benchmarks gaussian and srad, both of which are selected from Rodinia

benchmark suite [31]. In this figure, each bar indicates the number of different data

addresses that are reused in the L1 data cache by a certain number of times, which

varies from 0, 1, up to 15, or more. As we can see, the number of different addresses

reused in the L1 data cache varies slightly across different SMs because of the GPU

SIMD execution model. We also find for both benchmarks a considerable number

of data addresses are never reused at all or are only reused for a very small number

of times. For example, in gaussian, nearly half of the addresses are used for just

once, while in the srad the majority of the addresses are not reused at all. The very

low temporal locality from GPGPU applications is quite different from typical CPU

applications that tend to have good temporal locality; therefore, we need to explore

novel cache management techniques for GPUs.

For data that are never reused at all, loading them into the cache is not helpful

13

0

1000

2000

3000

4000

5000

6000

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14

N
u

m
b

e
r
 o

f
d

if
fe

r
e
t

a
d

d
r
e
s
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-

(a) Data usage distribution of gaussian benchmark

0

500

1000

1500

2000

2500

3000

3500

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14

N
u

m
b

e
r
 o

f
d

if
fe

r
e
t

a
d

d
r
e
s
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-

32247 32456 32460 32394 32520 32177 32276 32362 32352 32263 32313 32331 32146 32211 32243

(b) Data usage distribution of srad benchmark

Fig. 5. The data usage distribution[13]

to reduce neither latency nor memory bandwidth. On the contrary, bypassing them

may reduce cache pollution. Even if the data are reused a few times, loading them

into the L1 data cache may increase the global memory traffic if the load utilization

rate is low. This may negate the benefit of a small number of cache hits. Therefore,

it becomes attractive to bypass those data that are never reused or only reused a few

times to reduce the memory bandwidth pressure and cache pollution for GPUs.

3.3.3 Heuristic for GPU Cache Bypassing

We propose to use profiling to identify the L1 data cache accesses that should

be bypassed. We focus on bypassing the data accesses that have low load utilization

14

rates and low reuse times in the L1 data cache, with the objective to minimize the

global memory traffic. More specifically, for each data address A that is accessed by

a global load, we use profiling to collect its load utilization rate U and the reuse time

R. Equation 3.1 is used to determine which data accesses should be bypassed.

U × (1 + R) < 1 (3.1)

In the above equation, (1 + R) represents the number of times A is accessed

from the L1 data cache, including the first time when it is loaded into the cache, i.e.,

128 bytes are transferred from the global memory. If U is 1, then this product is at

least 1, even if A is not reused at all, indicating A should not be bypassed. On the

other hand, if U is less than 1, and if R is 0 or a small integer (e.g. 1, 2, 3) such

that the condition in Equation 3.1 holds, then storing A into the L1 data cache will

actually increase the global memory traffic as compared to bypassing this access from

the L1 data cache. Therefore, in this case, bypassing A can reduce the global memory

traffic, potentially leading to better performance or energy efficiency. The reduction

of cache pollution will also be a positive side effect of bypassing this data from the L1

data cache. Our cache bypassing method considers both spatial locality (i.e. U) and

temporal locality (i.e. R). For example, for the memory access pattern with low load

utilization rate as depicted in Fig. 4 (b), i.e., U = 25%, this address must be reused

at least 3 times in the L1 data cache (i.e. R = 3) to not be bypassed. In contrast, for

the memory access pattern with high load utilization rate that is shown in Fig. 4 (c),

i.e., U = 75%, if this address is reused at least once from the L1 data cache (i.e., R =

1), then it should not be bypassed. To support the profiling-based method, we modify

the GPGPU-Sim by adding the functions to generate detailed statistics of L1 data

cache accesses and enable the L1 data cache model to selectively bypass the identified

15

data addresses. The detailed statistics results include the information of data reuse

time and load utilization rate of each memory access with different addresses, which

are automatically analyzed by scripts to generate the list of bypassing addresses for

each SM separately. The bypassing addresses are annotated and the benchmarks are

simulated again with GPGPU-Sim with the bypassing function enabled to implement

the profiling-based cache bypassing method.

3.4 Evaluation Results

Fig. 6 compares the performance of the three schemes, which is normalized to the

total number of execution cycles of the L1 data cache without bypassing. As we can

see, the cache bypassing method improves the performance for all benchmarks. For

example, the total number of execution cycles for lud is reduced by more than 40%

with cache bypassing, and the average reduction of execution cycles for all benchmarks

is 13.8%. Compared to the performance without the L1 data cache, the L1 data cache

with bypassing achieves superior performance for all benchmarks except bfs, and on

average, the L1 data cache with bypassing improves performance by 8.5% as compared

to that without the L1 data cache.

The performance improvement of cache bypassing comes from two factors. The

first factor is the reduction of the global memory traffic caused by cache bypassing,

which is shown in Fig. 7. The results indicate that cache bypassing reduces the

global load memory traffic by 24.7% on average, as compared to the L1 data cache

without cache bypassing. Compared to the GPU without using the L1 data cache,

cache bypassing reduces the global load memory traffic by 3.1%, leading to better

performance.

The second factor for performance improvement is that cache bypassing reduces

L1 data cache miss rates as shown in Fig. 8. The cache miss rate is decreased by

16

0%

20%

40%

60%

80%

100%

120%

140%

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
es

ul
ts

No bypassing With bypassing Bypassing all

Fig. 6. Normalized total number of execution cycles with the L1 data cache without

bypassing and with bypassing, and without the L1 data cache, which are nor-

malized to that with the L1 data cache without cache bypassing.[13]

0%

20%

40%

60%

80%

100%

120%

140%

160%

N
or

m
al

iz
ed

 G
lo

ba
l L

oa
d

Tr
af

fic

No bypassing With bypassing Bypassing all

Fig. 7. Normalized global memory traffic with the L1 data cache without bypassing

and with bypassing, and without the L1 data cache, which are normalized to

that with the L1 data cache without cache bypassing.[13]

17

0%

20%

40%

60%

80%

100%

120%

N
or
m
al
ize

d
to
ta
l L
1D

 m
is
s r
at
e

No bypassing With bypassing

Fig. 8. Normalized L1 data cache miss rates with and without cache bypassing, which

are normalized to that without cache bypassing.[13]

up to 57.5% for lud, and the average reduction is 24.6%. Particularly, when cache

bypassing reduce both global memory traffic and cache miss rates, the performance

is improved dramatically. For example, for both lud and gaussian, both the global

memory traffic and cache miss rates are reduced significantly. As a result, the per-

formance of lud and gaussian is improved by 42.7% and 21.8%. In contrast, for some

benchmarks such as streamcluster, although cache bypassing reduces its cache miss

rate by 44.8%, its global memory traffic is only reduced by 3.8%, leading to small

performance improvement of 3.4%. This also indicates that reducing memory traffic

may be more important than reducing cache miss rates for GPGPU programs.

It should also be noted the proposed bypassing method does not necessarily

reduce the L1 data cache miss rate, for example srad, because the total number of

accesses to the L1 data cache is also reduced by bypassing. However, on average,

the L1 data cache miss rate is reduced by 24.6%, indicating that the proposed cache

bypassing method can effectively alleviate cache pollution and improve performance.

18

CHAPTER 4

WARP-BASED LOAD/STORE REORDERING FOR BETTER

TIME-PREDICTABILITY IN GPU L1 DATA CACHE

4.1 Introduction

In hard real-time systems, there are plenty of applications that need to process

a massive amount of data, for example, real-time traffic sign and speech recognition,

and autonomous navigation. GPUs are a promising platform to accelerate those ap-

plications, as long as the execution time is predictable so that the WCET can be

computed accurately and efficiently. Unfortunately, many architectural features de-

signed for improving the average-case performance are harmful to time predictability,

for example, dynamic scheduling, out-of-order execution, etc. In particular, cache

memories are well known to be good for performance but bad for time predictability,

because the memory access time is now dependent on whether the access hits in the

cache or not, which is often hard to predict statically. For the cache memories used in

GPUs, due to the use of many threads and the dynamic warp scheduling, the memory

access time is not only dependent on the run-time access history of the cache, but

also dependent on the execution orders of the threads, warps and the instructions

in each thread. This makes the WCET analysis for GPU caches much more com-

plicated and challenging. Since the Fermi architecture, NVIDIA GPUs have begun

to use the L1 data caches and L2 unified cache to improve the average-case perfor-

mance, and now all kinds of cache memories are increasingly used in various GPUs.

Therefore, a cache memory architecture that can offer both time predictability and

high performance becomes critical to support hard real-time computing on GPUs.

19

To improve the predictability of the GPU L1 data cache, we propose a framework

that is based on compiler and architectural extensions in GPUs. The proposed frame-

work supports dynamic warp scheduling while reordering the load/store instructions

to enable safe and accurate timing analysis for L1 GPU data caches. The experi-

ment results indicate that the worst-case GPU L1 data cache misses can be tightly

computed, while the proposed approach achieves better performance than a pure

round-robin scheduling.

4.2 Related Work

Studies have been done on real-time scheduling algorithms for GPUs and het-

erogeneous processors [32] [33][34]. These works basically assume that the WCET of

the real-time tasks is already known, which reveals the importance of improving time

predictability of GPU architectures to support hard real-time computing.

A large number of research efforts also have been made to improve the time pre-

dictability of cache memories for CPUs, among which cache locking is a well-studied

method for better predictability [35][36][37]. Some alternative designs to normal cache

memories are Scratchpad Memory (SPM) [38] and method cache [39]. There are also

a number of studies on WCET analysis of cache memories [40][41][42][43][44], which,

however, focus on normal CPU caches rather than GPU caches.

Studies have also been done on regulating the memory accesses to GPU caches to

improve the performance. Xie et al. propose a compiler-based framework to bypass

the memory access instructions with bad localities for better performance[30]. Jia et

al. use reordering and bypassing to get more cache-friendly access orders[20]. But

neither of these aims at improving the predictability of GPU caches.

20

4.3 Dynamic Behaviors in GPU

Dynamic warp scheduling and out-of-order execution of warp instructions are

involved when a GPU kernel runs. GPUs rely on these dynamic mechanisms to

hide memory and other latencies and to improve the average-case performance and

throughput.

4.3.1 Dynamic Warp Scheduling

Whenever a warp is stalled, e.g. the needed resource is unavailable, the warp

scheduler dynamically finds a ready warp among the active ones to issue. Therefore,

the issuing order of warps does not necessarily follow the order of the warp IDs. For

instance, if there are 3 warps W0, W1, W2, for the same instruction, issuing order

can be any one out of the 6 possible combinations of the 3 warps, e.g. [W1, W2, W0]

or [W2, W0, W1].

4.3.2 Out-of-Order Execution

Among the instructions from the same warp, the execution order does not nec-

essarily follow the order of the instructions in the kernel program either. This is

because after the instructions are issued, they need to wait until all the operands

are ready before execution. Due to data dependencies, a trailing instruction in the

kernel program may have all its operands ready earlier than a leading instruction in

the kernel program, and thus can be executed earlier. For example, if there are two

instructions I0 and I1 where I1 is behind I0 in the kernel code, the execution of I1

can be earlier than that of I0 if its data get ready before that of I0.

When the dynamic scheduling and out-of-order execution are combined together,

there are many more possible execution orders. An example is shown in Fig. 9 to

21

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���	�

�

���	�

�

Fig. 9. An Example of Possible Execution Orders of Warp Instructions.

illustrate this. Although due to space limitation, only 2 possible orders are shown,

the total number of possible execution orders of 3 warps and 2 instructions can be

totally 6! (or 720). As the number of warps and instructions increases, the number

of possible execution orders would be prohibitively large for efficient and accurate

WCET analysis.

4.3.3 Independent Execution Among Warps

��

��
��

��

��

��

��

��

��

��
�

��
�

��
�

��
�

Fig. 10. Example of Warp and Basic Block Relations.

In the CUDA programming model, warps are independent to each other if no

special synchronization instruction is used, i.e. there is no synchronization at the

boundaries of basic blocks by default. In the example shown in Fig. 10, W0 and W2

execute BB0, BB1 and BB3, while W1 executes BB0, BB2 and BB3. This makes it

possible that W1 executes in BB3, while W0 and W2 are still in BB1. Consequently,

22

the warp instructions may not follow the basic block order in the control flow to access

the data cache or memory.

4.4 GPU L1 Data Cache Access Reordering Framework

4.4.1 Challenges of GPU Execution on Cache Timing Analysis

The dynamic warp scheduling and out-of-order instruction execution pose great

challenges for cache timing analysis. Abstract interpretation is a technique that has

been successfully used in cache timing analysis for CPUs. It uses a global abstract

cache state to model and predict the cache behavior in the worst case at each bound-

ary of basic blocks [44]. A basic assumption of applying the abstract interpretation

in cache timing analysis is that for each basic block, the memory access sequences

to the cache can be statically derived from the control flow graph. However, this

assumption cannot be guaranteed at all in GPUs due to the aforementioned dynamic

warp/instruction execution behaviors of GPUs.

In static timing analysis for CPUs, a range of memory space can be used for the

data accesses whose addresses are unpredictable. However, this approach becomes

unaffordable for GPU kernels, because the huge number of memory accesses a kernel

usually has can lead to overly pessimistic or useless WCET estimation results. For

example, the maximal number of the relative age of memory blocks that may be in

the cache can be significantly overestimated due to the massive number of threads

and cache accesses that can be executed out-of-order. Therefore, in this framework,

it is assumed that the addresses of data accesses to the L1 data cache and the branch

conditions are statically known, which actually are not uncommon in GPU kernels

that access data and operate based on the thread and block IDs. The proposed

method contains 3 software and hardware components, including a compiler-based

23

GPU L1 data cache access analyzer, a worst-case L1 cache miss rate estimator, and a

channel-based architectural extension for predictable L1 data cache access reordering.

4.4.2 Issues of Regulating the Warp Scheduling Orders

In GPUs, it is possible to improve the predictability by reducing the dynamic

behaviors, like using a strict round-robin warp scheduling policy, but the performance

overhead can be significant. Therefore, our goal in this work is to achieve predictable

caching by imposing a minimum constraint on regulating the GPU dynamic execution

behavior and minimizing the performance overheads.

Actually, even a pure round-robin warp scheduling policy, in which the warp

scheduler issues one instruction for a warp following the warp IDs strictly, still cannot

guarantee the order of different warp instructions in different basic blocks, since the

execution traces of different warps are usually independent to each other. Therefore,

simply regulating the warp execution order does not change the out-of-order execution

of instructions in a certain warp, which can still impact the time predictability of GPU

data caches.

4.4.3 The Load/Store Reordering Framework

As shown in Fig. 11, the proposed framework consists of 3 major components,

including the CUDA kernel analyzer, the worst-case L1 data cache miss rate estimator,

and the warp-based load/store reordering architectural extension. The kernel analyzer

analyzes the PTX code of a CUDA kernel and generates a reorder configuration to

guide the load/store reordering unit in the GPU. The kernel analyzer also outputs

the memory address values that will be used by the global memory warp instructions

in the kernel, which is also used by the L1 data cache miss rate estimator. The details

of these three components are discussed in the following three subsections.

24

Reordering
Configuration

CUDA
Kernel

Kernel
Analyzer

L1 Data Cache
Miss Rate Estimator

Miss Rate
Estimation

Reordering
Extension

GPU

Fig. 11. General Structure of the Load/Store Reordering Framework.[14]

4.4.4 Compiler-Based Kernel Analyzer

The proposed kernel analyzer uses the PTX code and the input values, including

parameter values and the kernel hierarchy configuration values, of the CUDA kernel to

derive the L1 data cache access pattern and the memory access addresses of both the

global load and store instructions of the kernel. Algorithm 1 shows the pseudo code

of the analyzer. The kernel analyzer first collects the information about the kernel,

including the inputs values, the control flow graph, the number of global load/store

instructions and their addresses, from the files of the PTX code and inputs. Based

on this information, the analyzer can know the hierarchy of the kernel, such as the

number and the size of kernel blocks. For every warp in each kernel block, the

analyzer parses the kernel with the information of the warp. The pseudo code is

shown in Algorithm 2.

In Algorithm 2, the KernelParser takes the information of both the kernel and

the warp as inputs and starts with the first instruction in the control flow graph.

Each instruction is parsed based on its type. If it is an arithmetic instruction, the

value of the target operand is updated based on the calculation type and the value of

the source operands (lines 6-8). If it is a global load/store instruction, which accesses

25

Algorithm 1 GPU L1 Data Cache Access Analyzer[14]

1: Inputs = CollectKernelInputs(FileKernel, FileInput);

2: CFG = GenerateKernelCFG(FileKernel, FileInput);

3: LDSTPCList = GenerateLDSTPCs(FileKernel);

4: BlockAddrInfo = [];

5: BlockAccInfo = [];

6: for Each Kernel Block Bi ∈ k do

7: for Each Warp Wi ∈ Bi do

8: [WarpAddrInfo, WarpAccInfo] = KernelParser(Inputs, CFG, LDSTPCList, Bi, Wi);

9: end for
10: BlockAddrInfo.append(WarpAddrInfo);

11: BlockAccInfo.append(WarpAccInfo);

12: end for
13: Return [LDSTPCList, BlockAddrInfo, BlockAccInfo];

Algorithm 2 GPU Kernel Parser[14]

1: procedure KernelParser(Inputs, CFG, LDSTPCList, Block, Warp)

2: INST = FirstInstruction(CFG);

3: WarpAddrInfo = []×length(LDSTPCList);

4: WarpAccInfo = []×length(LDSTPCList);

5: while INST is not Exit do
6: if INST is arithmetic instruction then
7: UpdateRegisterValue(INST, Inputs, Block, Warp);

8: end if
9: if INST is global load/store then

10: pc = GetInstPC(INST);

11: pcidx = GetPCIndex(INST, LDSTPCList);

12: AddrList = AddrListGen(INST, Warp);

13: WarpAccInfo[pcidx]=True;

14: WarpAddrInfo[pcidx]=AddrList;

15: end if
16: if INST is a branch or at the end of the current BB then
17: INST = FindNextBB(CFG, INST);

18: else
19: INST = NextInstCurBB();

20: end if
21: end while
22: Return [WarpAddrInfo, WarpAccInfo];

23: end procedure

26

Algorithm 3 Addresses Generation for Instruction I and Warp W [14]

1: procedure AddrListGen(I,W)

2: AddrList = []

3: for Each Thread Ti ∈ W do

4: if CheckAcitve(Ti) then

5: CurAddr = GetAddr(Ti, I)

6: Coalesced = False
7: for Each Address Aj ∈ AddrList do

8: if Coalesce(CurAddr, Aj) then

9: Coalesced = True
10: Break
11: end if
12: end for
13: if Not Coalesced then
14: AddrList.append(CurAddr)

15: end if
16: end if
17: end for
18: Return AddrList
19: end procedure

the global memory through the L1 data cache and thus is our focus in this paper, all

the addresses used by the threads in the warp are coalesced to form a list of addresses

(lines 9-15). This information will be used later for the worst-case L1 data cache miss

rate estimation as the memory access addresses of this instruction from this warp.

The pseudo code of coalescing the addresses is shown in Algorithm 3.

The corresponding value in the WarpAccInfo list will be set as true to indicate

that this load/store instruction will access the L1 data cache. The parser finds the

next basic block based on the control flow graph, if the current instruction is a branch

or at the end of the current basic block (lines 16-20). The two lists WarpAccInfo and

WarpAddrInfo are returned by the parser, which contains the access flag and the

addresses of each instruction for the warp (line 22).

. entry example (

. param . u64 cudaparm input cuda)
{
. reg . u32 %r<29>;
. reg . u64 %rd<33>;
. reg . f32 %f<20>;
. reg . pred %p<6>;
$Lbegin :

ld . param . u64 %rd5 , [cudaparm input cuda] ;

27

cvt . s32 . u32 %r3 , %t i d . x ;
mul . wide . s32 %rd3 , %r3 , 32 ;
add . u64 %rd8 , %rd5 , %rd3 ;
cvt . s32 . u32 %r1 , %c ta id . y ;
mov . s32 %r2 , 0 ;
se tp . eq . s32 %p1 , %r1 , %r2 ;
@!%p1 bra $L1 ;
ld . g l oba l . f 32 %f1 , [%rd8 +4] ;
bra $L2 ;

$L1 :
s t . g l oba l . f 32 [%rd8+2048] , %f2 ;

$L2 :
e x i t ;

$Lend :
} // example$

If the configuration of the above kernel is <<< dim3(1, 2, 1), dim3(16, 4, 1) >>>,

for example, and suppose the input value of cudaparm input cuda is 0, the output

of the kernel analyzer is shown as the follows. As we can see, the kernel has 2 global

load/store instructions, and their addresses are 64 and 80 respectively. There are 2

kernel blocks, and each block has 2 warps. The warps in the first kernel block execute

the first load/store instruction, and the warps in the second kernel block execute the

second load/store instruction. The list of memory access addresses and access types

are also shown in the output of the analyzer (i.e. the reorder configuration).

−num pcs 2
−pc addrs [6 4 , 80]
−g r id [1 , 2 , 1]
−block [16 , 4 , 1]
Block [0 , 0 , 0]
Warp0 [1 , 0]
Warp0 [[[0 , 128 , 256 , 384] , L] , None]
Warp1 [1 , 0]
Warp1 [[[0 , 128 , 256 , 384] , L] , None]
Block [0 , 1 , 0]
Warp0 [0 , 1]
Warp0 [None , [[2 0 4 8 , 2176 , 2304 , 2432] , S]]
Warp1 [0 , 1]
Warp1 [None , [[2 0 4 8 , 2176 , 2304 , 2432] , S]]

28

4.4.5 Architectural Extension for Warp-Based Load/Store Reordering

We propose to extend the GPU architecture to ensure a predictable load/store

order that enables accurate cache timing analysis. Fig. 12 shows the extensions

made to the default GPU memory architecture between the load/store unit and the

L1 data cache. We propose to add a channel for each active warp1, and each channel

is a buffer to hold requests to the L1 data cache. Besides the head and tail pointers for

the buffer, an extra search pointer is used to allow the Reordering Unit to search for

the expected memory access in the channel, which enables the reordering of memory

accesses from the same warp as described below. The Distributing Unit accepts the

memory accesses from the load/store unit and sends the accesses to different channels

according to the warp ID of the access, i.e. memory accesses from warp 0 are sent to

channel 0, memory accesses from warp 1 are sent to the channel 1, etc. It should be

noted that the warp ID here refers to the dynamic runtime warp ID for a warp when

it is executing the kernel. The mapping between a runtime warp ID and the index of

a warp in a kernel block can be calculated at runtime when a kernel block is selected

to be active.

The load/store reordering happens at two locations in this extended GPU mem-

ory architecture. First, load/store instructions within the same warp are reordered in

the channel for this warp as aforementioned, because instructions from the same warp

can be executed in an out-of-order fashion. For example, the load/store unit can send

out memory access request of instruction I1 before it sends out that of instruction I0,

even if I0 is actually before I1 in the same basic block. This can happen when the

two instructions are close to each other and the operands of I1 become ready earlier

1CUDA limits the maximum number of threads per SM, and thus the number of
simultaneous active warps is limited.

29

L1 Data $

LD/ST

L1 Data $

CH
0

CH
1

CH
2

. CH
n

Distributing Unit

(a) Default (b) Channel-Based

LD/ST

Reordering Unit

Fig. 12. Warp-Based Load/Store Reordering Architectural Extension.[14]

than those of I0. In this case, the Reordering Unit uses the aforementioned search

pointer to search for I0 in the corresponding channel, rather than fetching I1 by the

head pointer of the channel. It should be noted that the reordering is only applied

to the load/store instructions, which does not affect the dynamic order of other in-

structions and thus may not affect the overall performance as much as reordering all

the instructions such as the pure round-robin scheduling.

The load/store reordering across warps happens in the Reordering Unit, which

reorders the memory accesses from different channels (i.e. warps). For instance, in

the aforementioned PTX code example, there are 2 kernel blocks and 4 warps totally,

including B0W0, B0W1, B1W0, and B1W1. Assuming the mapping between these

warps and the runtime warp IDs is based on the mapping shown in Table 1, Fig. 13

gives 2 out of 24 possible orders of memory requests from the load/store unit.

The analysis results of the GPU L1 data cache analyzer are sent to the reorder-

ing unit as the reorder configuration before a kernel is launched, which is used at

runtime to decide how to reorder the memory accesses from different channels. The

30

�����
�

��

�����
�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
�

��
�

��
� �	�	�	
�

�

�����������	����

����������	����

���������

��
	

Fig. 13. An Example of Memory Warp Instruction Reordering.[14]

Reordering Unit always searches in the reorder configuration for the warp (channel)

with the smallest warp index (in a kernel block rather than runtime warp ID) and

the smallest kernel block ID that still has the global load/store instruction with the

lowest instruction address to execute. After the Reordering Unit gets a memory re-

quest from that channel and sends it to the L1 data cache, it updates the reorder

configuration so that it can move on and wait for a different channel or a different

Table 1. An Example of Mapping Between Static Block/Warp IDs and Runtime Warp

IDs.

Static Block/Warp ID Runtime Warp ID

B0W0 W2

B0W1 W3

B1W0 W0

B1W1 W1

31

instruction at the same channel.

����������	��	��

����
�����	��

����
�����	��

����������	��	��

����
�����	��

����
�����	��

����������	��	��

����
�����	��

����
�����	��

����������	��	��

����
�����	��

����
�����	��

����������	��	��

����
�����	��

����
�����	��

����������	��	��

����
�����	��

����
�����	��

��� ��� ���

Fig. 14. An Example of Reorder Configurations.

An example is given in Fig. 14 to illustrate the load/store reordering process. The

initial reorder configuration is depicted in Fig. 14 (a), based on which the Reordering

Unit knows it should wait at the channel 2 (i.e. CH2) for B0W0, because B0W0 is

mapped to Warp 2 according to Table 1. Even if the requests from other warps have

entered their channels, the Reordering Unit still waits at CH2 until it receives the

memory request from the expected warp instruction and dispatches it to the L1 data

cache. After this the reorder configuration is updated to be the one shown in Fig.

14 (b), based on which the Reordering Unit knows it should wait at CH3 for B0W1

now. The reordering process is continued and eventually the reorder configuration

becomes what is shown in Fig. 14 (c) after the reordering unit has dispatched all the

memory requests to the L1 data cache in the predictable order.

Fig. 15 shows the different sequences of the memory accesses to the L1 data

cache in the above example in three schemes, including the default (i.e. dynamic

warp scheduling), the pure round-robin warp scheduling, and the proposed reordering

framework. In the default scheme, the access sequence to the L1 data cache can

be arbitrary. When the pure round-robin warp scheduling policy is used, the warp

scheduling order follows the runtime warp ID. Therefore, in this example the warps in

kernel block B1 are scheduled before those in B0 according to the mapping between

32

��

��

��

��

��

��

��

��

��

��

��

��

���������

��

��

��

��

��

��

��

��

��

��

��

��

����

�����	��
��

��
����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�����

Fig. 15. L1 Data Cache Access Orders of Different Schemes.

the warps in each kernel block and the runtime warp IDs as shown in Table 1. In

the reordering framework, the sequence of the accesses is controlled by the reordering

configuration as explained above. Therefore, both the reordering framework and the

pure round-robin scheduling policy can improve the predictability in the sequence of

GPU L1 data cache accesses, compared to the default system.

Fig. 16 uses the same example to demonstrate the performance differences be-

tween different schemes. The meanings of the time points A© to F© are as shown

in the figure. Due to the latency introduced by the reordering extension, the time

point for a warp to be ready in the reordering framework may be later than those

in the other two schemes, as shown in Fig. 16. Assuming there are 4 warps and the

warp scheduler starts with W0, with the pure round-robin policy, the next warp is

W1, which will not be ready for a long period of time as shown in the figure. By

comparison, the dynamic warp scheduler, which is used in both the default system

33

W2W3W0 W1

W2 W3W0 W1

Reordering Framework

Pure Round-Robin

Time

Delay of
Pure Round-Robin

Delay of Default
Dynamic Warp Scheduling

W2W3W0 W1Default System

CD EA B F

Delay
Dynamic Warp Scheduling

With Proposed Reordering Framework

C

D

E

A

B

F

W3 Ready in Default and Pure Round-Robin

W2 Ready in Default and Pure Round-Robin

W1 Ready in Default and Pure Round-Robin

W3 Ready in Reordering Framework

W2 Ready in Reordering Framework

W1 Ready in Reordering Framework

Fig. 16. Delay of Issuing Warp Instructions of Different Schemes.[14]

and the reordering framework, can choose to schedule other ready warps, i.e. W3

and then W2 in this example, before W1. As a result, the dynamic scheduler can

lead to better performance, i.e. shorter delay as shown in the figure. However, due

to the latency introduced by the load/store reordering, the delay of the reordering

framework in this example is still larger than that of the default system, which also

explains the performance overhead of the reordering framework as compared to the

default scheme.

4.4.6 GPU L1 Data Cache Miss Rate Estimation

The abstract interpretation method [44] has been successfully used in the static

timing analysis of cache memories for CPUs. Abstract Cache State (ACS) is used to

analyze the content and behavior of the cache at a certain point in the program. As

34

shown in Fig. 17, every basic block has an initial ACSi and an exiting ACSe at the

beginning and the end respectively. The ACS is updated upon each memory reference.

Therefore, the differences between the ACSi and ACSe of the same basic block depend

on the global memory instructions within this basic block. The ACSi is updated by

the memory references in the basic block using a specific cache replacing/updating

policy, e.g. LRU.

The ACSi of the basic blocks with only one predecessor is the ACSe of its

predecessor, e.g. both ACSi(BB1) and ACSi(BB2) are ACSe(BB0). If a basic block

has more than one predecessor in the control flow graph, the ACSe of each of its

predecessor is joined together to form the ACSi of this basic block, e.g. ACSi(BB3) =

Join(ACSe(BB1), ACSe(BB2)). The Join operation can be set intersection or set

union depending on whether it is analyzed as an “always hit” or an “always miss”.

��� ���

���

���

���������

���	�����

�������
�������	�����

���	���
�

�������
�������	�����

���	���
�

�������������������	���
������	���
��

���	�����

Fig. 17. An Example of Abstract Interpretation Based Static Timing Analysis.

A basic assumption of the abstract interpretation is that the execution of the

program only diverges and converges at the boundaries of basic blocks, not in between.

It also assumes there is no interference between different program traces. In GPUs,

however, these assumptions can only be guaranteed in the same warp, not across

warps.

Recalling the example shown in Fig. 10, in abstract interpretation, the ACSe(BB0)

should be only decided by the content of BB0. However, due to the independent ex-

35

ecution of different warps, it is possible that when W0 and W2 are still in BB0,

W1 is in BB2 already. In this case the ACSe(BB0) is affected by the content of

BB2. In another scenario, if W0 is in BB1, W1 is in BB2 and W2 is in BB3, both

ACSe(BB1) and ACSe(BB2) will be affected by the content in BB3. Therefore, the

abstract interpretation cannot be applied to GPU caches directly, because the bound-

aries between basic blocks are destroyed by the independent and dynamic execution

of different warps. In the reordering framework, the boundaries are restored for global

memory and data cache accesses despite the dynamic and independent execution of

warps. For instance, after the reordering, no global memory accesses from BB1 or

BB2 can access the L1 data cache until all the accesses from BB0 for all the active

warps are done. Similarly, accesses from BB1 and BB2 need to be finished before

accesses from BB3 can retrieve the L1 data cache.

In the proposed reordering framework, the worst-case GPU L1 data cache miss

rate estimator uses the information of memory access addresses from the analyzer

introduced in Section 4.4.4 and the reordering scheme introduced in Section 4.4.5

to generate the sequence of global memory access addresses for a CUDA kernel.

This address sequence is used by the estimator to update the cache models with

different configurations to estimate the worst cache miss rate of the GPU L1 data

cache for this kernel. Since the sequence of L1 data cache accesses is predictable

under the control of the warp-based load/store reordering framework, the miss rate

estimator can statically analyze this sequence and generate accurate worst-case cache

miss estimation.

4.4.6.1 Limitation of the GPU L1 Data Cache Timing Analyzer

Although the proposed framework can achieve accurate GPU L1 data cache miss

rate with low performance overhead as our experiments indicate, not all types of

36

GPU kernels can be analyzed by our worst-case data cache miss analyzer currently.

For example, GPU kernels with input-dependent branches and input-dependent data

references cannot be analyzed. Also, the proposed framework requires knowing the

loop upper bound statically, which is typical for WCET analysis.

4.5 Evaluation Results

4.5.1 Performance Results

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

backprop gaussian lud nw srad AverageN
or

m
al

iz
ed

 P
er

fo
m

ra
n

ce
 R

es
u

lt

w
it

h
 1

6K
 L

1
D

at
a

C
ac

h
e

default 16K pure round-robin 16K reordering 16K

Fig. 18. Normalized Performance Results with 16KB L1 Data Cache.[14]

Figure 18 shows the normalized performance results (in terms of the total num-

ber of execution cycles) of 3 different GPU configurations with a 16KB L1 data

cache, which are normalized to the performance of the default configuration (i.e.

dynamic warp scheduling without load/store reordering). Our experimental results

show that the default warp scheduling has the best (average-case) performance as

expected. However, the warp-based load/store reordering has much less performance

overheads than the pure round-robin scheduling. This is because in the warp-based

load/store reordering, instructions other than loads/stores are still scheduled by the

37

dynamic scheduling, which can dispatch a ready warp into execution faster than the

pure round-robin scheduling. An average, the proposed reordering framework can

achieve performance 24.4% better than that of the pure round-robin scheduling while

achieving time predictability for the GPU data cache.

Figure 19 shows the normalized performance results of different cache sizes. The

results are normalized to the performance results of the default configuration with

the 16KB L1 data cache. As shown in the results, the reordering scheme has much

better performance than the pure round-robin scheme and has only a small perfor-

mance overhead compared to the default scheme without reordering for all these three

different cache sizes.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

backprop gaussian lud nw srad Average

N
or

m
al

iz
ed

 P
er

fo
m

ra
n

ce
 R

es
u

lt
 w

it
h

D

if
fe

re
n

t
L

1
D

at
a

C
ac

h
e

S
iz

es

default 16K pure round-robin 16K reordering 16K
default 32K pure round-robin 32K reordering 32K
default 64K pure round-robin 64K reordering 64K

Fig. 19. Normalized Performance Results with Different L1 Data Cache Sizes.[14]

4.5.2 GPU L1 Data Cache Miss Rate Estimation Results

Figure 20 shows the simulated and estimated GPU L1 data cache miss rate

results, which are normalized to the simulated miss rate, with a 16KB L1 data cache

in each SM. The results show that the proposed estimator, together with the channel-

38

0%

20%

40%

60%

80%

100%

120%

backprop gaussian lud nw sradN
or

m
al

iz
ed

 S
im

u
la

te
d

 a
n

d
 E

si
tm

at
ed

L

1
D

at
a

C
ac

he
 M

is
s

R
at

es

Simulated 16K Estimated 16K

Fig. 20. Miss Rate Estimation Results with 16KB L1 Data Cache.[14]

0%

20%

40%

60%

80%

100%

120%

backprop gaussian lud nw srad

N
or

m
al

iz
ed

 S
im

u
la

te
d

 a
n

d
 E

si
tm

at
ed

 L
1

D
at

a
C

ac
h

e
M

is
s

R
at

es

Simulated 16K Estimated 16K Simulated 32K

Estimated 32K Simulated 64K Estimated 64K

Fig. 21. Miss Rate Estimation Results with Different L1 Data Cache Sizes.[14]

39

based reordering framework, can have very accurate estimation of the GPU L1 data

cache miss rate. Figure 21 shows the simulated and estimated GPU L1 data cache

miss rate results of 3 different cache sizes. The results show that the miss rate

estimator can provide accurate miss rate estimations in different cache sizes.

40

CHAPTER 5

TIMING MODEL FOR STATIC WCET ANALYSIS OF GPU

KERNELS

5.1 Introduction

To achieve high average-case performance and throughput, modern GPUs main-

tains a massive number of active threads at the same time and uses a large number

of on-chip cores to schedule and execute among these threads. The scheduling among

the active threads is a dynamic behavior, which is very hard to analyze statically and

harms the predictability. Moreover, the dynamic scheduling among different threads

executing the same program code breaks the orders and relations of the instructions

and basic blocks. Therefore, the traditional static analysis methods cannot be ap-

plied to GPUs directly. Furthermore, the computing cores on a GPU chip are divided

into groups, which are connected to the memory partitions through interconnection

networks. The dynamic behavior of cores in competing for the memory resources is

also hard to predict statically.

Therefore, before applying GPUs to real-time applications, the time predictabil-

ity of the GPU architecture needs to be improved and analyzed. To address this

problem, we proposed to employ the pure round-robin scheduling, which has pre-

dictable behaviors, as the scheduling policy, based on which we propose a worst-case

timing model for GPGPU programs. With the proposed timing model, a static an-

alyzer, which can analyze the assembly codes of the GPGPU programs and give the

WCET estimations, is also built. The evaluation results show that the proposed

timing model and static analyzer can provide safe WCET estimations for GPGPU

41

applications.

5.2 Related Work

The studies on performance analysis of GPU architecture and GPGPU applica-

tions [45][46][47][48] focus on building the performance and/or energy models. There

are also studies focusing on building and analyzing the performance model of a spe-

cific algorithm on GPU or heterogeneous platforms[49][50]. These studies mainly

focus on the models of average-case performance and/or using the model to identify

the performance bottleneck, while the performance model in this work focuses on the

WCET estimation.

There are also studies on the GPU warp scheduling policies[51][52] to improve the

efficiency in utilizing the computational resources and to access the memory in a more

friendly way, so that the performance is improved. However, the proposed scheduling

policy in this work focuses on improving the predictability of the GPU architecture.

The memory access reordering method we proposed in [53] regulates the order of

memory accesses to the GPU L1 data cache to improve the time predictability of the

GPU L1 data cache, while the proposed scheduling policy and analyzer in this work

focus on the timing model of the whole GPU system rather than just the L1 data

cache.

There are some studies on GPU WCET analysis[54][55] using measurement-based

methods, while the proposed WCET analysis method in this work is based on detailed

analysis of the GPU architecture and can give safe WCET estimations for GPU

kernels.

42

5.3 GPU WCET Analysis with Predictable Warp Scheduling

5.3.1 Pure Round-Robin Scheduler Timing Model

The method we propose is to use the pure round-robin warp scheduling policy, so

that a timing model can be built for the execution of the warps in a GPU kernel. In

this scheduling policy, the scheduler must issue one instruction one warp, before mov-

ing to the next warp according to the order of warp IDs, as long as the current warp

is not waiting at a synchronization barrier. Therefore, based on the dependencies

between instructions, the PTX code of a GPU kernel can be divided into segments,

each of which has one instruction and are called Code Segment. The dependencies

between these code segments are decided by the contents of adjacent segments. The

instruction in one code segment cannot be issued until the source operand with the

longest latency is ready. Therefore, the latency between code segments can be es-

timated by the dependencies among the instructions and the execution latencies of

each instruction in a warp.

T00 ⇐ 0

Ti0 ⇐ Ti′0 + LIi′0(i > 0)

i′ = (i− 1)

(5.1)

Tij ⇐MAX(Ti′k + LIi′k, Tij′ + LIij′ + LEij′)

k = (i == 0) ? (j − 1) : j

i′ = (i == 0) ? (N − 1) : (i− 1)

j′ = j − 1

N : Number of Warps

(5.2)

43

Ti(end) = Tij last + LIij last + LEij last

WCET = MAX(T0(end), T1(end), ..., TN−1(end))

(5.3)

LIinstArithmetic
= (N <= Cpipeline) ? 0 : LIStallArithmetic

LIinstMemory
= (N <= Cpipeline) ? 0 : LIStallMemory

(5.4)

LIStallArithmetic
= Linitiation

LIStallMemory
= Ncoal + Ncoal ×NCompetingSM

(5.5)

LEinstArithmetic
= Lengthpipeline + Linitiation + Lexecution

LEinstMemory
= Lbase+

Lengthpipeline × (Ncoal + Ncoal ×NCompetingSM)

(5.6)

LIij = 1 + LIinstij

LEij = LEinstij

(5.7)

Fig. 22 shows the scheduling of N warps (W0 to WN−1), each of which has a

certain number of code segments, with the pure round-robin scheduling policy. Tij

represents the time point when the GPU can start to issue the code segment j of warp

i. LIij is the latency of issuing the code segment j of warp i, while LEij represents

the execution latency of between segments. After initializing the starting issuing time

point of each warp by Equation 5.1, then the rest of the time points in the scheduling

can be calculated using Equation 5.2, which basically means that the time point

when one code segment in a warp can start to issue depends on the maximal latency

44

between the latency of the execution the previous code segments in the same warp

and the latency of issuing the segments in other warps before the scheduler gets back

to this warp. For instance, the time point for the second second segment in W0 to

start to issue could be T ′01 in the figure, if LE00 is less than LI10 + LI20 + ... +

LI(N−1)0. Based on this timing model, the estimated WCET is the time point when

all the warps finish the execution, as shown in Equation 5.3.

T
00

LI
00

LE
00

T
01

T
02

LI
01

LE
01

LI
02

LE
02

T
10 LI

10

LE
10

T
11

T
12

LI
11

LE
11

LI
12

LE
12

T
20

LI
20

LE
20

T
21

T
22

LI
21

LE
21

LI
22

LE
22

T
(N-1)0 LI

(N-1)0

LE
(N-1)0

T
(N-1)1

T
(N-1)2

LI
(N-1)1

LE
(N-1)1

LI
(N-1)2

LE
(N-1)2

T
01
'

W
0

W
1

W
2

W
N-1

…

…

…

…

…

…

…

…

Fig. 22. Timing Model of Pure Round-Robin Scheduling Policy

Fig. 23 shows an example of the WCET calculation based on this timing model

and Equation 5.1 to 5.3. Among the four warps, W0 has three code segments while

45

the other warps have two. The latency values, i.e., LI and LE, of each warp are as

shown in the figure. Based on these latency values, the values of Tij of each code

segment in each warp can be calculated using Equation 5.1 and 5.2, as shown in the

figure. Finally, the Ti(end) of each warp and the WCET of this kernel are calculated

using Equation 5.3. As shown in the figure, since W1 finishes its execution the last

at cycle 31, the estimated WCET is 31 for this example.

0
3

9

12

24

3

8

3
2

8

15

4

5

4

7

19

3

9
2

10

22

2

W
0

W
1

W
2

W
3

2

4

12

5

6

30

31

27

30

T
00

T
01

LI
00

LE
00

LI
01

LE
01

LI
02

T
02

LE
02

T
10

LI
10

LE
10

T
11

LI
11

LE
11

T
20

LI
20

LE
20

T
21

LI
21

LE
21

T
30

LI
30

LE
30

T
31

LI
31

LE
31

T
1(end)

T
2(end)

T
3(end)

Fig. 23. WCET Calculation Example

5.3.2 Code Segment Issuing and Execution Latency Timing Models

To use the timing model, the latencies of issuing and executing code segments in a

GPU kernel need to be estimated statically. Generally, the time needed to issue a code

46

segment is related to the length of the code segment, if there is no stall in issuing any

instruction. But stalls can happen when the number of active warps, which decides

how many same type of instructions can be sent to the pipeline in a burst, is larger

than the capacity of a pipeline. Also, for the global memory instructions, how many

coalesced memory accesses one instruction has and how many SMs will compete

to access one memory partition affect both the issuing latency and the execution

latency. Therefore, we are interested in three things: the number of active warps, the

maximal and average numbers of coalesced memory accesses from one global memory

instruction, as well as the maximal and average numbers of competing SMs to access

a memory partition.

Number of Active Warps The pipelines in the simulator architecture under anal-

ysis can act as buffers for different types of instructions, since a certain number of

instructions can stay in the pipeline after being issued. In other words, as long as the

pipeline is not full, there will be no extra stalls in issuing. For arithmetic instructions,

the configurations of the number of operand collectors and the length of the initiation

buffer in function units decide how many instructions the pipeline can hold before the

stall happens, while the configuration of initiation latency determines how long the

stall is. The kernel analyzer checks whether the number of active warps is larger than

the capacity of the pipeline and adds the stall latencies to the code segment issuing

period according to the instruction types, as shown in Equation 5.4 and 5.5. For the

global memory instructions the following two values play more important roles in the

latency estimations.

Number of Coalesced Memory Accesses In a global memory warp instruction, dif-

ferent threads in the warp can access different memory addresses, which are coalesced

47

together so that addresses belonging to the same 128-Byte memory space are merged

together. However, there is no guarantee that all the memory addresses can be coa-

lesced into one. Therefore, there can be as many as 32 memory requests with different

addresses from one memory warp instruction. Since these memory requests need to

be sent out by the load/store unit one by one at each clock cycle, the number of

coalesced memory requests affects not only the issuing latency but also the execution

latency of the instruction, as shown in Equation 5.5 and 5.6. The kernel analyzer

gives both the maximal and average numbers of coalesced accesses in a GPU kernel.

The WCET analyzer can use either one depending on whether it targets hard or soft

real-time applications.

Number of Competing SMs Based on the interconnection model in GPGPU-Sim, it

is clear that different SMs may compete to access the same memory partition in the

memory system. In the simulated architecture, the requests from different SMs are

served in a round-robin order. Therefore, if there are M SMs trying to access the same

memory partition, the interval for two consecutive requests from the same SM to be

served is M-1 cycles. This latency can happen at every coalesced memory request, as

shown in Equation 5.5 and 5.6. Similarly, either the maximal or the average number

of competing SMs can be used in the WCET estimation.

Equation 5.5 calculates the possible stall latency in issuing an instruction. For

arithmetic instructions, if a stall happens, the latency equals to the initiation latency,

whose value is configurable for different types of instructions in the simulator. For

global memory instructions, if a stall happens, each coalesced memory access will

cause one cycle of stall by itself. Besides, since every coalesced memory access needs

to compete to access the global memory, the number of coalesced accesses needs to

multiply the possible number of competing SMs. Putting these two parts together,

48

we have the possible stall latency for global memory instructions.

Equation 5.6 calculates the execution latency of instructions. The execution la-

tency of arithmetic instructions equals to the length of the SP or SFU pipeline plus

the summary of the initiation and execution latencies. For global memory instruc-

tions, the baseline latency Lbase is the latency to access the global memory, which

every memory access needs to take. The other part in the equation represents the

latency for the instructions buffered in the pipeline before the current instruction is

sent out to the interconnection network.

Equation 5.7 calculates the LI and LE of a code segment. Adding the size of a

code segment SCodeSegij and the possible stall latency of the instructions of the code

segment, we have the issuing latency, while the execution latency is the maximal

execution latency among the instructions in the code segment.

 …
 add.s32 %r3, %r2, %r1;
 ld.global.u64 %r4, [%r3 + 0];
 sub.s32 %r7, %r6, %r5;
 mul.wide.s32 %r8, %r4, %r7;
 …

Code Segment 0
Code Segment 1
Code Segment 2
Code Segment 3

Fig. 24. Example of Timing Model of Code Segments

For example, in Fig. 24 the PTX code is divided into code segments for each

instruction, among which we focus on the first two. If in the configuration of the

GPU architecture the SP pipeline can buffer 8 instructions, e.g., add, sub, etc., and

the initiation and execution latencies of integer addition operation is 1 and 4 cycles

respectively and there are 16 active warps in a GPU kernel, the LI of code segment 0

in this example is 2 (SCodeSeg: 1, LIStallArithmetic
: 1), while the LE of this code segment

is 13 (Lengthpipeline: 8, Linitiation: 1, Lexecution: 4). The LIinst and LEinst of the sub

49

instruction are the same as the ones of add instruction in code segment 0. For the

ld.global instruction, assuming the number of coalesced memory accesses (Ncoal), the

number of competing SMs (NCompetingSM), the length of the pipeline for this type of

instruction (Lengthpipeline) and the baseline memory access latency (Lbase) are 8, 6,

5 and 200 respectively, the LIinst and LEinst of the ld.global instruction are 56 (8 +

8 x 6) and 480 (200 + 5 x (8 + 8 x 6)). Therefore, the LI and LE of code segment

2, in this example, are 59 (2 + 1 + 56) and 480 respectively. It should be noted that

there is no dependency between code segment 1 and code segment 2, in which case

the LE of code segment 1 is 0.

5.3.3 Static GPU Kernel Analyzer

Kernel
PTX
Code

Kernel Analyzer

GPU
Architecture

Configuration

Kernel
Inputs&

Hierarchy

Warp
Scheduling

Order
Generation

Number of
Coalesced
Memory
Accesses

Estimation

Number of
Competing

SMs
Estimation

Fig. 25. GPU Kernel Analyzer

The static kernel analyzer parses the PTX code of a GPU kernel to get the esti-

mated value of the metrics in the equations in Section 5.3.2, as well as the scheduling

order of each warp, which is used to generate the code segments in the timing model.

The analyzer also needs the kernel inputs and the hierarchy configuration of the kernel

as inputs for the analysis. Fig. 25 shows the components in the analyzer.

50

5.3.3.1 Warp Scheduling Order

Algorithm 4 shows how the scheduling order of a warp is generated. The analyzer

starts with the first instruction of the first basic block and parses each instruction

in the current basic block. The register values are updated with the arithmetic

instructions. The analyzer uses the immediate post-dominator [56] method to deal

with the branch divergence. When the analyzer reaches the last instruction of a basic

block, it checks whether it is a branch instruction. If it is a branch instruction and

there is branch divergence, then the analyzer finds the immediate post-dominator

basic block and pushes it, together with the not taken and then taken basic blocks, to

the reconvergence stack. If there is no branch divergence, then either the taken or not

taken basic block is pushed to the stack. If this last instruction of the current basic

block is not a branch instruction, the analyzer pops the top from the reconvergence

stack as the new current basic block. The analyzer appends every new current basic

block to the warp scheduling order and returns this trace when it reaches the end of

the kernel.

5.3.3.2 Number of Coalesced Memory Accesses

During the analysis process, the analyzer also collects the information of the

memory addresses used by each global memory instruction. For these instructions, the

memory access addresses of each thread in the warp are calculated based on the values

of the registers used by the kernel. All the memory addresses used by the threads

in a warp are coalesced together using Algorithm 5. The list of coalesced memory

addresses is appended to the result list AddrCoalAccessList, which contains lists of

coalesced memory addresses of each global memory instruction in the warp. Then

the analyzer gets the number (N) of coalesced memory addresses for this instruction

51

Algorithm 4 Warp Execution Trace Generation
1: procedure WarpExeTraceAna(Inputs, CFG, Block, Warp)

2: WarpExecutionOrder = []

3: ReconvergenceStack = []

4: NumCoalAccessList = []

5: AddrCoalAccessList = []

6: CurrentBB = FirstBB(CFG)

7: WarpExecutionOrder.append(CurrentBB)

8: INST = FirstInstruction(CurrentBB)

9: while INST is not Exit do
10: if INST is arithmetic instruction then
11: UpdateRegisterValue(INST, Inputs, Block, Warp)

12: end if
13: if INST is global load/store then

14: CoalList = CoalescedAddrListGen(INST, Warp)

15: AddrCoalAccessList.append(CoalList)

16: N = SizeOf(CoalList)

17: NumCoalAccessList.append(N)

18: end if
19: if INST is last of CurrentBB then
20: if INST is branch then
21: if Has Divergence then

22: IPD = FindImmediatePostdominator(CFG, CurrentBB)

23: ReconvergenceStack.push(IPD)

24: ReconvergenceStack.push(NotTakenBB)

25: ReconvergenceStack.push(TakenBB)

26: else
27: if Taken then
28: ReconvergenceStack.push(TakenBB)

29: else
30: ReconvergenceStack.push(NotTakenBB)

31: end if
32: end if
33: end if
34: CurrentBB = ReconvergenceStack.pop()

35: WarpExecutionOrder.append(CurrentBB)

36: INST = FirstInstruction(CurrentBB)

37: else
38: INST = NextInstCurBB()

39: end if
40: end while
41: Return WarpExecutionOrder, NumCoalAccessList, AddrCoalAccessList

42: end procedure

52

and appends it to the result list NumCoalAccessList of this warp. At the end, the

analyzer returns the warp execution trace, the list of numbers that represent the

number of coalesced memory accesses, and the list of address lists of each global

memory instruction in this warp. The same process is done for every warp and all

the results are collected together to calculate the maximal and average numbers of

coalesced accesses of the GPU kernel respectively.

Table 2. Example of Number of Coalesced Memory Accesses

I0 I1 I2 I3

W0 16 20 4 6

W1 8 1 6 8

W2 12 30 10 2

For instance, if there are 3 warps (W0−2) and each warp has 4 global memory

instructions (I0−3) and the number of coalesced memory accesses of each instruction is

as shown in Table 2, the maximal and average numbers of coalesced memory accesses

are 30 and 11 respectively1.

5.3.3.3 Number of Competing SMs

Algorithm 6 shows how the kernel analyzer estimates the possible number of

competing SMs that may access the same memory partition at the same time. Based

on the memory addresses each warp instruction uses, the analyzer builds a vector for

every global memory instruction in every SM. This vector represents the distribution

of the memory addresses among the memory partitions from a certain instruction on a

certain SM. For instance, if there are 3 memory partitions and, from one instruction I

on SM s, there are 5 memory addresses used, among which 2 addresses go to partition

1The exact average value is 10.25, which is rounded to 11 using ceiling.

53

Algorithm 5 Coalesced Addresses Generation
1: procedure CoalescedAddrListGen(I,W)

2: CoalAddrList = []

3: for Each Thread Ti ∈ W do

4: if CheckAcitve(Ti) then

5: CurAddr = GetAddr(Ti, I)

6: Coalesced = False
7: for Each Address Aj ∈ CoalAddrList do

8: if Coalesce(CurAddr, Aj) then

9: Coalesced = True
10: Break
11: end if
12: end for
13: if Not Coalesced then
14: CoalAddrList.append(CurAddr)

15: end if
16: end if
17: end for
18: Return CoalAddrList
19: end procedure

0 and 3 addresses go to partition 2, then the distribution vector is [2,0,3]. As shown

in the algorithm, there is one such vector for every global memory instruction in every

SM, i.e., MemPtnAccVector is a 2D array of such a kind of vectors. Two metrics are

calculated using this vector.

The first metric represents the unevenness of the distribution. The Distance2Center

function calculates the Euclidean distance between the vector of the address distri-

bution and the vector that represents an even distribution (called center in the al-

gorithm). This distance is a metric that indicates how uneven the distribution to

different partitions is. The larger the distance is, the more uneven the distribution

is and thus the more possibly SMs compete for the same partition. For example, the

center (the even distribution) vector of 3 memory partitions is [1, 1, 1]. Then, for

the aforementioned distribution vector [2, 0, 3], the normalized vector is calculated

by dividing each element in the vector by the average value of all elements, i.e., 5/3,

resulting [1.2, 0, 1.8]. The Distance2Center then returns the distance between [1.2,

0, 1.8] and [1, 1, 1], which is 1.29.

Another metric is the Euclidean distance between the distribution vector of one

54

Table 3. Example of Memory Partition Access Distributions

I0

SM0 [2, 0, 3]

SM1 [2, 0, 2]

SM2 [1, 3, 1]

instruction on one SM to the distribution vector of the same instruction on other SMs,

named as D2OtherSM in the algorithm. The smaller the value of D2OtherSM is, the

more similar the address distributions from two SMs (s and s’) are. If the distance is

0, we have the same distributions and then the number of possibly competing SMs is

increased by 1, as show on line 9, where the MaxDistance means the maximal distance

of two vectors, whose distributions all focus on single but different partitions, e.g.,

[5, 0, 0] and [0, 0, 4]. This is a constant value according to the total number of

SMs; if there are M SMs, MaxDistance is (M−1)
√

2. With the same aforementioned

example, if there are 3 SMs and the distribution vectors of the same instruction on

the other 2 SMs are [2, 0, 2] (SM1) and [1, 3, 1] (SM2), as shown in Table 3.

Then, for the distribution vector [2, 0, 3] from SM0, the Distance2Vector function

calculates the distance between this vector and those vectors from the other 2 SMs.

Similar to the Distance2Center function, the Distance2Vector function normalizes

the vector by the average value and then calculates the Euclidean distance between

the two normalized vectors, i.e., the results of Distance2Vector([2, 0, 3], [2, 0, 2])

and Distance2Vector([2, 0, 3], [1, 3, 1]) are 0.42 and 2.2 respectively. This indicates

that SM0 and SM1 have similar distribution in accessing the memory partitions, i.e.,

it is highly possible that they compete to access the same partition.

Then the number of possible competing SMs (CompetingSM) and the distance

to the center (D2Center) are compared to heuristic thresholds, i.e., TCompetingSM

55

and TD2Center, to decide whether the number of possible competing SM of current

instruction counts to the final result (line 11). After all the instructions are analyzed

for all the SMs, an average value of the number of competing SMs is returned and

used in the calculation in Equation 5.5 and 5.6. The maximal value of the number

of competing SMs is the number of active SMs minus one. The reason that heuristic

thresholds are used is that the behaviors of different SMs are basically independent

of each other and, therefore, their interactions are very hard to predict statically. So,

we use these heuristic threshold values to estimate the average degree of competing

among SMs. The heuristic values used in this work are 13 for TCompetingSM and 0.5 for

TD2Center, for the architecture configuration with 15 SMs and 12 memory partitions.

It should be noted that we do not claim the WCET estimation with the average

degree of competing SMs to be a safe upper bound, while the WCET estimation with

the maximal number of possible competing SMs can be considered as the safe upper

bound.

Algorithm 6 Average Number of Competing SMs
1: NumCompetingSM = []

2: for Each I in all load/store instructions do

3: for Each s in all SMs do
4: D2Center = Distance2Center(MemPtnAccVector[I][s])

5: CompetingSM = 0

6: for Each s’ in all the rest SMs do
7: D2OtherSM = Distance2Vector(MemPtnAccVector[I][s],

8: MemPtnAccVector[I][s’])

9: CompetingSM += (MaxDistance - D2OtherSM)/MaxDistance

10: end for
11: if CompetingSM ¿ TCompetingSM or D2Center ¿ TD2Center then

12: NumCompetingSM.append(CompetingSM)

13: else
14: NumCompetingSM.append(0)

15: end if
16: end for
17: end for
18: Return average(NumCompetingSM)

56

Table 4. Estimated Average and Maximal Number of Coalesced Accesses and Com-

peting SMs
Benchmark gsn gsn nw nw cfd cfd lud srad128 srad128 srad512 srad512

k1 k2 k1 k2 k1 k2 k1 k1 k2 k1 k2

Avg. Coalesced Access 22 7 3 2 1 1 2 2 2 2 2
Max. Coalesced Access 32 8 16 16 1 1 2 2 2 2 2
Avg. Competing SMs 0 10 7 5 7 7 10 9 9 13 13
Max. Competing SMs 0 14 14 14 14 14 14 14 14 14 14

5.4 Evaluation Results

Fig. 26 shows the normalized estimated WCET of the simulated GPU architec-

ture with and without the perfect memory configuration. With the perfect memory

configuration, every memory request just takes one cycle after it has arrived at the

load/store unit and does not go to the memory partitions through the interconnection

network. Therefore, with this configuration, no latency in the memory system con-

tributes to the performance or the estimated WCET. The estimated WCET results

with the perfect memory configuration is normalized to the simulation performance

results with the same configuration.

The normalized estimated WCET results with normal memories in Fig. 26 are

the estimated WCET results when the simulator and the WCET analyzer use a

normal memory system model, in which memory requests further go to different

memory partitions through the interconnection network after they arrived at the

load/store unit. These estimated WCET results are normalized to the simulation

performance results with the normal memory system configuration. The results show

that generally with a perfect memory model, the estimator has tighter estimations,

compared to that with a normal memory model. This is because the predictability

within an SM, when no interference from other SMs needs to be considered, is better

than the predictability when the interconnection network is included in the model and

the interferences from other SMs need to be considered. It should be noted that the

57

average values of the number of coalesced memory accesses and the average number

of competing SMs are used in getting the estimated WCET results in Fig. 26 and

the estimated WCET results are normalized to the simulated performance with and

without perfect memory respectively. Therefore, the overestimation in the estimated

WCET with normal memory can be smaller than the overestimation in the estimated

WCET with perfect memory, e.g., in benchmark gsn k1 and cfd k2.

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

w/ Perfect Memory w/ Normal Memory

N
or
m
al
iz
ed

 E
st
im

at
ed

W
CE

T
w
ith

Pe
rf
ec
t M

em
or
y
an
d
N
or
m
al
 M

em
or
y

Fig. 26. Normalized Estimated WCET with and without Perfect Memory Model

Fig. 27 shows estimated WCET results of the estimator using different combi-

nations of the estimated number of coalesced memory accesses and the number of

competing SMs. Since there are two types of estimated values for each metric, i.e.,

the average and the maximal, there are four groups of estimated WCET results. In

the kernel k1 of the gsn benchmark, only one SM is active in the execution. There-

fore, both the average and the maximal number of competing SMs are 0. In all the

other kernels all the SMs are active. Therefore, the maximal number of competing

SMs is 14, since there are 15 SMs in the configuration. As shown in the results, the

estimator has the lowest overestimation when the average values are used in both

metrics. The overestimation increases when the maximal estimated value in either or

58

both of the metrics is used. The estimated average and maximal values of the number

of coalesced accesses and competing SMs are shown in Table 4. When the difference

between the average and maximal values is small or when they are the same, the

increase in the overestimation is small. But, when the difference grows, the overesti-

mation increases. For example, in the gsn k2 and nw, both the number of coalesced

access and the number of competing SMs are different in average and maximal values

and, as a result, the overestimation is huge when the maximal value is used. For the

two hierarchy configurations in the srad benchmark, the srad128 has less estimated

average number of competing SMs than srad512, since there are less active warps per

SM in the srad128. Therefore, when the maximal values are used, the overestimation

in srad512 is less then in srad128, since the estimated average value is closer to the

maximal one. For hard real-time applications, the maximal estimated values of these

two metrics should be used, while for soft real-time applications, the average values

can be used.

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%

Both Average Max Number of Coalesced Memory Accesses

Max Number of Competing SMs Both Max

N
or
m
al
iz
ed

 E
st
im

at
ed

W
CE

T

219%
316%

471%
271%

471% 224%

Fig. 27. Normalized Estimated WCET with the Maximal and Average Numbers of

Coalesced Accesses and Competing SMs

Fig. 28 shows the normalized average-case performance results of the pure round-

robin scheduling policy and the default loose round-robin policy in GPGPU-Sim.

59

GPUs rely on the warp scheduler to switch the execution among active warps to hide

the latency of stalled warps. In the proposed pure round-robin scheduling policy, the

scheduler tries to issue one instruction for a warp as long as the warp is not waiting

at a synchronization barrier. However, this can introduce performance overhead due

to missing some of the opportunities of hiding latency. As shown in Fig. 28, on

average the performance overhead is about 50%, which we consider as the trade-off

for predictability.

0%
20%
40%
60%
80%

100%
120%
140%
160%

Loose Round‐Robin Pure Round‐Robin
168% 192% 177% 213%

N
or
m
al
iz
ed

 A
ve
ra
ge
‐C
as
e
Pe

rf
or
m
an
ce

162%

Fig. 28. Normalized Average-Case Performance Results of Loose Round-Robin and

Pure Round-Robin Scheduling Policies

60

CHAPTER 6

STATIC WCET ANALYSIS ON LAST LEVEL DATA CACHE IN

INTEGRATED CPU-GPU ARCHITECTURE

6.1 Introduction

While GPUs are used as powerful accelerators, CPUs are also increasingly con-

sidered and used as coprocessors, rather than just the host cores that simply launch

tasks to GPUs and are not involved in computing. Such integrated CPU-GPU archi-

tectures exploit the unique strengths of both types of Processing Units (PUs) as well

as the shared resources to further improve the performance, compared to a GPU- or

CPU-only system. For instance, seven out of the top ten Green500 supercomputers

use both CPUs and GPUs[57], i.e., Heterogeneous Computing Systems.

In a heterogeneous architecture, CPUs and GPUs can have separate memory

spaces and can be connected together through a Peripheral Component Intercon-

nect Express (PCIe) bus, which is referred as a discrete system. GPUs and CPUs

transfer data back and forth through the PCIe bus in such a system, which requires

programmers to manage the data needed by both CPUs and GPUs and can intro-

duce performance overheads. As a result, the integrated CPU-GPU architecture is

proposed and implemented to allow the CPUs and GPUs to share the same mem-

ory space and avoid such data transfer, e.g., AMD’s Accelerated Processing Units

(APUs)[58].

In embedded applications and systems, such a kind of heterogeneous architectures

has become popular as well. For instance, the big.LITTLE technology [59] combines

high-performance cores and energy-efficient cores to achieve power-optimization while

61

delivering peak-performance capability. Also, by the integration of GPU and CPU

architectures, the Tegra [3] processors bring the general-purpose GPU computing

power to the embedded systems.

In real-time systems, it is very promising to exploit the computing power of

the integrated CPU-GPU architecture as well. However, the issues of the time-

predictability in such systems need to be addressed first. One of the problems is

the estimation of the behavior of the shared Last Level Cache (LLC) in such an in-

tegrated architecture, since it is shared by both the CPU and GPU and can affect

the WCETs of both. Therefore, we propose to first explore the WCET analysis of

the shared data LLC in the integrated architecture, the analysis results of which are

then used in estimating the WCET of the GPU kernels.

6.2 Related Work

For WCET analysis of the multicore architecture, page coloring and locking tech-

niques are studied and used to reduce or remove the conflicts between different cores

in the LLC[60][61][62], so that the time-predictability can be improved. Hardware

supports are proposed in [63] to guarantee an upper bound delay for hard real-time

tasks in multicore systems, while the Time Division Multiple Access shared bus ac-

cess scheme is proposed in [64] to enable the static shared bus scheduling and shared

cache conflict analysis.

Research efforts have been made on partitioning and/or scheduling tasks or spe-

cific algorithms on heterogeneous architectures, based on the relative performance of

different processing units and/or the characteristics of different subtasks [65][66][67][68].

Some studies focus on the compiler-level methods to automatically generate the pro-

grams for heterogeneous systems[69][70], while others propose programming frame-

works to utilize the resources[71][72]. Comparisons between the discrete and inte-

62

grated CPU-GPU architectures show that the integrated architecture can help to

reduce the performance and/or energy overheads [73][74][75]. However, few studies

focus on the time-predictability issues of the integrated CPU-GPU architectures.

6.3 Reuse Distance

The analysis method proposed in this work is based on the Reuse Distance theory.

The metric of Reuse Distance [76] can be used to analyze the cache behaviors in CPU

or GPU programs[77][78]. For set-associative cache memories, the reuse distance of

a cache access A can be defined as the number of unique cache accesses that are

mapped to the same cache set with A but with different tag values from A since the

last access of A. For the very first access to a certain address, the reuse distance is

infinity. Assuming the associativity is N, in an LRU cache, a cache access with the

reuse distance less than N will be a hit, otherwise it will be a miss.

Table 5. An Example of Reuse Distance.[76]

Access 0 1 2 3 4 5 6 7

Address A B C D A C E B

Reuse Distance ∞ ∞ ∞ ∞ 3 2 ∞ 4

For instance, Table 5 shows a sequence of memory accesses with the addresses

of A to E, which map to the same cache set but with different tag values. The

reuse distance values of each access are as shown in the table. Accesses 0 to 3 with

addresses A, B, C and D have the reuse distance of infinity, since they are all the

very first access of that address. So is the access 6 with address E. Accesses 4 with

addresses A has the reuse distance of 3, since there are accesses with 3 unique different

addresses (B, C, D) between access 0 and access 4. Similarly, access 5 and 7 have

the reuse distance values of 2 and 4 respectively.

63

6.4 Shared LLC Analysis

6.4.1 The Integrated CPU-GPU Architecture Under Analysis

In this work, the gem5-gpu [16] simulator is used as the target architecture under

analysis. The default architecture of the gem5-gpu simulator is shown in Fig. 29,

where the CPU and GPU both have its own LLC and then connect to the off-chip

memory.

L2

DRAM

.GPU
Core

.

.CPU
Core

.L1I

GPU CPU

GPU
Core

L1IL1D L1D L1I L1D

L2

CPU
Core

L1I L1D

Fig. 29. The Default gem5-gpu Simulator Architecture

To support the shared LLC between GPU and CPU, the memory system in the

simulator is modified as shown in Fig. 30, where there are LLCs for instructions and

data before going out to the off-chip memory. It should be noted that the LLC is

usually used for both instruction and data. However, since the focus of this work

is to analyze the shared last level data cache, the LLCs in the target architecture is

separated into instruction and data as shown in the figure.

6.4.2 Simple Shared Data LLC Analysis Method

Knowing the order of the memory accesses to the cache is important in using

the reuse distance to predict cache hit and miss. In the example of the sequence of

64

.GPU
Core

.

.CPU
Core

.L1I
GPU CPU

GPU
Core

L1IL1D L1D L1I L1D

CPU
Core

L1I L1D

L2I

DRAM

L2D

Fig. 30. The Modified gem5-gpu Simulator Architecture With Shared LLC

memory access addresses in Table 5, if the access order between access 3 and 4 is not

for sure, i.e. access 4 with address A can possibly be either before or after access 3

with address D, the reuse distance of access 4 with address A then can be either 2 or

3. If there are many accesses whose access order to the cache can not be known for

sure, there can be many possibilities in the reuse distance results.

In the worst-case timing analysis for caches, the maximum reuse distance of

each access to the cache needs to be estimated, so that it can be compared with the

associativity of the cache to predict whether the access is a hit or not. For instance,

in Table 5 if the access order of the accesses 4 to 7 is not known, access 4 in the

table can become the last access in the sequence, in which case the reuse distance of

this access will be 4 rather than 3 of its current position. If the associativity of the

cache under analysis is 4, the change of the reuse distance calculation from 3 to 4 will

make the prediction of this access from hit to miss. This shows how the uncertainty

in the access order can lead to overestimation in cache miss rates.

Unfortunately, for the shared data LLC in the integrated CPU-GPU architecture,

the order of accesses from different CPU and GPU cores to the shared LLC is hard

65

to predict statically. This is because the executions of the GPU kernels and the

CPU programs are independent of each other. In other words, while the order of the

accesses from the same GPU or CPU core can be analyzed and predicted statically

based on the content of the code, the orders of the accesses among different cores are

mostly based on the run-time execution and warp/thread scheduling.

Core 0 Core 1 Core 2

C0_A

C0_B

C0_C

C0_D

C0_A

C0_C

C0_B

C0_E

…...

C1_A

C1_D

C1_C

C1_E

C1_A

C1_B

C1_D

C1_C

…...

C2_E

C2_B

C2_D

C2_A

C2_C

C2_B

C2_A

C2_D

…...

T0

T1

Fig. 31. Example of Accesses From Different Cores

Fig. 31 shows an example of how the accesses to shared LLC from different cores

can affect the estimation of the reuse distance of one access. There are three cores

0 to 2, each of which has a sequence of accesses to the shared LLC as shown in the

figure. The reuse distance, for instance, of the access C0 C on Core 0 at the time

point T1 depends on the accesses that happen between the time point T0 and T1.

If there is only one core, then the accesses in the gray area in the column Core 0 are

enough to predict the reuse distance and the hit/miss results. However, there are 2

other cores which access the shared LLC simultaneously and independently. In this

case, to find the safe upper bound of the cache miss rate, all the accesses in the gray

66

area under the three columns need to be considered as the possible accesses to the

shared LLC between time point T0 and T1. Obviously, this analysis method simply

takes all the accesses from other cores and the accesses in between from the current

core to estimate the worst-case reuse distance. Therefore, it is referred as the Simple

method. It should be noted that that the addresses of memory accesses are calculated

statically as described in Section 4.4.4.

Table 6. Shared Data LLC (512KB) Miss Rate Estimations of the Simple Method
GPU Kernels 1 2 3 4 5 6 7 8
Actual Number of Misses 304 608 643 2311 521 2084 3179 24816
Estimated Number of Misses 372 737 2330 12499 1641 7610 15514 55524
Total Number of Access 670 1292 3228 12499 2609 11363 15514 55524
Actual Miss Rate 45.4% 47.1% 19.9% 18.5% 20.0% 18.3% 20.5% 44.7%
Estimated Miss Rate 55.5% 57.0% 72.2% 100.0% 62.9% 67.0% 100.0% 100.0%

Table 6 shows the miss rate estimation results using the Simple method. These

results are from 8 GPU kernel benchmarks running on the gem5-gpu simulator with

a shared data LLC of 512 KB. The cache line size is 128B and the associativity is

32. The simulator is configured to have 15 GPU SMs (Streaming Multiprocessors)

and 1 CPU core. The results show that, except for the first two GPU kernels, the

overestimation in the miss rate is very high. This is because all the accesses from other

cores are considered as possible conflicting accesses in estimating the reuse distance.

We also find that the first two benchmarks have less overestimation because they have

much less total numbers of accesses than the others.

6.4.3 Access Interval Based Shared Data LLC Analysis Method

Although the Simple method introduced in Section6.4.2 is straightforward and

easy to implement, the overestimation can be very high. The major reason is that

too many accesses from other cores are considered as possible conflicts. Based on the

comparison between the results of first two kernels and the others, the results indicate

67

Shared Last Level Cache

Access
Regulator

Access Counter

Coordinator

Access Quota

A

B

A>=B Access Throttle Access Path

Counter
Reset

Access Interval
Cfg

Accesses
To LLC
Core_0

…...Access
Regulator

Accesses
To LLC
Core_1

Access
Regulator

Accesses
To LLC
Core_N

Fig. 32. Architectural Extensions for Access Interval Regulation

that limiting the number of total accesses in reuse distance and hit/miss estimation

may help to reduce the overestimation.

Due to the large number of GPU SMs in the integrated architecture, the number

of possible conflicting LLC accesses can be significantly overestimated. To address

this problem, we propose the Access Interval based analysis method to enable tighter

WCET analysis of the data LLC in the integrated CPU-GPU without significant

impact on the average-case performance. Some architectural extensions are needed

in this Access Interval based method, as shown in Fig. 32. Specifically, each core

in the system will be assigned with a quota of the number of accesses that this core

is allowed to send to the shared LLC during each access interval. If the quota is

reached, the path of sending accesses to the shared LLC is throttled. When all the

active cores have reached the quota, the coordinator resets the access counter and the

next interval begins.

68

Core 0 Core 1 Core 2

C0_A

C0_B

C0_C

C0_D

C0_A

C0_C

C0_B

C0_E
…...

C1_A

C1_D

C1_C

C1_E

C1_A

C1_B

C1_D

C1_C
…...

C2_E

C2_B

C2_D

C2_A

C2_C

C2_B

C2_A

C2_D
…...

Start
Interval

…... …... …...

End
Interval

Interval
k

Interval
k+1

Interval
k+2

Interval
k+3

Interval
k+4

Fig. 33. Example of Access Interval Based Method

Fig. 33 shows a simple example to illustrate the access interval based method.

In this example, the quota of each access interval is set to 2 accesses. Then, for

the estimation of the access C0 C in the interval k+3, the interval that this access

belongs to is set as the End Interval. The interval that has the latest previous access

to the same cache line is set as the Start Interval, e.g. interval k+1 in this example.

Then the possible conflicting accesses are the accesses from the Start Interval and

End Interval from all the cores, except (1) the accesses from the core that has the

latest previous access and that are also earlier than the latest previous access in the

Start Interval and (2) the accesses from the core that has the access under analysis

and that are also later than the access under analysis in the End Interval. In this

example they are the accesses in the gray area.

It should be noted that the latest previous access to the same cache line can be

from other cores, and the Start Interval should be set accordingly, as shown in Fig.

34. This example assumes that the access C1 E is the latest previous access of the

69

Core 0 Core 1 Core 2

C0_A

C0_B

C0_C

C0_D

C0_A

C0_C

C0_B

C0_E
…...

C1_A

C1_D

C1_C

C1_E

C1_A

C1_B

C1_D

C1_C
…...

C2_E

C2_B

C2_D

C2_A

C2_C

C2_B

C2_A

C2_D
…...

Start
Interval

…... …... …...

End
Interval

Interval
k

Interval
k+1

Interval
k+2

Interval
k+3

Interval
k+4

Fig. 34. Example of Access Interval Based Method

access C0 E. Then the possible conflicting accesses are as shown in the gray area in

the figure.

The comparison between Fig. 31, 33 and 34 shows that the number of possible

conflicting accesses is largely reduced by the Access Interval based method. Therefore,

this Access Interval based method is likely to lead to a much tighter WCET estimation

for the data LLC of the integrated CPU-GPU. Also, since different SMs execute the

same GPU kernel code and, thus, generally have similar access patterns to the memory

system (e.g. when memory access happens along the kernel execution), the overhead

introduced by this Access Interval based method is expected to be small, i.e. it does

not significantly impact the performance of the system, as shown by the evaluation

results.

70

6.5 WCET Analysis of GPU Kernels with Shared Data LLC Estimation

Results

With the shared data LLC analysis method based on the Access Interval tech-

nique that is proposed in Section 6.4, the WCET timing model in Chapter 5 can be

improved to analyze a GPU system with L1 and L2 data caches, which is a more re-

alistic system compared to the system assumption without caches in Chapter 5. The

LEinstMemory
in Equation 5.6 represents the latency to access the memory system.

Under the assumption that there is no L1 or L2 data cache, the LEinstMemory
needs to

cover the latency of accessing the off-chip memory (Lbase) and the stall latency caused

by the interconnection of the network-on-chip (NoC) for every instruction. However,

based on the hit/miss prediction results, the LEinstMemory
value of each memory in-

struction can be set with different values, according to whether it is predicted to be

a hit or miss. Specifically, in the memory system with L1 and L2 data caches, the

value of LEinstMemory
can be set to the latency of a L1 hit, a L2 hit or a L2 miss. It

should be noted that, besides the latencies of accessing the different levels of caches,

there is still some latencies caused by the NoC in the system. However, since the

focus of this work is the shared data LLC, it is assumed that the latency of the NoC

is known, which will be explained in details in Section 6.6.1. It also should be noted

that the other parts of this timing model is not affected by the integration of the

cache hit/miss estimations.

71

6.6 Evaluation Results

6.6.1 Experimental Methodology

6.6.1.1 Simulator

As mentioned in Section 6.4.1, the gem5-gpu [16] simulator is used to implement

and evaluate the proposed methods. The gem5-gpu simulator integrates the simu-

lators of GPGPU-Sim [15], which simulates the GPU cores and executes the GPU

kernels, and the gem5 [79], which simulates the CPU cores, executes the CPU code

and launches the GPU kernels to the GPGPU-Sim simulator.

Table 7. Configurations of the gem5-gpu Simulator
Number of SMs 15

Number of CPU Cores 1

GPU SM Clock Cycle 500 Ticks

CPU Core Clock Cycle 500 Ticks

L1 Data Cache Size 64KB

L1 Cache Line Size 128B

L1 Cache Associativity 4

L2 Data Cache Size 256KB/512KB/1024KB

L2 Cache Line Size 128B

L2 Cache Associativity 32

L1/L2 Cache Replacement Policy LRU

GPU Warp Size 32

GPU Warp Scheduling Policy Pure Round-Robin

Max Number of Active Warps 48

Max Number of Active Blocks 8

Table 7 shows some of the basic configuration values of the gem5-gpu simulator.

Since the focus of this work is the analysis of the shared data LLC and its impact

on GPU kernel analysis, the CPU part in the system is relatively simple with 1 CPU

core, while there are 15 GPU SMs. The periods of one clock cycle for the GPU SM

and GPU core are set to 500 ticks. One tick is the basic cycle at which the whole

simulator cycles. There is an L1 data cache for each GPU SM and CPU core, with the

72

size, the cache line size and associativity as shown in the table. There are separate

instruction caches, which are modified and configured as perfect caches (as this work

focuses on analyzing the data LLC). All the caches use the LRU replacement policy.

To enable the static timing analysis, the Pure Round-Robin warp scheduling policy

is used. The other basic configurations for the GPU SMs are shown in the rest of

the table, which basically follows the configuration for the Fermi architecture [17]

in the GPGPU-Sim simulator. Although the simulated GPU architecture is an early

version of the CUDA architecture and does not have the recent advanced architectural

features, such as dynamic parallelism, the simulated architecture has the fundamental

GPGPU architecture components, which are the major architectural parts in every

architecture version and critical parts for applying GPGPU to real-time computing.

6.6.1.2 Benchmarks

The GPU kernels used in the evaluations are from the Rodinia [31] benchmark

suite. Table 8 shows the names of the GPU kernel benchmarks and the sizes of

the inputs to the kernels. The names k1-10 are used in Section 6.6.2 to refer to

these benchmarks. It should be noted that, although the Rodinia benchmark suite

is not one that is specially collected and set for the real-timing computing, there

is not any GPGPU real-time benchmark available that is shared and used publicly

by researchers. Therefore, the Rodinia benchmark suite, though being a GPGPU

benchmark suite, is used in this work, since it is already widely used in GPGPU related

studies and can represent some characteristics of the real-time GPGPU computing

applications.

With the access interval method, extra delays can be introduced in accessing the

LLC, which can lead to performance overhead. To measure this, each benchmark is

executed with out the access interval regulation first to get the baseline performance

73

results. Then, with the access interval enabled, each benchmark is executed again

to get the performance results with possible performance overhead and the results of

the actual miss rate in the shared data LLC, which the estimated LLC miss rate is

compared with.

Table 8. Benchmarks
Benchmark Name Input Size

k1 cfd1 4096

k2 cfd2 4096

k3 gaussian 128

k4 gaussian 256

k5 lud 128

k6 lud 256

k7 nw 1024

k8 nw 2048

k9 srad 128

k10 srad 256

6.6.1.3 Assumptions

Since the focus of this work is the analysis of the shared data LLC in the GPU-

CPU system and its impact on the GPU kernel WCET estimation, the following

assumptions are made.

Instruction Caches. To separate the impact of the accesses for instruction contents

from the memory system. Each SM and CPU core has its own ideal L1 instruction

cache, the accesses to which always result in hits. Therefore, only data accesses go to

the shared LLC in the memory system.

L1 Data Cache Miss Rate. The hit and miss results of the L1 data caches in the

system are assumed to be known by profiling method, so that the sequences of the

accesses to the LLC from each SM or core can be generated for the LLC analysis.

74

Memory Accesses From CPU. For the memory accesses from CPU cores, profiling

is used to get the sequence of memory accesses to the LLC as well as the information

of which access interval a certain memory access belongs to.

Memory Access Latencies. Modeling the latencies of accessing different levels in the

memory system is not part of this work, therefore the profiling method is used to get

the longest latencies of L1 hit, L2 (LLC) hit and miss.

6.6.2 Experiment Results

6.6.2.1 Shared Data LLC Miss Rate Estimation Results

0%

20%

40%

60%

80%

100%

120%

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Actual Miss Rates and Estimated Miss Rates of 512kB LLC

Actual Miss Rate 512KB Est. Miss Rate 512KB

Fig. 35. Miss Rate Estimation Results of a 512KB LLC

Fig. 35 shows the actual and estimated miss rate results of a 512KB LLC.

The results show that, for different actual miss rates across the benchmarks, the

proposed estimation method can provide a safe upper bound, among which only k6

has relatively higher overestimation.

Fig. 36 shows the actual and estimated miss rate results of 3 different LLC sizes,

75

including 256KB, 512KB and 1024KB. As shown in the figure, for most of the kernels

the overestimation reduces as the LLC size increases. For example, the overestimation

in k3 reduces from over 100% with 256KB LLC to less than 1% with 1024KB LLC.

This is because that a larger LLC has more cache sets and hence the number of

possible conflicting accesses that are mapped to the same set is reduced, which leads

to a tighter estimation of reuse distance values.

0%

20%

40%

60%

80%

100%

120%

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Actual Miss Rates and Estimated Miss Rates

Actual Miss Rate 256KB Est. Miss Rate 256KB Actual Miss Rate 512KB
Est. Miss Rate 512KB Actual Miss Rate 1024KB Est. Miss Rate 1024KB

Fig. 36. Miss Rate Estimation Results of Different LLC Sizes

Fig. 37 shows the normalized performance results of the benchmarks with 3 dif-

ferent LLC sizes. The results are the execution cycles of the GPU kernel benchmarks

with the access interval normalized to the execution cycles without the access inter-

val regulations. The performance overhead in k6 is higher than the others, because

synchronizations are used in this kernel, together with which the access interval regu-

lations lead to longer delays for warps to reach the synchronization barriers. As shown

in the figure, the average performance overhead is less than 8%, which is not pro-

hibitive considering the benefit of much tighter timing analysis. The average results

are the geometric means of the results of the benchmarks.

76

0%

20%

40%

60%

80%

100%

120%

140%

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Average

Normalized Performance Overhead

256KB 512KB 1024KB

Fig. 37. Normalized Access Interval Method Performance Results of Different LLC

Sizes

6.6.2.2 WCET Estimation Results of GPU Kernels

Fig. 38 shows the normalized performance results of the benchmarks with dif-

ferent shared data LLC caches. The numbers of execution cycles are normalized to

those with a 256KB LLC for each benchmark. As shown in the figure, some bench-

marks benefit from larger cache sizes, while some don’t. Part of the reason is that

for some benchmarks, larger LLC does not necessarily result in lower miss rate. For

those that have smaller LLC miss rate with larger LLC sizes, e.g. k7, k8 and k9, the

performance is well improved.

Fig. 39 shows the normalized performance and WCET estimation results with

different shard LLC sizes. The performance and estimation results in the figure are

normalized to the actual performance results with a 256KB shared data LLC for

each benchmark. The results show that high overestimation in the LLC miss rate

can result in high overestimated WCET result, such as k6 with more than 140% in

overestimation of LLC miss rate and more than 35% overestimation in WCET with

77

0%

20%

40%

60%

80%

100%

120%

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Average

Normalzied Performance Results of Different LLC Sizes

256KB 512KB 1024KB

Fig. 38. Normalized Performance Results of Different LLC Sizes

a 256KB LLC.

0%

20%

40%

60%

80%

100%

120%

140%

160%

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Average

Normalized Perforamnce and WCET Estimation Results of
Different LLC Sizes

256KB 256KB_Est 512KB 512KB_Est 1024KB 1024KB_Est

Fig. 39. Normalized WCET Estimation Results of Different LLC Sizes

It should be noted that the overestimation is also related to the ratio between

the maximum and the average latencies of accessing different levels of the memory

system. For example, although the overestimation of the LLC miss rate is very low for

benchmark k7 and k8 as shown in Fig. 36, the overestimation in WCET is high (35%

78

to 40%). This is because the ratio between the maximum and average latencies in

accessing the off-chip memory is around 2.5 for these two benchmarks while this ratio

is below 1.5 for other benchmarks, and the WCET analyzer has to use the maximum

latency for every access in the estimation.

79

CHAPTER 7

CONCLUSIONS

GPUs are no longer just used as accelerators for graphics computing. The parallel

computing capability and high throughput of GPUs have put them into all kinds of

general-purpose computing applications. Such potentials of GPUs make it promis-

ing to apply GPUs to real-time applications as well, where, however, good time-

predictability characteristic is critical for the purposes of safety and reliability of the

system. Nevertheless, the current architectural features in GPUs are designed for the

improvement of average-case performance, rather than time-predictability. Therefore,

the research topics in this dissertation focus the analysis and improvement of GPUs,

so that they can be safely applied to real-time applications.

7.1 Profiling-Based GPU L1 Data Cache Bypassing

Cache memories are widely used to decrease the performance gap between pro-

cessor/core and physical memory. The different programming and execution models

in GPUs, however, generate different access patterns to the cache memory in GPUs.

Specifically, memory accessing by coalescing different requests from different warps

leads to the issue of memory access and traffic efficiency. The profiling results of some

GPU kernel benchmarks show that, in GPGPU applications/kernels, there can be a

large percentage of data that is never reused or only reused for very few times. It is

also shown that sometimes not all the data in a coalesced memory transfer is useful

(low utilization rate), which leads to unnecessary memory traffic. Based on such ob-

servations, a profiling-based method is proposed to identify the memory accesses with

80

low utilization rate and a small number of reuse times and to let such accesses bypass

the GPU L1 data cache. The experiment results show that the proposed method can

effectively reduce the memory traffic and improve the performance, which indicates

that the proposed method can use GPU L1 data caches in a more effective way.

7.2 Warp-Based Load/Store Reordering for Time-Predictability Improve-

ment

Cache memories are known as harmful to the time-predictability characteristic of

a system. Furthermore, the dynamic behaviors, such as dynamic warp scheduling, can

make the behavior of a GPU kernel even harder to analyze statically. On the other

hand, GPUs, however, rely these dynamic behaviors to achieve high performance

and throughput. Putting too many constraints can introduce performance overhead.

Therefore, in this work, the load/store reordering framework is implemented, to regu-

late the order of memory requests before they reach the L1 data cache, while allowing

the dynamic warp scheduling inside each SM. The experiment results show that the

proposed reordering framework can give accurate miss rate estimations for GPU L1

data cache, while the performance overhead introduced by the reordering framework

is very small.

The works on the first two topics show that cache memories are still desirable

in GPU architecture for real-time applications. However, special efforts, from either

architecture side or compiler size or both, are needed to make sure that the usage

of cache memories can benefit the performance and have good time-predictability

characteristic.

81

7.3 Static WCET Analysis Timing Model for GPUs

To apply GPUs in real-time system and applications, it is important to have

a WCET performance model for the GPU architecture and kernels. Therefore, the

time-predictability of GPU architecture needs to be improved to be more analyzable.

To address this, the pure round-robin scheduling policy that has predictable behaviors

is chosen as the warp scheduling policy, based on which a WCET timing model for

GPU kernels is built. To the best of our knowledge, this timing model is the first

one that estimates the WCET for GPU kernels at the instruction scheduling level, by

analyzing the details of GPU architecture. The experimental results show that our

WCET analyzer can effectively provide WCET estimations for both soft and hard

real-time application purposes.

7.4 Static WCET Analysis on Shared Data LLC in CPU-GPU Architec-

tures

The integrated CPU-GPU architectures can take the advantages of tightly-coupled

CPUs and GPUs to further boost performance. In such architecture, the shared LLC

is an important architectural component for performance improvement and a key

source of time-unpredictability as well. Since different cores access the shared LLC

simultaneously, the run-time behavior of the shared LLC is hard, if not impossible,

to predict statically, In this work, a technique of regulating the accesses to the shared

LLC by enforcing access intervals is proposed to improve the time-predictability of the

LLC. The results show that the proposed technique can significantly reduce the over-

estimation in the miss rates of the shared data LLC, without significantly impacting

the average-case performance.

The works in the last two topics show the techniques that can enable the WCET

82

analysis on GPU and integrated CPU-GPU architectures and allow such architec-

tures to be applied in real-time applications and systems. The proposed WCET

timing model and shared data LLC analysis method can give tight worst case esti-

mations, indicating that, with architectural modifications and extensions, the time-

predictability of GPU and integrated CPU-GPU architectures can be improved and

applied to real-time applications safely.

7.5 Future Work

Besides the key architectural components that are studied in the previous four

topics, the improvement of time-predictability of some other components in the GPU

and CPU-GPU architectures can also be studied. For example, the time-predictability

of the Network-on-Chip (NoC), which connects the different processing units and

memory components, may be analyzed and improved with some new topology or

accessing and scheduling polices. Also, new warp scheduling policies may be studied

to find a good balance between time-predictability and performance.

Furthermore, the new features in the recent GPU architectures bring new prob-

lems that can become the focuses of some future researches as well. For instance,

the Dynamic Parallelism[80] in CUDA programming model allows a CUDA kernel to

launch a child CUDA kernel, while the High Bandwidth Memory (HBM) technique

is used to achieve high-performance RAM interfacing[81]. In the version of CUDA 9,

the Cooperative Groups technique is introduced for the CUDA programming model

to have the ability to do collective operations, such as synchronization, at sub-block

or multi-block level[82]. According to these new features, additional studies may

be done to analyze their impacts on the time-predictability of the system and some

approaches to improve it.

83

REFERENCES

[1] J. D. Owens et al. “GPU Computing”. In: Proceedings of the IEEE 96.5 (May

2008), pp. 879–899. issn: 0018-9219. doi: 10.1109/JPROC.2008.917757.

[2] ARM Corp. “Mali Graphics Hardware”. In: (Accessed on Oct 2016). url:

http://www.arm.com/products/graphics-and-multimedia/mali-gpu.

[3] NVIDIA Corp. “Nvidia Tegra Mobile Processors”. In: (Accessed on Oct 2016).

url: http://www.nvidia.com/object/tegra.html.

[4] NVIDIA Corp. “Nvidia DRIVE PX 2”. In: (Accessed on Oct 2016). url: http:

//www.nvidia.com/object/drive-px.html.

[5] Uri Verner, Assaf Schuster, and Mark Silberstein. “Processing data streams

with hard real-time constraints on heterogeneous systems”. In: (2011), p. 120.

doi: 10.1145/1995896.1995915.

[6] Glenn A Elliott and James H Anderson. “Robust Real-Time Multiprocessor

Interrupt Handling Motivated by GPUs”. In: (2012), pp. 267–276. doi: 10.

1109/ECRTS.2012.20.

[7] A. Kurdila et al. “Vision-based control of micro-air-vehicles: progress and prob-

lems in estimation”. In: Decision and Control, 2004. CDC. 43rd IEEE Confer-

ence on. Vol. 2. Dec. 2004, 1635–1642 Vol.2. doi: 10.1109/CDC.2004.1430279.

[8] Jamie Shotton et al. “Real-time human pose recognition in parts from single

depth images”. In: (2011), pp. 1297–1304. issn: 0001-0782. doi: 10.1109/

CVPR.2011.5995316.

84

http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.arm.com/products/graphics-and-multimedia/mali-gpu
http://www.nvidia.com/object/tegra.html
http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html
http://dx.doi.org/10.1145/1995896.1995915
http://dx.doi.org/10.1109/ECRTS.2012.20
http://dx.doi.org/10.1109/ECRTS.2012.20
http://dx.doi.org/10.1109/CDC.2004.1430279
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://dx.doi.org/10.1109/CVPR.2011.5995316

[9] Anuj Pathania et al. “Integrated CPU-GPU Power Management for 3D Mobile

Games”. In: Proceedings of the 51st Annual Design Automation Conference.

DAC ’14. San Francisco, CA, USA: ACM, 2014, 40:1–40:6. isbn: 978-1-4503-

2730-5. doi: 10.1145/2593069.2593151. url: http://doi.acm.org/10.

1145/2593069.2593151.

[10] A. Bernhardt et al. “Real-Time Terrain Modeling Using CPU-GPU Coupled

Computation”. In: 2011 24th SIBGRAPI Conference on Graphics, Patterns

and Images. Aug. 2011, pp. 64–71. doi: 10.1109/SIBGRAPI.2011.28.

[11] Cheng KT. Wang YC. Donyanavard B. “Energy-Aware Real-Time Face Recog-

nition System on Mobile CPU-GPU Platform”. In: Trends and Topics in Com-

puter Vision. 2012, pp. 411–422. doi: 10.1007/978-3-642-35740-4_32.

[12] Sfffdbastien Roujol et al. “Online real-time reconstruction of adaptive TSENSE

with commodity CPU/GPU hardware”. In: Magnetic Resonance in Medicine

62.6 (2009), pp. 1658–1664. issn: 1522-2594. doi: 10.1002/mrm.22112. url:

http://dx.doi.org/10.1002/mrm.22112.

[13] Y. Huangfu and W. Zhang. “Real-Time GPU Computing: Cache or No Cache?”

In: 2015 IEEE 18th International Symposium on Real-Time Distributed Com-

puting. Apr. 2015, pp. 182–189. doi: 10.1109/ISORC.2015.12.

[14] Y. Huangfu and W. Zhang. “Warp-Based Load/Store Reordering to Improve

GPU Data Cache Time Predictability and Performance”. In: 2016 IEEE 19th

International Symposium on Real-Time Distributed Computing (ISORC). May

2016, pp. 166–173. doi: 10.1109/ISORC.2016.31.

[15] Ali Bakhoda et al. “Analyzing CUDA workloads using a detailed GPU simu-

lator”. In: (2009), pp. 163–174. doi: 10.1109/ISPASS.2009.4919648.

85

http://dx.doi.org/10.1145/2593069.2593151
http://doi.acm.org/10.1145/2593069.2593151
http://doi.acm.org/10.1145/2593069.2593151
http://dx.doi.org/10.1109/SIBGRAPI.2011.28
http://dx.doi.org/10.1007/978-3-642-35740-4_32
http://dx.doi.org/10.1002/mrm.22112
http://dx.doi.org/10.1002/mrm.22112
http://dx.doi.org/10.1109/ISORC.2015.12
http://dx.doi.org/10.1109/ISORC.2016.31
http://dx.doi.org/10.1109/ISPASS.2009.4919648

[16] Jason Power et al. “gem5-gpu: A Heterogeneous CPU-GPU Simulator”. In:

Computer Architecture Letters 13.1 (Jan. 2014). issn: 1556-6056. doi: 10.

1109/LCA.2014.2299539. url: http://gem5-gpu.cs.wisc.edu.

[17] NVIDIA Corp. “NVIDIAs Next Generation CUDA Compute Architecture Fermi”.

In: (Accessed on Oct 2016). url: $http://www.nvidia.com/content/pdf/

fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.

pdf$.

[18] NVIDIA Corp. “CUDA Programming Guide”. In: (Accessed on Oct 2016).

[19] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Pro-

gramming Standard for Heterogeneous Computing Systems”. In: Comput Sci

Eng 12.3 (2010), pp. 66–73. issn: 1521-9615. doi: 10.1109/MCSE.2010.69.

[20] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. “MRPB: Memory request

prioritization for massively parallel processors”. In: (2014), pp. 272–283. doi:

10.1109/HPCA.2014.6835938.

[21] Antonio González, Carlos Aliagas, and Mateo Valero. “A data cache with mul-

tiple caching strategies tuned to different types of locality”. In: (1995), pp. 338–

347. doi: 10.1145/224538.224622.

[22] G Tyson et al. “A modified approach to data cache management”. In: (),

pp. 93–103. doi: 10.1109/MICRO.1995.476816.

[23] TL Johnson et al. “Run-time cache bypassing”. In: Ieee T Comput 48.12 (1999),

pp. 1338–1354. issn: 0018-9340. doi: 10.1109/12.817393.

[24] Haiming Liu et al. “Cache bursts: A new approach for eliminating dead blocks

and increasing cache efficiency”. In: (2008), pp. 222–233. doi: 10.1109/MICRO.

2008.4771793.

86

http://dx.doi.org/10.1109/LCA.2014.2299539
http://dx.doi.org/10.1109/LCA.2014.2299539
http://gem5-gpu.cs.wisc.edu
$http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf$
$http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf$
$http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf$
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/HPCA.2014.6835938
http://dx.doi.org/10.1145/224538.224622
http://dx.doi.org/10.1109/MICRO.1995.476816
http://dx.doi.org/10.1109/12.817393
http://dx.doi.org/10.1109/MICRO.2008.4771793
http://dx.doi.org/10.1109/MICRO.2008.4771793

[25] M Kharbutli and Yan Solihin. “Counter-Based Cache Replacement and By-

passing Algorithms”. In: Ieee T Comput 57.4 (2008), pp. 433–447. issn: 0018-

9340. doi: 10.1109/TC.2007.70816.

[26] Youfeng Wu et al. “Compiler managed micro-cache bypassing for high per-

formance EPIC processors”. In: 35th Annual IEEE/ACM International Sym-

posium on Microarchitecture, 2002. (MICRO-35). Proceedings. 2002, pp. 134–

145. doi: 10.1109/MICRO.2002.1176245.

[27] Zhenlin Wang et al. “Using the compiler to improve cache replacement deci-

sions”. In: Proceedings.International Conference on Parallel Architectures and

Compilation Techniques. 2002, pp. 199–208. doi: 10.1109/PACT.2002.1106018.

[28] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. “Characterizing and

improving the use of demand-fetched caches in GPUs”. In: (2012), p. 15. doi:

10.1145/2304576.2304582.

[29] Vineeth Mekkat et al. “Managing Shared Last-level Cache in a Heterogeneous

Multicore Processor”. In: Proceedings of the 22Nd International Conference

on Parallel Architectures and Compilation Techniques. PACT ’13. Edinburgh,

Scotland, UK: IEEE Press, 2013, pp. 225–234. isbn: 978-1-4799-1021-2. url:

http://dl.acm.org/citation.cfm?id=2523721.2523753.

[30] Yun Liang et al. “An Efficient Compiler Framework for Cache Bypassing on

GPUs”. In: Ieee T Comput Aid D 34.10 (2015), pp. 1677–1690. issn: 0278-0070.

doi: 10.1109/TCAD.2015.2424962.

[31] S. Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In:

2009 IEEE International Symposium on Workload Characterization (IISWC).

Oct. 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797.

87

http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/MICRO.2002.1176245
http://dx.doi.org/10.1109/PACT.2002.1106018
http://dx.doi.org/10.1145/2304576.2304582
http://dl.acm.org/citation.cfm?id=2523721.2523753
http://dx.doi.org/10.1109/TCAD.2015.2424962
http://dx.doi.org/10.1109/IISWC.2009.5306797

[32] Gurulingesh Raravi, Björn Andersson, and Konstantinos Bletsas. “Assigning

real-time tasks on heterogeneous multiprocessors with two unrelated types of

processors”. In: Real-time Syst 49.1 (2013), pp. 29–72. issn: 0922-6443. doi:

10.1007/s11241-012-9161-1.

[33] Glenn A Elliott and James H Anderson. “Globally scheduled real-time multi-

processor systems with GPUs”. In: Real-time Syst 48.1 (2012), pp. 34–74. issn:

0922-6443. doi: 10.1007/s11241-011-9140-y.

[34] G. A. Elliott, B. C. Ward, and J. H. Anderson. “GPUSync: A Framework for

Real-Time GPU Management”. In: Real-Time Systems Symposium (RTSS),

2013 IEEE 34th. Dec. 2013, pp. 33–44. doi: 10.1109/RTSS.2013.12.

[35] Xavier Vera, Björn Lisper, and Jingling Xue. “Data cache locking for higher

program predictability”. In: Acm Sigmetrics Perform Eval Rev 31.1 (2003),

p. 272. issn: 0163-5999. doi: 10.1145/885651.781062.

[36] Vivy Suhendra and Tulika Mitra. “Exploring locking & partitioning for pre-

dictable shared caches on multi-cores”. In: (2008), p. 300. doi: 10 . 1145 /

1391469.1391545.

[37] Huping Ding, Yun Liang, and Tulika Mitra. “WCET-centric partial instruction

cache locking”. In: (2012), p. 412. doi: 10.1145/2228360.2228434.

[38] R Banakar et al. “Scratchpad memory: a design alternative for cache on-chip

memory in embedded systems”. In: (), pp. 73–78. doi: 10.1109/CODES.2002.

1003604.

[39] Martin Schoeberl. “A Time Predictable Instruction Cache for a Java Pro-

cessor”. In: On the Move to Meaningful Internet Systems 2004: OTM 2004

Workshops: OTM Confederated International Workshops and Posters, GADA,

88

http://dx.doi.org/10.1007/s11241-012-9161-1
http://dx.doi.org/10.1007/s11241-011-9140-y
http://dx.doi.org/10.1109/RTSS.2013.12
http://dx.doi.org/10.1145/885651.781062
http://dx.doi.org/10.1145/1391469.1391545
http://dx.doi.org/10.1145/1391469.1391545
http://dx.doi.org/10.1145/2228360.2228434
http://dx.doi.org/10.1109/CODES.2002.1003604
http://dx.doi.org/10.1109/CODES.2002.1003604

JTRES, MIOS, WORM, WOSE, PhDS, and INTEROP 2004, Agia Napa,

Cyprus, October 25-29, 2004. Proceedings. Ed. by Robert Meersman, Zahir

Tari, and Angelo Corsaro. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,

pp. 371–382. isbn: 978-3-540-30470-8. doi: 10.1007/978-3-540-30470-8_52.

url: http://dx.doi.org/10.1007/978-3-540-30470-8_52.

[40] D. Hardy and I. Puaut. “WCET Analysis of Multi-level Non-inclusive Set-

Associative Instruction Caches”. In: Real-Time Systems Symposium, 2008.

Nov. 2008, pp. 456–466. doi: 10.1109/RTSS.2008.10.

[41] Jun Yan and Wei Zhang. “WCET Analysis for Multi-Core Processors with

Shared L2 Instruction Caches”. In: (2008), pp. 80–89. doi: 10.1109/RTAS.

2008.6.

[42] Yun Liang et al. “Timing analysis of concurrent programs running on shared

cache multi-cores”. In: Real-time Syst 48.6 (2012), pp. 638–680. issn: 0922-

6443. doi: 10.1007/s11241-012-9160-2.

[43] B. K. Huynh, L. Ju, and A. Roychoudhury. “Scope-Aware Data Cache Analysis

for WCET Estimation”. In: 2011 17th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium. Apr. 2011, pp. 203–212. doi: 10.1109/

RTAS.2011.27.

[44] Christian Ferdinand et al. “Cache behavior prediction by abstract interpreta-

tion”. In: Sci Comput Program 35.2-3 (1999), pp. 163–189. issn: 0167-6423.

doi: 10.1016/S0167-6423(99)00010-6.

[45] Jaewoong Sim et al. “A performance analysis framework for identifying poten-

tial benefits in GPGPU applications”. In: (2012), p. 11. issn: 0362-1340. doi:

10.1145/2145816.2145819.

89

http://dx.doi.org/10.1007/978-3-540-30470-8_52
http://dx.doi.org/10.1007/978-3-540-30470-8_52
http://dx.doi.org/10.1109/RTSS.2008.10
http://dx.doi.org/10.1109/RTAS.2008.6
http://dx.doi.org/10.1109/RTAS.2008.6
http://dx.doi.org/10.1007/s11241-012-9160-2
http://dx.doi.org/10.1109/RTAS.2011.27
http://dx.doi.org/10.1109/RTAS.2011.27
http://dx.doi.org/10.1016/S0167-6423(99)00010-6
http://dx.doi.org/10.1145/2145816.2145819

[46] Michael Boyer, Jiayuan Meng, and Kalyan Kumaran. “Improving GPU Per-

formance Prediction with Data Transfer Modeling”. In: (2013), pp. 1097–1106.

doi: 10.1109/IPDPSW.2013.236.

[47] Yun Liang et al. “An Accurate GPU Performance Model for Effective Con-

trol Flow Divergence Optimization”. In: Ieee T Comput Aid D 35.7 (2016),

pp. 1165–1178. issn: 0278-0070. doi: 10.1109/TCAD.2015.2501303.

[48] Yuki Abe et al. “Power and Performance Analysis of GPU-Accelerated Sys-

tems”. In: Presented as part of the 2012 Workshop on Power-Aware Comput-

ing and Systems. Hollywood, CA: USENIX, 2012. url: https://www.usenix.

org/conference/hotpower12/workshop-program/presentation/Abe.

[49] Krzysztof Rojek, Lukasz Szustak, and Roman Wyrzykowski. Performance Anal-

ysis for Stencil-Based 3D MPDATA Algorithm on GPU Architecture. Vol. 8384.

springer, 2014. isbn: 9783642552236. doi: 10.1007/978-3-642-55224-3_15.

[50] Christian Feichtinger et al. “Performance modeling and analysis of heteroge-

neous lattice Boltzmann simulations on CPU-GPU clusters”. In: Parallel Com-

put 46 (2015), pp. 1–13. issn: 0167-8191. doi: 10.1016/j.parco.2014.12.

003.

[51] Adwait Jog et al. “OWL: Cooperative Thread Array Aware Scheduling Tech-

niques for Improving GPGPU Performance”. In: SIGPLAN Not. 48.4 (Mar.

2013), pp. 395–406. issn: 0362-1340. doi: 10.1145/2499368.2451158. url:

http://doi.acm.org/10.1145/2499368.2451158.

[52] Veynu Narasiman et al. “Improving GPU performance via large warps and two-

level warp scheduling”. In: (2011), p. 308. doi: 10.1145/2155620.2155656.

90

http://dx.doi.org/10.1109/IPDPSW.2013.236
http://dx.doi.org/10.1109/TCAD.2015.2501303
https://www.usenix.org/conference/hotpower12/workshop-program/presentation/Abe
https://www.usenix.org/conference/hotpower12/workshop-program/presentation/Abe
http://dx.doi.org/10.1007/978-3-642-55224-3_15
http://dx.doi.org/10.1016/j.parco.2014.12.003
http://dx.doi.org/10.1016/j.parco.2014.12.003
http://dx.doi.org/10.1145/2499368.2451158
http://doi.acm.org/10.1145/2499368.2451158
http://dx.doi.org/10.1145/2155620.2155656

[53] Yijie Huangfu and Wei Zhang. “Warp-Based Load/Store Reordering to Im-

prove GPU Data Cache Time Predictability and Performance”. In: (2016),

pp. 166–173. doi: 10.1109/ISORC.2016.31.

[54] Adam Betts and Alastair Donaldson. “Estimating the WCET of GPU-Accelerated

Applications Using Hybrid Analysis”. In: (2013), pp. 193–202. doi: 10.1109/

ECRTS.2013.29.

[55] Kostiantyn Berezovskyi et al. “WCET Measurement-based and Extreme Value

Theory Characterisation of CUDA Kernels”. In: (2014), pp. 279–288. doi: 10.

1145/2659787.2659827.

[56] Wilson W. L. Fung et al. “Dynamic Warp Formation: Efficient MIMD Control

Flow on SIMD Graphics Hardware”. In: ACM Trans. Archit. Code Optim. 6.2

(July 2009), 7:1–7:37. issn: 1544-3566. doi: 10.1145/1543753.1543756. url:

http://doi.acm.org/10.1145/1543753.1543756.

[57] Green500. “The Green500 List”. In: (Accessed on Oct 2016). url: https:

//www.top500.org/green500/lists/2016/06/.

[58] Inc. Advanced Micro Devices. “AMD Athlon APUs”. In: (Accessed on Oct

2016). url: http://www.amd.com/en-us/products/processors/desktop/

athlon.

[59] ARM Ltd. “big.LITTLE Technology”. In: (Accessed on April 2017). url:

https://www.arm.com/products/processors/technologies/biglittleprocessing.

php.

[60] Lui Sha et al. “Real-Time Computing on Multicore Processors”. In: Computer

49.9 (2016), pp. 69–77. issn: 0018-9162. doi: doi.ieeecomputersociety.

org/10.1109/MC.2016.271.

91

http://dx.doi.org/10.1109/ISORC.2016.31
http://dx.doi.org/10.1109/ECRTS.2013.29
http://dx.doi.org/10.1109/ECRTS.2013.29
http://dx.doi.org/10.1145/2659787.2659827
http://dx.doi.org/10.1145/2659787.2659827
http://dx.doi.org/10.1145/1543753.1543756
http://doi.acm.org/10.1145/1543753.1543756
https://www.top500.org/green500/lists/2016/06/
https://www.top500.org/green500/lists/2016/06/
http://www.amd.com/en-us/products/processors/desktop/athlon
http://www.amd.com/en-us/products/processors/desktop/athlon
https://www.arm.com/products/processors/technologies/biglittleprocessing.php
https://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2016.271
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2016.271

[61] R. Mancuso et al. “Real-time cache management framework for multi-core ar-

chitectures”. In: Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), 2013 IEEE 19th. Apr. 2013, pp. 45–54. doi: 10.1109/RTAS.

2013.6531078.

[62] B. C. Ward et al. “Outstanding Paper Award: Making Shared Caches More

Predictable on Multicore Platforms”. In: 2013 25th Euromicro Conference on

Real-Time Systems. July 2013, pp. 157–167. doi: 10.1109/ECRTS.2013.26.

[63] Marco Paolieri et al. “Hardware Support for WCET Analysis of Hard Real-

time Multicore Systems”. In: Proceedings of the 36th Annual International

Symposium on Computer Architecture. ISCA ’09. Austin, TX, USA: ACM,

2009, pp. 57–68. isbn: 978-1-60558-526-0. doi: 10.1145/1555754.1555764.

url: http://doi.acm.org/10.1145/1555754.1555764.

[64] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. “Modeling

Shared Cache and Bus in Multi-cores for Timing Analysis”. In: Proceedings

of the 13th International Workshop on Software & Compilers for Embedded

Systems. SCOPES ’10. St. Goar, Germany: ACM, 2010, 6:1–6:10. isbn: 978-1-

4503-0084-1. doi: 10.1145/1811212.1811220. url: http://doi.acm.org/

10.1145/1811212.1811220.

[65] Gregorio Bernabe, Javier Cuenca, and Domingo Gimenez. “Optimization Tech-

niques for 3D-FWT on Systems with Manycore GPUs and Multicore CPUs”.

In: Procedia Computer Science 18 (2013), pp. 319–328. issn: 1877-0509. doi:

10.1016/j.procs.2013.05.195.

[66] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. “A Dynamic Self-

scheduling Scheme for Heterogeneous Multiprocessor Architectures”. In: ACM

Trans. Archit. Code Optim. 9.4 (Jan. 2013), 57:1–57:20. issn: 1544-3566. doi:

92

http://dx.doi.org/10.1109/RTAS.2013.6531078
http://dx.doi.org/10.1109/RTAS.2013.6531078
http://dx.doi.org/10.1109/ECRTS.2013.26
http://dx.doi.org/10.1145/1555754.1555764
http://doi.acm.org/10.1145/1555754.1555764
http://dx.doi.org/10.1145/1811212.1811220
http://doi.acm.org/10.1145/1811212.1811220
http://doi.acm.org/10.1145/1811212.1811220
http://dx.doi.org/10.1016/j.procs.2013.05.195

10.1145/2400682.2400716. url: http://doi.acm.org/10.1145/2400682.

2400716.

[67] Chao Yang et al. “A Peta-scalable CPU-GPU Algorithm for Global Atmo-

spheric Simulations”. In: Proceedings of the 18th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming. PPoPP ’13. Shenzhen,

China: ACM, 2013, pp. 1–12. isbn: 978-1-4503-1922-5. doi: 10.1145/2442516.

2442518. url: http://doi.acm.org/10.1145/2442516.2442518.

[68] T. P. Stefanski. “Implementation of FDTD-compatible green’s function on het-

erogeneous cpu-GPU parallel processing system”. In: Progress In Electromag-

netics Research 135 (2013), pp. 297–316. doi: 10.2528/PIER12111702.

[69] Jacques A. Pienaar, Srimat Chakradhar, and Anand Raghunathan. “Auto-

matic Generation of Software Pipelines for Heterogeneous Parallel Systems”.

In: Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis. SC ’12. Salt Lake City, Utah: IEEE

Computer Society Press, 2012, 24:1–24:12. isbn: 978-1-4673-0804-5. url: http:

//dl.acm.org/citation.cfm?id=2388996.2389029.

[70] Klaus Kofler et al. “An Automatic Input-sensitive Approach for Heterogeneous

Task Partitioning”. In: Proceedings of the 27th International ACM Confer-

ence on International Conference on Supercomputing. ICS ’13. Eugene, Ore-

gon, USA: ACM, 2013, pp. 149–160. isbn: 978-1-4503-2130-3. doi: 10.1145/

2464996.2465007. url: http://doi.acm.org/10.1145/2464996.2465007.

[71] W. Jiang and G. Agrawal. “MATE-CG: A Map Reduce-Like Framework for Ac-

celerating Data-Intensive Computations on Heterogeneous Clusters”. In: Paral-

lel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International.

May 2012, pp. 644–655. doi: 10.1109/IPDPS.2012.65.

93

http://dx.doi.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/2400682.2400716
http://dx.doi.org/10.1145/2442516.2442518
http://dx.doi.org/10.1145/2442516.2442518
http://doi.acm.org/10.1145/2442516.2442518
http://dx.doi.org/10.2528/PIER12111702
http://dl.acm.org/citation.cfm?id=2388996.2389029
http://dl.acm.org/citation.cfm?id=2388996.2389029
http://dx.doi.org/10.1145/2464996.2465007
http://dx.doi.org/10.1145/2464996.2465007
http://doi.acm.org/10.1145/2464996.2465007
http://dx.doi.org/10.1109/IPDPS.2012.65

[72] T. Odajima et al. “GPU/CPU Work Sharing with Parallel Language XcalableMP-

dev for Parallelized Accelerated Computing”. In: 2012 41st International Con-

ference on Parallel Processing Workshops. Sept. 2012, pp. 97–106. doi: 10.

1109/ICPPW.2012.16.

[73] Kyle L. Spafford et al. “The Tradeoffs of Fused Memory Hierarchies in Hetero-

geneous Computing Architectures”. In: Proceedings of the 9th Conference on

Computing Frontiers. CF ’12. Cagliari, Italy: ACM, 2012, pp. 103–112. isbn:

978-1-4503-1215-8. doi: 10.1145/2212908.2212924. url: http://doi.acm.

org/10.1145/2212908.2212924.

[74] M. Daga, A. M. Aji, and W. c. Feng. “On the Efficacy of a Fused CPU+GPU

Processor (or APU) for Parallel Computing”. In: 2011 Symposium on Appli-

cation Accelerators in High-Performance Computing. July 2011, pp. 141–149.

doi: 10.1109/SAAHPC.2011.29.

[75] Y. Ukidave et al. “Quantifying the energy efficiency of FFT on heterogeneous

platforms”. In: Performance Analysis of Systems and Software (ISPASS), 2013

IEEE International Symposium on. Apr. 2013, pp. 235–244. doi: 10.1109/

ISPASS.2013.6557174.

[76] Kristof Beyls and Erik H. DfffdHollander. “Reuse distance as a metric for

cache behavior”. In: IN PROCEEDINGS OF THE IASTED CONFERENCE

ON PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS. 2001,

pp. 617–662.

[77] Chen Ding and Yutao Zhong. “Predicting Whole-program Locality Through

Reuse Distance Analysis”. In: SIGPLAN Not. 38.5 (May 2003), pp. 245–257.

issn: 0362-1340. doi: 10.1145/780822.781159. url: http://doi.acm.org/

10.1145/780822.781159.

94

http://dx.doi.org/10.1109/ICPPW.2012.16
http://dx.doi.org/10.1109/ICPPW.2012.16
http://dx.doi.org/10.1145/2212908.2212924
http://doi.acm.org/10.1145/2212908.2212924
http://doi.acm.org/10.1145/2212908.2212924
http://dx.doi.org/10.1109/SAAHPC.2011.29
http://dx.doi.org/10.1109/ISPASS.2013.6557174
http://dx.doi.org/10.1109/ISPASS.2013.6557174
http://dx.doi.org/10.1145/780822.781159
http://doi.acm.org/10.1145/780822.781159
http://doi.acm.org/10.1145/780822.781159

[78] C. Nugteren et al. “A detailed GPU cache model based on reuse distance

theory”. In: 2014 IEEE 20th International Symposium on High Performance

Computer Architecture (HPCA). Feb. 2014, pp. 37–48. doi: 10.1109/HPCA.

2014.6835955.

[79] Nathan Binkert et al. “The gem5 Simulator”. In: SIGARCH Comput. Archit.

News 39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi: 10.1145/2024716.

2024718. url: http://doi.acm.org/10.1145/2024716.2024718.

[80] NVIDIA Corp. “Dynamic Parallelism in CUDA”. In: (Accessed on Apr 2017).

url: http://developer.download.nvidia.com/assets/cuda/files/

CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf.

[81] NVIDIA Corp. “NVIDIA Tesla P100”. In: (Accessed on Apr 2017). url: https:

//images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-

whitepaper.pdf.

[82] NVIDIA Corp. “CUDA 9 Features Revealed: Volta, Cooperative Groups and

More”. In: (Accessed on May 2017). url: https://devblogs.nvidia.com/

parallelforall/cuda-9-features-revealed/#more-7874.

95

http://dx.doi.org/10.1109/HPCA.2014.6835955
http://dx.doi.org/10.1109/HPCA.2014.6835955
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/#more-7874
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/#more-7874

Appendix A

PUBLICATION

1. Y. Huangfu, W. Zhang. Warp-Based Load/Store Reordering to Improve GPU

Data Cache Time Predictability and Performance. IEEE 19th International Sympo-

sium on Real-Time Distributed Computing (ISORC), 2016

2. Y. Huangfu, W. Zhang. Hardware-Based Performance Enhancement Guaranteed

Caches. IEEE 18th International Symposium on Real-Time Distributed Computing

(ISORC), 2015

3. Y. Huangfu, W. Zhang. Boosting GPU Performance by Profiling-Based L1 Data

Cache Bypassing. 15th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid), 2015

4. Y. Huangfu, W. Zhang. Hardware-Based and Hybrid L1 Data Cache Bypassing

to Improve GPU Performance. IEEE 12th International Conferen on Embedded

Software and Systems (ICESS), 2015

5. Y. Huangfu, W. Zhang. Profiling-based L1 data cache bypassing to improve

GPU performance and energy efficiency. ACM SIGBED Review 12 (1). 2015

6. Y. Huangfu, W. Zhang. Real-Time GPU Computing: Cache or No Cache? IEEE

18th International Symposium on Real-Time Distributed Computing (ISORC), 2015

96

7. Y. Huangfu, W. Zhang. A Real-Time Instruction Cache with High Average-

Case Performance. IEEE 17th International Symposium on Real-Time Distributed

Computing (ISORC), 2014

8. Y. Huangfu, W. Zhang. Worst-case performance guaranteed data cache. IEEE

33rd International Performance Computing and Communications Conference (IPCCC),

2014

9. Y. Huangfu, W. Zhang. Compiler-directed leakage energy reduction for instruc-

tion scratch-pad memories. 15th International Symposium on Quality Electronic

Design (ISQED), 2014

10. Y. Huangfu, W. Zhang. PEG-C: Performance Enhancement Guaranteed Cache

for Hard Real-Time Systems. IEEE Embedded Systems Letters 6 (2). 2014

11. Y. Huangfu, W. Zhang. Compiler-based approach to reducing leakage energy of

instruction scratch-pad memories. IEEE 31st International Conference on Computer

Design (ICCD), 2013

97

	IMPROVING THE PERFORMANCE AND TIME-PREDICTABILITY OF GPUs
	Downloaded from

	Acknowledgements
	Table of Contents
	Abstract
	 Introduction
	Background
	GPU L1 Data Cache Bypassing
	GPU L1 Data Cache Access Reordering
	WCET Timing Model for GPU Kernels
	WCET Analysis of Shared Data LLC in integrated CPU-GPU Architecture
	Dissertation Organization

	 GPU Architecture and GPGPU Programming Model
	GPU Architecture
	GPGPU Programming Model

	 Profiling-Based GPU L1 Data Cache Bypassing
	Introduction
	Related Work
	Profiling-Based GPU L1 data Cache Bypassing Method
	Global Memory Access Utilization
	Global Memory Reuse Time
	Heuristic for GPU Cache Bypassing

	Evaluation Results

	 Warp-Based Load/Store Reordering for Better Time-Predictability in GPU L1 Data Cache
	Introduction
	Related Work
	Dynamic Behaviors in GPU
	Dynamic Warp Scheduling
	Out-of-Order Execution
	Independent Execution Among Warps

	GPU L1 Data Cache Access Reordering Framework
	Challenges of GPU Execution on Cache Timing Analysis
	Issues of Regulating the Warp Scheduling Orders
	The Load/Store Reordering Framework
	Compiler-Based Kernel Analyzer
	Architectural Extension for Warp-Based Load/Store Reordering
	GPU L1 Data Cache Miss Rate Estimation
	Limitation of the GPU L1 Data Cache Timing Analyzer

	Evaluation Results
	Performance Results
	GPU L1 Data Cache Miss Rate Estimation Results

	 Timing Model for Static WCET Analysis of GPU Kernels
	Introduction
	Related Work
	GPU WCET Analysis with Predictable Warp Scheduling
	Pure Round-Robin Scheduler Timing Model
	Code Segment Issuing and Execution Latency Timing Models
	Static GPU Kernel Analyzer
	Warp Scheduling Order
	Number of Coalesced Memory Accesses
	Number of Competing SMs

	Evaluation Results

	 Static WCET Analysis on Last Level Data Cache in Integrated CPU-GPU Architecture
	Introduction
	Related Work
	Reuse Distance
	Shared LLC Analysis
	The Integrated CPU-GPU Architecture Under Analysis
	Simple Shared Data LLC Analysis Method
	Access Interval Based Shared Data LLC Analysis Method

	WCET Analysis of GPU Kernels with Shared Data LLC Estimation Results
	Evaluation Results
	Experimental Methodology
	Simulator
	Benchmarks
	Assumptions

	Experiment Results
	Shared Data LLC Miss Rate Estimation Results
	WCET Estimation Results of GPU Kernels

	 Conclusions
	Profiling-Based GPU L1 Data Cache Bypassing
	Warp-Based Load/Store Reordering for Time-Predictability Improvement
	Static WCET Analysis Timing Model for GPUs
	Static WCET Analysis on Shared Data LLC in CPU-GPU Architectures
	Future Work

	References
	Appendix Publication

