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Abstract 

STEM CELL FACTOR AND KIT EXPRESSION IN TYPE I NEUROFIBROMATOSIS 

By Kenneth Eugene Roth, B . S .  

A dissertation submitted i n  partial fulfillment o f  the requirements for the degree o f  Doctor o f  
Philosophy a t  Virginia Commonwealth University 

Virginia Commonwealth University, 1 997 

Director: Thomas F.  Huff, Ph.D. ,  Professor, Department of Microbiology and Immunology 

Neurofibromatosis type I (NF 1) is an inherited disease characterized by the appearance 

of multiple  neurofibromas and an increased incidence of malignant schwannomas, both of 

which contain hyperproliferative Schwann cel ls .  Our laboratory previously reported that 

Schwann cells produce stem cell factor (SCF), a multi potential growth factor known to be  

involved in  mast cell migration and growth. Given the  fact that mast cell numbers are 

increased in both neurofibromas and malignant schwannomas, we set out to evaluate a 

potentia! role for SCF in the development of NFl lesions. First we studied the effects of high 

doses of recombinant SCF on mast cell numbers in vivo, and found that dermal and peritoneal 

mast cell numbers were decreased. Next, we examined the expression of stem cell factor and 

its receptor, Kit, in neurofibromas and malignant schwannoma tumors and cell l ines. 

Using an RNase protection assay, we find that each of four human malignant 

schwannoma cell lines express only the membrane-bound isoform of SCF messenger RNA. 
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In contrast, neurofibroma, vestibular schwannoma, and acoustic neuroma tissues, as well as 

the majority of human fibroblast sources, all express the soluble form. Low level expression 

of Kit protein was detected on all four malignant schwannoma cell lines. However, Kit 

expression by Schwann cells was not indicated by immunohistochemical analyses of 

neurofibroma and malignant schwannoma sections, although Kit was readily detected on the 

mast cells within these lesions. We report that bone marrow-derived mouse mast cells appear 

to  be  driven toward a connective tissue phenotype when cultured in the presence of 

conditioned media from Schwann cells of wild type and NFl +/- knockout mice. This effect 

was not observed in cultures containing conditioned medium from Schwann cells of NFl -/­

knockouts .  In addition, the latter appeared to augment the proliferation of mast cells in 

response to exogenous cytokines. 

Together, these results suggest a significant role for stem cell factor and Kit in the 

lesions of NFl. In addition, functional neurofibromin, the product of the NFl gene, may be 

required for proper regulation of SCF isoform expression. The mechanisms by which this 

expression is regulated remain to be clearly defined. 



Introduction 

Type 1 neurofibromatosis (NFl )  is among the most common inherited human diseases, 

affecting one out of3 500 individuals worldwide (Stumpf et aI . ,  1 987) .  The responsible gene 

has been cloned and is located on the long arm of chromosome 17 (Barker et aI . ,  1 987) .  The 

NFl eDNA reveals that the gene encodes a large protein, called neurofibromin, which 

contains a region with homology to mammalian Ras GTPase-activating protein (GAP) and 

the yeast GAP-like proteins IRA I and lRA2 (Xu et aI . ,  1 990). Each of these proteins has 

been shown to inactivate Ras p2 1 ,  the product of the ras protooncogene (Tanaka et aI . ,  

1 990). Ras p21 is activated when i t  i s  bound t o  guanosine triphosphate (GTP), and becomes 

inactive when GTP is converted to guanosine diphosphate (GDP) by its intrinsic GTPase 

activity. GAP and GAP-related proteins induce this activity, thereby serving as negative 

regulators ofRas. It has been reported that the GAP-related domain of neurofibromin indeed 

has GAP-like activity against Ras p2 1 ,  supporting the postulation that neurofibromin 

functions as a tumor suppressor (Weinberg, 1 99 1 ) . 

The clinical manifestations ofNF I are generally associated with the peripheral nervous 

system. Two phenomena which occur at an increased rate of incidence in NF I patients 

involve hyperproliferation of Schwann cells, which are intimately associated with peripheral 

nerves and are normally responsible for the formation of the myelin sheath around them. 

These conditions are termed neurofibromas and malignant schwannomas. The appearance of 
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neurofibromas is a hallmark characteristic of the disease. These are benign peripheral nerve 

tumors consisting primarily of Schwann cells, which account for 60-85% of the cellular 

composition. Fibroblasts make up an additional 1 0-20%, with pericytes, perineurial cells, 

mast cells, endothelial cells and smooth muscle cells also present (Peltonen et aI . ,  1 988) .  It 

has long been known that neurofibroma tissues contain increased numbers of mast cells 

(Isaacson, 1 976; Johnson et aI . ,  1 989), but the mechanism by which this occurs has not been 

well understood. Mast cells can normally be found in perineurial and epineurial spaces of 

peripheral nerves (Bienenstock et aI . ,  1 99 1 ), and are often seen in close proximity to Schwann 

cells (Isaacson, 1 976). In addition, dramatic increases in mast cell numbers are observed in 

situations involving peripheral nerve injury and repair (Isaacson, 1 976) . Neither the means 

by which this occurs, nor a potential role for mast cells in these processes has yet been clearly 

defined. 

The second NF l -related condition involving altered Schwann cell growth is the 

malignant schwannoma, which is also known by other names, including neurofibrosarcoma 

and malignant peripheral nerve sheath tumor. These occur much less frequently than 

neurofibromas, with an incidence of up to 2% in NFl patients (Ponder, 1 990; Nimura, 1 992). 

This is ,  however, a significantly higher rate of occurrence than that seen in genetically normal 

individuals «< 1 %  (Cutler and Gross, 1 93 6)) .  Given the known involvement of Ras p 2 1  in 

the regulation of cellular proliferation, and the evidence that neurofibromin is able to 

functionally regulate the activity of Ras p2 1 ,  i t  seems plausible that the NF I gene defect alone 

could be responsible for these Schwann cell disorders. This, however, does not appear to be 

the case. All patients with NF l appear to have mutations within the same region of 
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chromosome 1 7  (Barker et aI . ,  1 987; Collins et aI . ,  1 988;  Seizinger et aI . ,  1 987), but not all 

have neurofibromas (ponder, 1 990; Riccardi, 1 982) and even fewer develop malignant 

schwannomas, suggesting that additional mutations or other influences are required (Ratner 

et aI. ,  1 990). 

Our laboratory described a soluble factor produced by normal but not Sleel (Sf) 

murine fibroblasts which could promote the growth of mast cells in vitro (Jarboe et aI . ,  1 989) .  

Since then the Sf product, now known as stem cel l  factor (SCF), has been more fully 

characterized in both rodent and human, and is known to exist as either a soluble or 

membrane-bound protein, dependent upon whether the portion of the primary gene transcript 

encoded by exon 6 is included in the final messenger RNA (Flanagan et aI . ,  1 99 1 ) .  The exon 

6-containing mRNA gives rise to a protein that contains a protease-sensitive site in  an 

extracellular membrane-proximal location. This isoform of SCF, after being initially expressed 

as a membrane-inserted protein, is efficiently cleaved by an unidentified protease, releasing 

a biologically active growth factor. Soluble SCF has been described as a potent chemotactic 

agent for cells that express its receptor Kit, the product of the protooncogene c-kil (Blume­

Jensen et aI ., 1 9 9 1 ;  Meininger et aI . ,  1 992)' We recently reported that normal rodent and 

human Schwann cells, and the human malignant schwannoma cell line ST88- l 4, all produce 

SCF (Ryan et al. , 1 994). Interestingly, Hirota and colleagues noted higher levels of stem cell 

factor mRNA in neurofibroma tissue compared with normal skin and suggested that SCF may 

be involved in the increased numbers of mast cells in these lesions (Hirota et aI . ,  1 993)  S ince 

mast cells express the Kit receptor, one might speculate that the mast cel ls in a neurofibroma 

may be recruited to the site by the chemotactic activity of soluble SCF. We have also 
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reported that, although normal rodent and human Schwann cells do not express Kit, the 

ST88 - 14  malignant schwannoma line aberrantly expresses Kit mRNA and protein (Ryan et 

aI. ,  1 994) . These findings have led us to consider whether the abundant growth of Schwann 

cel l s  found in neurofibromas and malignant schwannoma tumors might be due to the 

simultaneous expression of SCF and its receptor by Schwann cells, resulting in an autocrine 

growth loop. In this study, we evaluate Kit expression in three additional human malignant 

schwannoma cell lines and in excised neurofibroma and schwannoma tumors. In addition, we 

determine which isoform of SCF mRNA is produced by these and other sources. 



Literature Review 

Neurofibromatosis type I (NFl) and neurofibromin 

The first full characterization of NF I is generally credited to Friedrich von 

Recklinghausen, who described the disease in 1 882 (von Recklinghausen, 1 882). It i s  for this 

reason that NFl has become known as von Recklinghausen neurofibromatosis, or more 

simply, von Recklinghausen 's  disease. There were, however, some less detailed medical 

descriptions recorded prior to von Recklinghausen ' s account. Two independent reports had 

previously described the disease in multiple family members (Virchow, 1 857 ;  Hitchcock, 

1 862) ,  while the first known descriptions date back to the eighteenth century (Akenside, 

1 785 ;  Tilesius, 1 793 ) .  It was not until early in the twentieth century that neurofibromatosis 

was determined to be a genetic disorder (Thomson, 1 900; Adrian, 1 90 I; Prieser and 

Davenport, 1 9 1 8) .  With a worldwide rate of incidence of about I in 3 500 (Stumpf et aI . ,  

1 987), NFl i s  actually quite a common disease, yet i t  has generally received very little public 

attent ion .  Perhaps the most significant influence promoting public awareness of 

neurofibromatosis has been the incorrect assumption that Joseph Merrick, a grotesquely 

d isfigured man of Victorian England whose life was chronicled in the literary work, The 

Elephant Man (Treves, 1 923), suffered ITom NF I and some of its most serious complications 

(Montague, 1 97 1 ;  Sparks, 1 980). However, after extensive examination of Merrick's remains 

and medical records, it has been suggested that he actual ly did not have NF I, but l ikely 

5 
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suffered from a disease known as the Proteus syndrome (Cohen, 1 988) .  Nonetheless, 

Merrick ' s  life and social struggles have been portrayed in theater, cinema and television, 

bringing widespread attention to neurofibromatosis, albeit through an error in diagnosis. Even 

today some still refer to NFl as, "the Elephant Man ' s  disease."  Interestingly, it has also been 

suggested that Quasimodo, the hunchback in Notre Dame de Paris, was created by playwright 

Victor Hugo based upon his acquaintance with someone who had NF I (Hecht, 1 989;  

Solomon, 1 968). 

Neurofibromatosis type 1 is caused by a mutation in a gene (NFl) which has been 

mapped to the long arm of human chromosome 17 (Barker et aI . ,  1 987), and has since been 

cloned (Cawthon et aI . ,  1 990; Viskochil et aI . ,  1 990; Wallace et aI . ,  1990). It is inherited in 

an autosomal dominant fashion with a penetrance of the mutated gene considered to be very 

nearly 1 00 percent (Riccardi, 1 992). The disease is characterized by the formation of multiple 

cutaneous and subcutaneous neurofibromas, which are benign tumors of the nerve sheath. 

Although these lesions are rarely fatal, they are disfiguring and can be quite painful .  There 

i s  remarkable variability in the number, location and size of the tumors, all of which can 

contribute to the degree of disfigurement and pain. Additional symptoms of NF I include 

localized hyperpigmentation of skin, termed cafe-au-Iait spots, axillary freckling, iris 

hamartomas (Lisch nodules), and sometimes more serious tumors, such as optic gliomas and 

neurofibromas of spinal nerve roots. NF I patients appear to have an increased incidence of 

certain cancers (Riccardi, 1 992; Huson and Hughes, 1 994), particularly malignant 

schwannomas (neurofibrosarcomas), which are generally fatal (Bernards et aI . ,  1 992) .  The 

gene is very large, spanning approximately 3 50  kilobases (kb) of genomic DNA, encoding an 
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mRNA of 1 1  to 1 3  kb, and containing at least 56 exons (Heim et a!. ,  1 994). Sequence 

analysis reveals an open reading frame of28 1 8  amino acids, although alternative splicing may 

encode different protein isoforms (Marchuk et a!. , 1 99 1 ) .  This large protein, called 

neurofibromin, contains a region of360 amino acids which shows significant similarity to the 

catalytic domains of mammalian GTPase activating protein (GAP), as well as to the IRA] and 

IRA2 gene products in yeast, which are inhibitors of the ras proto oncogene product (Xu et 

aI., 1 990). Interestingly, during the course of efforts to characterize the NFl gene, three 

active genes were found embedded within an intron. These genes, OMGP, EVI2B, and 

EVI2A, are transcribed in the opposite orientation from the NFl gene, and encode 

oligodendrocyte-myelin glycoprotein and ecotropic viral integration sites 2B and 2A, 

respectively (Viskochil et a!. , 1 99 1 ) .  

Ras p2 1 (hereafter referred to  simply a s  Ras) i s  the product of  the ra s  protooncogene, 

and can act as a source for either mitogenic or differentiation-inducing signals, depending on 

the cell type (Bar-Sagi and Feramisco, 1985 ;  Hagg et a!. , 1 986;  Noda et a!. , 1 985) .  The 

protein i s  physiologically quiescent when bound to guanosine diphosphate (GDP), and 

becomes activated when the GDP is replaced with guanosine triphosphate (GTP). It returns 

to the inactive state when the GTP is hydrolyzed to GOP by a GTPase activity intrinsic to 

Ras. GAP and other GAP-like proteins inhibit Ras function by stimulating this hydrolysis .  

The GAP-related domain (GRO) ofneurofibromin has been shown to bind Ras proteins avidly 

and to stimulate their GTPase activities (Martin et a!. , 1 990c), suggesting that neurofibromin 

functions as a tumor suppressor (Weinberg, 1 99 1 ) . 

Perhaps due in part to its extensive size, the NFl gene seems to have a predisposition 
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to mutate, with 50% of NFl cases thought to be due to new mutations. Although the GRD 

of neurofibromin has been studied rather extensively, computer searches have revealed little 

similarity between the remainder of sequence and any known proteins in current databases. 

Therefore, the full function ofneurofibromin, and any pathological changes which may occur 

as a consequence ofa mutation at the NFl locus, are not yet well defined. There is  evidence 

that the function ofneurofibromin is not limited to its ability to regulate Ras activity. Johnson 

and coworkers showed by a series of transfection studies that neurofibromin, when 

overexpressed in NIH 3T3 cells, can inhibit cell growth independently of its GAP-l ike activity . 

They also found that melanoma and neuroblastoma cell lines which lack neurofibromin do not 

have increased levels of active Ras (Johnson et aI . ,  1 994) . These findings are consistent with 

later work done by Griesser, et al . which showed that melanocytes cultured from NF I patients 

(from both cafe-au-lait spots and normally pigmented skin) had reduced levels of 

neurofibromin, but still showed similar amounts of GTP-bound Ras when compared to 

melanocytes from healthy donors (Griesser et aI . ,  1 995) .  In a study conducted to determine 

if neurofibromin is involved in melanogenesis, it was found that coexpression of 

neurofibromin in a melanoma cell line caused an increase in expression of a reporter gene 

under the control of the tyrosinase gene promoter (Suzuki et aI . ,  1 994) . Tyrosinase is  a rate­

limiting enzyme in melanin biosynthesis and is expressed only in melanin-producing cel ls .  

These investigators further showed that the GRD of neurofibromin was mainly responsible 

for this induction (Suzuki et aI . ,  1 994) 

Two alternatively spliced isoforms of NFl messenger RNA have been identified and 

tenned type 1 and type 2 (Anderson et aI . ,  1 993; Nishi et aI . ,  1 99 1 ) . The two differ by a 63 
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base pair insertion in the GAP-related domain of the type 2 isoform. Bernards and coworkers 

showed by S I nuclease protection experiments that the two NFl mRNAs are widely 

expressed in human cell lines and tissues, but that the ratio of the two forms differed 

substantially between cell lines (Bernards et a!. ,  1 992) . Gutmann and colleagues have 

reported that type I appears to be associated with cellular proliferation, and that the isoform 

expression switches to predominantly type 2 when the cells undergo differentiation (Gutmann 

et aI . ,  1 993) .  

Until recently, NF I research has been somewhat hampered by the lack of a good 

animal model system. In the 1 980s a naturally occuring disease in the bicolor damselfish 

(Pomacentrus partitus), termed damsel fish neurofibromatosis (DNF), was introduced as a 

possible model for human NFl (Schmale et aI . ,  1 983 ;  Schmale et aI . ,  1 986) These fish 

exhibit multiple neurofibromas and malignant schwannomas, many of which are 

hyperpigmented, indicating similarities to some of the manifestations of human NF I .  

However, while NFl i n  humans is inherited as  an  autosomal dominant mutation, DNF is a 

transmissible disease (Schmale and Hensley, 1 988) .  Nakamura and coworkers induced 

multiple neurofibromas, melanomas, Wilms' tumors, and pheochromocytomas in Syrian 

golden hamsters by transplacental administration of N-Nitroso-N-ethylurea (ENU) and 

considered this as an animal model for human NF I (Nakamura et a!. , 1 989). Perhaps the most 

promising model to date is a strain of mouse recently developed which contains a targeted 

mutation in the NFl gene (Jacks et aI . ,  1 994). Although animals which are heterozygous for 

this mutation (homozygotes die in utero) do not exhibit the classical symptoms of human 

NFl, they do have a high disposition to develop pheochromocytomas and myeloid leukemia, 
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both of which occur with increased frequency in human NF l patients. Surely these models 

will allow for a better understanding of NF l and the symptoms associated with the disease. 

Schwann cells 

Axons in the nervous system are supported, protected, and in some cases myelinated 

by various cell types collectively known as glial cells (from the Greek word for "glue") .  In 

the peripheral nervous system (PNS) the glial cell providing these functions is the Schwann 

cel l .  S chwann cells are derived from the neural crest cells which form during neural tube 

development in embryogenesis (Dupin et aI . ,  1 990; Zimmer and Le Douarin, 1 993) .  As the 

embryo develops, neural crest cells migrate and eventually differentiate into highly specialized 

cell types of neuronal, glial, melanocytic and mesectodermal phenotypes (Le Douarin and 

Dupin, 1 993) .  Fully differentiated neural crest derivatives include Schwann cells, ganglion 

satell ite cells, most of the neurons of the PNS, melanocytes, and part of the cranial 

mesenchyme (Dupin et aI . ,  1 990). During early nervous system development, Schwann cell 

precursors migrate with the developing axons and mUltiply rapidly to accommodate axonal 

growth (Asbury, 1 967; Lemke, 1 990) . Jessen and Mirsky have characterized Schwann cell 

development in the embryonic rat peripheral nervous system according to changes in antigenic 

properties (Jessen and Mirsky, 199 1) . They report that Schwann cell precursors, identifiable 

by embryonic day 1 5 ,  give rise to two morphologically and antigenically distinct mature 

S chwann cell types. These are the myelin-forming cells associated with axons of larger 

diameter, and the non-myelin-forming cells which associate with smaller axons. 

Schwann cell development is dependent upon a close association between Schwann 
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cells and axons. In vivo studies have demonstrated that neurites supply Schwann cells with 

mitogenic signals (Asbury, 1 967; Aguayo et ai , 1 976; Raine, 1 977). These findings were 

supported by in vitro studies which showed that contact with the neuronal surface caused 

S chwann cells to replicate (Salzer and Bunge, 1 980; Ratner et ai , 1 987). The activities 

responsible for this stimulation have been localized to the neuronal cell surface (Salzer and 

Bunge, 1 980; Ratner et ai, 1 988; Mason et ai, 1 989; Wood and Bunge, 1 975; Salzer et ai , 

1 980;  Sobue et ai , 1 983) ,  but no specific mitogenic proteins had been identified until the 

recent characterization of a family of proteins arising from alternative splicing of a single gene. 

These proteins include glial growth factor (GGF, Marchionni et ai. , 1 993), heregulins (HRG, 

Holmes et ai , 1 992), neu differentiation factor (NDF, Wen et ai , 1 992), and acetylcholine 

receptor inducing activity (ARlA, Fal ls  et ai , 1 993) .  GGF has been shown to be a potent 

mitogen for rat Schwann cells (Lemke and Brockes, 1 984). Morrissey and others have 

determined that heregulin i s  involved in the axon-induced mitogenesis of human Schwann 

cells and that the receptor tyrosine kinase p I 85"b02 appears to be the cognate protein on the 

Schwann cell (Morrissey et ai , 1 995; Levi et ai , 1 995) .  

The mitogenic effect ofaxons can be mimicked in vitro by agents which elevate cyclic 

adenosine monophosphate (cAMP), suggesting that axon-associated signals mediate their 

effects by elevating cAMP. In flllther in vitro studies it was found that the cAMP-induced 

progression from a premyelination state to a myelination state required that the cell s  withdraw 

from the cell cycle .  This raises the possibil ity that, in order for a mature Schwann cell to 

begin myelination in vivo, it may require signals which suppress proliferation (Jessen and 

Mirsky, 1 99 1 ) .  Direct cell-cell contact is not an absolute requirement for neurons to regulate 
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all Schwann cell gene expression, however. Using an in vitro co-culture system in which 

primary neurons and adult Schwann cells are separated by a microporous membrane, 

investigators showed that diffusible molecules produced by neurons can repress expression 

of the nerve growth factor receptor p75NGFR in Schwann cells, while inducing expression of 

the myelin protein Po (Bolin and Shooter, 1 993) .  

Under normal circumstances in the ful ly developed organism, the Schwann cell no 

longer undergoes cell division (Peters and Muir, 1 959;  Asbury, 1967) . The intimate axon­

S chwann cell association is retained, and the Schwann cell remains essentially quiescent 

throughout the life of the animal (Asbury, 1 967) unless disrupted by injury or disease, 

resulting in alteration of the normal metabolism of either of the cell types. Under pathological 

conditions such as peripheral nerve injury, demyelination, and tumorigenesis, the Schwann cell 

can be reactivated to enter the cell cycle (DeVries, 1 993) .  The signals required for this 

reactivation are not yet known, although changes in Schwann cell gene expression resulting 

from loss of axonal contact have been described. While neonatal rat Schwann cells grown 

alone in culture express membrane-bound stem cell factor (SCF), those grown in contact with 

dorsal root ganglion (DRG) neurites do not (Ryan et aI . ,  1 994). This raises the possibility that 

loss of axonal contact induces expression of SCF by Schwann cells .  Expression of other 

proteins is induced following loss of axonal contact as a result of nerve damage. These 

include vimentin, neural cell adhesion molecule (N-CAM), glial maturation factor p ,  and nerve 

growth factor receptor IT (NGF-R II). Expression of each of these proteins decreases with 

subsequent nerve regeneration (Jessen et aI . ,  1 987a; Lemke and Chao, 1 988; Taniuchi et a I . ,  

1 988 ;  Bosch et  aI . ,  1 989; Neuberger and Cornbrooks, 1 989;  Mitchell et  aI . ,  1 990). In 
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contrast, loss of axonal contact due to nerve damage causes a decrease in expression of 

myelin-associated glycoprotein, the myelin basic proteins, the Schwann cell myelin-associated 

proteins P2 and Po, and galactocerebroside. Expression of these proteins returns to normal 

levels following nerve regeneration (Jessen et aI, 1 987b; Lemke and Chao, 1 988 ;  Gupta et 

aI . ,  1 990; LeBlanc and Poduslo, 1990; Mitchell et aI, 1 990). 

These examples of Schwann cell gene regulation by axons are likely involved in the 

process by which damaged nerves are repaired . A number of studies suggest that the 

presence of Schwann cells is very impOJ1ant in nerve repair. Following crush injury to the 

optic nerves of rats, regions containing resident Schwann cells were regenerated, whereas no 

regeneration occurred in those areas in which Schwann cells were absent (Berry et aI, I 992a) . 

In addition, when sections of optic nerve were engrafted between the stumps of freshly 

transected sciatic nerves, regeneration only occurred through grafts containing Schwann cells 

(Hall et al . ,  1 992). One possible explanation for this preferential regrowth is that the Schwann 

cells may be able to overcome the inhibitory effects of putative reactive elements within the 

glial microenvironment. Oligodendrocytes and central nervous system (CNS) myelin have 

been implicated in the failure of CNS axons to regenerate after injury (BerlY, 1982; Schwab 

and Thoenen, 1 985;  Caroni and Schwab, 1988), perhaps because of molecules associated with 

both elements which inhibit axonal regrowth (Schwab and Caroni, 1 988) .  It is also suggested 

that Schwann cells contribute to axonal regeneration because they secrete trophic molecules 

(Varon and Williams, 1986), and sequester growing axons within basal lamina tubes (Berry 

et al . ,  1 988;  Hall and Berry, 1 989), possibly isolating growth cones from inhibitory influences 

(Berry et aI , 1 99 1 ,  1 992b). 
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Mitogenic activity can be extracted from neurofibromas (Ratner et aI . ,  1 990), but it 

i s  not clear whether this is important in tumor formation, or whether similar mitogens are 

present in normal peripheral nerves. However, Schwann cells, but not fibroblasts, isolated 

from NFl tumors show angiogenic and invasive properties in the chick chorioallantoic 

membrane (Sheela et aI . ,  1 990) . These effects were not seen when cells from normal human 

peripheral nerves were used, suggesting that neurofibroma Schwann cells secrete one or more 

growth factors that normal Schwann cells do not It is unclear whether Schwann cel ls isolated 

from normal regions of peripheral nerves ofNF I patients display these abnormal angiogenic 

and invasive characteristics. This information would be helpful in determining why tumors 

occur only in limited locations and only in some patients, even though the mutation is 

ubiquitously expressed (Xu et aI . ,  1 990; Wallace et aI . ,  1 990). Either the NFl mutation 

causes all Schwann cel ls to secrete angiogenic activity, or additional mutations or other 

epigenetic changes lead to secretion of this activity only by the tumor cel ls (Eccleston, 1 992). 

The latter possibilities would explain why neurofibromas are restricted to discrete areas. 

Mast cells in neurofibromas 

Mast cell numbers increase in response to nerve damage and repair. This phenomenon 

has been observed in amputation neuromas (Olsson, 1 97 1 ), peripheral nerve injury and 

pathological conditions involving Schwann cells, such as the lesions ofNF I (Isaacson, 1 976) .  

A greater degree of mast cel l  hyperplasia is seen in NFl tumors than in other forms of nerve 

damage (Johnson et aI . ,  1 989). The involvement of mast cells in these lesions continues to 

be a focus of investigation in this laboratory. We have suggested (Roth et aI . ,  submitted for 
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publication) that mast cells or their precursors are perhaps recruited to the site by the 

chemotactic activity of soluble stem cell factor (possibly produced by Schwann cells) . 

Alternatively, they may be trapped there by the binding of Kit on their surfaces to membrane­

associated SCF expressed by the already hyperplastic Schwann cells in the growing lesion .  

Although a clearer understanding of the means by which mast cel ls  accumulate at the s ite of 

a neurofibroma is important, perhaps more so is the potential contribution of mast cel ls to the 

pathogenesis of the tumor itself, or of NF l  in general . Riccardi has hypothesized that mast 

cells accumulate following local trauma (or the elaboration or sequestering of a tropic factor) 

and secrete various substances as usual . Due to an NFl mutation, the response is abnormal, 

resulting in a prol iferation of Schwann cells, fibroblasts, perineurial cells, etc . ,  the 

manifestation of which is a growing neurofibroma (Riccardi, 1 990). Although this is  

speculation at this point, it is not without merit . Mast cells secrete a variety of substances 

with potential mitogenic effects, including heparin and histamine, as well as the well known 

mitogen transforming growth factor-p (Pennington et aI . ,  199 1). Giorno and others have 

demonstrated by transmission electron microscopy that neurofibromas contain, in addition to 

fully granulated mast cells, both partially and fully degranulated cells, indicative of activation 

and mediator release (Giorno et aI . ,  1989). These findings suggest that mast cells are active 

components of neurofibromas rather than mere bystanders. 

Additional evidence of active involvement of mast cells in the symptoms of NFl come 

from clinical observations. Rapidly growing neurofibromas are often accompanied by 

inflammatory reactions such as pruritus and facial flushing (Giorno et aI . ,  1989; Rothe et aI . ,  

1 990) .  The pruritus is not  controlled with standard H I antihistamines such as 
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diphenhydramine hydrochloride (Riccardi, 1 987), but the mast cell stabilizing drugs ketotifen 

and disodium cromoglycate are effective (Riccardi, 1 98 1 ;  Riccardi, 1 987). In some cases, 

treatment with ketotifen even resulted in a decrease in neurofibroma growth (Riccardi, 1 987) .  

The Schwann cells of NFl tumors may also produce substances which exhibit 

mitogenic activities through both autocrine and paracrine mechanisms. Autocrine and 

paracrine growth factors in the supernatant ofNF I neurofibroma cultures have been reported 

which could increase Schwann cell growth in vitro (Riccardi, 1 986) .  Nerve growth factor 

(NGF) is secreted by Schwann cells, especially in the presence of gangliosides (Ohi et a!., 

1 990), and has been shown to induce mast cell proliferation (Matsuda et a!., 1 99 1 )  TGF p  

messenger RNA has been detected in rat Schwann cells, suggesting that TGFp may be 

produced as an autocrine growth factor by Schwann cell tumors (Ridley et a!., 1 989) .  In 

addition, a schwannoma-derived growth factor (SDGF) has been isolated which has homology 

to epidermal growth factor (EGF) and glial growth factor (GGF), and which can stimulate 

proliferation of Schwann cells, fibroblasts and astrocytes (Kimura et a!., 1 990). In light of the 

current evidence, it seems possible that Schwann cell-mast cell interactions are important in 

the maintenance of both populations within a neurofibroma, and may make significant 

contributions to tumorigenesis. 

Mast cell overview 

It is interesting that the first detailed description ofNF I was reported by Friedrich von 

Recklinghausen, as mentioned above (von Recklinghallsen, 1 882), because he also may well 

have been the first to describe mast cells when he recorded his observations of granular cells 
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in unstained preparations of frog mesentery (von Recklinghausen, 1863). The actual credit 

for establishing that mast cells were a distinct lineage, however, goes to Paul Ehrlich. He 

found that granules within cells obtained from frog mesentery exhibited metachromatic 

staining with aniline dyes (Ehrlich, 1878). The name he gave these cells, "mastzellen," is 

derived from the German word "masten," which means "feed or fatten," because Ehrlich 

believed that the intracellular granules were the result of ingestion of particles, or over­

feeding. Ehrlich also noted that mast cells had a tendency to localize around blood vessels 

and nerves, and in areas of inflammation or neoplasia. 

Over the years, theories concerning the origin and lineage relationships of mast cells 

have evolved along with advances in scientific investigation At first some thought that mast 

cells arose from lymphocytes, fibroblasts or macrophages (Valent et aI. , 1989; Burnet, 1977; 

Zucker-Franklin et aI., 1981; Czarnetzki et aI., 1982). Others believed they were derived from 

mesenchymal cells, plasma cells, histiocytes, endothelial cells, or degenerate cells (reviewed 

in Michels, 1963). The current theory is that mast cells arise from hematopoietic stem cells 

in the bone marrow. Kitamura and colleagues demonstrated this using adoptive transfer 

experiments involving the mast cell-deficient W/W' and Sl/Sr mice. They found that they 

could cure the mast cell deficiency in W/w' mice by injecting them with bone marrow from 

congenic normal littermates or from Sf/Sf' mice (Kitamura et aI., 1978). Others observed that 

mast cells could be grown in vitro from bone marrow when cultured in the presence of a 

variety of cell culture-conditioned media now known to contain interleukin 3 (IL-3), a growth 

factor for murine mast cells (Hasthorpe, 1980; Nabel et aI., 1981; Razin et aI. , 1981; Schrader 

et al., 1981; Tertian et aI., 1981;Yung et al., 1981). Both in vitro (Kirshenbaum et al , 1991; 
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McCarthy et aI., 1980) and in vivo (Fodinger et aI., 1994) studies have suggested that human 

mast cells also originate in the bone marrow. Mast cells in the human are now known to arise 

from CD34+ hematopoietic progenitors, but not from CD34- bone marrow cells (Kirshenbaum 

et aI. , 1991). 

Although it is generally accepted that mast cells originate in the bone marrow, their 

relationship to other hematopoietic lineages is still unclear. Mast cells were long thought to 

have arisen from the same progenitor as the basophil, because both have granules which 

exhibit metachromatic staining, both contain histamine, and both express the high affinity 

receptor for IgE (FccRI). Similarities between the two cell types have been observed at the 

ultrastructural level as well (Zucker-Franklin, 1980). This common progenitor theory has 

become less popular, however, as the current body of knowledge has grown. Mast cells and 

basophils differ in nuclear morphology, granule content, location in the organism, and 

response to external stimuli (reviewed in Galli and Lichtenstein, 1988; Valent and Bettelheim, 

1 990) . Also, mast cells leave the bone marrow as immature progenitors, completing their 

differentiation in the peripheral tissues, while basophils are not released until they are fully 

mature, terminally differentiated cells (McNeil, 1996). The fact that mast cells express the 

transcription factors GAT A- I ,  GAT A-2 and GATA-3 (Martin et aI , 1990a; Zon et aI., 1991) 

is another point which distinguishes them from the basophil lineage. Rather, these findings 

suggest that mast cells may share a common progenitor with erythrocytes and 

megakaryocytes, which also express the GAT A binding proteins. 

A possible relationship between mast cells and the monocyte/macrophage lineage has 

also been suggested based upon the observation that human mast cells are recognized by some 
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monoclonal antibodies specific for differentiated macrophages (Valent et aI., 1989). Also, 

both cell types differentiate in the periphery, and both activated macrophages and activated 

mast cells produce cytokines (reviewed in Costa et aI., 1993; Galli et aI., 1991; Galli et aI . ,  

1 993 ; Gordon et aI., 1990; Paul e t  aI., 1993). However, Agis and others have found that 

human mast cells are not derived from monocytes cultured in the presence of stem cell factor, 

and suggest that the mast cell does not arise from a monocyte/macrophage precursor (Agis 

et aI., 1993). This group went on to show that mast cells developed from a peripheral blood 

progenitor which was CD34+, Kit+, Ly" ,  CD 14" ,  and CD I T .  These data indicate that mast 

cells do not appear to originate from circulating monocytes (CD 14+), basophils (CD I r), or 

lymphocytes (Ll), but demonstrate that mast cells are replenished directly from early 

hematopoietic progenitors and therefore represent a unique hematopoietic cell lineage (Agis 

et aI., 1 993). In spite of the advances being made in the field of mast cell biology, a specific 

relationship of the mast cell to other hematopoietic lineages continues to be debated. 

There is considerable structural and functional heterogeneity within the mast cell 

lineage in both the human and rodent. Mast cells found in human lung and intestinal mucosa 

were shown by electron microscopy to contain granules with many scroll-like crystal 

structures, (Craig et aI., 1988; Weidner and Austen, 1 990). These granules contain a subclass 

of tryptic serine proteases (tryptases), leading to the classification of these cell s  as MCT, for 

"mast cell/tryptase" (Irani et aI., 1986). A second subset of mast cells is found in the 

connective tissue stroma of skin, intestinal submucosa, breast parenchyma and lymph nodes, 

and interacts with microvascular and neural networks. Electron miscroscopy of these cells 

reveal very few scroll-like structures (Craig et aI. ,  1988; Weidner and Austen, 1990), and they 
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have been named MCTO because their granules contain both tryptases and chymases, as well 

as an exopeptidase, carboxypeptidase A (Irani et a!. ,  1986). The two subsets of human mast 

cells also exhibit functional differences. For instance, Mere are responsive to the complement 

component CSa, morphine derivatives, and various neuropeptides, but MCT are not sensitive 

to these stimuli (Cohan et a!. ,  J 989). 

Two subsets of mast cells in rats and mice have been characterized based upon tissue 

localization, T cell-derived growth factor dependence, and protease expression. The 

connective tissue mast cell (CTMC) and the mucosal mast cell (MMC) in rodents are in many 

ways comparable to the MCTe and the M�. of the human, respectively. The CTMC and 

MMC in the mouse can be distinguished by their differential expression of a large family of 

serine proteases (McNeil and Austen, 1 994). Jarboe and colleagues have identified two types 

of murine mast cell progenitors: one that is dependent upon interleukin-3 (IL-3), and another 

that is not, but instead responds to a fibroblast-derived factor (Jarboe and Huff, 1989; Jarboe 

et a!., J 989). These two progenitors may give rise to MMC and CTMC, respectively 

(Kobayashi et a!., 1986). There is evidence, however, that murine mast cells can change their 

phenotypic characteristics in response to alterations in their microenvironment (McNeil and 

Austen, 1994; Ghildyal et a!. ,  1992; Gurish et a!., 1 992). Mast cells which appear to be 

morphologically differentiated are long-lived, can proliferate extensively, and are able to 

change their phenotype (Takagi et a! . ,  1992). It may be that this ability to change phenotype 

in response to environmental stimuli enables murine mast cells to adapt their functional 

capabilities in response to diseases or immunologic responses. In the human system, however, 

the ability of mast cells to switch from one phenotypic subset to the other has not been 
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demonstrated. Some investigators have suggested that human mast cells may commit to 

either the MCT or the M�c subset early and proceed upon distinct pathways (Irani et aI., 

1992; Craig et aI., 1989) 

It seems that the bulk of our understanding would implicate the mast cell as an "evil ­

doer" which presents itself as  a mere nuisance, as  in  those who suffer milder forms of  al lergy, 

or as a serious threat, as in the case of victims of anaphylaxis. The mast cell' s  involvement 

in type I hypersensitivity, allergic asthma and numerous intlammatOlY processes is widely 

accepted (reviewed in McNeil, 1996; Galli and Costa, 1995). Moreover, there is significant 

evidence that mast cells are involved in sudden infant death syndrome (Platt et aI . ,  1 994). 

Although logic dictates that the mast cel l ' s  evolutionary persistence implies an essential 

function in normal physiology, our inability to assign functions to the mast cell that are 

beneficial to the organism underlies the "riddle of the mast cel l" (McNeil, 1 996; Galli, 1990). 

Kit, the product oj the c-kit protooncogene 

In the course of maintaining inbred strains of mice for use in research, scientists are 

sometimes given the 0PPoliunity to study the functions of unidentified gene products which 

have been altered in some way due to spontaneous mutations in these strains. These 

"experiments of nature" have been extremely important in our understanding of the functions 

of stem cell factor (SCF) and its receptor, Kit. Much of what we now know about the 

involvement of SCF and Kit in hematopoiesis and developmental programs involving 

melanocytes, genn cells and mast cells was predicted based on studies with mutant mice long 

before the gene products were identified. 
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For a number of years it has been known that mutations at either the dominant white 

spotting (W) locus on chromosome 5 or the steel (Sf) locus on chromosome 1 0  resulted in 

similar phenotypic changes. These include changes in coat pigmentation, severe macrocytic 

anemia, sterility, and a dramatic reduction in the number of mast cells (Kitamura et aI., 1 978; 

Kitamura and Go, 1 979; Russell, 1 979; Silvers, 1 979). Following transplantation and embryo 

fusion studies using W and Sf mutant mice and in vitro studies using cells and tissues from 

them, it was suggested that deficits in the W mutant mice were expressed by the cells in the 

affected lineages, and those in the Sf mutants were expressed by cells in the microenvironment 

necessary for the development of the affected lineages (Russell, 1 979; Silvers, 1 979). The 

similarities of phenotypic changes resulting from mutations at either locus suggested that the 

W locus might encode a receptor expressed by the cells of the affected lineages, while the Sf 

locus might encode the cognate ligand (Russell, 1 979). More recent work has confirmed that 

the W locus is allelic with the c-kit gene, which encodes a receptor tyrosine kinase (Chabot 

et aI. , 1 988; Geissler et aI., 1 988a, b), and that SI encodes the corresponding ligand, which 

has been given several names, including stem cell factor (SCF, Zsebo et aI., 1 990a, b; Martin 

et al. ,  1 990b), Kit ligand (KL, Huang et aI., 1 990), mast cell growth factor (MGF, Williams 

et al. ,  1 990; Copeland et aI., 1 990; Anderson et aI., 1 990), and steel factor (SLF or SF, Witte, 

1 990; Williams et aI., 1 992a). 

The kit gene was first characterized as the viral oncogene v-kit of a feline sarcoma 

virus (Besmer et aI . ,  1 986). It was later determined that v-kit arose from transduction and 

truncation of the cellular protooncogene c-kit (Yard en et aI., 1 987; Qiu et aI., 1 988). The c­

kit gene was first cloned in the mouse from a brain cDNA library (Qiu et aI, 1 988). The 
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predicted amino acid sequence was found to  display significant homology to  members o f  a 

family of transmembrane receptors now known as type III receptor tyrosine kinases (RTKs), 

which includes the receptor for macrophage colony stimulating factor (MCSF, encoded by 

c-fms), the platelet-derived growth factor (PDGF) receptors alpha and beta (Besmer et a!. ,  

1 986;  Varden e t  a!., 1987; Qiu e t  a!. ,  1988), and the more recently described receptor 

Flk2/Flt3 (Lyman et a!., 1993). 

The Kit protein contains an extracellular ligand-binding domain with five 

immunoglobulin-like regions. These regions contain several intramolecular disulfide bonds 

and potential N-glycosylation sites (Yarden et a!. ,  1987; Qiu et a!., 1988) The intracellular 

portion of the protein contains a kinase region which is split into two parts by a noncatalytic 

stretch of 77 amino acids known as the kinase insert (Yarden et a!., 1987; Qiu et a!., 1988). 

It has been demonstrated in the murine system that a specific tyrosine residue within the 

kinase insert (Y719) is critical for signal transduction through physical association with 

phosphatidylinositol 3 ' -kinase (PI3K), and that Y719 must be phosphorylated before this 

association can occur (Serve et a!., 1994). 

Upon binding to stem cell factor, Kit is induced to dimerize, and this dimerization 

correlates with autophosphorylation and activation of its kinase (Blume-Jensen et a!., 1991; 

Philo et a1., 1 996). After activation, Kit rapidly associates with specific cytoplasmic signaling 

proteins involved in cell proliferation and survival, including PI3K and phospholipase C-y 1 

(PLCyl) (Rouapel et a!., 1991). In contrast to the loss of Kit function observed in the 

various W mutant mice, some activating mutations have been reported in both mouse and 

human. The factor-independent tumorigenic murine mastocytoma cell line P8 1 S  was found 
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to express a constitutively tyrosine-phosphorylated Kit receptor, in the absence of endogenous 

or exogenous SCF (Rottapel et a!., 1991). Furitsu and coworkers discovered that the Kit 

protein in the human mast cell leukemia cell line HMC- l was also constitutively 

phosphorylated in the absence of SCF. In addition, they found two point mutations in the 

region encoding the cytoplasmic domain of the receptor (Furitsu et a!., 1 993). These findings 

are suggestive that some activating c-kit mutations may contribute to transformation of some 

cells. Nagata et a!. have identified a point mutation in the catalytic domain of Kit in patients 

who have mastocytosis with an associated hematologic disorder. Identical or similar amino 

acid substitutions in mast cell lines resulted in ligand-independent autophosphorylation of the 

receptor (Nagata et a!., 1995). 

In addition to activating mutations of the receptor, aberrant signal transduction 

through Kit may result from autocrine stimulation arising either from ectopic expression of 

Kit in tissues that normally express SCF, or from ectopic expression of SCF in tissues that 

normally express Kit. Indeed, coexpression of the receptor and ligand has been reported in 

gynecological tumors (Inoue et a!., 1994), colon tumor cell lines (Toyota et a!., 1 993), in the 

majority of surgical breast tumor specimens and tumor cell lines (Hines et a!., 1995), and in 

at least 70% of small cell lung carcinoma (SCLC) tumors and tumor-derived cell lines (Hibi 

et aJ . ,  1 99 1 ). Moreover, Krystal et al. showed that transfection of a c-kit expression vector 

into an SCLC line that expressed SCF but not Kit resulted in constitutive tyrosine 

phosphorylation of immunoprecipitated Kit protein and more vigorous cell growth in serum­

free medium compared to control-transfected cells. This group also reported that transfection 

of an SCLC line which normally coexpresses SCF and Kit with a dominant negative, kinase-
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defective c-kit gene resulted in  a significant loss of growth factor independence (Krystal e t  aI . ,  

1 996) 

The phenotype of the W and SI mutant mice suggest that SCF and Kit are likely 

involved in development of hematopoietic, melanoblast, and germ cell lineages in the 

developing mouse embryo. Studies examining the patterns of expression of the two proteins 

have confirmed this involvement in terms of the migration and spatial distribution, as well as 

the proliferation and differentiation of the cells at their definitive sites in the developing 

embryo (Matsui et aI., 1990; Orr-Urtregger et aI., 1990; Keshet et aI., 1991). However, 

expression was also detected in tissues other than those apparently affected in the W and SI 

mutants. These findings have indicated a possible role for Kit signaling in the development 

of cells in the placenta, the nervous system, the septa of the heart, the lung, the facial 

chondrogenic nuclei, and the midgestational kidney (Galli et aI . ,  1 994) Clearly, SCF and Kit 

are of vital importance in the early development of the animal. In fact, loss of function 

mutations in both alleles of either locus leads to an inability to properly develop, resulting in 

the death of the fetus in utero (Nocka et aI , 1 989) 

Stem eellfactor 

After it had been established that the W locus of the mouse was allelic with c-kil, it 

was reasonable to imagine that the ligand might be encoded at SI, in accord with Russell' s  

earlier proposal (Russell, 1979). Experiments using combinations o f  mast cells or  their 

precursors and fibroblasts derived from W or SI mutant mice provided strong biological 

evidence that fibroblasts can produce membrane-bound (Kitamura et aI , 1 989; Fujita et aI . ,  
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1989; Kitamura and Fujita, 1989) and soluble (Jarboe and Huff, 1989) forms of the Kit ligand. 

Soon after these reports, Nocka et al. purified and characterized a mouse fibroblast-derived 

factor which could stimulate growth of normal mast cells, but not mast cells derived from W 

mutant mice (Nocka et aI., 1990). Later that year three groups simultaneously reported the 

cloning and characterization of the growth factor (designated SCF in this review) which 

represented the product of the Sf locus, and a ligand for the receptor encoded at c-kit 

(Williams et aI., 1990; Copeland et aI., 1990; Anderson et aI., 1990; Zsebo et aI., 1990a, b; 

Martin et aI., 1990b; Huang et aI., 1990). 

Physical characterization of the SCF protein indicates that it is heavily glycosylated, 

and exists as noncovalently associated dimers (Arakawa et aI., 1 991; Lu et aI. , 1991; Langley 

et a1 . ,  1992). In the human, alternative splicing of the mRN A gives rise to two forms of SCF 

protein: soluble or membrane-bound (Anderson et aI., 1991). The full-length mRNA encodes 

a transmembrane protein of 248 amino acids, which includes a 25 amino acid cleaved signal 

peptide, a 189 amino acid extracellular domain, which includes a membrane-proximal 

proteolytic cleavage site encoded by exon 6, a hydrophobic membrane-spanning region of 2 1 -

23 amino acids, and a short intracellular domain of 36-37 amino acids. This form i s  efficiently 

cleaved by an unidentified protease and released as soluble SCF Exon 6 is not included in 

the alternative SCF mRNA, which encodes a transmembrane protein that lacks 28 amino 

acids, including those which comprise the protease recognition site (Anderson et aI., 1991). 

This form is much more resistant to proteolysis and generally remains associated with the cell 

membrane. Three isofonns of SCF have been reported in the mouse, including exon 6-

containing and exon 6-lacking forms similar to those found in the human, and a third form 
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which contains a smaller 16 amino acid deletion of the exon 6 sequence. This deletion also 

eliminates the protease recognition site, giving rise to a predominantly membrane-bound 

protein (Anderson et aI., 1 990; Flanagan et aI . , 1 991). The transcriptional and post­

translational events necessary for production of either soluble or membrane-bound SCF are 

obvious points at which a given cell may regulate SCF isoform expression. The biological 

effects of membrane-bound vs. soluble SCF may be significantly different (see later 

discussion), as has been reported with respect to bone marrow progenitor cells (Toksoz et aI., 

1 992). 

Although most functional studies of SCF have focused on the biological activities of 

the extracellular portions of the proteins (soluble or membrane-bound), there is limited 

evidence that the short cytoplasmic tail may have biological importance which has not yet 

been defined. This is suggested by the phenotype of mice bearing a mutation designated SI' 1H, 

which produces a splicing defect resulting in a cytoplasmic tail of 28 amino acids, rather than 

36 .  The phenotype of SI'7J '/SI'1H mice includes sterility in males but not in females, indicating 

that some biological activity resides in the cytoplasmic tail of SCF (Brannan et aI., 1992). 

SCF expression appears to be tightly regulated during mouse embryogenesis. 

Examination of the genital ridges of 10-day embryos revealed a gradient of SCF expression 

along the route of migration of primordial germ cells between the dorsal mesentery and the 

gonad anlage. Interestingly, an inverse gradient of c-kit expression was observed, with SCF 

expression highest in the genital ridge and c-kit expression highest in the dorsal mesentery. 

By day 1 1 . 5 ,  when colonization of the gonad is completed and germ cell migration is no 

longer necessary, SCF expression along the migratoIY route ceases, but remains high in the 
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gonad throughout sexual differentiation (Matsui et  aI . ,  1 990; Orr-Urtregger et  aI., 1 990; 

Keshet et aI . ,  1 991). 

In the ovary of the adult mouse, c-kit is expressed only by the oocytes (Arceci et aI., 

1 992; Orr-Urtregger et aI . ,  1 990; Keshet et aI., 199 1 )  and SCF is expressed at highest levels 

in the surrounding granulosa cells (Keshet et aI., 1 99 1 ) . The observed pattern of SCF 

expression during sexual development supports the hypotheses of several groups that cells 

lining the migratory route may guide the primordial germ cells by way of haptotaxis through 

expression of membrane-bound SCF, whereas expression of SCF in the gonad anlage may 

indicate a chemotactic role for soluble SCF in directing homing of germ cell precursors 

(Flanagan and Leder, 1 990; Williams et aI . , 1 990; Matsui et aI., 1990; Flanagan et aI . ,  1 99 1 ;  

Keshet e t  aI., 1 99 1 ). Similar haptotactic/chemotactic roles for SCF in the development of 

pigmentation have been suggested by studies of SCF and c-kit expression during melanocyte 

migration (Keshet et aI., 1991 ). SCF expression can be detected in the subdermal 

mesenchymal cells of the limb buds before melanocytes begin to invade, and persists during 

and after melanocyte colonization. c-kit is detected in the melanocyte precursors and remains 

throughout their proliferation and differentiation (Keshet et aI., 1991). 

SCF and c-kit also appear to be important in the early development of the brain . 

Between gestational days 1 2  and 1 5, SCF is expressed in the floor plate of the neural tube, 

followed by expression in the ventrolateral regions associated with motor neuron 

differentiation (Matsui et aI., 1990; Orr-Urtregger et aI., 1990). c-kit expression has been 

detected in migrating neural crest cells and in the differentiating neurons in the dorsal neural 

tube and dorsal ganglia, suggesting that SCF may function as a chemoattractant for neurons 
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and/or axonic processes (Keshet et a!., 1991). 

Expression of c-kit is high in the embryonic liver at gestational day 1 1 . 5 ,  a time at 

which the liver is heavily involved in hematopoiesis (Orr-Urtregger et a!., 1990; Keshet et a!., 

1 99 1 ), consistent with the widely accepted view that SCF is an important hematopoietic 

growth factor. In the adult mouse hematopoietic system, c-kit mRNA expression is found 

predominantly in those lineages affected by W mutations, including mast cells and early 

erythroid and myeloid cell lines (Andre et a! . ,  1989; Nocka et a! . ,  1989) Using '2 SI-labeled 

SCF in binding studies, Metcalf and Nicola found that Kit is widely distributed among cells 

in adult murine bone marrow. They rep0I1ed expression on blasts, promyelocytes/myelocytes, 

promonocytes, monocytes, eosinophilic myelocytes, eosinophils, and some lymphocytes 

(Metcalf and Nicola, 1991). In general, analysis of the distribution of c-kif mRNA and Kit 

protein on hematopoietic cells indicates that levels of Kit are highest during early stages of 

development and progressively diminish in parallel with maturation of the various 

hematopoietic lineages (Papayannopoulou et a!., 1991). The mast cell represents an 

exception, in that mature mast cells continue to express the receptor and exhibit 

responsiveness to SCF. 

The biological consequences of SCF/Kit interactions include adhesion, chemotaxis or 

haptotaxis, survival, proliferation, differentiation, and activation or modulation of secretion 

(reviewed in Galli et a!., 1994). The various functions would require that the expression of 

the appropriate isoform of SCF be specifically regulated, although the mechanism of this 

regulation is presently unknown. The membrane-bound form would understandably be 

involved in adhesion to Kit-bearing cells. Studies using cells expressing the sri allele, which 



30 

makes only soluble SCF, have demonstrated that a membrane-associated form of SCF is 

necessary for adhesion to mast cells (Flanagan et aI. ,  1991; Kaneko et aI., 1991; Adachi et aI . ,  

1 992) .  Conversely, Adachi and coworkers have shown that mast cells derived from WIW 

mice, which express no Kit on their surface, were greatly impaired in their ability to bind to 

fibroblasts (Adachi et aI . ,  1992). The same group demonstrated that Kit tyrosine kinase 

activity was not necessary for adhesion to fibroblasts by using mast cells derived from W"I W" 

or WIW'2 mutants, which bear Kit receptors with greatly diminished or completely absent 

kinase activity, respectively (Adachi et aI., 1992). As mentioned above, it has been suggested 

that membrane-bound SCF may promote attachment of mouse primordial germ cells during 

embryonic development (Matsui et aI., 1991). It has also been shown that neutralizing 

antibodies to Kit can inhibit the binding of human megakaryocytes to fibroblasts (Avraham 

et aI., 1 992). These studies offer strong evidence that SCF and Kit can function as adhesion 

molecules. 

The defects in coat pigmentation, mast cell deficiency, and sterility characteristic of 

W and SI mutant mice are known to reflect an impairment of the migration of cells of the 

melanocyte, mast cell, or germ cell lineage during embryonic development (Russell, 1979; 

Silvers, 1 979; Kitamura, 1989). Upon identification of the proteins encoded at these loci, it 

was reasonable to assume that this migration may be due to a chemotactic response of the Kit­

bearing cells to SCF. It has been shown that subcutaneous injections of recombinant SCF into 

the skin of SI/Sf mice, which ordinarily lacks mast cell precursors and mature mast cells 

(Kitamura and Go, 1979; Hayashi et aI. , 1985), resulted in the appearance of large numbers 

of mast cells at the site of injection (Zsebo et aI., 1990b; Tsai et aI. , 1991). In vitro studies 
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have demonstrated that porcine aortic endothelial cells transfected with wild-type human c-kit 

cDNA exhibited chemotactic responses to concentrations of recombinant human SCF as low 

as 50 pg/mJ (Blume-Jensen et aI., 1991). It was further shown that Kit tyrosine kinase activity 

was necessary for chemotactic responsiveness to SCF (Meininger et aI., 1992). 

Given the fact that certain Kit-expressing cells, such as oocytes, melanocytes, and 

mast cells are able to reside in the tissues for long periods of time without undergoing 

proliferation, one might imagine that SCF is involved in promoting their survival. There are 

several lines of evidence that support this theory, and that suggest that the membrane­

associated form of SCF is responsible. When normal mast cells were injected into the dermis 

of Sf/Sf mice, which lack membrane-bound SCF, they did not survive (Gordon and Galli, 

1 990). However, the mast cells did survive when injected into the skin of W'/W" mice, 

suggesting that membrane-bound SCF is necessary for, or at the least, more effective than 

soluble SCF for promoting the survival of mast cells (Gordon and Galli, 1 990) Toksoz et al. 

demonstrated that the membrane-bound form of SCF maintained hematopoiesis for longer 

periods than the soluble form (Toksoz et aI., 1992). Although membrane-bound SCF is better 

at maintaining the survival of mouse primordial germ cells in vitro (Dolci et aI., 1991; Matsui 

et aI., 1 991), it has been shown that soluble SCF can also maintain the survival of mouse 

primordial germ cells (Dolci et aI., 1991; Godin et aI , 1 991; Matsui et aI , 1991), 

hematopoietic stem cells (Bernstein et aI , 1991; McNiece et aI , 1991; Metcalf and Nicola, 

1991 ;  Tsuji et a1., 1991; Cicuttini et aI., 1992; Migliaccio et aI, 1992; Williams et aI., 1992b), 

human melanocytes (Funasaka et aI., 1992), human mast cells (Irani et aI., 1992; Valent et aI , 

1 992; Mitsui et aI, 1993), or human NK cell precursors (Uittenbogaart et aI, 1992) in vitro, 
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and can promote the survival o f  mouse mast cells in vitro o r  i n  vivo (Zsebo et aI . ,  1 990b; Tsai 

et aI.,  1 99 1 ) .  In addition, Iemura and others have provided evidence that SCF promotes the 

survival of mast cells by suppressing apoptosis (lemura et aI . ,  1 994) . 

An in vitro mast cell proliferation assay has been the standard bioassay for 

characterizing SCF bioactivity since the cloning of the gene (Will iams et aI . ,  1 990; Copeland 

et aI . ,  1 990; Anderson et aI . ,  1 990; Zsebo et aI . ,  1 990a, b;  Martin et aI . ,  1 990b; Huang et aI . ,  

1 990). There can b e  little argument about the ability o f  SCF t o  induce proliferation i n  mast 

cells. However, the effects of SCF on the proliferation of other Kit-bearing lineages is most 

dramatic in the context of synergism with other stimuli (reviewed in Galli et aI . ,  1 994) . SCF 

is  much more effective in inducing proliferation of cultured mouse primordial germ cel ls  when 

leukemia inhibitory factor (UF) is added as a cofactor (Matsui et aI . ,  1 99 1 ) . Human 

melanocytes proliferate ill vitro when SCF is provided with PMA, but SCF alone has little 

effect (Funasaka et aI . ,  1 992) . Similarly, SCF by itself has only modest effects on the 

development of colonies of hematopoietic cel ls  ill vitro, but acts in synergy with many other 

growth factors to promote the production in vitro of early and intermediate precursors of 

erythroid, myeloid, and lymphoid lineages (Galli et aI . ,  1 994). 

Finally, SCF can function as an agent to stimulate mediator release from mast cells 

through Kit signaling. SCF-induced mediator release has been demonstrated in purified 

human skin mast cells (Columbo et aI . ,  1 992) and from purified mouse peritoneal mast cells 

(Coleman et aI . ,  1 993) in vitro. In addition, ill vitro studies with human lung (Bischoff and 

Dahinden, 1 992) or skin (Columbo et aI . ,  1 992) mast cells or with purified mouse peritoneal 

mast cells (Coleman et aI . ,  1 993) also showed that soluble SCF can enhance the level of mast 
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cell secretion and mediator release observed i n  cells stimulated through the high affinity IgE 

receptor (FcERI). This effect was seen at SCF concentrations substantially lower than those 

required to induce mediator release directly. Taken together, these data indicate that SCF i s  

involved in mast cell development and function. It is not clear to what extent SCF may also 

influence the functional activity of other lineages that express Kit. 



Materials and Methods 

Animals 

Female BALBlc mice, 8- 1 0  weeks of age, were purchased from the National Cancer 

Institute, Frederick, MD . They were maintained in laminar flow housing and provided with 

food and water ad libitum. 

Antibodies 

An affinity-purified rabbit IgG polyclonal anti-human c-kil antibody raised against a 

synthetic peptide (American Research Products, Inc. ,  Belmont, MA) was the primary antibody 

used for immunohistochemistry. Control experiments were performed using rabbit IgG 

purified from serum of non-immunized animals (Jackson Immunoresearch Laboratories, Inc . ,  

West Grove, PA).  Immunofluorescent staining was done with a monoclonal anti-human c-kil 

antibody (clone l .D9.3D6, Boehringer Mannheim Biochemica, Indianapolis, IN) Non­

specific interactions were blocked with a solution containing purified human IgG (Jackson) . 

A mouse IgGJ (Biosource International, Camarillo, CA) was used as a negative contro l .  In 

the immunofluorescence studies, anti-c-kit antibodies were localized using a biotin-conjugated 

F(ab')2 goat anti-mouse IgG (Jackson), followed by fluorescein isothiocyanate (FlTC)-labeled 

streptavidin (Pierce, Rockford, IL) . 

34  
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Cells and eell lines 

The murine fibroblast cell line BALBlc 3T3, the human fibroblast lines CCD 1 8, HS68 

and MRC-9, and the human fibrosarcoma cell line HT 1 080 were a l l  obtained from American 

Type Culture Collection, Rockville, MD . The four human malignant schwannoma cell lines 

were generous gifts of Dr. George DeVries, Department of Cell Biology, Neurobiology and 

Anatomy, Loyola University, Chicago, IL. The ST88- 1 4  line was derived from a peripheral 

nerve sheath tumor of a patient diagnosed with NF I (Fletcher et aI, 1 99 1 ) , and partially 

described elsewhere (DeClue et aI , 1 992; Reynolds et aI , 1 992). Due to contamination of 

this line, a separate clone was obtained directly from Dr. Jonathan Fletcher, Department of 

Pathology, Brigham and Women's Hospital, Boston, MA. Other malignant schwannoma cell 

lines include the STS-26T line, which was derived from an isolated grade III malignant 

schwannoma in a patient who did not have NF l (Dahlberg et aI , 1 993), the NF- I T cell line, 

derived from a malignant soft tissue sarcoma in an NF l patient (Dahlberg et aI , 1 993), and 

the T265-2c cell line, which was established in the laboratory of Dr. George DeVries from a 

malignant schwannoma in a patient with NF I .  The HMC- I cell line was derived from a 

patient with mast cell leukemia, and was the kind gift of Dr. Joseph H. Butterfield, M .D . ,  

Allergic Diseases and Internal Medicine, Mayo Clinic, Rochester, MN. Al l  cells except HMC-

1 were maintained in Dulbecco' s  modified Eagle ' s  medium supplemented with 2mM L­

glutamine, 50/-lg/ml gentamicin, 1 00U/ml penicillin, 1 00/-Ig/ml streptomycin, and 1 0% fetal 

calf serum (cDMEM) in a humidified chamber at 3 r C  and 5% CO2 . HMC- I cells were 

grown in Iscove's modified Dulbecco' s  medium with 1 0% defined, iron-supplemented bovine 

calf serum (Hyclone Laboratories, Logan, Utah), 1 . 2mM monothioglycerol (Sigma Chemical 
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Company, St. Louis, MO), 2mM L-glutamine, 50�g/ml gentamicin, 1 00U/ml penicillin, and 

l OO�g/ml streptomycin at 3 7 " C  and 5% CO2 . 

Total RNA was extracted from surgical tissue and cultured cells in this laboratory 

using the Ultraspec™-II RNA isolation system (Biotecx Laboratories, Inc, Houston, TX), 

which involves extraction with acid guanidinium thiocyanate and phenol-chloroform 

(Chomczynski and Sacchi, 1 987) .  

Primary human fibroblast cultures designated 8N, Edwards, 1 6BN, and 3 0K were 

established and maintained in the laboratory of Dr. Dome Yager (Division of Surgery, 

Department of Medicine, Virginia Commonwealth University, Richmond, Virginia), who 

kindly provided total RNA samples extracted from the cells . RNA specimens from the small 

cell lung cancer cell lines H 1 46, H209, H249, and WBA, and from the breast cancer line 

MCF7, were the generous gifts of Dr. Geoffrey Krystal (Division of Hematology IOn co logy, 

Department of Medicine and Department of Microbiology and Immunology, Virginia 

Commonwealth University and McGuire VA Medical Center, Richmond, V A) . 

Cytokines and growth factors 

Recombinant mouse interleukin-3 (rmIL-3) and recombinant mouse stem cell factor 

(nnSCF) were purchased from BioSource International, Camarillo, CA. Recombinant murine 

stem cell factor used in the in vivo experiments involving intraperitoneal injections (rmSCFI69) 

was cloned and expressed in this laboratory (see below) . 
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Cloning, expression, and purification of rmSCP69 

The production of recombinant mouse SCFl69 was accomplished by Dr. Julie Leftwich, 

a postdoctoral fellow in this laboratory, and has not been reported elsewhere. Therefore, the 

protocol used is briefly stated here. A clone of mouse SCF was obtained by screening an NIH 

3T3 cDNA library in a Lambda Zap II vector (Stratagene, La Jolla, CA) with a 5 '  end-labeled 

3 0  base o ligonucleotide probe (nucleotides 25 1 -28 1 )  derived from the published sequence 

(Zsebo et al . ,  I 990b ) .  Nitrocellulose filters lifted from the library were incubated for 1 8  hours 

at 37 °C  with 1 06 cpm/mJ of probe. The filters were washed 4X at 3 7 " C  for 10 minutes with 

2X SSC, 0 .2% sodium dodecyl sulfate (SDS), followed by one wash at 5 0 ° C  for 30 minutes 

with 0.5X SSC, 0.2% SDS. I of3 positive clones was chosen from 1 06 original plaques, and 

in vitro excision using the R408 helper virus was performed. The resulting pBluescript 

phagemids containing the cDNA were transfected into XL- I Blue host cells. The clone was 

sequenced using the Sequenase Version 2 kit (United States Biochemical, Cleveland, OH) and 

the coding gene region was found to have identical predicted peptide sequences as those 

published (Zsebo et aI . ,  1 990b) . 

To express recombinant SCF proteins, BglII-BSU36I fragments encoding the secreted 

form of SCF were subcloned into PET-3d utilizing a 5 '  l inker adding an Ncol site and a start 

codon and a 3' linker adding a stop codon and a BamHI site. These manipulations placed the 

coding region under the control of a T7 promoter which is inducible by the addition of 

isopropylthiogalactoside (IPTG) . The expressed mRNA encodes a protein 1 69 amino acids 

long, and has been designated rmSCFI69 . 

To purify rmSCFl69 protein, expression vector-containing bacteria were grown at 
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28 ° C  i n  LBlMglglucoseJamp to an OD600 of 0 .6-0 . 8  at which time IPTG was added t o  a final 

concentration of 0 . 8  mM. The cells were cultured an additional 2 hours, pelleted, and 

resuspended in lysing buffer. The cells were then subjected to French Press (PSI = 20,000) 

and the supernatant was clarified and partially purified using sizing chromatography. The 

resulting preparations of recombinant SCF proteins were approximately 80-90% pure. 

Surgical specimens 

Formalin-fixed, paraffin-embedded neurofibroma specimens were obtained from Dr. 

Audrey Steck (Division of Pathology, Department of Medicine, Virginia Commonwealth 

University, Richmond, VA). Additional neurofibroma tissue was generously provided by Dr. 

Fu-Tong Liu (Division of Allergy, La Jolla Institute for Allergy and Immunology, San Diego, 

CA) .  Prepared sections of formalin-fixed, paraffin-embedded malignant peripheral nerve 

sheath tumors were the kind gifts of Dr. David Viskochil (Division of Medical Genetics, 

University of Utah, Salt Lake City, UT). Fresh surgical specimens of vestibular schwannoma, 

acoustic neuroma, and meningioma tissues were kindly provided by Dr. William Broaddus 

(Division of Neurosurgery, Department of Medicine, Virginia Commonwealth University, 

Richmond, VA) . 

Bone marrow-derived murine mast cells 

Mouse bone marrow cells were obtained by flushing femurs with a 22 gauge needle 

into 10 ml of cDMEM supplemented with 50 nglml recombinant mouse stem cell factor 

(rmSCF, BioSource International, Camarillo, CA) and 50 U/ml recombinant mouse 
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interleukin-3 (rmIL-3 ,  BioSource) . The cells were initially maintained i n  a 25  cm2 tissue 

culture flask in a humidified chamber at 3 r C  and 5% CO2 , After overnight incubation, the 

non-adherent cells were transferred to a fresh 25 cm2 flask and placed back into the incubator, 

while the adherent cells were discarded. After the second night of incubation, the cell 

suspension was removed and centrifuged. The medium was discarded and the cell pellet was 

resuspended in a 75 cm2 tissue culture flask in 30 ml of cDMEM supplemented with rmSCF 

and rrnIL-3 at the above concentrations. The culture was maintained for a total of 4 weeks, 

with non-adherent cells being removed, centrifuged, and resuspended in fresh medium every 

3 -7 days. 

Conditioned media from Schwann cells of NFl-deficient mice 

Schwann cell-conditioned media from wild type and NFl-deficient mice were the 

generous gifts of Dr. Nancy Ratner (Department of Cell Biology, Neurobiology and Anatomy, 

College of Medicine, University of Cincinnati) . Schwann cell cultures were establi shed from 

excised peripheral nerve tissue of embryonic C57BLl6 mice bearing a targeted mutation of 

the NFl gene on either one (+/-) or both (-/-) alleles. Schwann cells derived from wild-type 

(+/+) mice were used for comparison. 

Murine mast cells grown in Schwann cell-conditioned media 

Mouse bone marrow-derived mast cells, after three weeks of culture in rmSCF and 

rmIL-3 (see above) were seeded onto a 96-well tissue culture plates at a density of 5 x 1 05 

cells/ml ( 1 05 cel ls/well) in cDMEM. The media in various wells contained either no 
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conditioned medium (control), 1 0% conditioned medium from cultures of BALB/c 3T3 

fibroblasts (FCM), 1 0% conditioned medium from cultures of Schwann cells derived from 

wild type C57BLl6 mice (NFl +1+ SCCM), 1 0% Schwann cell-conditioned medium from 

mice which were heterozygous for a disruption in the NFl gene (NF l +1- SCCM) (Jacks et 

aI . ,  1 994), or 1 0% Schwann cell-conditioned medium from homozygous NFl "knockout" 

mice (NFl -1- SCCM). Each of these categories included media supplemented with either 50  

nglml rmSCF, 50 Vlml rmIL-3 ,  both factors, or no  added factors. After 4 -7  days of culture 

under these conditions, representative plates were examined for mast cell granule phenotype, 

as determined by alcian blue/safranin staining (see below), and rate of proliferation, assessed 

by 3H-thymidine incorporation (see below). 

Alcian bluelsafranin staining of murine mast cells 

Partial phenotypic characterization of bone marrow-derived murine mast cells was 

accomplished using a two-step staining protocol (Enerback, 1 966). Cells were transferred 

to slides using a Cytospin 2 (Shandon, Inc. ,  Pittsburgh. PA) .  Preparations were first covered 

with 0 .5% alcian blue in 0 .3% glacial acetic acid for 5- 1 0  minutes, rinsed with tap water, and 

covered with 0 . 1 % safranin in 0 . 1 % glacial acetic acid for an additional 5 - 1 0  minutes .  The 

sl ides were again rinsed with tap water and air dried, and coverslips were mounted using 

Cytoseal™ 60 (Stephens Scientific, Riverdale, NJ) . Heparin, which can be found in the 

secretory granules of cells of the connective tissue mast cell (CTMC) phenotype, retains the 

safranin stain, resulting in the appearance of pink or red granules. Mucosal mast cells (MMC) 

do not contain heparin, and they stain alcian blue positive. 
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Proliferation assays for mast cells and Schwann cells 

Cultures of mast cells and Schwann cells grown in 96-well plates were "pulsed" by 

addition of 1 �Ci of 3H-thymidine (lCN Pharmaceuticals, Inc. ,  Costa Mesa, CA) to each well, 

followed by continued incubation for 4-24 hours. The samples were collected onto glass fiber 

filters using a Filtermate 1 96 Harvester (Packard, Meriden, CT), and the amount of 3H_ 

thymidine incorporation was determined using the TopCount scintillation counter (Packard) .  

The level of incorporation is proportional to the rate of proliferation of the cells in the sample .  

Immunofluorescence for the detection of Kit on malignanl schwannoma cell lines 

Each of four human malignant schwan noma cell lines, and the KEL-FlB human 

fibroblast line (negative control) were cultured at low density on 2-well chamber slides (Nunc 

Inc . ,  Naperville, IL) in cDMEM until firmly attached. The non-adherent HMC- I cell line 

(positive control) were grown in a tissue culture flask and then transferred to slides using a 

Cytospin 2 (Shandon, Inc . ,  Pittsburgh, PA). All specimens were fixed by immersion in 

acetone for 1 5  minutes at _20 ° C, drained, rinsed in deionized water and dried. 500�1 of 

blocking solution (1 % BSA, 100mM Tris pH 7.4,  1 5 0mM NaCI) containing I O�g/ml human 

IgG were added to each chamber, and slides were incubated at 4 ° C  for 30 minutes. The 

blocking solution was removed and replaced with blocking solution containing either 20�g/ml 

anti-human c-kit or IgG, isotype control antibodies, followed by incubation at 4 ° C  for 20 

hours. S lides were washed 3 times in wash solution ( l OOmM Tris pH 7.4, 1 50mM NaCI) for 

1 0  minutes each. 0 . 5ml of a I : 5 00 dilution of a biotinylated F(ab ' ), goat anti-mouse IgG in 

blocking solution was added to each slide for I hour at 4 ° C .  Sl ides were again washed three 
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times in washing solution, and then incubated one hour in O . Sml of blocking solution 

containing a I 1 000 dilution of streptavidin-FITC at 4 ° C  in the dark . Coversl ips were placed 

on the slides using 5% N-propyl gallate (S igma Chemical Company, St .  Louis, MO) to 

prevent quenching. S lides were analyzed on the Meridian Ultima confocal interactive laser 

cytometer (Meridian Instruments, Inc . ,  Okemos, MI). 

Immunohistochemistry to detect Kit ill neur()fibroma and malignant schwannoma lissue 

Immunohistochemical staining for human Kit was performed using standard 

techniques. Briefly, slides containing formalin-fixed, paraffin-embedded tissue sections were 

deparaffinized in xylenes and rehydrated in a series of graded ethanol washes. Endogenous 

peroxidase activity was blocked with 0 . 3% H202 in methanol . A polyclonal rabbit anti-Kit 

antibody was used as the primary antibody at a concentration of O .  5 11 g/m I. This antibody was 

then localized using the Vectastain Elite Kit (Vector Laboratories, Burlingame, CA) .  

Diaminobenzidine (Vector Laboratories) was used a s  the color substrate. 

Quantitative reverse transcription polymerase chain reaction of mouse SCF 

A quantitative RT-PCR protocol was developed which requires the use of a specially 

designed "cRNA control fragment" in competitive reactions with RNA isolated from the cel ls 

under study. This cRNA controls for variations during reverse transcription, and serves as 

an internal standard for the polymerase chain reaction.  A murine stem cell factor control 

fragment was constructed by inserting a 102 base pair piece of double-stranded ON A into our 

m S CF clone. The insert was obtained by digesting the plasmid pBluescript II SK+ 
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(Stratagene Cloning Systems, La Jolla, CA) with the restriction enzymes KpnI and SstI . The 

products were separated by agarose gel electrophoresis, and the band corresponding to the 

1 02 bp fragment was cut from the gel and minced with a razor blade. The DNA was 

extracted from the agarose by adding phenol, vortexing for 30  seconds, and incubating in a 

dry ice and ethanol bath for 5 minutes. After centrifugation, the fragment was precipitated 

from the aqueous phase by addition of 3M sodium acetate and 95% ethanol, followed by 

overnight incubation at minus 20 ° C .  

Our mouse SCF clone was digested with NsiI, which cuts a t  a single site within the 

SCF sequence (nucleotide 492 by the numbering of Anderson, et ai , 1 990), but does not cut 

the vector (pBluescript II SK+). This plasmid and the insert fragment were blunt-ended with 

T4 DNA polymerase. Both samples were then incubated with calf intestinal alkaline 

phosphatase (ClAP) to remove 5 '  phosphate groups, fol lowed by phenol-chloroform 

extraction and ethanol precipitation. A blunt end ligation was performed using T4 DNA 

ligase at a plasmid : insert ratio of I :  1 00 .  

E. coli XL I  blue bacteria were made competent for transformation by incubating in  

cold 1 00 mM CaCl2 for 10  minutes on ice. Cells were transformed by treatment with DMSO 

and addition of the products of the ligation reaction, followed by 3 0  minutes incubation on 

ice. Bacteria were heat-shocked by incubating in a 42 ° C  water bath for 90 seconds, and then 

chilled on ice. Bacteria were grown in Luria broth (LB) containing no antibiotics for an hour 

in a 3 7 " C  shaker. Samples were then streaked onto LB agar plates containing ampicillin and 

incubated at 3 7 " C  overnight. Colonies were plucked and subcultured in liquid LB containing 

ampicillin and incubated overnight at 3 r C  with shaking. 
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Plasmid DNA was extracted from the bacterial cultures using the Insta-Prep Kit (5 '  

to 3 ', Inc . ,  Boulder, CO). Samples were digested with the restriction enzyme XhoI to 

determine if an insert had been ligated into the plasmid.  The vector, pBluescript II SK +, 

contains a single XhoI site. The 1 02 base pair insert also contains this site. If the insert is  

missing, the enzyme cuts at only one site. If it is present, two sites are cut, releasing a 

fragment of 594 base pairs. A clone containing the insert was chosen, and submitted to the 

MCV Molecular Biology Core Facility for large-scale plasmid preparation. The cRNA was 

generated by in vitro transcription using T7 RNA polymerase. The control fragment contains 

the same primer binding sites as natural SCF mRNA, but will generate an RT-PCR product 

which is 1 02 base pairs larger. 

For competitive RT -PCR, decreasing amounts of control fragment RNA of known 

concentrations are added to a series of tubes containing a constant amount of total cellular 

RNA. Standard reverse transcription and polymerase chain reactions are carried out, resulting 

in competition between the two templates for primers and other reaction components. 

Following amplification, the products are resolved by agarose gel electrophoresis and 

subjected to Southern blot analysis (see below) . The intensities of the bands on the resulting 

auto radiograph are compared by densitometry. The quantity of mRNA in the original 

unknown sample is ascertained by determining the amount of control fragment needed to 

generate a band of equal intensity. 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

The standard RT-PCR protocols used in this study were performed using the 
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GibcoBRL Superscript Preamplification System (Life Technologies, Inc . ,  Baltimore, MO), 

supplemented with AmpliTaq® DNA Polymerase (Perkin Elmer, NOIwalk, CT). 

The reverse transcription reaction was carried out by adding I llg total RNA in a 

volume of J ill to a reaction tube containing 1 0 11 1  Milli-Q water. After addition of I Il I  of a 

21lM gene-specific antisense oligonucleotide primer, the mixture is incubated at 70 ° C  for 1 0  

minutes and then quickly chilled o n  ice for at least I minute. 711 1  of a master mix containing 

2111 l OX peR buffer, 2111 25mM MgCI2' I Il I  1 0mM dNTP mix and 2111 0 1M DTT are added 

to each tube, followed by a 5 minute incubation at 42 °C .  After addition of I Il I  (200U) of 

SuperScriptTM II RNase H- reverse transcriptase, the 42 ° C  incubation is continued for an 

additional 50 minutes. The reaction is terminated by incubating at 70 ° C for 1 5  minutes. 

After another quick chill on ice, the contents are collected by brief centrifugation, followed 

by the addition of J il l  (2U) E. coli RNase H and a 20 minute incubation at 3rc .  

The polymerase chain reaction was performed by  first adding 211 1  of  each RT reaction 

to a fresh tube. 23 111 of a master mix containing 1 8 11 1  water, 2 . 5 11 1  l OX PCR buffer, l . 5 1l1 

MgCI" and l . 01l1  1 0mM dNTP mix are added to each reaction. One paraffin bead 

(Ampliwax® PCR Gem 1 00 [Perkin Elmer] or equivalent) is added to each tube, followed by 

a 5 minute incubation at 80 ° C  to melt the wax. After allowing the paraffin to reharden at 

room temperature, 2511 1  of a master mix containing 1 8 . 5 11 1  water, 2 . 5 11 1  l OX PCR buffer, 

l . 5 1l 1 2 5 mM MgCI" l . 01l 1  J OIlM sense primer, l . 01l1 1 0ilM antisense primer, and 0 . 5 11 1  

(2 . 5U) AmpliTaq® DNA Polymerase were added onto the top  of  the wax barrier. 

The PCR reactions were carried out in the GeneAmp® PCR System 9600 (Perkin 

Elmer) using programs optimized for the primers and templates being used . For mouse stem 
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cell factor, 30  cycles were performed as follows: denature at 94 ° C for 1 5  seconds, anneal at 

5 5 ° C  for 15 seconds, and extend for 3 0  seconds at n ° e .  Reaction products were resolved 

by agarose gel electrophoresis .  For most applications, a standard 1 %  agarose gel was used, 

but for quantitative RT -PCR reactions, 4% NuSieve® 3 :  I agarose (FMC BioProducts, 

Rockland, ME) was used to better resolve fragments with small size differences. Bands were 

visualized by staining with ethidium bromide and viewing on a UV light box. 

Southern blotting 

After agarose gel electrophoresis, gels were soaked for 40 minutes in a denaturing 

solution containing 1 . 5M NaCI and 0 . 5M NaOH. Gels were then soaked two times (30 

minutes each) in a neutralizing solution containing 1 . 5M NaCI and 1M Tris pH 8 . 0 .  Nucleic 

acid transfer was accomplished by downward capillary action as follows: a piece of thick filter 

paper, cut to gel size, was soaked 20 minutes in l OX SCC and placed on a 5 inch stack of 

paper towels in a basin. This was followed by 2 pieces of thin filter paper (also cut and 

soaked), a piece ofO.2�m Nytran® (Schleicher and Schuell, Keene, NH), the gel (soaked 1 0  

minutes in l OX SSC), a third piece of thin filter paper, and a sponge soaked in l OX SSe .  The 

entire container was wrapped in plastic wrap and left undisturbed overnight . After transfer, 

the orientation of the wells were marked on the nytran with a needle, and the DNA was cross­

l inked to the Nytran using a UV Stratalinker™ 1 800 (Stratagene, La Jolla, CA). 

Oligonucleotide probes were labeled using the GibcoBRL 5 '  end labeling kit (Life 

Technologies, Inc. ,  Baltimore, MO). 1 00ng of probe in 1 7�1 water were mixed with 2� 1  T4 

kinase ( I OU), 6�1  l OX forward reaction buffer, and 5� 1  [y _32p]ATP ( i 50�Ci/�I) .  After 
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incubating at 37"C for one hour, the reaction was terminated by incubating for 10 minutes at 

65 ° C .  The labeled probes were then hybridized to the blots using a Hybaid hybridization 

oven (Hybaid Instruments, Holbrook, NY) . The Nytran filters and nylon mesh were briefly 

soaked in sterile water, layered upon each other, rolled into a tube and placed in a 

hybridization bottle .  A 2X prehybridization solution was prepared by mixing l 25mg yeast 

RNA (mixed in I ml water and a few drops ofNaOH), 2 . 5ml 20% SDS, 0 . 5g  bovine serum 

albumin, 0 . 5g  polyvinylpyrrolidone (PVP), 0 .5g ficoll, 25ml 1M sodium phosphate pH 6 . 5 ,  

and 1 25ml 20X SSC, brought t o  a total volume o f  250m I with water. 1 0mi o f  a 1 . 1  mixture 

of2X prehybridization solution and water were added to the bottle containing the blots, and 

the bottle was incubated in the hybridization oven for 1 hour at 3 7 "  C .  This solution was then 

poured off and replaced with fresh 1 . 1  prehyb mix and water to which the entire probe 

labeling reaction was added. The blots were incubated with the probe overnight in the oven 

at 37 "C .  After disposing of the solution into the appropriate radioactive waste container, the 

blots were washed twice ( 1 0  minutes each) in 30ml of2X SSC/O . I %  SDS at 3 7 " C, followed 

by a 1 hour wash in 50ml of O .2X SSC/O . I %  SDS at 3 7 ° C .  The excess liquid was blotted 

from the filters with paper towels, the blots were covered in plastic, and placed on x-ray fi lm 

for 24 hours (exposure time varies with the strength of the signal) .  

Ribonuclease protection assay (RP A) for SCF iso/arms 

Total RNA was obtained by using the UItraspec™ RNA i solation system (Biotecx 

Laboratories, Inc . ,  Houston, TX) . Samples were stored at -80 ° C  at concentrations of 1 -2 

�g/� I  until needed . The probe was generated by PCR amplification of a fi'agment of our 
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cloned human stem cell factor cDNA (Ryan e t  aI , 1 994) including most of exons 5 and  6 

(nucleotides 560-78 1 as numbered by Martin et aI , 1 990) . The following primers were used 

Primer I :  5'-ATGGGATCCATTCAAGAGCCCAGAAC-3 '; primer 2 5 '-GCTCTAGA TGC 

TACTGCTGTCATTCC-3 ' .  Nucleotides in bold type represent restriction sites for BamHI 

and Xbal, respectively. After amplification, the fragment was digested with the two enzymes 

and ligated into pBluescript II SK+ (Stratagene Cloning Systems, La Jolla, CA), which had 

been similarly digested . A radiolabeled transcript was obtained with the MAXIscriptTM In 

Vitro Transcription Kit (Ambion, Inc . ,  Austin, TX) using T3 RNA polymerase and [a_·np] 

UTP. RNase Protection Assays (RPA) were performed with the RPA JITM kit (Ambion), 

fol lowing the suggested protocol Fragments were resolved on a 5% acrylamide 8M urea 

sequencing gel Protected fragments of 222 and 1 44 nucleotides are indicative of the exon 

6-containing (soluble) and exon 6-lacking (membrane-bound) isoforms of human SCF mRNA, 

respectively. 

ELISA for human SCF 

Conditioned media were assayed for immunoreactive stem cell factor using a 

Quantikine™ human SCF kit (R&D Systems, Minneapolis, MN). The kit contains all the 

necessary antibodies and standards, and the manufacturer' s  suggested protocol was followed. 

The plates were read at 450 nm on a V -max Kinetic Microplate Reader (Molecular Devices 

Corp . ,  Palo Alto, CA) .  The range of the assay was from 3 1 . 25 to 1 000 pglml 



Results 

In vivo effects of intraperitoneal injections of rmSCF'69 

To determine if intraperitoneal SCF injections might lead to the migration of mast cell 

precursors into the peritoneal cavity and subsequent maturation and proliferation, mast cells 

in the peritoneum were quantitated. Mice were given daily intraperitoneal injections of 3 �g 

ofrmSCF169 in 1 00 �I sterile phosphate-buffered saline (PBS) .  A control group was injected 

daily with PBS alone. After 16 days of injections, a group of SCF-treated mice and a group 

of control mice were infected with the hookworm Nippostrongylus brasiliensis (Nb) by 

subcutaneous injection of 600 stage 3 larvae/mouse in 200 �I PBS .  Mice were sacrificed after 

22 days of SCF (or PBS) injections. In Nb-infected animals, this corresponded to day 7 post 

infection.  Five ml of a 0 .22 M sucrose solution were injected into the peritoneal cavity, 

followed by gentle massage to dislodge cells. After the muscle membrane lining the cavity 

was surgically exposed, the fluid was removed with a Pasteur pipette through a small hole in 

the membrane. The cel ls in these samples were transferred to slides with a Cytospin 2 

cytocentrifuge, and stained with acid toluidine blue to detect mast cells . Although peritoneal 

wash-out cells such as these are a rich source of mature mast cells in untreated mice, the 

numbers were markedly decreased in response to SCF treatment (Figure I ). As previously 

reported, peritoneal mast cell numbers were also greatly diminished in response to Nb 

infection alone (Huff et aI . ,  1 995) .  
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Figure 1 .  Effects of rmSCFl69 injections o n  peritoneal mast cell numbers. Mice were given 
daily intraperitoneal injections of PBS alone or 3 ).Ig of rmSCFl69 in PBS for 22 days, at which 
time the mice were sacrificed. Nb infection was established by subcutaneous injection of 600 
stage 3 larvae of the hookworm Nippostrongy/us brasiliensis seven days prior to sacrifice. 
Cytospin preparations of peritoneal washouts were stained with 0 .2% acid toluidine blue, and 
mast cells were enumerated . Data represent the mean ± SEM of mast cell counts in five 
random 20X microscopic fields from three mice. 
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Next we  wished to determine i f  mast cell numbers might be systemically affected .  

Subcutaneous injections of SCF have been shown to result in a local mast cell hyperplasia at 

the site of injection (Zsebo et a! . ,  1 990b; Tsai et a! . ,  1 99 1 ) .  We tested to determine if 

prolonged intraperitoneal injections of high doses of rmSCF169 would lead to a systemic 

increase i n  mast cell numbers. Mice were sacrificed and five ml of air were injected 

subcutaneously into the back skin of mice just over the spine. The back skin was then everted 

to reveal a transparent bubble of dermal tissue. This tissue was dissected away and dermal 

spreads were prepared on slides. After air drying, the slides were stained with 0 . 2% acid 

toluidine blue and the mast cells were counted. No significant difference in the number of 

mast cells was observed between control and SCF-treated subjects after 22 days of injections 

(and 7 days ofNb infection, where applicable), suggesting that intraperitoneal administration 

of high doses of SCF does not appear to cause a systemic mast cell hyperplasia (Figure 2). 

Having demonstrated that mast cell numbers were locally but not systemically 

decreased, we wished to determine if intraperitoneal SCF treatment might affect Nb egg 

production and worm expulsion. The degree ofNb infection in control and SCF-treated mice 

was monitored by performing daily fecal egg counts on days 4- 1 1  following larval injections. 

To do this, we collected feces by housing the mice in wire bottomed cages .  Fecal droppings 

were collected on moist paper towels, retrieved, and eggs were counted using the OvassayTM 

fecal diagnostic system (pitman-Moore, Inc . ,  Mundelein, IL) . The results of this experiment 

are shown in  Figure 3 .  No significant differences were noted in the number of Nb eggs 

expelled by either PBS control or SCF-injected animals. As an alternative means to determine 

the severity of infection, adult Nb worms in the small intestines of mice sacrificed on days 7 
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Figure 2 .  Effects of rmSCF169 injections on  dermal mast cell numbers . rmSCF169 injections 
and Nb infections were performed as in Figure I legend . Dermal tissue was obtained by 
injecting a 5 ml air bolus under the skin just over the spine. Skin was surgically everted, and 
the membranous dermal tissue was excised and placed on sl ides .  After air drying, the slides 
were stained with acid toluidine blue. Data represent the mean ± SEM of mast cell counts in 
5 random 20X microscopic fields from 3 mice. 
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Figure 3 .  Effects ofnnSCF169 injections o n  severity of Nippostrongylus brasiliensis infection : 
fecal egg counts. Nb-infected mice were housed in wire-bottomed cages, and fecal droppings 
were col lected every 24 hours for the indicated days. Nb eggs were counted using a 
commercial fecal diagnostic kit. Data represent the mean ± SEM of counts obtained from 
triplicate test subjects .  Injections and Nb infections were performed as described in Figure 
1 legend. 
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and 1 6  post infection were counted. The small intestine ( 1 5  c m  section) o f  each mouse was 

removed and opened using surgical scissors. The worms were counted using a dissecting 

stereomicroscope either directly in the gut section, or as a suspension in PBS .  As seen in 

Figure 4, a large number of worms were observed in the gut of both control and SCF-treated 

mice after 7 days ofNb infection, and the worms were completely cleared in both groups by 

day 1 6. This time course is consistent with previous results in our laboratory using this model 

system. Stem cell factor injections did not appear to have any effect on the number of worms 

in the small intestine, or on the rate at which they were cleared. 

Quantilation of stem cell factor isoforms by competitive RT-PCR 

As a result of differential splicing and postranslational events, human stem cell factor 

can be found as a soluble or membrane-bound protein (Anderson et aI . ,  1 990; Anderson et 

aI . ,  1 99 1 ;  Flanagan et aI . ,  1 99 1 ) .  The biological activities of SCF/Kit interactions include 

adhesion, migration (by way of chemotaxis or haptotaxis), survival, proliferation and 

differentiation, and in some cases, activation (reviewed in Galli et aI . ,  1 994), and significantly 

different activities have been associated with each isoform (Toksoz et aI . ,  1 992). We 

therefore felt that it was reasonable to hypothesize that altered regulation of SCF isoform 

expression may have pathological consequences. 

To evaluate the levels of expression of one isoform compared to the other, we set out 

to develop a means to quantitate the relative amounts of each mRNA produced by a given 

population of cells. This laboratory had previously designed a competitive reverse 

transcription polymerase chain reaction (RT-PCR) protocol with which to quantitate levels 
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Figure 4 .  Effects ofrmSCF'69 injections on severity of Nippos/rangy/lls brasiliensis infection: 
adult worm counts. Daily injections and Nb infections were performed as in Figure I legend. 
Mice sacrificed at day 16 post infection received continued daily injections of rmSCF'69 or 
PBS (3 1 days total) .  15 cm sections of small intestines were removed, and adult Nb worms 
were counted. Data represent the mean ± SEM of worm counts in four mice. No worms 
were seen in any of the mice at day 1 6 . 
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ofmRNA expression for the gamma chain of the murine high-affinity IgE receptor (Fc.RIy) .  

We used an adaptation of this technique in an attempt to determine the quantities of mRNAs 

for both isoforms of stem cell factor. 

As described in Materials and Methods, this protocol involves the use of a panel of 

known quantities ofa cRNA control fragment which is co-transcribed and co-amplified in the 

RT-PCR reactions with cellular RNA, resulting in a competitive advantage for the species of 

higher molar concentration. The products are distinguished from each other by agarose gel 

electrophoresis, based on their size differences, and the relative quantities are determined by 

comparing the densities of the resulting bands. The original amount of target mRNA can be 

calculated based on the amount of cRNA control fragment needed to generate a similar 

amount of product. We initially developed a protocol to evaluate mouse SCF expression. 

By  using an antisense PCR primer which targets a sequence within exon 6, the quantity of 

mRNA for the soluble isoform can be determined. In a separate set of reactions using an 

antisense primer which anneals upstream of exon 6, the combined quantities of both isoforms 

is obtained. The molar concentration of the membrane-bound isoform is calculated by 

subtracting the value obtained for the soluble isoform of mRNA from that obtained for the 

combined forms. 

The results ofa representative experiment are shown in Figure 5. The DNA from this 

gel was subjected to Southern blot analysis and visualized by hybridization with a radiolabeled 

oligonucleotide probe, followed by autoradiography (see Materials and Methods). In this 

experiment, the amount of SCF mRNA in I Ilg of total cellular RNA (the amount added to 

the original reaction mixture), is  determined to be between 0.2 and 2 . 0  picograms, based on 
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Figure 5 .  Competitive RT-PCR for quantitation of mouse SCF mRNA. A constant amount 
(I Ilg) of total RNA from BALB/c 3T3 fibroblasts was added to decreasing amounts of mSCF 
cRNA control fragment, as indicated . Samples were then reverse transcribed to cDNA and 
amplified by polymerase chain reaction. Shown is an autoradiograph of the Southern blot of 
the amplified products. 
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the relative intensities of the bands .  Alternatively, the  bands on an auto radiograph can be 

assigned numerical values by densitometry, allowing for more accurate calculations. 

We developed a similar protocol for the evaluation of human SCF. However, 

although the technique is highly sensitive and can be performed on very small quantities of 

RN A, we concluded that it is overly labor intensive in requiring a dose response curve for 

each experimental sample. Therefore we sought to detennine if our samples could be assayed 

using a ribonuclease protection assay (RP A), which is ten times more sensitive that Northern 

analysis, and could be used in side-by-side comparisons between samples. 

Two isoforms of human stem cell factor messenger RNA can be detected by a ribonuclease 
protection assay 

Schwann cells are a source of SCF (Ryan et aI . ,  1 994) and mast cells, which express 

Kit and respond to SCF, are hyperplastic in neurofibromas (Isaacson, 1 976). In light of the 

above mentioned activities associated with the two isoforms of SCF (and their possible 

contributions to pathological conditions), we set out to examine the expression of stem cell 

factor isoforms in tissues from NF l and non-NF l patients. 

In an effort to acquire a means by which the two isoforms of human stem cell factor 

messenger RNA (SCF mRNA) could be discretely detected, a ribonuclease (RNase) 

protection assay (RP A) was developed. RP A involves hybridization of a radiolabeled RNA 

probe to a target mRNA by complementary base-pairing, and subsequent ribonuclease 

digestion of all unhybridized RNA. This study utilizes a probe which is complementary to the 

sequence encoding most of exons 5 and 6 of the SCF mRN A. A protected fragment 222 
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nucleotides in length results from hybridization of the probe with an mRNA which includes 

sequence encoded by exon 6 (the soluble isoform). When exon 6 is absent, as in the case of 

the membrane-bound isoform, the protected fragment is  1 44 nucleotides long (see Figure 6) .  

To assess the ability of the RPA to detect the mRNA isoforms, the procedure was 

performed on total RNA extracted from human fibroblast-derived cell lines, because 

fibroblasts are known to express SCF (Kitamura et aI. ,  1 989; Fujita et aI . ,  1 989; Kitamura and 

Fujita, 1 989; Jarboe and Huff, 1 989). Autoradiographic analysis of the gel reveals that bands 

representing protected fragments of apparent lengths of 222 and 1 44 nucleotides result, 

indicating that SCF mRNAs have been detected for the soluble and membrane-bound 

isoforms, respectively (Figure 7). 

In addition to the fibroblast-derived cell l ines, we performed the procedure on RNA 

extracted from primary human fibroblast cultures which had been derived by explantation of 

surgical skin tissue. In 7 out of 7 samples tested, a band corresponding to a protected 

fragment of 222 nucleotides was observed, suggesting expression of the soluble isoform of 

SCF mRNA (Figure 8) .  As part of a collaborative effort led by Dr. Dome Yager (Division 

of Surgery, Department of Medicine. Virginia Commonwealth University, Richmond, 

Virginia), we included primary fibroblasts derived from keloid tissue in this study. Keloids 

are characterized as progressively enlarging scars resulting from excessive collagen deposition 

during connective tissue repair, and Dr. Yager' s  work includes investigation of the 

mechanisms by which keloids are formed. We sought to evaluate whether a change in SCF 

i soform expression by the resident fibroblasts played a part in this mechanism. Our 

preliminary conclusions are that there appears to be no change in SCF isoform expression by 
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Figure 6. Ribonuclease protection assay for human SCF mRNA. Schematic representation 
of the hybridization specificity of the probe used for RPA. 
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Figure 7 .  Autoradiograph of RPA on human fibroblast-derived cell lines. RPA was 
performed on 10 Ilg of total RNA as described in Materials and Methods. The human 
fibroblast cell lines used are : (lane I) CCD I 8 ; (lane 2) Detroit 5 5 1; (lane 3) HS68; (lane 4) 
KEL-FIB; (lane 5) MRC-9. Size markers (M) are shown to the left. Expected fragment sizes 
of 222 and 144 nucleotides indicating the soluble and membrane-bound isoforms of SCF 
mRNA, respectively, are indicated. 
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Figure 8 .  Autoradiograph of RP A on primary human skin fibroblasts. RP A was performed 
on 1 0  Ilg of total RNA extracted from cultures of primary fibroblasts established by 
explantation of human skin tissue. Data are representative of seven subjects tested. Samples 
are: (lane I) 8N-normal skin; (lane 2) Edwards-keloid tissue; (lane 3 )  1 6BN-normal skin from 
an Afiican-Amencan donor; (lane 4) 3 0K-keloid tissue. S ize markers (M) are represented at 
the left. Arrow indicates expected 222 nucleotide fragment size for the soluble isoform of 
SCF rnRNA. 
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keloid-derived fibroblasts, compared to those derived from normal skin. 

Human malignant schwannoma cell lines express only the membrane-bound isoform of stem 
cell factor messenger RNA 

The malignant schwannoma is a rare form of cancer which seems to have an increased 

rate of incidence in NFl patients (Bernards et aI . ,  1 992). We obtained cell lines derived from 

four human malignant schwannomas and extracted RNA for analysis by RPA. In each of the 

four human malignant schwannoma cell lines, a protected fragment of an apparent length of 

1 44 nucleotides is seen (Figure 9, arrow), whereas no 222 nucleotide fragment is evident. 

These data indicate that the cell lines exclusively express mRNA for the membrane-bound 

isoform of SCF. 

Other human malignant cell lines do not exhibit exclusive expression of the membrane­
bound isoform of stem cell factor messenger RNA 

The preferential expression of membrane-bound SCF mRNA by the malignant 

schwannoma cell lines caused us to ponder whether this pattern of expression was in any way 

related to the transformed phenotype of the cell s . In order to determine if other human 

malignancies also expressed the membrane-bound form, we obtained total RNA samples 

extracted from human small cell lung carcinoma cell lines and a human breast cancer cell line, 

and examined them for similar patterns of expression. Each of the samples tested appears to 

express the soluble isoform of SCF mRNA (Figure 1 0) .  
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Figure 9. Autoradiograph of RPA on human malignant schwannoma cell lines. RPA was 
performed on 10 �g of total RNA extracted from malignant schwannoma cell lines as 
described in Materials and Methods. Samples are: (lane I) NF- I T; (lane 2) ST88- 1 4; (lane 
3)  STS-26T; (lane 4) T265.  Size markers (M) are shown. Arrow indicates the expected 1 44 
nucleotide fragment size for the membrane-bound isoform of SCF mRNA. 
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Figure 1 0 .  Autoradiograph of RP A on human small cell lung carcinoma cell lines and a 
human breast cancer-derived cell line. RPA was performed on 1 0  iJg of total RNA extracted 
from human small cell lung carcinoma (SCLC) cell lines or a breast cancer line as described 
in Materials and Methods. Samples are: (lane I) H I 46-SCLC; (lane 2) H209-SCLC; (lane 
3) H249-SCLC; (lane 4) WBA-SCLC; (lane 5)  MCF7-breast cancer line. S ize markers (M) 
are shown. Arrow indicates the expected 222 nucleotide fragment size for the soluble isoform 
of SCF mRNA. 
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Expression of the exon 6-containing mRNA correlates with release of soluble SCF protein 

Production of soluble stem cell factor involves at least two steps :  a splicing event 

which includes the exon 6-encoded sequence in the mRNA, and proteolytic cleavage of the 

protein, which is  initially expressed as a membrane-inserted protein (Anderson et aI . ,  1 99 1 ) . 

It is possible that SCF expression may be regulated, at least in part, at the proteolysis step (for 

example, no cleavage of an exon 6-containing protein, resulting in membrane-bound SCF). 

In  an effort to ascertain whether detection of exon 6-containing mRNA transcripts by 

ribonuclease protection assay correlated with release of soluble stem cell factor by the same 

population of cells, we performed a sensitive enzyme-linked immunosorbent assay (ELISA) 

on the culture supernatants of the cell lines used. SCF was detected in the supernatants of cell 

l ines which were found by RP A to express the soluble isoform of SCF mRNA (Figure 1 1 ) .  

However, the culture supernatants o f  the four malignant schwannoma cell lines, which 

expressed only mRNA for the membrane-bound isoform as determined by RPA, contained 

no detectable SCF (Figure I I ) .  

Neur()fibroma tissue and other Schwann cell-containing tumors express soluble SCF mRNA 

Total RNA was extracted from surgically excised neurofibroma, and subjected to RP A 

analysis .  Figure 1 2  indicates that this tumor expresses the soluble (arrow), but not the 

membrane-bound form of SCF mRNA. Other Schwann cell-containing tumors, including an 

additional neurofibroma, a vestibular schwannoma, and an acoustic neuroma were evaluated 

in  a similar fashion. For comparison, a meningioma specimen was also included in this 

experiment. No 1 44 nucleotide protected fragments were observed in any of the samples, 
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Figure 1 1 .  Enzyme-linked immunosorbent assay to detect soluble human SCF in cel l  culture­
conditioned media. ELISAs were performed on conditioned media from the indicated cell 
lines using a commercial kit. Results were obtained using an automated plate reader. 
CCD I 8, HS68, and MRC-9 are human fibroblast cell lines. HT I 080 is a human fibrosarcoma 
cell line which was shown by RP A to express the soluble isoform of SCF mRNA (data not 
shown). NF- I T, ST88- I4, STS-26T, and T265 are human malignant schwannoma cell lines. 
Sensitivity of the assay ranged from 3 1 .25  to 2000 pg/ml of human SCF. Data represent the 
mean of duplicate wells . Similar results were obtained in three separate experiments. 
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Figure 12 .  Autoradiograph ofRPA performed on neurofibroma tissue. 20 �g of total RNA 
extracted from neurofibroma tissue was subjected to RP A as described in Materials and 
Methods .  Size markers (M) are shown. Arrow indicates the 222 nucleotide expected 
fragment size for the soluble isoform of SCF mRNA. NF: neurofibroma. 
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while the majority of the tumors revealed a fragment of222 nucleotides, indicating expression 

of the soluble isoform of SCF mRNA (Figure 1 3 )  No SCF mRNA was detected in the 

meningioma tissue. 

Human malignant schwannoma cell lines exhibit low level expression of Kit 

Normal rat and human Schwann cells have been shown to express stem cell factor, but 

not its receptor, Kit (Ryan et aI . ,  1 994). In that study, however, it was found that the ST88-

14  human malignant schwannoma cell line simultaneously expressed both proteins, suggesting 

that these cells may proliferate in response to autocrine stimulation (Ryan et aI . ,  1 994). 

Having obtained three additional human malignant schwannoma cell l ines, we sought to 

determine if  they also expressed Kit. In the course of pursuing a related project in this 

laboratory, Christopher Shelburne analyzed the four cell lines by indirect immunofluorescence 

and confocal laser cytometry. Figure 14 indicates that each of the four lines exhibits 

fluorescence indicative of a low level expression of Kit (panels A-D). Corresponding samples 

incubated with a non-specific mouse IgG, showed no fluorescence (not shown) . Further 

analyses suggest that the Kit protein in each of these lines is truncated in some way, and bears 

a novel point mutation which may cause the receptors to be constitutively activated 

(manuscript in progress). HMC- I cells, which express Kit abundantly, are shown as a positive 

control (panel E). 

Kit is not detected on Schwann cells of neurofibroma or malignant schwannoma tumors 

Neurofibromas are composed primarily of Schwann cells, but include a few other cell 
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Figure 1 3 .  Autoradiograph of RP A performed on human Schwann cell-containing tumors. 
RPA was performed on 10 �g of total RNA extracted from human tumors as described in 
Materials and Methods. Tumors include: (lane 1) neurofibroma; (lane 2) acoustic neuroma; 
(lane 3 )  meningioma; (lane 4) vestibular schwannoma. S ize markers (M) are shown. Arrow 
indicates the expected 222 nucleotide fragment for the soluble isoform of SCF mRNA. 
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Figure 14 .  Photomicrographs of indirect immunofluorescence to detect Kit protein expression 
by human malignant schwannoma cell lines. Cells were incubated with a monoclonal antibody 
against human Kit. Bound antibodies were visualized using a fluorochrome-labeled secondary 
antibody, followed by confocal laser cytometry. Samples are : (A) NF- l T; (B) ST88- 14 ;  (C) 
STS-26T; (D) T265 .  The human mast cell line HMC- l (E) were used as a positive control .  
The negative control was the KEL-FIB human fibroblast cell l ine (F) . 
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types, including mast cells. We wished to detennine whether these Schwann cells express the 

Kit receptor, offering a possible explanation for their hyperplasia. Sections of formalin-fixed 

paraffin-embedded neurofibromas were evaluated for the expression of Kit protein by 

immunohistochemistry as described in Materials and Methods. Mast cells are known to 

express Kit protein, and therefore serve as convenient internal controls for the staining 

protocol. Indeed, Kit protein was easily detectable on mast cells (Figure 1 5, arrows). The 

surrounding Schwann cells, however, show no evidence of immunoreactive protein. By using 

differential interference contrast microscopy at a higher magnification (Figure 1 6) we were 

better able to identifY the Schwann cells, based on their characteristic fibrillar morphology. 

The detection of Kit protein on all four of the malignant schwannoma cell lines led to 

our hypothesis that there may be a correlation between aberrant Kit expression by Schwann 

cells and a transformed phenotype.  However, the results of immunohistochemical analyses 

of malignant schwannoma sections did not support this hypothesis. Once again, Kit expression 

by mast cells was evident, but no Kit was detected on the Schwann cells of these tumors 

(Figure 1 7) .  

Growth of the HMC-I cell line is not supported by coclI/ture with or conditioned media from 
human malignant schwannoma cell lines 

In light of the fact that both Schwann cells and mast cells are found in increased 

numbers in neurofibromas (Isaacson, 1 976; Peltonen et aI . ,  1 988 ;  Johnson et aI . ,  1 989), and 

that Schwann cells make stem cell factor (Ryan et aI . ,  1 994), we wanted to investigate the 

possibility that either cell type may be inducing the proliferation of the other. We obtained 
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Figure 1 5 .  Photomicrographs of  immunohistochemistry to  detect Kit protein in neurofibroma 
tissue sections. (A) Immunohistochemistry was performed on neurofibroma sections using 
a polyclonal antibody agains human Kit as described in Materials and Methods. Arrows 
indicate Kit+ mast cells. (B) Adjacent section stained with an isotype-matched control 
antibody. Original magnification: 66X. 
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Figure 16 .  High magnification photomicrographs of immunohistochemistry to detect Kit 
protein in neurofibroma sections. Sections of neurofibroma depicted in Figure 1 5  viewed at 
a higher magnification. (A) Kit+ mast cell. (B) Adjacent section stained with an isotype­
matched control antibody. Original magnification: 3 3 0X. 
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Figure 1 7 .  Photomicrographs of immunohistochemistry to detect Kit protein i n  malignant 
schwannoma tissue sections. Immunohistochemistry was performed on thin sections of 
human malignant schwannoma tumors as described in Materials and Methods. (A) Section 
stained with a polyclonal antibody against human Kit. Arrows indicate Kit+ mast cells .  (B) 
Adjacent section stained with an isotype-matched control antibody. Original magnification :  
1 3 ZX. 
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the HMC-I cell line, which was derived from a patient with mast cell leukemia, and is thought 

to represent a human mast cell line (Butterfield et aI . ,  1 988), to grow in coculture with the 

malignant human schwannoma cell lines. 

Twelve separate experiments involving HMC- I cells in coculture with malignant 

schwannoma cell lines, or HMC- I cells grown in the presence of conditioned media (CM) 

derived from the schwannoma lines were performed. The proliferation of HMC- I cells, 

determined either by 3H-thymidine uptake assays or by increases in cell number, was not up-

regulated in any of the experiments. Typical results are represented in Figure 1 8 . Oddly, in 

early cultures ofHMC- 1 cells in the conditioned medium of the ST88- 1 4  schwannoma line, 

we noted a rapid demise of the HMC- I cells (data not shown) . The cell death was not 

occurring through an apoptotic pathway, according to the results of a terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Upon receipt of a 

different clone of the ST88- 1 4  line from Dr. Jonathan Fletcher (Department of Pathology, 

B righam and Women's  Hospital, Boston, MA), the experiments were repeated, and this 

phenomenon was no longer observed (Figure 1 9), suggesting that the original clone likely 

contained a toxic contaminant. 

Characterization of murine bone marrow-derived mast cel/s clllillred with Schwann cel/­
conditioned media from wild type or NFl-deficient mice 

Efforts to conduct experiments examining potential paracrine effects of mast cells and 

Schwann cells upon each other have been hampered by the difficulties involved in obtaining 

and maintaining relatively pure populations of normal human mast cells and Schwann cells .  
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Figure 1 8 .  Proliferation of HMC- I cel ls cocultured with irradiated human fibroblast or 
malignant schwannoma cell lines. Malignant schwannoma and KEL-FIB cells were irradiated 
with 127Cs (4000 rads) and seeded onto a 96 well plate. HMC- l cells were co cultured with 
the irradiated cells for 2 days. Each well was incubated for 4 hours after the addition of I IlCi 
of3H-thymidine, and the cells were harvested with a PHD cell harvester. Incorporation of 'H­
thymidine was determined using a scintillation counter. Data represent the mean ± SEM of 
triplicate wells .  
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Figure 19 .  Daily cell counts ofHMC-l cells grown in 25% ST88- l 4  CM. HMC- l cells were 
grown in a 25 cm2 flask in a 25% concentration of conditioned medium from cultured ST88-
14  human malignant schwannoma cells .  The number of viable HMC- l cells was determined 
daily by trypan blue exclusion. 
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The experiments described above were done with cel l  lines, which represent phenotypically 

abnormal cells, and therefore do not serve as an adequate model system. Primary cultures of 

mouse mast cells are routinely established in this laboratory, and attempts to isolate and grow 

highly purified cultures of mouse Schwann cells have been successful in other labs, thereby 

offering a potential source of cells with which to study interactions in the murine system. The 

establishment of the NFl knockout mouse strains (Jacks et aI . ,  1 994) allows for comparisons 

between normal cells and neurofibromin-deficient cells .  

We obtained conditioned media from Schwann cell cultures derived from wild-type, 

NFl +1-, and NFl -1- mice from the laboratory of Dr. Nancy Ratner (Department of Cell 

Biology, Neurobiology and Anatomy, College of Medicine, University of Cincinnati) .  We 

cultured bone marrow-derived mast cells in 1 0% concentrations of the various Schwann cell 

conditioned media and compared the cultures for differences in mast cell phenotype or rates 

of proliferation. Alcian blue/safranin stains were done to determine the percentage of cells 

containing safranin-positive (heparin-containing) granules, characteristic of the connective 

tissue mast cell phenotype (CTMC). Our laboratory has previously used the shifting of alcian 

blue/safranin staining to redder granulation as an indication of the presence of SCF in cell­

conditioned medium (Ryan, 1 992). Cultures containing each of the conditioned media were 

left untreated or were supplemented with either 50 ng/ml rmSCF, 50 U/ml rmIL-3 , or both. 

Cytospin preparations of the cells were stained with alcian blue and safranin, followed by 

microscopic examination. The total number of cells in five random 20X fields were counted, 

and the percentages of cells with san-anin-positive granules were calculated (Table I ) . Figure 

20 depicts the appearance of cells grown in the absence of any conditioned media, and is 



Table 1 .  Alcian blue/safranin staining of bone marrow-derived mast cells 

Percent cel1s containing safranin-positive granules 

no added 50 ng/ml 50 Vlml SCF + IL-3 

factors rmSCF rmIL-3 

Cells grown 
in cDMEM 0% 86% 0% 92% 

alone 

Cel1s grown in 10% conditioned media supplemented with 
50 U/ml rmIL-3 

Conditioned medium Safranin-positive cells 

cDMEM alone (no CM) 0% 

BALB/c 3T3 fibroblast CM 1 7% 

NFl +1+ Schwann cell eM 3 0% 

NFl +1- Schwann cell CM 20% 

NFl -1- Schwann cell CM 4% 
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Figure 20. Photomicrographs of alcian blue/safranin-stained bone marrow-derived mouse 
mast cells grown with rmSCF, rmIL-3, or both. Bone marrow-derived mouse mast cells were 
obtained as described in Materials and Methods. A1cian blue/safranin staining of cytospin 
preparations was done after 5 days of culture with (A) 50 ng/ml rmSCF, (B) 50 Vlml rmIL-3 ,  
or (C ) SCF + IL-3 . 
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consistent with the results of previous studies in this laboratory. 

Cells grown in the presence of various conditioned media are represented in Figure 

2 I. An increase in the percentage of safranin-positive cells in CM-containing cultures given 

only IL-3 (Table 1 ), when compared to the absence of safranin staining in cultures which 

contain no conditioned media, suggests that the conditioned media contains one or more 

factors which contribute to the phenotypic shift. The results obtained with cultures containing 

BALB/c 3T3 fibroblast conditioned medium are similar to those from previous work in this 

laboratory (Jarboe et aI . ,  1 989) which led to the discovery of stem cell factor. 

Changes in the rate of proliferation of the mast cells were assessed based on 

incorporation of 3H-thymidine during DNA synthesis. After three days of culture in the 

different combinations of conditioned media and additives noted above, 1 !lCi oeH-thymidine 

was added to each well . After an additional 24 hours in culture, the amount of incorporation 

was determined using a scintillation counter (Figure 22). 
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Figure 2 1 .  Photomicrographs of alcian blue/safranin-stained bone marrow-derived mouse 
mast cells grown in Schwann cell-conditioned media from wild-type or NFl knockout mice. 
Alcian bluelsafranin stains were done on cytospin preparations of bone marrow-derived 
mouse mast cells grown for 5 days with 50 U/ml rmIL-3 in the presence of various cell 
culture-conditioned media. Shown are representative examples of cells grown in 1 0% 
BALB/c 3T3 fibroblast conditioned medium (A), or Schwann cell-conditioned medium from 
wild type (B), NFl +1- (C), or NFl -1- mice (D).  
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Figure 22. Proliferation of bone marrow-derived mouse mast cells grown in Schwann cell­
conditioned media from wild-type or NFl knockout mice. Bone marrow-derived mast cells 
were cultured for 3 days with cytokines and 1 0% concentrations of the conditioned media 
indicated. 1 IlCi oflH-thymidine was added to each well, and the plate was incubated for an 
additional 24 hours. Cells were harvested, and 3H-thymidine incorporation was determined 
using a scintillation counter. Data represent the mean ± SEM of triplicate wells .  
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Discussion 

The research described in this dissertation deals with some of the patterns of 

expression and biologic activities of stem cell factor. SCF is capable of acting on any cell 

which expresses its receptor, Kit. The Kit+ cells addressed in this dissertation research were 

mast cells and malignant schwannoma cell lines. Both Schwann cells and mast cells are found 

in high numbers in the neurofibroma nodules associated with NFl , and Schwann cells have 

been shown to make SCF. The hyperplastic Schwann cells in these lesions have an 

abnormally high tendency to become malignant. Many such solid tumors have been shown 

to involve an SCFIKit autocrine loop. Thus, neurofibromas and malignant schwannomas 

appear likely to have a complex dependency on the SCFlKit complex, whether in an autocrine 

or paracrine signalling pattern. This dissertation research investigates various aspects of SCF 

and Kit expression, with particular emphasis on which isoform of SCF might be expressed. 

To date, very few studies have attempted to make a distinction between different forms of 

SCF expression, membrane or soluble, and relate them to biologic or pathologic situations. 

Membrane-bound and soluble SCF clearly have different biologic activities. 

Membrane-bound SCF is more effective to induce proliferation and differentiation (Miyazawa 

et aI . ,  1 995) ,  whereas soluble SCF is more l ikely to be involved in chemotaxis of Kit+ cells 

(Blume-Jensen et al . ,  1 99 1 )  and augmentation of mediator release from mast cells (Columbo 
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et aI . ,  1 992; Wershil et aI . ,  1 992). Based on the previous work of John Ryan in this 

laboratory, we suspected that Schwann cell-derived SCF might play a role in the mast cell 

hyperplasia associated with NFl neurofibromas. However, it was not clear whether the S CF 

might be more likely to recruit mast cells, or cause mast cells to proliferate in situ, or both. 

Furthermore, we did not know what SCF isoform might be made by the Schwann cel ls .  

Before investigating soluble or membrane SCF effects on cells we suspected of 

expressing Kit only weakly, we first tested the effect of high concentrations of soluble SCF 

(recombinant) on strongly Kit+ cells, peritoneal mast cells . SCF and Kit have been implicated 

in  biologically relevant interactions involving adhesion, migration, survival, proliferation, 

differentiation, and activation (reviewed in Galli et aI . ,  1 994). We suspected that changes in 

expression of SCF and/or Kit resulting from a mutation of the NFl gene leads to the 

hyperproliferation of Schwann cells in a neurofibroma, perhaps partly due to recruitment of 

mast cel l s .  Therefore, we first wanted to demonstrate, in a more straight forward model 

system, stem cell factor-induced recruitment or proliferation of mast cells in vivo, so we 

injected high doses ofrmSCF169 into the peritoneal cavities of mice, and later examined them 

for site-specific mast cell hyperplasias. In addition, we compared the responses of otherwise 

healthy mice to those which had been infected with the intestinal helminth Nippostrongylus 

brasiliensis (Nb). It is known that Nb infection results in a mucosal mastocytosis (Befus and 

Bienenstock, 1 984), and has been used by this and other labs as a model system to study mast 

cell development. We expected that administration of rmSCFI69 would result in increased 

numbers of peritoneal mast cells, and further thought that the greater numbers of mast cells 

in the infected mice would lead to a more rapid clearance of the adult worms in the gut, 
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thereby suggesting that SCF might be acting as a therapeutic agent . 

Surprisingly, SCF treatment resulted in decreases in the number of mast cel ls  found 

in the peritoneal cavities of mice treated with rmSCF169, compared to control mice inj ected 

with phosphate-buffered saline (PBS) alone (Figure 1 ) .  The drop in peritoneal mast cell 

number in response to SCF treatment is similar to that previously observed with Nb infection 

(Huff et aI., 1 995). Kasugai and colleagues have also noted a loss of mast cell precursors in 

the b lood of mice infected with Nb (Kasugai et aI . ,  1 995) .  Our results are, however, in 

contrast to previous studies in which subcutaneous injections of recombinant SCF in mice led 

to the appearance of large numbers of mast cel ls at the dermal site of injection (Zsebo et aI . ,  

1 990b; Tsai e t  aI . ,  1 99 1 ) .  There was no  significant difference in the numbers of  mast cells i n  

back  dermis preparations of  control o r  SCF-treated mice (Figure 2), indicating that 

intraperitoneal injections of rmSCF169 do not seem to confer systemic effects. In addition, no 

significant differences in the degree ofNb infection were noted between PBS-treated controls 

and S CF-treated mice, in terms of the number of adult worms in the gut (Figure 4), or the 

daily expulsion of eggs in the feces (Figure 3) .  

To explain why the intraperitoneal administration of  high doses of rmSCF169 does  not 

lead to proliferation of mast cells, but rather reduction, we suggest that the mast cells could 

be activated and induced to degranulate, thereby rendering them undetectable by our methods .  

S CF has been shown to induce mediator release from purified human skin mast cells 

(Columbo et aI. ,  1 992) and from purified mouse peritoneal mast cells (Coleman et aI . ,  1 993)  

in vitro. This hypothesis is supported by our observations that SCF treatment combined with 

7 day Nb infection, which contributes both IgE plus antigen, resulted in lower numbers of 
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peritoneal mast cells than with either treatment alone, suggesting augmented degranulation. 

Alternatively, the lower numbers of mast cells detected in SCF-treated mice may reflect a 

change in the pattern of mast cell homing, as suggested by Kasugai and colleagues to be the 

mechanism of loss of mast cell progenitors from blood during Nb infection (Kasugai et aI , 

1 995). Further studies would be needed in this model system to test these hypotheses. We 

conclude from these experiments that the effects of high concentrations of soluble SCF are 

less predictable than previously thought. 

The major part of the dissertation research dealt with the possible etiologic role of the 

SCFlKit complex in NF l lesions. Although the manifestations of type I neurofibromatosis 

rarely lead to fatal consequences, NFl causes significant morbidity. In addition to the medical 

symptoms of the pain and mechanical limitations resulting from the size and location of 

neurofibromas, the patient must also deal with the unfortunate social stigma associated with 

being deformed. Developmental dysfunctions and learning disabilities occur more frequently 

in children and adolescents with NF 1 than in the general population (Dilts, 1 997), creating a 

tendency toward (or perhaps resulting from) a sense of low self esteem. Perhaps due to the 

low incidence of mortality associated with NF l ,  the degree of public awareness has not 

correlated well with the relatively high rate of occurrence of the disease. Although this may 

create obstacles in the way of gaining support for research efforts, it is not an indication of 

the relative importance of such research. The cloning of the NFl gene (Cawthon et ai , 1 990; 

Viskochil et ai , 1 990; Wallace et aI . ,  1 990) and the subsequent characterization of the gene 

product, neurofibromin, has greatly improved our understanding of the disease, and may 

possibly lead to the development of practical clinical interventions. However, even the NFl 
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gene cloning studies do not provide an adequate explanation for the overproliferation of 

S chwann cells and mast cells in the lesions. The purpose of this study has been to obtain 

information about some of the very basic mechanisms at work in NF I, specifically those 

involving stem cell factor and Kit interactions. 

We chose to focus on SCF and Kit due to a logical association of certain facts :  that 

mast cel ls (which express Kit and respond to SCF) are present in the nervous system 

associated with normal nerves (Bienenstock et aI . ,  1 99 1 ); that mast cells are increased at sites 

of nerve damage and repair (Isaacson, 1 976; Olsson, 1 97 1 )  or in nerve-associated tumors, 

such as neurofibromas and schwannomas (Isaacson, 1 976); and that Schwann cells produce 

stem cell factor (Ryan et a! . ,  1 994). We further sought to determine whether aberrations in 

the expression of either SCF (i .e. changes in isoform) or Kit (ectopic expression by Schwann 

cells) may be involved in the development of the tumors characteristic of NFl . 

Human stem cell factor exists as either a soluble or membrane-bound protein, resulting 

from alternative splicing and specific proteolysis (Anderson et a! . ,  1 99 1 ) . Each isoform is 

associated with distinctly significant biological activities (see discussion in Literature Review), 

which led us to the notion that a failure in SCF regulation resulting in aberrant expression of 

either form may contribute to pathology. Since we wanted to evaluate the relative expression 

of the two forms of SCF rnRNA, we developed techniques with which we could discriminate 

and quantitate them. Although a competitive RT-PCR protocol was effective at quantitating 

mRNA levels (Figure 5), we found that a ribonuclease protection assay (RPA) was better 

suited for sample-to-sample comparisons. Therefore, RP A was used throughout this study 

to detect SCF mRNA isoforms. 
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In early experiments using RNA extracted from human fibroblast-derived cell lines, 

we determined that we were able to detect either isoform of SCF mRNA by this method 

(Figure 7). However, in addition to the bands representing the protected fragments of 1 44 

nucleotides (membrane) and 222 nucleotides (soluble), we also noted additional bands 

indicating protected fragments of approximately 1 05 ,  1 75 ,  and 3 00 nucleotides. Since the 

radiolabeled transcript used as a probe in this protocol is  approximately 300 nucleotides long, 

the band of that size likely represents excess probe which remained unhybridized and 

undigested . By reducing the concentration of ribonucleases, and lowering the temperature 

of the digestion reaction, the 1 05 nucleotide fragment was eliminated, leaving the expected 

fragments, appearing as doublets, and the unexpected doublet around 1 75 nucleotides. 

Doublets such as these may result from transient strand separation at AU-rich regions of the 

RNA, allowing for RNase cleavage at that site, or they may represent non-specific cleavage 

due to secondary RNA structure. Similar unexpected fragments have been reported 

elsewhere (Huang et a! . ,  1 992; Kauma et a! . ,  1 996) .  

Having developed an RNase protection assay capable of detecting both SCF isoforms, 

we examined SCF isoform expression from malignant schwannoma cell lines and from 

neurofibroma tissues. The malignant schwannoma is a rare cancer of Schwann cell origin 

affecting much less than 1% of the general population (Cutler and Gross, 1 93 6) .  This rate 

of incidence is increased to up to 2% in NF I patients (Ponder, 1 990; Nimura, 1 992), which 

supports the notion that neurofibromin may function as a tumor suppressor (Weinberg, 1 99 1 ) .  

Because o f  the infrequency o f  occurrence of malignant schwannomas, cells and tissue samples 

from such tumors are in short supply, and are very difficult to obtain for research purposes. 
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We have, however, obtained four cell lines which have been derived from human malignant 

schwannomas, and have used them throughout this study in place of actual tumors or primary 

cultures of schwannoma-derived cells . We note here that cell lines are not completely 

accurate representations of the phenotypic characteristics of their in vivo cell counterparts, 

and interpretations of the data must be made with that in mind. We examined the stem cell 

factor mRNA expression of the malignant schwannoma cell lines by RP A. In every case, only 

the membrane-bound isoform was detected (Figure 9) . These findings were in contrast to 

results obtained with RNA from primary cultures of normal and keloid-derived human 

fibroblasts (Figure 8). The same pattern was observed in multiple subsequent experiments 

u sing the same or different RNA extractions. In view of the fact that, of the five human 

fibroblast cell lines used in the early RP A experiments (Figure 7), the two lines which 

expressed mRNA for the membrane-bound isoform of SCF grew much more rapidly than the 

other three which expressed the soluble isoform mRNA (Table 2), we wondered if the 

expression of primarily membrane-bound SCF correlated with the transformed phenotype of 

these cell lines. Therefore, we sought to determine if other SCF-expressing malignant cells 

exhibited a similar pattern of isoform expression. 

A panel of small cell lung carcinoma (SCLC) cell lines have been characterized with 

respect to stem cell factor expression (Krystal et aI . ,  1 996). We obtained RNA extracted 

from these, as well as from a breast cancer cell line, to address the question of a potential l ink 

between membrane-bound SCF expression and malignancy. The detection of only the soluble 

isoform of SCF mRNA in each of these samples (Figure 1 0) leads us to the conclusion that 

expression of the membrane-bound form is not required for a malignant phenotype in stem 
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Table 2. Patterns of stem cell factor and Kit expression and growth rates of cultured cells 

Cell lines SCF isoform Kit expression Rate of growth 

CCD I 8  soluble ND* slow 

Detroit 5 5 1  membrane ND rapid 

HS68 soluble ND slow 

HTl O80 soluble ND slow 

KEL-FIB membrane negative rapid 

MRC-9 soluble ND slow 

Primary fibroblasts soluble negative ND 

NF- I T  membrane positive rapid 

ST88- 1 4  membrane positive rapid 

STS-26T membrane positive rapid 

T265 membrane positive rapid 

*ND = not determined 
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cell factor-expressing cells .  However, these data do not rule out the possibility that any 

correlation between preferential expression of the membrane-bound isoform and malignancy 

(or perhaps simply hyperplasia) may be dependent upon the cell type. In other words, it may 

be true for Schwann cells, but not small cell lung carcinoma or breast cancer cells .  

The fact that these malignant schwannoma lines exclusively express the membrane 

isoform of SCF is striking in itself. A search of the literature does not reveal any other 

primary cell preparation or cell lines which exhibit such tight regulation toward the membrane 

SCF isoform. Thus, these malignant schwannoma lines may prove to be a good model system 

for studying how the alternative splicing of exon 6 of SCF is regulated. Majumdar and 

col leagues have studied SCF isoform regulation, but only in SCF transfectants, not in 

naturally occurring circumstances (Majumdar et aI . ,  1 996). 

To explore the possibility that all Schwann cell hyperplasias, not just Schwann cell 

malignancy, might be characterized by expression of the membrane-bound isoform of stem 

cell factor, we extracted RNA from tissues obtained by surgical excision of neurofibroma, 

vestibular schwannoma, acoustic neuroma, and meningioma tumors. Except for 

meningiomas, these all contain increased numbers of Schwann cells, but the Schwann cells are 

not transformed. Meningiomas were included as an example of a neural-associated tumor not 

involving Schwann cells. Ribonuclease protection assays performed on these samples indicate 

that the soluble isoform of stem cell  factor, but not the membrane-bound form, i s  being 

expressed in these tissues (Figures 1 2  and 1 3) .  As expected, the meningioma showed little 

SCF expression  of either isoform. It should not be assumed that the source of the SCF 

mRNA being detected in the other tumors is  exclusively Schwann cells, because the tumors 
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contain other SCF-producing cell types, including fibroblasts. The methods used here do not 

allow for the determination of the source of the mRNA from a mixed population of cel ls .  

Nevertheless, Schwann cells do represent a major cellular constituent of each of these lesions, 

and if there had been exclusive expression of membrane SCF, it would likely have been 

revealed by the RNase protection assay. 

In an earlier study in this laboratory, it was reported that the ST88- 1 4  human 

malignant schwannoma cell line expressed Kit, while normal human and neonatal rat Schwann 

cells did not (Ryan et al . ,  1 994). These findings, along with the detection of stem cell factor 

production by the same cells, were suggestive that the ST88- 14  cells might be responding to 

an autocrine growth loop. Coexpression of SCF and Kit has been reported in a variety of 

malignancies (Hibi et al . ,  1 99 1 ;  Toyota et al . ,  1 993 ; Inoue et al . ,  1 994; Hines et a! . ,  1 995), and 

transfection studies have provided strong evidence of a correlation between coexpression and 

growth factor independence in small cell lung carcinoma lines (Krystal et a! . ,  1 996). With the 

acquisition of three additional human malignant schwannoma cell lines, through related studies 

performed by Christopher Shelburne in this laboratory, we sought to determine if these also 

expressed Kit. Indirect immunofluorescence staining, using a monoclonal antibody directed 

against human Kit, was performed on the three cell lines, as well as the ST88- 1 4  line. The 

preparations were analyzed using a confocal laser cytometer, which revealed expression of 

Kit protein at low levels on all four malignant schwannoma lines (Figure 1 4) .  Additional 

characterizations, including immunoprecipitation of Kit protein from the cell lines, suggest 

that the protein may be truncated. Moreover, RT-PCR amplification and subsequent 

sequencing of fragments of the c-kit mRNA indicate a novel point mutation in the kinase 
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region of Kit which may lead to constitutive receptor activation (Shelburne et a! . ,  manuscript 

in  preparation). Taken together, these findings offer two possible explanations for the 

transformed phenotype of the malignant schwannoma cell lines : the cel ls are constantly 

induced to proliferate due to simultaneous expression of SCF and Kit, or they bear a mutation 

in Kit which causes it to be constitutively activated, leading to unregulated growth. 

As mentioned above, although the use of cell lines as a model system offers the 

advantages of abundance and availability, their phenotype may diverge from that of the 

corresponding cells in vivo. To further characterize the Schwann cells of malignant 

schwannomas as well as those of neurofibromas in situ, we obtained formalin-fixed, paraffin­

embedded sections of each tumor type and examined them for Kit expression. No primary 

cell cultures were available from these sources to perform experiments similar to those 

performed on the malignant schwannoma lines. As we have reported in the Results section, 

by performing immunohistochemical analyses of the sections, using a polyclonal antibody 

specific for Kit protein, we were able to detect abundant Kit expression by the resident mast 

cel ls (Figures 1 5 - 1 7) .  However, no Kit protein was detected on the Schwann cells by this 

method. We can not rule out the possibility that Kit may be expressed at levels too low to be 

detected by this method. Indeed, mature mast cells such as these are likely to express much 

higher numbers of Kit molecules than other cells (reviewed in Galli et aI . ,  1 994). We are 

currently developing techniques whereby we can adapt the immunohistochemistry protocol 

such that it can be analyzed with the highly sensitive confocal laser cytometer, thereby 

offering the same degree of sensitivity as was used with the malignant schwannoma cell lines. 

Production of substances with potential mitogenic effects has been observed in mast 
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cells (Pennington et aI . ,  1 9 9 1 )  and Schwann cells (Ridley et aI . ,  1 989;  Ohi et aI . ,  1 990). In 

addition, Schwann cells derived from a neurofibroma of an NF I patient appear to secrete 

growth factor activity which is not observed in Schwann cells from genetically normal 

individuals (Sheela et aI . ,  1 990). We have hypothesized that NFl Schwann cells produce 

factors (SCF and perhaps others) which are chemoattractive and mitogenic for mast cells .  

Thus, the mast cells might be drawn to the site where they, in turn, secrete growth factors to 

which the Schwann cells are responsive, resulting in the formation of a neurofibroma. Others 

have suggested similar theories concerning the involvement of mast cells in neurofibroma 

growth. Riccardi has suggested that mast cells may accumulate following local trauma, or in 

response to tropic factors, and that their secretions may induce abnormal proliferation in other 

cells due to the NFl mutation, resulting in neurofibroma growth (Riccardi, 1 990). 

To test whether human Schwann cells might up regulate the growth of human mast 

cells (such as might occur in NF I neurofibromas), we used malignant schwannoma lines and 

the HMC- I mast-like line, using both co-culture experiments and conditioned medium 

experiments. No upregulation ofHMC-1 growth or differentiation was observed. The slight 

decreases in HMC- I growth were likely due to slight nutritional deprivation due to dilution 

with spent (conditioned) medium. Also, since HMC- I cells have an activating Kit mutation 

(Furitsu et al . ,  1 993), any upregulation due to SCF might be hard to detect . In addition, the 

malignant schwannoma lines might not well represent Schwann cells from NFl neurofibromas. 

It would likely be informative to establish cocultures of human mast cel ls and Schwann 

cells derived from both genetically normal individuals and NF I patients, and monitor them for 

changes in phenotype. These changes might relate to maturation, differentiation, proliferation, 
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or activation. We are not aware of any studies of this sort to date, which is possibly an 

indication of the difficulties inherent in the derivation of pure cultures of human mast cells and 

Schwann cells. In an effort to circumvent these obstacles and approximate the conditions as 

closely as possible, we have performed preliminary experiments in the mouse system using 

conditioned media from NFl knockout Schwann cells kindly provided by Dr. Nancy Ratner 

at the University of Cincinnati .  We have cultured bone marrow-derived murine mast cells 

(BMMC) in the presence of mouse Schwann cell conditioned media (SCCM). Ihe sources 

of the SCCM include Schwann cells derived from wild-type, and NFl heterozygous (+/-) and 

homozygous (-/-) knockout mice. Changes in the phenotype or growth rate of the BMMC 

were then measured by alcian blue/safranin staining and tritiated thymidine incorporation, 

respectively. 

Alcian blue!sa/Tanin staining of mast cells has been used to differentiate between cells 

of the mucosal (MMC) or connective tissue (CIMC) phenotype. Ihe granules of CIMC 

contain heparin, which binds the safranin dye, resulting in pink or red staining. Stem cell 

factor is  produced by cells in the connective tissue microenvironment in vivo, and drives mast 

cell progenitors toward the CIMC phenotype, whereas the MMC result from the influence 

ofIL-3 in the mucosal microenvironment. In in vitro studies, a shift toward red granulation 

in  alcian blue!safranin stained mast cell cultures is an indication of the presence of SCF i n  the 

culture medium. A similar approach was used successfully by John Ryan in his dissertation 

research in  this lab to detect biologically active SCF in other mast cel l  co-cultures. In our 

experiments with Schwann cell-conditioned media (Figure 2 1 ), we noted that, in the presence 

ofIL-3 alone, SCCM from both NFl +/+ (wild type) and NFl +/- mice shifted the cultured 



1 20 

mast cells toward the CTMC phenotype as did cultures containing fibroblast-conditioned 

medium (FCM). In addition, we observed that the wild type SCCM induced a greater shift 

than did the +/- . However, NFl -/- SCCM appeared to have a diminished capacity to exert 

this  effect. It is possible that the Schwann cells of the homozygous knockout mice do not 

release soluble SCF into the medium (perhaps due to a change in isoform expression), and 

therefore do not drive the mast cells as effectively toward the CTMC phenotype. This 

possibility is particularly intriguing in view of the observation that the malignant schwannoma 

lines do not make soluble SCF (Figure I I ) .  The complete loss of neurofibromin in these cells 

may lead to the secretion of other cytokines which, in concert with exogenous SCF and IL-3 ,  

may co-stimulate the proliferation of the cultured mast cells .  Indeed, DNA synthesis was 

increased in mast cells grown in NFl -/- SCCM in the presence of both SCF and IL-3 

compared to all other culture conditions. A possible explanation for why NFl -/- Schwann 

cell-conditioned meduim augments growth but does not change phenotype is that whereas 

other cytokines in Schwann cell conditioned medium could l ikely augment mast cell growth 

(Figure 22), the ability to cause a change toward the connective tissue phenotype is a biologic 

activity that has been much more closely linked to SCF specifically. 

A possible explanation for the intermediate ability of NFl +/- Schwann cell­

conditioned medium to cause a shift in alcian blue/safranin staining is that a mutation  on a 

� NFl allele may cause a pru:ti.a! decrease in the production of soluble SCF by Schwann 

cells. Ifso, these cells might actually be models for Schwann cel ls in NFl , a genetic disease 

which is caused by an autosomal dominant mutation (heterozygous). On the other hand, 

when both alleles are non-productive, as is  certainly the case for both the mouse NFl 
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knockout Schwann cells and the ST88- 1 4  malignant schwannoma (Reynolds et aI . ,  1 992), 

soluble SCF bioactivity, as indicated by safranin-positive granules is  barely detectable (Table 

1) .  Studies involving the ST88- 1 4  malignant schwannoma line show that, although a single 

copy of the NFl gene appears to remain intact in these cells, NFl rnRNA expression was 

found by Northern analysis to be substantially reduced or absent (Reynolds et aI . ,  1 992) . 

Moreover, it has also been reported that ST88- 1 4  cells express extremely low levels of 

neurofibromin protein (DeClue et aI . ,  1 992) . It has been suggested that the greatly reduced 

NFl expression in this tumor cell may be due to a somatic mutation acquired by the intact 

allele, resulting in either greatly reduced transcription or message instability (Reynolds et aI . ,  

1 992). I t  is also possible that a homozygous mutation may lead to  the transformation of  the 

cell, as has been suggested for the ST88- 14 human malignant schwannoma (Reynolds et aI . ,  

1 992) .  Additional studies are required t o  determine i f  lack o f  soluble stem cell factor 

expression by Schwann cells might be caused by severe neurofibromin deficiency. 

The observation that only the membrane-bound form of SCF rnRNA is expressed by 

the four schwannoma cell lines implies that there may be a correlation between SCF isoform 

expression and control of Schwann cell proliferation. It is  interesting that faster rates of 

proliferation were observed in cultures of fibroblast cell lines which expressed the membrane­

bound isoform, compared to soluble SCF-producing cells (Table 2). Although no malignant 

schwan noma solid tumors were available for analysis by RP A, neurofibroma, vestibular 

schwannoma, and acoustic neuroma tumors, each of which is characteristically slow-growing 

and non-invasive, all expressed the soluble SCF isoform (Figures 1 2  and 1 3 ,  Table 3 ) .  In the 

future, it is hoped that, through collaborations with other laboratories, the experimental design 
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Table 3 .  Patterns of SCF and Kit expression by solid tumors 

Tumor SCF isoform Kit expression 

neurofibroma soluble negative 

malignant schwannoma ND* negative 

vestibular schwannoma soluble ND 

meningioma none detected ND 

acoustic neuroma soluble ND 
*ND = not determmed 
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can be expanded to include cultures of Schwann cells in mast cell-conditioned media, as well 

as cocultures of the two cell types from normal and knockout mice. 

In summary, the findings reported here indicate a significant involvement of stem cell 

factor and Kit in at least some of the pathological manifestations of NF l ,  perhaps in part 

through faulty regulation of SCF i soform expression. We first determined that high doses of 

recombinant stem cell factor may cause degranulation or rerouting of peritoneal mast cells, 

because their numbers are decreased in mice after repeated daily intraperitoneal injections of 

rmSCF169 In conjunction with Christopher Shelburne, we have found that four human 

malignant schwannoma cell lines all aberrantly express the Kit receptor, and that this protein 

may be truncated and constitutively activated. We further suggest that loss of neurofibromin 

function may have a direct effect on stem cell factor biologic activity, by regulating the 

induction toward a membrane isoform switch. There are two lines of evidence which suggest 

a possible role for neurofibromin in SCF isoform expression : the mouse NFl knockout data 

and the human ST88- 1 4  malignant schwannoma data, both of which lack neurofibromin 

activity and appear to express the membrane isoform of SCF. In fibroblasts, there appears 

to be a correlation of membrane SCF with more rapid rate of growth. A better understanding 

of the mechanisms by which expression of the stem cell factor isoforms i s  regulated is 

necessary to define a possible relationship between SCF expression and neurofibromin 

function. The malignant schwannoma cell lines and the NFl knockout mice likely represent 

good model systems in which these mechanisms can be studied. This information could lead 

to the development of therapeutic strategies for the treatment of the symptoms of NF I .  
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