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Abstract

THE GENERALIZED MONOTONE INCREMENTAL FORWARD STAGEWISE

METHOD FOR MODELING LONGITUDINAL, CLUSTERED, AND

OVERDISPERSED COUNT DATA: APPLICATION PREDICTING NUCLEAR

BUD AND MICRONUCLEI FREQUENCIES

By Rebecca R. Lehman

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2017.

Director: Kellie J. Archer, Ph.D.,

Chair and Professor, Division of Biostatistics,

College of Public Health at The Ohio State University

With the influx of high-dimensional data there is an immediate need for sta-

tistical methods that are able to handle situations when the number of predictors

greatly exceeds the number of samples. One such area of growth is in examining how

environmental exposures to toxins impact the body long term. The cytokinesis-block

micronucleus assay can measure the genotoxic effect of exposure as a count outcome.

To investigate potential biomarkers, high-throughput assays that assess gene expres-

sion and methylation have been developed. It is of interest to identify biomarkers or

molecular features that are associated with elevated micronuclei (MN) or nuclear bud

(Nbud) frequency, measures of exposure to environmental toxins.

Given our desire to model a count outcome (MN and Nbud frequency) using

high-throughput genomic features as predictors, novel methods that can handle over-

xv



parameterized models need development. Overdispersion, when the variance of a

count outcome is larger than its mean, is frequently observed with count response

data. For situations where overdispersion is present, the negative binomial distribu-

tion is more appropriate. Furthermore, we expand the method to the longitudinal

Poisson and longitudinal negative binomial settings for modeling a longitudinal or

clustered outcome both when there is equidispersion and overdispersion. The method

we have chosen to expand is the Generalized Monotone Incremental Forward Stage-

wise (GMIFS) method. We extend the GMIFS to the negative binomial distribution

so it may be used to analyze a count outcome when both a high-dimensional predic-

tor space and overdispersion are present. Our methods were compared to glmpath.

We also extend the GMIFS to the longitudinal Poisson and longitudinal negative

binomial distribution for analyzing a longitudinal outcome. Our methods were com-

pared to glmmLasso and GLMMLasso. The developed methods were used to analyze

two datasets, one from the Norwegian Mother and Child Cohort study and one from

the breast cancer epigenomic study conducted by researchers at Virginia Common-

wealth University. In both studies a count outcome measured exposure to potential

genotoxins and either gene expression or high-throughput methylation data formed a

high dimensional predictor space. Further, the breast cancer study was longitudinal

such that outcomes and high-dimensional genomic features were collected at multiple

time points during the study for each patient. Our goal is to identify biomarkers

that are associated with elevated MN or NBud frequency. From the development

of these methods, we hope to make available more comprehensive statistical mod-

els for analyzing count outcomes with high dimensional predictor spaces and either

cross-sectional or longitudinal study designs.
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CHAPTER 1

BACKGROUND

1.1 Introduction

1.1.1 Micronuclei and Nuclear Buds

Micronuclei (MN) and Nuclear Buds (NBuds) are nuclear bodies that are formed

in cells during the process of cell division in which DNA damage has occurred. Their

presence may signify genome damage events and indicate chromosomal instability11.

MN are formed in dividing cells from fragments or whole chromosomes lagging be-

hind that do not attach to the mitotic spindle prior to cytokinesis8. Rather than

these fragments or whole chromosomes becoming part of the main nucleus, they are

enveloped into an independent, smaller nucleus. Previous research has shown MN to

be a reliable and precise method for assessing chromosome damage8. There have also

been implications that MN formed by mutagens may play a role in carcinogenesis22.

NBuds form similarly, however, unlike MN, NBuds are still attached to the nucleus

by nucleoplasmic material. It is thought NBuds develop from the elimination of nu-

clear material from the nucleus, the elimination of amplified DNA, or the shrinkage

of a broken nucleoplasmic bridge11. Figure 1 displays ideograms of a micronuclei and

nuclear bud.
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Fig. 1: Ideograms of two binucleated cells with the presence of a micronuclei (left)

and a nuclear bud (right).
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The assay which is used to identify micronuclei and nuclear buds will be described

in Section 1.1.2. The process in which these nuclear bodies form will also be depicted.

1.1.2 Cytokinesis-block Micronucleus (CBMN) Assay

MN assays in human lymphocytes have been developed to measure both whole

chromosome loss and chromosome breaks8. Typically MN are observed in cells that

have undergone division after DNA damage has occurred. The DNA damage can

be spontaneous or arise from exposure to a genotoxic agent. The original goal of

the CBMN assay was to develop a method that may better be able to identify ex-

posure conditions that induce elevated MN counts10. The development of an assay

relied on the ability to count MN or NBuds after at least one cell division has oc-

curred when cells are in a binucleated state. A binucleated state means the cells

must have two nuclei with intact nuclear membranes and situated within the same
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cytoplasmic boundary10. The initial CBMN assay described uses fresh blood8. The

cells completed karyokinesis but were stopped from performing cytokinesis by using

cytochalasin-B8,10. Since the mechanism does not interfere with nuclear division, the

binucleated cells may be counted or scored for the presence of at least one MN or

NBud. Figure 2 is an ideogram of a cell division when there is no MN formation.

Figure 3 is an ideogram of cell division when there is a MN formation. Figure 2 and

Figure 3 both show how the cytochalasin-B stops cells from performing cytokinesis

thus the final cell is binucleated or contains two main nuclei.

Fig. 2: Ideogram of the CBMN Assay mechanism. The cell has undergone nuclear

division and cytochalasin-B has been applied to give rise to a binucleated cell- this

binucleated cell does not contain MN.
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nucleus

nucleus
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Fig. 3: Ideogram of CBMN Assay mechanism. The cell has undergone nuclear division

and cytochalasin-B has been applied; however, a chromosome lags behind and does

not attach to the mitotic spindle which gives rise to the MN formation.
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It has been recommended to score approximately 2,000 binucleated cells8,10. Cri-

teria have been developed for identifying MN including: round or oval in shape, di-

ameter between 1/16 and 1/3 that of the main nuclei, non-refractile, not linked to the

main nuclei via a nucleoplasmic bridge, and they may overlap boundaries with the

main nuclei8,10. NBuds are characterized identically except that they are attached to

one of the main nuclei11.
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1.1.3 Previous Research

The majority of previous studies have examined MN as opposed to NBuds. Con-

founding factors for MN were examined by Fenech et al., 1992 using a dataset con-

sisting of 225 individuals from a South Australian population, which 155 were female

and 70 were male8. It was determined that confounding factors included age, sex, and

smoking status. There was a significant positive correlation between MN frequency

and age. Females generally had higher MN frequency than males, and this was sta-

tistically significant when controlling for age. For a subset of the patients (N=156)

for whom smoking data was collected there was evidence that patients who reported

smoking high number of cigarettes per day had elevated MN frequency8. Only 29 of

the 156 patients were smokers8. Fenech et al., 19938 described at least four other

studies: Au et al., 19912, Migliore et al., 199126, Tomanin et al., 199134, and Yager et

al., 198837 have shown a statistically significant relationship between MN frequency

and age or smoking.

Other previous studies have predominantly focused on identifying exposure con-

ditions such as pesticides, chromium, or organic solvents associated with MN fre-

quency8. Population studies have been done where genotoxic chemicals (e.g. styrene,

chemicals in tannery industries, paracetmol, etc8) are suspects. Various studies have

shown that higher MN frequencies result in a higher risk of cancer development.

Investigators have also shown that chemotherapy can result in inflated MN frequen-

cies8. Prior research has followed testicular carcinoma patients for up to 9 years

post-chemotherapy and shown increased MN frequencies8. Much of the previous re-

search of MN frequency assumes Gaussian distributed data such as Ban et al., 20043,

Guiterrez et al., 199716, Minozzo et al., 200427, and Varga et al., 200636. Varga et al.,

2006 found there to be a significant difference in MN frequencies between breast cancer
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patients and controls, and also showed that age was a confounding variable36. Within

breast cancer patients, those treated by irradiation showed greater MN frequencies36.

Ban et al., 2004 also found elevated MN frequencies in female breast, head, and neck

or cervical cancer patients when compared to healthy female subjects3. Gutierrez et

al., 1997 examined the genetic damage that was attributed to therapeutic exposure

to I sodium iodide, a treatment for hyperthyroidism patients16. The damage was

measured by the presence of MN in the binucleated peripheral blood16. It was shown

that there is a positive relationship between I dose and MN count16. Minozzo et al.,

2004 examined workers exposed to lead and found they had significantly higher MN

frequencies27.

While the majority of the previous research focuses on identifying confounding

variables or examining relationships between chemical exposures and elevated MN

frequencies, we are interested in better understanding the molecular mechanisms that

cause MN or NBud formation.

1.1.4 Review of statistical methods used in analyzing MN frequency

Ceppi et al. (2010) examined 63 studies published between January 2000 and

August 2008 involving MN for their statistical quality and provided recommenda-

tions to improve future analyses6. Among those 63 studies, 98.4% considered age

as a confounder, 85.7% considered gender as a confounder, and 90.5% considered

smoking habit as a confounder. For 77.8% of the studies, non-parametric tests were

applied, and Student’s t-test was the most commonly applied test6. In the 63 studies

examined, models were not limited to Poisson and negative binomial, instead many

assumed a normal distribution. By choosing an inappropriate probability distribu-

tion, costly errors may be produced in the results. Ceppi et al. (2010) reported that

better statistical models should be used when analyzing MN data. They concluded
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that either Poisson or negative binomial regression would be preferred when modeling

a count outcome when more than 2000 cells are scored6.

1.2 Methods for analyzing MN data

1.2.1 Poisson Regression

Both MN and NBuds are examples of count data, a frequently occurring discrete

response. Count outcomes differ from other discrete responses because they cannot

be expressed in the form of several proportions, as there is no upper limit to the values

they can take32. The Poisson distribution is the most frequently used distribution

when analyzing a count or rate outcome. Poisson regression methods have been highly

developed both in a traditional statistical setting where the number of samples (n)

is greater than the number of predictors (p) and many extensions have been made to

the high dimensional setting where n < p25,29. However, the Poisson model is limited

in the amount of variability it can account for1. The Poisson distribution assumes a

mean and variance to be equal to a single parameter, λi,

E(yi) = Var(yi) = λi (1.1)

where yi is the count outcome and i indexes subjects from i = 1, ..., n. Assuming the

mean and variance to be equal limits the Poisson distribution to only be pertinent in

equidispersed settings. The Poisson probability distribution function (PDF) is,

f(yi;λi) =
e−λiλyii
yi!

(1.2)

and the corresponding likelihood is represented by,
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L(λ;y) =
n∏
i=1

e−λiλyii
yi!

. (1.3)

When using maximum likelihood estimation, it is mathematically easier and equiva-

lent to use the corresponding log-likelihood,

l(λ;y) =
n∑
i=1

(yi log λi − λi − log(yi!)). (1.4)

When a rate outcome is analyzed, an offset term is incorporated in the distri-

bution. For example, for MN data, when the total number of cells examined varies

by subject, an offset should be included in the distribution. Therefore, the expected

value is re-written as,

E

(
yi
ti

)
= λi (1.5)

where ti is the offset term. The conditional probability is re-written as,

f(yi;λi) =
e−tiλi(tiλi)

yi

yi!
(1.6)

for each observation i. The likelihood is represented by

L(λ;y) =
n∏
i=1

e−tiλi(tiλi)
yi

yi!
. (1.7)

Recall, it is easier to maximize the corresponding log-likelihood,

l(λ;y) =
n∑
i=1

(yi log tiλi − tiλi − log(yi!)). (1.8)

In Poisson regression the model assumes that the mean can be modeled as a

linear combination of the predictors through a log link function,

log(λi) = log(ti) + x>i β (1.9)
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where β is a vector of coefficients that correspond with the predictor variables, xi. The

log link function may be rewritten in terms of λ showing how the expected response

changes with the predictors. This link function will allow the Poisson log-likelihood

to be rewritten in terms of the highly interpretable predictor coefficients

λi = ti + exp(x>i β). (1.10)

It is often of interest to estimate β which may then be exponentiated to determine

how the expected response changes with the predictor. In order to estimate β using

maximum likelihood estimation, first, the log-likelihood must be rewritten in terms

of β using the link function,

l(λ;y) =
n∑
i=1

(yi(log ti + x>i β)− exp(log ti + x>i β)− log(yi!)). (1.11)

While the Poisson distribution is standard when analyzing a count outcome, it is lim-

ited to an equidispersed setting. When there is overdispersion, the negative binomial

distribution should be considered.

1.2.2 Negative Binomial Regression

When the data are inherently overdispersed then the negative binomial distri-

bution is more relevant. Overdispersion occurs when the response variance is greater

than the mean18. There are a number of causes of overdispersion. It often appears

when observations are based on time intervals of varying lengths or when data are

clustered32. The negative binomial distribution allows for a count or rate outcome to

be analyzed without the assumption that the mean is equal to the variance. An extra

parameter, commonly referred to as the heterogeneity parameter α, is added to the

variance function. The constraint on α is that it takes on a positive rational value.
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Typically, α is not greater than four18. The heterogeneity parameter is inversely

related to the dispersion parameter often referred to as φ. The negative binomial

distribution assumes mean and variance to be given by,

E(yi) = µi (1.12)

Var(yi) = µi + αµ2
i . (1.13)

Except when α = 0, the variance is larger than the mean in the negative binomial

model. Figure 4 demonstrates how the variance and mean change for different values

of α.

Fig. 4: Plot of variance by mean for Poisson (α = 0) and negative binomial models

with different values of the heterogeneity parameter.
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When α = 0 in a negative binomial model, the mean is equal to the variance which

yields the Poisson distribution. Similarly, as α approaches zero, the negative binomial

distribution converges to the Poisson distribution1. Therefore, the Poisson model is
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nested within the negative binomial model given the same set of predictors. The extra

parameter, α, accounts for any inherent overdispersion that might exist in count data.

Negative binomial regression methods have been developed in the traditional

statistical setting when n > p. The negative binomial distribution (NB2 model) is

commonly derived as a Poisson-gamma mixture model. The negative binomial PDF

is,

f(y;µ, α) =

(
yi + 1

α
− 1

1
α
− 1

)(
1

1 + αµi

) 1
α
(

αµi
1 + αµi

)yi
(1.14)

where α, the heterogeneity parameter, must be a positive rational value. The esti-

mation of α will be discussed in Section 1.2.3. The likelihood associated with the

negative binomial PDF is,

L(µ; y, α) =
n∏
i=1

exp

{
yi log

(
αµi

1 + αµi

)
− 1

α
log

(
1 + αµi

)
+

log Γ

(
yi +

1

α

)
− log Γ

(
yi + 1

)
− log Γ

(
1

α

)}
.

(1.15)

It is more straightforward and equivalent to maximize the corresponding log-likelihood

given by,

l(µ; y, α) =
n∑
i=1

yi log

(
αµi

1 + αµi

)
− 1

α
log

(
1 + αµi

)
+

log Γ

(
yi +

1

α

)
− log Γ

(
yi + 1

)
− log Γ

(
1

α

)
.

(1.16)

In negative binomial regression the model assumes that the mean can be modeled

as a linear combination of the predictors. The log link function is,

log(µi) = x>i β (1.17)
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where xi are the predictor variables and β is a vector of their coefficients. The log link

function may be rewritten in terms of µ showing how the expected response changes

with the predictors. This link function will allow the negative binomial log-likelihood

to be rewritten in terms of the predictors

µi = exp(x>i β). (1.18)

In order to use maximum likelihood estimation (MLE) the negative binomial

log-likelihood must be parametrized in terms of the model coefficients, β, which can

be done using the link function in equation 1.17,

l(βj; y, α) =
n∑
i=1

yi log

(
α exp (x>i β)

1 + α exp (x>i β)

)
−

1

α
log

(
1 + α exp (x>i β)

)
+

log Γ

(
yi +

1

α

)
−

log Γ

(
yi + 1

)
− log Γ

(
1

α

)
.

(1.19)

As was shown in Section 1.2.1., with Poisson regression, a similar derivation may

be shown when the outcome is a rate and an offset term, ti, is incorporated in the

negative binomial regression model. The mean and variance are re-expressed as,

E(yi) = µiti (1.20)

Var(yi) = µiti + α(µiti)
2. (1.21)

The negative binomial PDF with the offset term may be rewritten as,

f(y;µ, α) =

(
yi + 1

α
− 1

1
α
− 1

)(
1

1 + αµiti

) 1
α
(

αµiti
1 + αµiti

)yi
. (1.22)
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The associated likelihood is,

L(µ; y, α) =
n∏
i=1

exp

{
yi log

(
αµiti

1 + αµiti

)
− 1

α
log

(
1 + αµiti

)
+

log Γ

(
yi +

1

α

)
− log Γ

(
yi + 1

)
− log Γ

(
1

α

)}
.

(1.23)

The corresponding log-likelihood which is more straightforward to maximize is

l(µ; y, α) =
n∑
i=1

yi log

(
αµiti

1 + αµiti

)
− 1

α
log

(
1 + αµiti

)
+

log Γ

(
yi +

1

α

)
− log Γ

(
yi + 1

)
− log Γ

(
1

α

)
.

(1.24)

Again, the negative binomial regression model assumes that the mean can be

modeled as linear combination of the predictors. The log link function including the

offset term is,

log(µiti) = x>i β (1.25)

where xi are the predictor variables and β is a vector of their coefficients. The log

link function may be rewritten in terms of µ and ti showing how the response changes

with the predictors. This link function will allow the negative binomial log-likelihood

to be rewritten in terms of the predictors

µiti = exp(x>i β). (1.26)

In order to use MLE the negative binomial log-likelihood must be parametrized

in terms of the model coefficients, β which can be done using the link function in
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equation 1.25,

l(βj; y, α) =
n∑
i=1

yi log

(
α exp (x>i β)

1 + α exp (x>i β)

)
−

1

α
log

(
1 + α exp (x>i β)

)
+

log Γ

(
yi +

1

α

)
−

log Γ

(
yi + 1

)
− log Γ

(
1

α

)
.

(1.27)

While the negative binomial model is similar to the Poisson model, there is an

additional parameter, α. This parameter allows for the negative binomial model to

account for overdispersion. In Section 1.2.3 the estimation methods for α will be

described.

1.2.3 Hilbe’s Method of alpha estimation

The two common methods for estimating the parameter, α, previously described

in the negative binomial distribution are MLE and Hilbe’s method, a method of

moments based estimator. MLE works by finding the estimate that maximizes the

likelihood given in Equation 1.22. Equivalently and mathematically more simply, we

may find the MLE of the parameter by finding the estimate that maximizes the log-

likelihood given in equation 1.23. Hilbe’s method for estimating α is to iteratively ad-

just the value of α so that the deviance-based dispersion approximates one18. Hilbe’s

algorithm is as follows:

1. Estimate µ as the mean of the response.

2. Calculate the chi-square test statistic as χ2 =
∑

(yi − µ)2/µ.

3. Calculate the degrees of freedom (df) as the number of subjects minus the

number of parameters (excluding α) included in the model.
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4. The deviance-based dispersion is calculated as φ = χ2/df.

5. Calculate α, the dispersion statistic as 1/φ.

6. Set φold = φ.

7. Re-estimate µ using the negative binomial model and the estimate of α.

8. Update χ2 from the negative binomial model as
∑

((yi − µ)2/(µ+ (α ∗ (µ2))).

9. Re-calculate φ = χ2/df.

10. Re-calculate α = φ ∗ α.

11. Repeat steps 6 to 10 until |φold−φ| is less than some prespecified small tolerance.

Hilbe’s function was coded in R and validated by comparing α̂ from the R func-

tion to α̂ from the theta.mm function that was passed a glm.nb object. The simula-

tion studies were performed at varying levels of α. Secondly, we conducted simulation

studies to determine whether Hilbe’s method or MLE was more precise at estimating

α. Four sets of simulation studies were performed at α levels of 0.1, 0.2, 0.5, and

0.9. For each α level, we simulated 100 independent negative binomial data sets and

estimated α using MLE from the glm.nb function in R and using Hilbe’s function

which was coded into R. The simulation studies were as follows:

1. Randomly generate i = 1, ..., 100 observations with P = 500 variables, xi1, xi2, ..., xiP

following a standard normal distribution.

2. Select a subset, P1, of length 5 of the P variables to be associated with the

response. Set the parameter values to β = (0.5, 0.5,−0.5,−0.5,−0.5) for these

P1 variables. Also assign α to either 0.1, 0.2, 0.5, or 0.9. Finally, assign the

intercept value, γ0 = 0.5.
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3. Generate the µ values for the negative binomial distribution using,

µi = exp(γ0 +

P1∑
k=1

βkxik).

4. Randomly generate the response, Yi ∼ Negative Binomial(µi, α).

5. Estimate α using maximum likelihood estimation in the glm package and Hilbe’s

method using our validated R function.

6. Repeat steps 1-5 times to yield 100 different MLE and Hilbe estimates of α.

As α gets close to 0, neither maximum likelihood estimation nor Hilbe’s method

can accurately estimate α. When α = 0.1, both Hilbe and MLE methods provide

estimates that are undefined, which result when trying to divide by zero. Therefore, in

situations where alpha is 0.1 or less the Poisson distribution may be more appropriate.

Reported from the simulation studies are histograms (Figures 5, 6, and 7) of the

α̂ using both Hilbe’s method and maximum likelihood estimation when the true α is

0.2, 0.5, and 0.9. From examination of the figures, we concluded that Hilbe’s method

outperforms maximum likelihood estimation of α.
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Fig. 5: Histograms of α̂ from 100 simulations for Hilbe’s Method (left) and MLE

(right) when the true α is 0.2.
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Fig. 6: Histograms of α̂ from 100 simulations for Hilbe’s Method (left) and MLE

(right) when the true α is 0.5.
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Fig. 7: Histograms of α̂ from 100 simulations for Hilbe’s Method (left) and MLE

(right) when the true α is 0.9.
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1.2.4 Extension to High-dimensional Count Methods

Extensive work has been done with the Poisson and negative binomial distri-

bution in the traditional statistical setting. However, there are limited methods for

analyzing a count outcome with a high-dimensional predictor space. Development of

high-dimensional methods have been restricted to the Poisson distribution25,29,30,31,35.

Herein we developed three new comprehensive statistical methods for analyzing count

data. First, we developed a method that could be used to analyze an overdispersed

count outcome when there is a high-dimensional predictor space. Our negative bi-

nomial generalized monotone incremental forward stagewise method is described in

Chapter 2. Second, we developed a method that could be used to analyze a longitudi-

nal count outcome when there is a high-dimensional predictor space. Our longitudinal

Poisson generalized monotone incremental forward stagewise method is described in

Chapter 3. Lastly, we developed a method that can be used to analyze an overdis-
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persed longitudinal count outcome when there is a high-dimensional predictor space.

Our longitudinal negative binomial generalized monotone incremental forward stage-

wise method is described in Chapter 4.

1.2.5 Discussion

The following chapters will present the three extensions that were made to the

generalized monotone incremental forward stagewise method for count data outcomes.

For each method we will perform simulation studies to demonstrate how well the new

method performs against current methods. It will also be determined when a negative

binomial model, which accounts for overdispersion, is superior to a Poisson model.

Simulation studies will be performed both with and without an offset, when the

outcome of interest is a rate. Each method will be used to analyze a high-dimensional

dataset where either MN or NBuds are the outcome of interest. Conclusions will be

made about the performance of each method in the simulation studies and when each

is the most applicable. Results from application to a real data set will be displayed

for each new method.
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CHAPTER 2

THE GENERALIZED MONOTONE INCREMENTAL FORWARD

STAGEWISE METHOD FOR THE NEGATIVE BINOMIAL

DISTRIBUTION

2.1 Negative Binomial Norwegian Data

In the 1990s the Norwegian Mother and Child Cohort Study (MoBa) was de-

signed collaboratively by researchers at the Medical Birth Registry of Norway (MBRN)

and by researchers at the National Institute of Public Health24. Pregnant women who

attended routine ultrasounds in Norway were recruited from 1999 to 2005 from 52

hospitals and maternity units. There was no exclusion criteria, and women who were

pregnant more than once in the time period could participate multiple times. The

pregnancy was defined as the unit of observation of the study. A total of 150,309

pregnant women were represented in the study with a total of n = 129, 953 differ-

ent mothers. Of the invited pregnant mothers, 64,136 decided to participate with,

n = 58, 515 unique mothers. There were 53,060 women who had one pregnancy,

5,290 with two pregnancies, 164 with three pregnancies, and 1 with four pregnancies.

Demographic data and other information was collected on all patients through ques-

tionnaires, the MBRN, a cancer registry, a prescription database, a cause of death

registry, and a vaccination registry24. The purpose of the study was to examine the

association between exposures, genetic factors, and diseases24. From the results there

was hope to develop preventions for diseases.

Umbilical cord blood samples were collected immediately after birth in a subset

of the babies (n=200). After quality control and other exclusions, 111 samples were
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hybridized to Agilent 4x44k human oligonucleotide microarrays to measure gene ex-

pression. Sample processing, image analysis, normalization, background correction,

and filtering for the gene expression data are described in Hochstenbach et al.19. For

an even smaller subset (n=29) MN and NBud data were collected and scored us-

ing the procedure described by Decordier et al., 20097. Data were downloaded from

Gene Expression Omnibus (GSE31836). Before analysis, a Boundary Likelihood Ra-

tio test was performed to determine whether a Poisson or negative binomial model

would be more appropriate given the MoBa data18. The alternative hypothesis of

α 6= 0 was tested against a null hypothesis of α = 0. The chi-square test results

were χ2
1 = 59.8 with a p-value of 1.04x10−14. Therefore, we reject the null hypothesis

that α = 0 implying a negative binomial model is more appropriate given the data.

To further support the negative binomial model, a histogram of the micronuclei data

with Gaussian, Poisson, and negative binomial overlays is given in Figure 8.
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Fig. 8: Histogram of MoBa MN with a Gaussian, Poisson, and negative binomial fit

overlays.
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From the histogram we can see that the Gaussian model is a poor fit and the neg-

ative binomial model is better than the Poisson at estimating the high zero counts.

Therefore, this motivates the development of our negative binomial GMIFS model

which we expect to be superior to the Poisson GMIFS model and Poisson glmpath

for the MoBa data analysis.
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2.2 Statistical Methods

2.2.1 Current Methods for Analyzing a Count Outcome in a High-dimensional

Setting

Few methods have been developed for analyzing a count or rate outcome when

there is a high-dimensional predictor space. The methods that have been developed

are limited to the Poisson distribution and are in the class of penalized regression

models.

Penalized models use a pre-determined penalty function to control the regression

coefficients, fit a more appropriate and interpretable model to prevent p > n, and

to prevent overfitting. The glmpath method was developed to be a smoother, less

greedy version of forward stepwise selection29. It uses a linear combination of the L1

and L2 norm penalizations28,29. The method developed by Park et al., 2006 is a path-

following algorithm that is based on a previous algorithm, least absolute shrinkage

and selection operator (LASSO)28,29. LASSO is a variable selection and shrinkage

method that adds a constraint to the sum of squares33. In the linear regression

setting, the LASSO is based on minimizing the sum of squares term with the added

constraint,

N∑
i=1

(yi −
∑
j

xijβj)
2 + λ

p∑
j=1

|βj| (2.1)

where xij are the standardized predictors and yi is the set of centered responses for

i = 1, ..., N and j = 1, ..., p. The modified version of the LASSO that is used for the

glmpath algorithm begins with the generalized linear model formula,

β̂ = arg max
β

L(y;β) (2.2)
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where L represents the likelihood or log-likelihood function. When the number of

predictors p exceeds the number of observations n, a penalization may be imposed

for an automatic variable selection effect29. In the glmpath algorithm, a penalization

comparable to the LASSO is added to the squared error loss with a regularization,

β̂(λ) = arg min
β

(− logL(y;β) + λ||β||1) (2.3)

where λ > 0 is the regularization parameter. The initial value of λ is set to ∞. The

algorithm computes a series of solution sets with each estimating the coefficients with

a smaller λ based on the previous estimate. The three steps of the optimization are:

determine the step size in λ, predict the corresponding change in the coefficients, and

correct the error in the previous prediction29.

The coefficient estimates become exceedingly unstable when some of the predic-

tors are correlated29. Therefore, a quadratic penalty term is added to control the

stability of the fit17,

β(λ̂1) = arg min
β

(− logL(y;β + λ1||β||1 +
λ2
2
||β||22)) (2.4)

where λ1 ∈ (0,∞) and λ2 is a fixed small positive constant.

The glmpath algorithm has been developed for the following distributions: bino-

mial with a logit link, Poisson with a log link, and Gaussian with an identity link28.

The algorithm does not accommodate the negative binomial distribution.

Second, glmnet will fit a generalized linear model via penalized maximum likeli-

hood13,14. The regularization path is computed for the LASSO or elastic net penalty

at a grid of values for the regularization parameter13,14. The cyclical coordinate de-

scent method is repeated until cycles converge14. The cyclical coordinate descent

method optimizes the objective function over each parameter while the others are
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fixed14. The elastic net solves the following problem:

min
(β0,β)∈RP+1

[
1

2N

N∑
i=1

(yi − β0 − x>i β)2 + λPα(β)

]
(2.5)

where

Pα(β) = (1− α)
1

2
||β||2l2 + α||β||l1

=

p∑
j=1

[
1

2
(1− α)β2

j + α|βj|],
(2.6)

N are the number of observations, and xij are the standardized predictors. Pα is

also a compromise between the ridge-regression penalty (L2 norm) and the LASSO

penalty (L1 norm) so like glmpath, glmnet reaps the benefits of both methods13,14.

Ridge regression works to shrink the coefficients of correlated predictors towards each

other, therefore allowing them to borrow strength from each other. The LASSO is

indifferent towards very correlated predictors and typically picks one and ignores the

remaining. The glmnet algorithm has been developed for the following situations:

linear, logistic, and multinomial, Poisson, and Cox regression models13. The glmnet

package is allegedly highly efficient when examining data where N << p.

Last, Makowski and Archer, 2015 recently established the Generalized Monotone

Incremental Forward Stagewise (GMIFS) Method for the Poisson regression setting25.

This was an extension of the GMIFS method that was originally developed by Hastie

et al. for the logistic regression model17. The Poisson GMIFS method enables mod-

eling a count outcome in a high-dimensional setting or when n < p. Recall the

log-likelihood for the Poisson distribution defined originally in Section 1.2.1

l(λ;y) =
n∑
i=1

(yi(log ti + x>i β)− exp(log ti + x>i β)− log(yi!)). (2.7)

Often when handling a high-dimensional predictor space, it is of interest to par-
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tition it into penalized and unpenalized spaces. Unpenalized predictors are those that

will be coerced or forced into the model whereas penalized predictors are those that

will be selected by the model via automatic variable selection. The penalized predic-

tors, X, are those from a high-throughput genomic experiment and the unpenalized

predictors, W , are variables that previous research has shown should be forced in

the model. The coefficients of the penalized predictors will be defined as β, and the

coefficients of the unpenalized predictors will be defined at γ. The log-likelihood may

be rewritten as,

l(λ;y) =
n∑
i=1

(yi(log ti + x>i β + w>i γ)− exp(log ti + x>i β + w>i γ)− log(yi!)). (2.8)

To simplify calculations in the GMIFS procedure the expanded covariate space

as previously described in Hastie et al. was used17. By expanding the covariate

space, there is no need to take a second derivative to determine the direction of the

increment. The Poisson GMIFS method developed by Makowski and Archer, 2015 is

as follows25,

1. Set step s = 0 and initialize the components of β̂s = 0.

2. Initialize the intercept, γ0, and the unpenalized coefficients, γj, where j =

1, ..., J using the maximization algorithm of the log-likelihood.

3. Treating γ and γ0 as fixed, find the predictor xm such that m = arg mink(− dl
dβk

)

at the current estimate β̂ = β̂s.

4. Update β̂s+1
m = β̂sm + ε to yield a new vector of parameter estimates.

5. Using the new β vector from step 4, update γ and γ0 via the maximization

algorithm of the log-likelihood. Step is updated to s = s+ 1.

26



6. Repeat steps 3-5 until the difference between successive log-likelihoods is less

than a pre-specified small tolerance, τ or until p ≥ n.

The final model may be selected base on Akaike information criterion (AIC) or

Bayesian information criterion (BIC).

All currently available methods for analyzing a count or rate outcome when there

is a high-dimensional predictor space only consider the Poisson distribution. There-

fore, these methods are only appropriate for analyzing equidispersed data. No meth-

ods exist for analyzing overdispersed count outcomes when there is a high-dimensional

predictor space. An extension of the GMIFS method will be developed for the neg-

ative binomial distribution so that a more appropriate analysis may be performed

when there is implicit overdispersion in the data.

2.2.2 Extension of the Generalized Monotone Incremental Stagewise Method

to the Negative Binomial Distribution

The previously developed Generalized Monotone Incremental Forward Stagewise

(GMIFS) method for the Poisson regression setting was described in Section 2.2.1.

While the GMIFS method for Poisson regression is applicable for many count datasets,

it is limited to handling equidispersed data. There are no statistical methods that can

handle overdispersed count outcomes when there is a high dimensional predictor space

or when n < p. Therefore, we extended the GMIFS method for the negative binomial

distribution to handle these situations. Following the GMIFS method developed for

the Poisson case, we extended the GMIFS method to the negative binomial case.
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Recall that the negative binomial log-likehood (Equation 1.26) may be defined as,

l(βj; y, α) =
n∑
i=1

yi log

(
α exp (x>i β)

1 + α exp (x>i β)

)
−

1

α
log

(
1 + α exp (x>i β)

)
+

log Γ

(
yi +

1

α

)
−

log Γ

(
yi + 1

)
− log Γ

(
1

α

)
(2.9)

where

α: the heterogeneity parameter,

yi: the count outcome ranging from i = 1, ..., n,

x>i : the vector of predictor variables,

β: the vector of coefficients corresponding to the predictor variables.

By expanding this to the negative binomial setting we added one extra parame-

ter, α, the heterogeneity parameter, which will be estimated iteratively using Hilbe’s

method previously described in Section 1.2.318. Recall, Hilbe’s method for estimat-

ing α is to iteratively adjust the value of α so that the deviance-based dispersion

approximates one18.

For the GMIFS method, the predictor space is separated into two components:

penalized and unpenalized predictors. First, unpenalized predictors are those that

will be forced into the model. Second, penalized predictors are those that will be

selected by the negative binomial model via automatic variable selection in the GMIFS

procedure. Because we have both penalized and unpenalized predictors, we separate

the notation for our parameters and use β to represent the parameters that correspond

to the penalized predictors (X), γ to represent the parameters that correspond to

the unpenalized predictors (W ), and γ0 to represent the intercept. Unpenalized

predictors are those which are forced into the model due to already known significance
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or prior knowledge. Previous research summarized in Section 1.1.3. has shown that

age, gender, and smoking status should be included when modeling MN frequency6,11.

Penalized predictors are the variables that our model will select. Frequently this will

be the data from a high-throughput genomic experiment or some high-dimensional

dataset. For the purpose of our research and the MoBa study, the penalized predictors

are the gene expression data.

In the GMIFS algorithm, we first set the β’s, the coefficients of the penalized

predictors, to 0 and initialize α using method of moments and estimate γ and γ0 using

maximum likelihood estimation. This is fitting a model with no penalized predictors

present. The algorithm then iteratively updates the penalized coefficients one at a

time by a small value, ε, as that having the largest negative gradient followed by

re-estimating α, γ and γ0 each time. To determine which coefficient to update, the

derivative of the log-likelihood with respect to β must be obtained, which is

dl

dβ
=

n∑
i=1

xi(yi − x>i β)

1 + α(x>i β)
. (2.10)

The problem arises when we have to determine the direction in which to update the

penalized coefficient. To avoid taking the second derivative, Hastie et al. showed

that you can expand the covariate space as [X : −X]17. At each step, only one

coefficient in either the positive or negative side of the covariate space is incremented

by ε. Once the GMIFS algorithm has been applied to the expanded covariate space,

the coefficients corresponding to the negative covariate space are subtracted from the

coefficients corresponding to the positive covariate space to return to the parameter

estimates on the original x scale. Because we are only estimating the coefficients with

respect to the penalized covariates, our expanded covariate space is XNEW = [X :

−X]. The full GMIFS algorithm for the negative binomial model is:

29



1. Set step s = 0 and initialize the components of β̂s = 0, initialize α̂ using

Hilbe’s method of moments, and initialize the intercept, γ̂0, and the unpenalized

coefficients, γ̂j, where j = 1, ..., J using the maximization algorithm of the log-

likelihood.

2. Treating α̂, γ̂ and γ̂0 as fixed, find the predictor xm such thatm = arg mink(− dl
dβk

).

3. Update β̂s+1
m = β̂sm + ε.

4. Using the new β̂ vector from step 3, update α̂ via Hilbe’s algorithm and update

γ̂ and γ̂0 via the maximization algorithm of the log-likelihood. Step is updated

to s = s+ 1.

5. Repeat steps 2-4 until the difference between successive log-likelihoods is less

than a pre-specified small tolerance, τ or until p ≥ n.

In the implementation of this algorithm, we use ε = 0.001 and τ = 0.001. The final

model will be selected based on model fitting criteria such as AIC or BIC.

Further, recall that an offset term is often used when the response is a rate as

opposed to a count outcome. The GMIFS algorithm accommodates the rate outcome

through the link function described in Equation 1.24. The MoBa data does have a

consistent number of binucleated cells scored by subject for the MN and NBuds. The

recommended number of binucleated cells to be scored is 2,0006. However, in other

studies a range of cells are scored, typically up to 2,000. The above GMIFS method

incorporates an offset term that will account for varying total number of binucleated

cells scored by subject.
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2.3 Simulation Studies

Simulation studies were performed before application to the MoBa data. Data

were simulated from the negative binomial distribution as follows:

1. Randomly generate the predictor set with P different variables, xi1, xi2, ..., xiP

where i = 1, .., n from the standard normal distribution.

2. Select a subset, P1 of length 5 of the P variables to be associated with the

response.

3. Coefficient, β, values were assigned to the P1 variables to be associated with

the response. β1 = β2 = 0.5 and β3 = β4 = β5 = −0.5. Also assign α, the

heterogeneity parameter and the intercept value, γ0 = 0.5. For simulations

where an offset is used, the offset was generated from a uniform distribution on

the interval 1,800 to 2,200.

4. Generate the µ values for the negative binomial distribution using,

µi = exp(γ0 +

P1∑
k=1

βkxik).

5. Randomly generate the response, Yi ∼ Negative Binomial(µi, α).

6. Fit a Poisson GMIFS model, negative binomial GMIFS model, and Poisson

glmpath model.

7. Repeat this to simulate r independent data sets.

r = 100 negative binomial data sets were simulated. Simulations were performed

with and without an offset, for α = 0.1, 0.5, and 0.9, and for n = 100. Models with

and without and offset were examined because often count data must be examined
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as a rate. For example, when there are varying numbers of binucleated cells scored

per patient it is crucial to incorporate the offset into the model and only analyze the

outcome as a rate as opposed to a count. It is of interest to examine varying levels of

α as it would be expected for α close to 0, the Poisson model should be similar to the

negative binomial model. The number of predictors was set to 500 and the number

of predictors associated with the outcome was 5, each being of equal magnitude but

with some in the positive direction and some in the negative direction. For all data

sets, we fit a Poisson and negative binomial GMIFS model. The glmpath model was

not fit due to convergence problems that could not be solved. The methods were

compared using the following outcomes:

• The number of true predictors that have a non-zero coefficient;

• The number of false predictors that have a non-zero coefficient.

The results for the simulation studies when α = 0.1, 0.5, and 0.9 with no offset appear

in Tables 1, 2, and 3. The BIC selected models are more parsimonious than the AIC

selected models. Overall, the negative binomial models are more parsimonious than

the Poisson models. The negative binomial and Poisson model have comparable

sensitivity; however, the negative binomial model has more specificity for eliminating

false predictors, particularly for BIC selected models.
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Table 1.: Results from Simulation Studies when the true α is 0.1: Mean/Median

number of true predictors that had a nonzero coefficient estimate in the final model

(True Nonzero) and the mean/median number of false predictors that had a nonzero

coefficient estimate in the final model (False Nonzero). Oracle number of true non-

zero coefficients, P1 = 5. Oracle number of zero coefficients, P − P1 = 495.

Negative Binomial GMIFS Poisson GMIFS Negative Binomial GMIFS Poisson GMIFS

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 4.5 (1.09) 4.9 (0.41) 5.0 (0.1) 5.0 (0.1)

True Nonzero

Median (Range) 5.0 (0.0, 5.0) 5.0 (3.0, 5.0) 5.0 (4.0, 5.0) 5.0 (4.0, 5.0)

False Nonzero

Mean (Standard Deviation) 5.1 (4.06) 14.1 (5.26) 30.3 (9.22) 30.2 (8.19)

False Nonzero

Median (Range) 4.0 (0.0, 17.0) 14.0 (3.0, 28.0) 30.0 (6.0, 63.0) 29.0 (13.0, 53.0)
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Table 2.: Results from Simulation Studies when the true α is 0.5: Mean/Median

number of true predictors that had a nonzero coefficient estimate in the final model

(True Nonzero) and the mean/median number of false predictors that had a nonzero

coefficient estimate in the final model (False Nonzero). Oracle number of true non-

zero coefficients, P1 = 5. Oracle number of zero coefficients, P − P1 = 495.

Negative Binomial GMIFS Poisson GMIFS Negative Binomial GMIFS Poisson GMIFS

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 3.0 (1.70) 4.5 (0.69) 4.8 (0.39) 4.8 (0.40)

True Nonzero

Median (Range) 3.0 (0.0, 5.0) 5.0 (3.0, 5.0) 5.0 (4.0, 5.0) 5.0 (4.0, 5.0)

False Nonzero

Mean (Standard Deviation) 3.5 (3.78) 23.0 (6.82) 41.7 (11.72) 44.3 (10.6)

False Nonzero

Median (Range) 2.0 (0.0, 16.0) 23.0 (8.0, 41.0) 42.0 (11.0, 68.0) 42.0 (19.0, 71.0)

34



Table 3.: Results from Simulation Studies when the true α is 0.9: Mean/Median

number of true predictors that had a nonzero coefficient estimate in the final model

(True Nonzero) and the mean/median number of false predictors that had a nonzero

coefficient estimate in the final model (False Nonzero). Oracle number of true non-

zero coefficients, P1 = 5. Oracle number of zero coefficients, P − P1 = 495.

Negative Binomial GMIFS Poisson GMIFS Negative Binomial GMIFS Poisson GMIFS

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 1.8 (1.29) 4.0 (0.93) 4.4 (0.87) 4.4 (0.75)

True Nonzero

Median (Range) 2.0 (0.0, 5.0) 4.0 (1.0, 5.0) 5.0 (1.0, 5.0) 5.0 (2.0, 5.0)

False Nonzero

Mean (Standard Deviation) 1.9 (2.16) 27.1 (8.34) 45.6 (15.70) 52.8 (10.96)

False Nonzero

Median (Range) 1.0 (0.0, 12.0) 26.0 (7.0, 57.0) 48.0 (0.0, 71.0) 51.0 (33.0, 77.0)

The α estimates for the BIC selected negative binomial GMIFS models have a

mean of 0.3 and standard deviation of 0.27 when the true α value is 0.1, a mean of

1.2 and standard deviation of 0.82 when the true α value is 0.5, and a mean of 1.9

and standard deviation of 0.79 when the true α value is 0.9. The α estimates for the

AIC selected negative binomial GMIFS models have a mean of 0.005 and standard

deviation of 0.023 when the true α value is 0.1, a mean of 0.06 and standard deviation

of 0.13 when the true α value is 0.5, and a mean of 0.14 and a standard deviation

of 0.33 when the true α value is 0.9. Perhaps the inclusion of so many extraneous

predictors in AIC selected models reduced the overdispersion to underestimate α

values. This may indicate the need for an improved information criteria that selects

models somewhere between AIC and BIC. Boxplots of the number of true non-zero

(Figure 10) and false non-zero coefficients (Figure 9) selected by the models for the
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simulated data were examined. Recall that the true number of non-zero coefficients

is 5 and that there were 495 extraneous coefficients that truly have a zero coefficient

that could be selected by the model as a false non-zero coefficients.

Fig. 9: Boxplot of the False Non-zero Coefficients selected by each of the minimum

AIC (left) and minimum BIC (right) models when there was no offset.
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Fig. 10: Boxplot of the True Non-zero Coefficients selected by each of the minimum

AIC (left) and minimum BIC (right) models when there was no offset.
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The results for the simulation studies when α = 0.1, 0.5, and 0.9 with an offset

appear in Tables 4, 5, and 6. Similar to the models without an offset, the negative

binomial and Poisson model have similar sensitivity, however the negative binomial

model has more specificity for weeding out false predictors.
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Table 4.: Results from Simulation Studies when the true α is 0.1 and there is an offset

term: Mean/Median number of true predictors that had a nonzero coefficient estimate

in the final model (True Nonzero) and the mean/median number of false predictors

that had a nonzero coefficient estimate in the final model (False Nonzero). Oracle

number of true non-zero coefficients, P1 = 5. Oracle number of zero coefficients,

P − P1 = 495.

Negative Binomial GMIFS Poisson GMIFS Negative Binomial GMIFS Poisson GMIFS

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 5 (0.0) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0)

True Nonzero

Median (Range) 5.0 (5.0, 5.0) 5.0 (5.0, 5.0) 5.0 (5.0, 5.0) 5.0 (5.0, 5.0)

False Nonzero

Mean (Standard Deviation) 5.4 (4.53) 92.8 (0.38) 49.7 (17.28) 92.8 (0.37)

False Nonzero

Median (Range) 4.0 (0.0, 29.0) 93.0 (92.0, 93.0) 51.5 (7.0, 82.0) 93.0 (92.0, 93.0)
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Table 5.: Results from Simulation Studies when the true α is 0.5 and there is an offset

term: Mean/Median number of true predictors that had a nonzero coefficient estimate

in the final model (True Nonzero) and the mean/median number of false predictors

that had a nonzero coefficient estimate in the final model (False Nonzero). Oracle

number of true non-zero coefficients, P1 = 5. Oracle number of zero coefficients,

P − P1 = 495.

Negative Binomial GMIFS Poisson GMIFS Negative Binomial GMIFS Poisson GMIFS

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 4.8 (0.65) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0)

True Nonzero

Median (Range) 5.0 (2.0, 5.0) 5.0 (5.0, 5.0) 5.0 (5.0, 5.0) 5.0 (5.0, 5.0)

False Nonzero

Mean (Standard Deviation) 7.3 (4.72) 92.8 (0.40) 44.5 (15.69) 92.8 (0.40)

False Nonzero

Median (Range) 6.5 (0.0, 27.0) 93.0 (92.0, 93.0) 44.0 (12.0, 74.0) 93.0 (92.0, 93.0)
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Table 6.: Results from Simulation Studies when the true α is 0.9 and there is an offset

term: Mean/Median number of true predictors that had a nonzero coefficient estimate

in the final model (True Nonzero) and the mean/median number of false predictors

that had a nonzero coefficient estimate in the final model (False Nonzero). Oracle

number of true non-zero coefficients, P1 = 5. Oracle number of zero coefficients,

P − P1 = 495.

Negative Binomial GMIFS Poisson GMIFS Negative Binomial GMIFS Poisson GMIFS

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 3.9 (1.25) 4.9 (0.36) 4.8 (0.49) 4.9 (0.36)

True Nonzero

Median (Range) 4.0 (1.0, 5.0) 5.0 (3.0, 5.0) 5.0 (2.0, 5.0) 5.0 (3.0, 5.0)

False Nonzero

Mean (Standard Deviation) 6.4 (4.70) 92.9 (0.57) 38.8 (15.53) 92.9 (0.57)

False Nonzero

Median (Range) 5.5 (0.0, 20.0) 93.0 (92.0, 95.0) 39.5 (9.0, 71.0) 93.0 (92.0, 95.0)

The α estimates for the BIC selected negative binomial GMIFS models where

there is an offset have a mean of 0.1 and standard deviation of 0.03 when the true

α value is 0.1, a mean of 0.7 and standard deviation of 0.18 when the true α value

is 0.5, and a mean of 1.2 and standard deviation of 0.34 when the true α value is

0.9. The α estimates for the AIC selected negative binomial GMIFS models where

there is an offset have a mean of 0.07 and standard deviation of 0.023 when the true

α value is 0.1, a mean of 0.3 and standard deviation of 0.09 when the true α value

is 0.5, and a mean of 0.6 and a standard deviation of 0.16 when the true α value is

0.9. Figures 11 and 12 graphically display boxplots of the raw counts of true non-zero

and false non-zero coefficients selected by the models for the simulated data. Recall

that the true number of non-zero coefficients is 5 and 495 extraneous coefficients that
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truly have a zero coefficient that could be selected by the model as a false non-zero

coefficients.

Fig. 11: Boxplot of the False Non-zero Coefficients selected by each of the minimum

AIC (left) and minimum BIC (right) models when there was offset.
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Fig. 12: Boxplot of the True Non-zero Coefficients selected by each of the minimum

AIC (left) and minimum BIC (right) models when there was offset.
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Overall, for all α levels and for data with and without an offset, if the underlying

distribution of the data is negative binomial, the negative binomial GMIFS outper-

forms the Poisson GMIFS. The negative binomial models are more parsimonious than

the Poisson models. While the Poisson and negative binomial models have similar

sensitivity, the negative binomial model have better specificity for not selecting false

non-zero coefficients.

2.4 Application to MoBa Data

For the MoBa data the outcome analyzed was MN frequency. Though maternal

age, gestational age, or maternal smoking status may have been of interest to exam-

ine, those data were not available so the only unpenalized predictor was gender. The

penalized predictors were the gene expression data. The MoBa data were analyzed
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using the negative binomial GMIFS, Poisson GMIFS, and Poisson glmpath25. Previ-

ously Makowski and Archer, 2015 showed that Poisson glmpath models overfit both

in simulation studies and in the application to real data25.

For the negative binomial GMIFS model a plot of the negative log-likelihood and

how it varies at each step of the GMIFS procedure may be seen in Figure 13, followed

by the corresponding AIC and BIC values in Figure 14.

Fig. 13: Log-likelihood Plot for the Negative Binomial GMIFS.

0 500 1000 1500

−
80

−
75

−
70

−
65

 

Step

−
lo

gL
ik

el
ih

oo
d

43



Fig. 14: AIC (left panel) and BIC (right panel) Plot for the Negative Binomial

GMIFS.
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It can be seen that the minimum BIC occurs right past step 500 and the minimum

AIC occurs right past step 1000. The BIC selected model is the more parsimonious

model. Figure 15 shows the coefficients paths for the negative binomial GMIFS model.

Each coefficient is represented by a different colored line such that you can see when

a new coefficient enters the model.
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Fig. 15: Plot of coefficient path for the negative binomial GMIFS model with a

dotted vertical line representing when the minimum AIC is achieved and a solid line

representing where the minimum BIC is achieved.
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The negative binomial GMIFS AIC selected model identified 13 genes associated

with the MN count or 13 genes with non-zero coefficient estimates. Of those 13, six

were also selected by the more parsimonious BIC selected model. Table 7 lists the

genes that were selected by the negative binomial GMIFS model using both AIC

and BIC for selecting the final model. Also in Table 7 are the corresponding probe
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ID, gene name, and whether previous research has shown that this gene is linked to

cancer.

Table 7.: Genes Associated with MN Count by the AIC selected and BIC selected

Negative Binomial GMIFS Model.

Probe ID Gene Symbol Gene Name Associated with Cancer AIC selected NB GMIFS BIC selected NB GMIFS

A 23 P100196 USP10 ubiquitin specific peptidase 10 Glioblastoma multiforme [Grunda et al., 2006] X X

A 23 P133424 SKP1 None Found None Found X

A 23 P138967 SDHD succinate dehydrogenase complex Tumor Suppressor [King et al., 2006] X

A 23 P209394 CFLAR CASP8 and FADD-like apoptosis regulator Human cancers [Fulda, 2013] X

A 23 P42331 HMGA1 high mobility group AT-hook 1 Pancreatic Adenocarcinoma [Liau et al., 2008] X

A 24 P19410 CBX7 chromobox homolog 7 Carcinomas [Federico et al., 2009] X X

A 24 P214858 TREML2 triggering receptor expressed on myeloid cells-like 2 Pancreatic [Loos et al., 2009] X

A 24 P2463 WHSC1 Wolf-Hirschhorn syndrome candidate 1 Carcinogenesis [Toyokawa et al., 2011] X X

A 24 P333019 RNF24 ring finger protein 24 Oral squamous cell carcinoma [Cheong et al., 2009] X

A 24 P397584 TBCC tubulin folding cofactor C None Found X

A 24 P398064 KIAA0258 KIAA0258 Colorectal [Sasaki et al., 2008] X X

A 32 P156549 C1ORF144 None Found None Found X X

A 32 P18547 C21ORF57 chromosome 21 open reading frame 57 Breast [Smeets et al., 2011] X X

For the Poisson GMIFS model a plot of the negative log-likelihood may be seen

in Figure 16, followed by the corresponding AIC and BIC values in Figure 17.

Fig. 16: Log-likelihood Plot for the Poisson GMIFS.
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Fig. 17: AIC (left panel) and BIC (right panel) Plot for the Poisson GMIFS.
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It can be seen that the minimum BIC occurs around step 1100 and the minimum

AIC occurs around step 1300. Figure 18 shows the coefficients paths for the Poisson

GMIFS model and indicates when the minimum AIC and minimum BIC occur.
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Fig. 18: Plot of coefficient path for the Poisson GMIFS model with a dotted vertical

line representing when the minimum AIC is achieved and a solid line representing

where the minimum BIC is achieved.
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Similarly, the Poisson GMIFS AIC selected model identified 17 genes associated

with the MN count or 17 genes with non-zero coefficient estimates. Of those 17,

15 were also selected by the more parsimonious BIC selected model. Eleven of the

genes were common across the AIC negative binomial model and AIC Poisson model.

Table 8 lists the genes that were selected by the Poisson GMIFS model using both
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AIC and BIC for selecting the final model. Also in Table 8 are the corresponding

probe ID, gene name, and whether previous research has shown that this gene is

linked to cancer.

Table 8.: Genes Associated with MN Count by the AIC selected and BIC selected

Poisson GMIFS Model.

Probe ID Gene Symbol Gene Name Associated with Cancer AIC selected Poisson GMIFS BIC selected Poisson GMIFS

A 23 P100196 USP10 ubiquitin specific peptidase 10 Glioblastoma multiforme [Grunda et al., 2006] X X

A 23 P103824 FAU Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed None Found X X

A 23 P138967 SDHD succinate dehydrogenase complex Tumor Suppressor [King et al., 2006] X X

A 23 P209394 CFLAR CASP8 and FADD-like apoptosis regulator Human cancers [Fulda, 2013] X X

A 23 P42331 HMGA1 high mobility group AT-hook 1 Pancreatic Adenocarcinoma [Liau et al., 2008] X X

A 23 P79911 PSMF1 proteasome (prosome, macropain) inhibitor subunit 1 (PI31) Breast Kuznetsova et al. [2006] X X

A 23 P9293 TJP2 tight junction protein 2 Breast [Martin et al., 2004] X X

A 24 P19410 CBX7 chromobox homolog 7 Carcinomas [Federico et al., 2009] X X

A 24 P202567 ITPKC inositol 1,4,5-trisphosphate 3-kinase C Cervical [Yang et al., 2012] X X

A 24 P214858 TREML2 triggering receptor expressed on myeloid cells-like 2 Pancreatic [Loos et al., 2009] X X

A 24 P2463 WHSC1 Wolf-Hirschhorn syndrome candidate 1 Carcinogenesis [Toyokawa et al., 2011] X X

A 24 P31235 EIF5A eukaryotic translation initiation factor 5A Chronic myeloid leukemia [Balabanov et al., 2007] X X

A 24 P397584 TBCC tubulin folding cofactor C None Found X

A 24 P398064 KIAA0258 KIAA0258 Colorectal [Sasaki et al., 2008] X X

A 24 P405054 C1ORF144 chromosome 1 open reading frame 144 Mantle cell lymphoma [Schraders et al., 2008] X

A 32 P156549 C1ORF144 None Found None Found X X

A 32 P18547 C21ORF57 chromosome 21 open reading frame 57 Breast [Smeets et al., 2011] X X

The glmpath minimum AIC model which occurs at step 66 selected 23 genes

and the minimum BIC model occurring at step 37 selected 17 genes to be associated

with MN frequency. When plot functions for the glmpath model were performed R

shut down. Table 9 lists all genes selected by either the AIC or BIC glmpath model.

glmpath selected the most predictors in the final model. As previously reported

by Makowski and Archer, 2015 and observed in their simulation studies, the large

number of predictors included in glmpath Poisson models implies overfitting.
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Table 9.: Genes Associated with MN Count by the AIC selected and BIC selected

glmpath model.

Probe ID Gene Symbol Gene Name Associated with Cancer AIC selected glmpath BIC selected glmpath

A 23 P100196 USP10 ubiquitin specific peptidase 10 Glioblastoma multiforme [Grunda et al., 2006] X X

A 23 P118313 GABARAPL2 GABA(A) receptor-associated protein-like 2 Breast Cancer [Hervouet et al., 2015] X

A 23 P138967 SDHD succinate dehydrogenase complex Tumor Suppressor [King et al., 2006] X X

A 23 P143817 MYLK myosin light chain kinase Colon Cancer [Stadler et al., 2016] X

A 23 P156809 FAM119A family with sequence similarity 119, member A None Found X

A 23 P394304 PDZK1 interacting protein 1 Renal Cell Carcinoma [Zheng et al., 2016] X

A 23 P39665 SLC11A1 solute carrier family 11 Lung Cancer [Zhang et al., 2013] X

A 23 P42331 HMGA1 high mobility group AT-hook 1 Pancreatic Adenocarcinoma [Liau et al., 2008] X X

A 23 P67529 KCNN4 potassium intermediate None Found X X

A 23 P9293 TMEM169 transmembrane protein 169 None Found X

A 24 P19410 CBX7 chromobox homolog 7 Carcinomas [Federico et al., 2009] X X

A 24 P214858 TREML2 triggering receptor expressed on myeloid cells-like 2 Pancreatic [Loos et al., 2009] X X

A 24 P2463 WHSC1 Wolf-Hirschhorn syndrome candidate 1 Carcinogenesis [Toyokawa et al., 2011] X X

A 24 P397584 TBCC tubulin folding cofactor C None Found X

A 24 P398064 KIAA0258 KIAA0258 Colorectal [Sasaki et al., 2008] X X

A 24 P594683 None Found None Found None Found X X

A 24 P708161 None Found None Found None Found X

A 24 P98086 GNA12 guanine nucleotide binding protein Breast Cancer [Mutlu et al., 2016] X

A 32 P10067 None Found None Found None Found X

A 32 P137849 None Found None Found None Found X

A 32 P169754 YBX1 Y box binding protein 1 Breast Cancer [Lim et al., 2017] X

A 32 P18547 C21ORF57 chromosome 21 open reading frame 57 Breast [Smeets et al., 2011] X X

A 32 P208078 MTHFR 5,10-methylenetetrahydrofolate reductase Oral Squamous Cell Cancer [Ferlazzo et al., 2017] X

A 23 P100196 USP10 ubiquitin specific peptidase 10 Glioblastoma multiforme [Grunda et al., 2006] X

A 23 P209394 CFLAR CASP8 and FADD-like apoptosis regulator Human cancers [Fulda, 2013] X

A 23 P39665 RPS6KA1 ribosomal protein S6 kinase None Found X

A 23 P9293 None Found None Found None Found X

A 24 P227927 IL21R interleukin 21 receptor None Found X

A 24 P31235 EIF5A eukaryotic translation initiation factor 5A Chronic myeloid leukemia [Balabanov et al., 2007] X

A 24 P333019 RNF24 ring finger protein 24 Oral squamous cell carcinoma [Cheong et al., 2009] X

A 32 P452655 LGALS9C lectin, galactoside-binding Pancreatic adenocarcinoma [Dhanraj et al., 2013] X

Figures 19 to 24 depict the predicted MN count for each selected model versus

actual MN count. From the figures it can be seen that the glmpath model is acutely

overfitting. This was also demonstrated in Table 9 by the substantial number of

predictors selected to be included in the final model. Recall the sample size for the

Norwegian data was 29 babies. There were 23 genes included in the final model along

with an intercept and the unpenalized predictor, gender. Therefore we are estimating

25 coefficients with a sample size of only 29. The AIC selected negative binomial
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model appears to have the best fit. Both the AIC and BIC selected negative binomial

models are superior to the AIC and BIC selected Poisson models.

Fig. 19: Predicted MN Count vs. Actual MN Count for the Poisson GMIFS Model

with the minimum AIC.
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Fig. 20: Predicted MN Count vs. Actual MN Count for the Poisson GMIFS Model

with the minimum BIC.
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Fig. 21: Predicted MN Count vs. Actual MN Count for the Negative Binomial GMIFS

Model with the minimum AIC.
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Fig. 22: Predicted MN Count vs. Actual MN Count for the Negative Binomial GMIFS

Model with the minimum BIC.
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Fig. 23: Predicted MN Count vs. Actual MN Count for the glmpath Model with the

minimum AIC.
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Fig. 24: Predicted MN Count vs. Actual MN Count for the glmpath Model with the

minimum BIC.
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A chi-square goodness of fit test was performed for the final AIC selected Poisson

GMIFS model, BIC selected Poisson GMIFS model, AIC selected negative binomial

model, and BIC selected negative binomial model. The AIC selected Poisson GMIFS

model chi-square test results were χ2
27 = 1240.9 with an associated p-value of < 0.001.

The BIC selected Poisson GMIFS model chi-square test results were χ2
27 = 1413.6 with

an associated p-value of < 0.001. The AIC selected negative binomial GMIFS model
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chi-square test results were χ2
26 = 6.5 with an associated p-value near 1. The BIC

selected negative binomial GMIFS model chi-square test results were χ2
26 = 5.7 with

an associated p-value near 1. The chi-square goodness of fit results conclude that the

negative binomial model is a better fit than the Poisson models.

Figure 25 and 26 depict Venn diagrams for the AIC and BIC selected models.

Recall that the BIC selected models will lend to more parsimonious models and

thus select fewer predictors to be included in the final model. For the AIC selected

models, nine of the penalized predictors are consistent across all three models. For

the BIC selected models five of the penalized predictors are consistent across all

three models. When comparing the AIC selected negative binomial GMIFS model

to the AIC selected Poisson GMIFS model, there are 11 common predictors. The

Poisson model selected six additional predictors not in the negative binomial model

whereas the negative binomial model only selected two additional predictors not in

the Poisson model. When comparing the BIC negative binomial GMIFS model to

the BIC Poisson GMIFS model there are six common predictors. The Poisson model

selected nine additional predictors not in the negative binomial model whereas the

negative binomial model does not select any additional predictors. When comparing

the AIC negative binomial GMIFS model to the AIC Poisson glmpath model, there

are nine common predictors. The Poisson model selected 14 additional predictors not

in the negative binomial model whereas the negative binomial model only selected four

additional predictors not in the Poisson model. When comparing the BIC negative

binomial GMIFS model to the BIC Poisson glmpath model, there are five common

predictors. The Poisson model selected 12 additional predictors not in the negative

binomial model whereas the negative binomial model only selected zero additional

predictors not in the Poisson model.
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Fig. 25: Venn Diagram of the AIC Negative Binomial GMIFS Model, Poisson GMIFS

Model, and glmpath Model.
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Fig. 26: Venn Diagram of the BIC Negative Binomial GMIFS Model, Poisson GMIFS

Model, and glmpath Model.
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2.5 Discussion

The simulation studies established that when the raw data follows a negative

binomial distribution the negative binomial GMIFS outperforms the Poisson GMIFS

and Poisson glmpath. The glmpath package in R suffered from convergence issues

when the data were negative binomially distributed. The negative binomial GMIFS

model had the same sensitivity as the Poisson GMIFS model, but more specificity

for removing false predictors, particularly when an offset was used. Via goodness-

of-fit test, it was determined that the MoBa micronuclei counts follow a negative

binomial distribution. The glmpath Poisson model overfit the data. Promising was
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that all three methods selected similar subsets of penalized predictors to be included

in the final models selected using AIC or BIC. This may indicate underlying biological

relevance of those genes as having an association with MN frequency or formation.

The developed method has accounted for overdispersion in traditional count data

models when there is a high-dimensional predictor space. Chapters 3 and 4 will focus

on extending the GMIFS method to the longitudinal setting for equidispersed and

overdispersed data when there is a high-dimensional predictor space.
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CHAPTER 3

THE LONGITUDINAL POISSON GENERALIZED MONOTONE

INCREMENTAL FORWARD STAGEWISE METHOD

3.1 Statistical Methods

3.1.1 Current Methods for Analyzing a Count Outcome in a Longitudinal

High-dimensional Setting

As previously described in Section 1.2.1 the Poisson distribution, which is fre-

quently used to model count data, assumes that the data are equidispersed, thus the

mean and the variance are equal to a single parameter, λi,

E(yi) = Var(yi) = λi. (3.1)

The conditional probability of a Poisson distributed random variable is given by

f(yi|λi) =
exp (−λi)λyii

yi!
. (3.2)

The corresponding likelihood is given by

L(λ|y) =
n∏
i=1

exp (−λi)λyii
yi!

. (3.3)

When written with the optional offset included, the mean and variance are defined

in terms of the offset, ti,

E(yi) = Var(yi) = tiλi. (3.4)

Recall that an offset is used when the outcome is a rate as opposed to a count. The

conditional probability of the Poisson distributed random variable with an offset is
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given by

f(yi|λi) =
exp (−tiλi)(tiλi)yi

yi!
, (3.5)

and the corresponding likelihood is given by

L(λ|y) =
n∏
i=1

exp (−tiλi)(tiλi)yi
yi!

. (3.6)

Generalized linear mixed models (GLMMs) are commonly used to model cor-

related or clustered responses35. Let i = 1, ...., N be the number of subjects and

j = 1, ..., ni be the number of observations per subject. Therefore, the total number

of observations is given by n =
N∑
i=1

ni. In the longitudinal setting the observations,

yij, are not assumed to be independent; instead, the observations are assumed to be

clustered. Let x be the full design matrix of fixed effects. Let u be the q-dimensional

vector of the coefficients of the random effects, z. To specify the GLMM there are

three parts:12,31

1. In the generalized linear mixed model for count data, the yij are independent

and Poisson distributed and conditioned on a vector of random effects, ui. It is

still true in the Poisson setting that

Var(yij|ui) = E(yij|ui). (3.7)

2. The conditional mean of yij depends on fixed and random effects through the

linear predictor by a log link function,

ηi = log[E(yij|ui)] = x>i β + z>i ui. (3.8)

3. It is assumed that the random effects are distributed multivariate normal with
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mean zero and a covariance matrix, Σ,

ui ∼ Nq(0,Σ). (3.9)

The pdf associated with the multivariate normal distribution is given by,

f(z) = 2π−q/2|Σ|
−1
2 exp

(
−1

2
(zi − ui)′Σ−1(zi − ui)

)
. (3.10)

The marginal likelihood function of the Poisson mixed effects linear model that

is conditioned on the normally distributed random effects is given by,

L(λ) =

∫
Rq

N∏
i=1

ni∏
j=1

[
exp(−λi)λ

yij
i

yij!

]
2π−q/2|Σ|

−1
2 exp

(
−1

2
(zi − ui)′Σ−1(zi − ui)

)
du

= 2π−q/2|Σ|
−1
2

∫
Rq

N∏
i=1

ni∏
j=1

[
exp(−λi)λ

yij
i

yij!

]
exp

(
−1

2
(zi − ui)′Σ−1(zi − ui)

)
du.

(3.11)

In the GLMM setting the conditional density is of the exponential family type.

When analyzing a longitudinal count outcome in a high-dimensional setting there

are currently two statistical methods that are applicable. Both methods are based on

the traditional LASSO that was originally developed by Tibshirani in 1996 described

in Section 2.2.131,35. The LASSO is a regression technique that applies an L1-penalty

on the regression coefficients. The resulting effect is that all coefficients are shrunken

towards zero and some are set exactly to zero. The LASSO method focuses on

achieving sparse estimates. The concept of the original LASSO was to maximize

the log-likelihood (l) of the model while constraining the L1-norm of the parameter

vector, thus the LASSO estimate can be obtained using,

β̂ = arg max
β

(l(β)) (3.12)
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subject to

||β||1 ≤ s (3.13)

with s ≥ 0 and with ||.||1 denoting the L1-norm. It is equivalent to estimating the

parameters by solving the optimization problem,

β̂ = arg max
β

[l(β)− λ||β||1] (3.14)

where λ ≥ 0. Note that s and λ are tuning parameters. These may be selected

through cross-validation or by selecting values that minimize AIC or BIC. When

in a high-dimensional data setting values for these tuning parameters may be time

consuming to obtain. Therefore, efficient algorithms were developed to provide near

optimal values35.

With respect to longitudinal or clustered count outcomes, Groll and Tutz 2011

developed the glmmLasso method which is a variable selection technique for gener-

alized linear mixed models that uses L1-penalization35 because traditional GLMM

methods are limited to few predictors. By applying the LASSO method, the GLMM

is expanded in such a way to handle a large numbers of predictors35. The L1-penalty

term enforces variable selection and shrinkage simultaneously. A gradient ascent algo-

rithm is used to maximize the penalized log-likelihood producing models with reduced

complexity35. The glmmLasso method is as follows35,

1. Compute starting values of β̂
(0)
, b̂

(0)
, and γ̂(0) by fitting a global intercept model

using the glmmPQL function in R from the MASS library.

2. For l = 1, 2, ... until convergence, where convergence is based on changes in

linear predictor:

• Calculate the log-likelihood gradient for the given γ̂(l−1)
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• Calculate the direction of the second dervative

• Determine the optimum of the Taylor approximation

• Update γ̂(l)

3. Fit a model that includes all variables that have non-zero β̂ values. Use Fisher

scoring to determine the final estimates.

The simulation studies performed were in an overparameterized setting, however,

the number of predictors was relatively small and only exceeded the number of samples

by 10 with p = 50 and n = 40. Other simulation studies performed were not in a

high-dimensional setting, p < n, where n = 40 and p = 3, 5, 10, and 20. In the

simulation studies that are examined in Section 3.2, we examine more extreme cases

of p > n.

In Groll and Tutz’s paper they applied the glmmLASSO to multiple real data

sets, two of which examine a Poisson distributed count outcome35. The first, The

German Bundesliga was a soccer data set that was collected over 3 years for 18

soccer clubs. The outcome is a count based on the number of points scored and the

covariates (p=7) include measures for: ball possession, tackle, unfairness, transfer

spending, transfer receipts, attendance, and sold out. When the glmmLASSO model

was fit three predictors were not found to be significant: unfairness, ball possesion, and

tackles. The second data set, CD4 AIDS Study, uses the Multicenter AIDS Cohort

Study that collected data on approximately 5,000 infected gay or bisexual men. The

outcome of interest was the number of CD4+ cells. CD4+ cells decrease with time

from infection and is a measure of AIDS progression35. Covariates of interest include

time, drugs, partners, packs of cigarettes, mental illness score, and age. When the

glmmLasso model was fit drugs and age were not found to be significant predictors.

Limitations of Groll and Tutz’s method include that there is not an option for an
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offset term for the model. Recall, that an offset is used when a rate is analyzed

as opposed to a count. This function has been implemented in R in the package

glmmLasso.

Second, Schelldorfer et al. 2012 developed a method referred to as GLMMLasso31.

This is a variable selection method that should be used to select fewer predictors

than samples that are then used in fitting a traditional model. Their method relies

on the assumption that many of the coefficients of the predictors are truly zero. The

objective function considered is,

Qλ(β,θ, φ) = −2 logL(β,θ, φ) + λ||β||1. (3.15)

where λ ≥ 0 is a regularization parameter. The parameters β,θ, and φ are estimated

by

(β̂, θ̂, φ̂) = arg
β,θ,φ

minQλ(β,θ, φ). (3.16)

The GLMMLasso algorithm is summarized as31

1. Choose starting values for the parameters β(0),θ(0), and φ(0)

2. Repeat for s=1,2,...

• Calculate the Laplace approximation

QLA
λ (β(s,s−1;k),θ(s−1), φ(s−1)).

• Quadratic approximation and inexact line search

– Approximate the second derivative of the pdf.

– Calculate the descent direction.

– Choose a step size.
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• Optimize the covariance parameter, for l = 1, ..., d

θsl = arg
θt

minQLA
λ (β(s),θ(s,s−1,θt), φ(s−1))

• Optimize the dispersion parameter

φ(s) = arg
φ

minQLA
λ (β(s),θ(s), φ)

3. Repeat until convergence.

While this is the generic method described by Schelldorfer et al., 2012 an ap-

proximation method and hybrid method are also described. This method has been

suggested for variable selection followed by re-estimation of the model using tradi-

tional statistical methods for when p < n31. It is described as a highly efficient

method when handling high-dimensional data31.

Simulation studies were performed for the low-dimensional and high-dimensional

Poisson mixed model. The following high-dimensional settings were evaluated: n =

400 with p = 500, n = 400 and p = 1000, and n = 300 and p = 500. Comparisons were

made between GLMMLasso and other R functions that do not take into consideration

the grouping structure of the data. The authors concluded that it is crucial to take

into account the grouping structure. A limitation of this package is that it reports that

there is observed slow convergence rate. No real data applications were performed

using the Poisson model.

3.1.2 Proposed Extension of the Generalized Monotone Incremental Stage-

wise Method to the Longitudinal Poisson Distribution

The GMIFS method developed by Makowski and Archer, 2015 for modeling

count data following the Poisson distribution was previously described in Section
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2.2.125. Herein we extend this method to accommodate longitudinal and clustered

data and allow for an offset. To develop the Poisson GMIFS method for longitudinal

data we need to estimate a high-dimensional linear mixed-effects model for count

data outcomes, yij, following the Poisson distribution. Mixed-effects models include a

combination of fixed and random effects. The fixed effects include all of the predictors

of interest18. In contrast, the random effects account for the correlated nature of data

arising from the same subject or cluster. Therefore, the variability must be partitioned

to within and between cluster18. This is equivalent to partitioning longitudinal data

that has measurements across time for each subject to between subject and within

subject variability.

The log link function is used to re-write the conditional likelihood in terms of

the predictors. The link function is given by

log(λi) = x>i β + z>i ui. (3.17)

In the GMIFS method it is necessary to be able to take the derivative of the

conditional likelihood in terms of the coefficient β. This is used to determine which

predictor should be incremented at each step of the method. Therefore, the condi-

tional likelihood, written in terms of the coefficients, is given by

L(β) = 2π−q/2|Σ|
−1
2

∫
Rq

N∏
i=1

ni∏
j=1

[
exp(− exp(x>i β + z>i ui)) exp(x>i β + z>i ui)

yij

yij!

]

exp(
−1

2
(zi − ui)>Σ−1(zi − ui))du

(3.18)

Hou and Archer, 2015 showed that to solve for the maximum likelihood, it is only nec-

essary to look at the marginal likelihood20. The derivative of the marginal likelihood
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with respect to β is,

dL

dβ
= x>i (yij − exp(x>i β + z>i ui)). (3.19)

The longitudinal model adds extra terms to the likelihood function for the ran-

dom effects. It is necessary to estimate these random effects so that they may be

integrated out of the likelihood. Then we can estimate the fixed effects terms. The

lme4 package in R can be used to estimate the random effects4.

Again we have penalized and unpenalized predictors so we divide our parameter

space into two components: the parameters (β) that correspond to the penalized

predictors (x) and the parameters (γ) that correspond to the unpenalized predictors

(w), and γ0 which is the intercept. As previously described, unpenalized predictors

are those which are forced into the model due to known significance or relationship

with the outcome. Penalized predictors are those which the model will select for us

automatically. The derivative of the marginal likelihood with respect to β may be

expressed as,

dL

dβ
= x>i (yij − exp(γ0 +w>i γ + x>i β + z>i ui)). (3.20)

To simplify the GMIFS method we expand the penalized predictors such that xNEW =

[x : −x] to remove the need for a second derivative to determine the direction of the

increment. The GMIFS algorithm which selects penalized predictors that should be

retained for the longitudinal or clustered Poisson model is:

1. Set the step number, s = 1. Initialize the components of β̂s = 0. Initialize the

random effects, û, the intercept, γ̂0, and the unpenalized coefficients, γ̂j, where

j = 1, ..., J using the maximization algorithm of the log-likelihood.

2. Treating the fixed effects, γ̂, and γ̂0 and the random effects, û, as fixed find the

predictor xm such that m = arg
k

min(− dL
dβk

).
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3. If β̂sm = 0 and s > 1, re-estimate û using the new û and γ̂, and γ̂0 find the

predictor xm such that m = arg
k

min(− dL
dβk

).

Else, if β̂sm 6= 0 proceed to step 4.

4. Update β̂s+1
m = β̂sm + ε.

5. Using the new β vector from step 4, update γ and γ0 via the maximization

algorithm of the log-likelihood. Step is updated to s = s+ 1.

6. Repeat steps 2-5 until the difference between successive log-likelihoods is less

than a pre-specified small tolerance, or δ ∗ p ≥ n.

In the implementation of this algorithm we used lme4 to estimate the random effects.

In our GMIFS algorithm we used ε = 0.001, τ = 0.001, and δ = 0.10. δ has been

included in the stopping criteria because general sample size rules indicate that the

number of predictors should maximally be approximately 10% of the sample size to

prevent overparameterization, as noted by Harrell who suggests that if you expect

to be able to detect reasonable-size effects with reasonable power, you need 10-20

observations per parameter (covariate) estimated21. While this is a general rule, δ is

a user defined parameter which can be changed depending on the data and application.

The final model will be selected based on some model selection criteria such as AIC

or BIC.

Further, recall that an offset term is often used where there is a rate as opposed

to a count outcome. The GMIFS algorithm accommodates the rate outcome through

the link function described in Equation 1.24.

3.2 Simulation Studies

Simulation studies were conducted to evaluate the performance of our method.

The design of the simulation studies is based on the application data set which will
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be described in Section 4.1. The data that the method will be applied to is breast

cancer data that was collect at five time points during the treatment of cancer. The

Poisson data were simulated as follows,

1. For each of the n subjects, randomly generate an intercept from N(0, 0.25).

2. Randomly generate the predictor set with P variables, xi1, xi2, ..., xiP where i=

1 to N ∗ ni from a standard normal distribution.

3. Select a subset, P1, of the P variables to be associated with the response. Non-

zero coefficients, β, were assigned to the P1 of the P variables to be associated

with the response. Also assign the intercept value, γ0 and the coefficient for

time, γ1.

4. Set Z to be the ni ∗ N x 2 design matrix of the random effects with the first

column consisting of 1s that correspond to the random intercept and the second

column to be from 0 to 4 consecutively for a random slope. The second column

of the random effects is going to be referred to as time.

5. Generate

λij = exp

(
γ0 + time× γ1 +

P1∑
k=1

βkxik +
2∑
l=1

uilzij

)
6. Randomly generate the response, yij ∼ Poisson(λij).

7. Repeat this to simulate r independent data sets.

The number of independent data sets simulated was r = 100, the sample size was

set to N = 100 with each subject having five time points and P = 200 predictors plus

the fixed effect, time. Of the P predictors, P1 = 5 were selected to be associated with

the response. For all data sets we fit a Poisson GMIFS model and the glmmLasso

model15,35. Recall that a limitation of the glmmLasso model is that it does not
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provide an option for an offset term. Therefore, we only compared models where

there is no offset. Simulations were performed for coefficients of equal magnitude,

β = (0.5, 0.5,−0.5,−0.5,−0.5) with an intercept value and coefficient for time of 0.5;

we also varied the magnitude of the coefficients letting β = (0.25,−0.3,−0.4, 0.4, 0.3)

with an intercept value and coefficient for time of 0.4 The two methods were compared

with respect to the following:

• The number of true predictors that had a non-zero coefficient estimate;

• The number of false predictors that had a non-zero coefficient estimate.

The results from the simulation study when β = (0.5, 0.5,−0.5,−0.5,−0.5) ap-

pear in Table 10. The BIC selected models are more parsimonious than the AIC

selected models, including a mean of 1.6 compared to 4.8 true predictors respectively.

Overall, the Poisson GMIFS models are more parsimonious than Poisson glmmLASSO

models. While the glmmLASSO models have more sensitivity and select more of the

true non-zero predictors, the Poisson GMIFS models have more specificity for weeding

out false predictors.
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Table 10.: Results from Simulation Studies with coefficients of equal magnitude:

Mean/Median number of true predictors that had a nonzero coefficient estimate in

the final model (True Nonzero) and the mean/median number of false predictors that

had a nonzero coefficient estimate in the final model (False Nonzero). Oracle number

of true non-zero coefficients, P1 = 5. Oracle number of zero coefficients, P−P1 = 195.

Poisson GMIFS Poisson glmmLASSO Poisson GMIFS Poisson glmmLASSO

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 1.6 (1.69) 4.8 (0.40) 1.6 (1.69) 4.8 (0.39)

True Nonzero

Median (Range) 1.0 (0.0, 5.0) 5.0 (4.0, 5.0) 1.0 (0.0, 5.0) 5.0 (4.0, 5.0)

False Nonzero

Mean (Standard Deviation) 2.7 (2.43) 150.8 (7.73) 2.9 (2.60) 161.1 (14.35)

False Nonzero

Median (Range) 3.0 (0.0, 8.0) 151.0 (130.0, 165.0) 4.0 (0.0, 8.0) 157.5 (131.0, 192.0)

The simulation results are graphically displayed using boxplots in Figures 27

and 28. The boxplots depict the minimum, median, 25th, 75th, and maximum of the

true non-zero and false non-zero coefficients selected by the models for the simulated

data. Recall that the true number of non-zero coefficients is 5 and 195 extraneous

coefficients that truly have a zero coefficient that could be selected by the model as

a false non-zero coefficients.
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Fig. 27: Boxplot of the True Non-zero Coefficients selected by each of the minimum

AIC and minimum BIC longitudinal Poisson models when there were true coefficients

of equal magnitude for both the GMIFS and glmmLASSO algorithms.
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Fig. 28: Boxplot of the False Non-zero Coefficients selected by each of the minimum

AIC and minimum BIC longitudinal Poisson models when there were true coefficients

of equal magnitude for both the GMIFS and glmmLASSO algorithms.
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The results from the simulation studies where the true coefficients had varying

magnitudes appear in Table 11. Again, the BIC selected models are more parsi-

monious than the AIC selected models. As before, the Poisson GMIFS models are

more parsimonious than Poisson glmmLasso models. While the glmmLASSO models

have more sensitivity and select more of the true non-zero predictors, the Poisson

GMIFS models have improved specificity for weeding out false predictors. Therefore

the conclusions are equivalent for the simulation studies that employed either varying

or equivalent β magnitudes.
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Table 11.: Results from Simulation Studies of Poisson longitudinal models with co-

efficients of varying magnitude: Mean/Median number of true predictors that had

a nonzero coefficient estimate in the final model (True Nonzero). Oracle number of

true non-zero coefficients, P1 = 5. The mean/median number of false predictors that

had a nonzero coefficient estimate in the final model (False Nonzero). Oracle number

of zero coefficients, P − P1 = 195.

Poisson GMIFS Poisson glmmLASSO Poisson GMIFS Poisson glmmLASSO

BIC selected model BIC selected model AIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 3.9 (0.64) 4.3 (0.47) 3.9 (0.64) 4.4 (0.48)

True Nonzero

Median (Range) 4.0 (0.0, 5.0) 5.0 (4.0, 5.0) 4.0 (0.0, 5.0) 4.0 (4.0, 5.0)

False Nonzero

Mean (Standard Deviation) 2.9 (1.19) 49.6 (33.67) 3.4 (1.00) 62.8 (33.58)

False Nonzero

Median (Range) 3.0 (1.0, 6.0) 42.0 (4.0, 152.0) 4.0 (1.0, 6.0) 54.0 (11.0, 152.0)

The results from the simulation studies where the coefficients had varying mag-

nitudes are graphically displayed using boxplots in Figures 29 and 30. The boxplots

include the minimum, median, 25th, 75th, and maximum of the true non-zero and

false non-zero coefficients selected by the models for the simulated data. Recall that

the true number of non-zero coefficients is 5 and 195 extraneous coefficients that

truly have a zero coefficient that could be selected by the model as a false non-zero

coefficients.
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Fig. 29: Boxplot of the True Non-zero Coefficients selected by each of the minimum

AIC and minimum BIC Poisson longitudinal models for GMIFS and glmmLASSO

when there were varying true coefficient values.
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Fig. 30: Boxplot of the False Non-zero Coefficients selected by each of the minimum

AIC and minimum BIC longitudinal Poisson models when there were varying true

coefficient values for both the GMIFS and glmmLASSO algorithms.
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3.3 Discussion

Overall, the simulation studies demonstrated that the GMIFS method is superior

to the glmmLasso in weeding out false non-zero predictors. While the glmmLasso se-

lects a larger number of the true non-zero predictors, it also includes a large percentage

of the false non-zero predictors as having non-zero coefficient estimates, making the

true non-zero predictor selection negligible. These conclusions held true regardless of

whether β were of equal magnitude or varying magnitude. The GMIFS method has

also been developed to handle cases when an offset term must be considered, whereas

there is no such implementation in glmmLasso. In the next chapter, this method will

be applied to a breast cancer application data set.
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CHAPTER 4

THE LONGITUDINAL NEGATIVE BINOMIAL GENERALIZED

MONOTONE INCREMENTAL STAGEWISE METHOD

4.1 VCU Health System Breast Cancer Data

Early-stage breast cancer patients (N=76) were followed at VCU Health System

during the treatment of breast cancer. The breast cancer data were collected as part

of a prospective study titled, ”Epigenetics and Psychoneurologic Symptoms in Women

with Breast Cancer” (R01NR012667)25. The eligibility criteria were as follows: (1)

age of 21 years or older; (2) a diagnosis of early-stage breast cancer with a scheduled

visit to receive chemotherapy; and (3) female gender (males were excluded because too

few male participants were available for study). Exclusion criteria were as follows:

(1) a previous history of cancer or chemotherapy; (2) a diagnosis of dementia; (3)

active psychosis; or (4) immune-related diagnoses (e.g., multiple sclerosis; systemic

lupus erythematosus)23. All data were collected at five different time points during

the treatment of breast cancer: prior to initiating adjuvant chemotherapy but after

surgery, prior to the fourth chemotherapy treatment, and at six, 12, and 24 months

after the initiation of chemotherapy23. Collected from each patient at each time point

were demographic data, symptom questionnaires, performance-based cognitive test-

ing, and blood draws23. From the blood draws, methylation data, and MN and NBuds

data could be obtained. Methylation data was collected using the Illumina Human-

Methylation 450K assay and the cytokinesis-block micronucleus (CBMN) assay was

used to score MN and NBuds. The CBMN assay has been verified and a protocol for

the scoring of MN and NBuds was developed by the HUman Micronucleus (HUMN)
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project9,10.

To briefly summarize some of the key aspects of the data, the mean age of the

study participants was 52 (23,71) years old, 21 women reported smoking, and 12

tumors were HER positive. The break down of stage and grade of cancer may be

seen in Table 12.

Table 12.: Table of the stages of cancer and grade of cancer.

Stage of Cancer I II IIIA IIIB

21 31 16 8

Grade 1 2 3

5 28 43

DNA methylation is an epigenetic modification in human cells5. Research in

this specific field is rapidly growing due to the increasing affordability of sequencing-

based methylation analysis5. A CpG is a cytosine (C) connected by a phosphate (p)

backbone to a guanine (G). This is occurs approximately one fifth of the expected

frequency25. CpG sites exist in two states: methylated or unmethylated. It is known

that neighboring CpG sites are correlated with respect to the methylation status,

however, the exact structure and a thorough understanding of the correlation is still

relatively unknown. The Illumina HumanMethylation 450K assay works by applying

bisulfite conversion that converts unmethylated cytosines into uracils and methylated

cytosines remain cytosines25. This is followed by hybridization of the sample to an

array that uses beads with target-specific probes to interrogate CpG sites5,25. The

Illumina HumanMethylation 450K assay covers 98.9% of the UCSC RefGenes with

an average of 17.2 probes per gene5,25. When using the Illumina HumanMethylation

450K assay, the quantity computed and commonly analyzed is referred to as a beta-
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value. These are defined as

beta− value =
M

M + U + 100
(4.1)

where M represents the intensity of methylated alleles

U represents the intensity of unmethylated alleles

100 represents a small positive constant to avoid dividing by 0.

The MN and NBuds data were collected using the CBMN assay previously de-

scribed in Section 1.1.2. A total of 2,000 binucleated cells were scored for each patient

at each time point in the study. Instead of scoring 2,000 cells at once, cells were scored

in four groups of 500. The NBud and MN counts were determined by counting the

number of binucleated cells with at least one NBud or MN present. The MN data

were not analyzed since they follow a normal distribution25. For the purpose of our

research on count outcomes following the Poisson and negative binomial distribution,

we examined the NBud data.

Before analysis, a Boundary Likelihood Ratio test was performed to determine

whether a longitudinal Poisson or longitudinal negative binomial model would be more

appropriate given the early-stage breast cancer data18. The alternative hypothesis of

the heterogeneity parameter, α 6= 0 was tested against a null hypothesis of α = 0.

The chi-square test results were χ2
1 = 42.3 with an associated p-value of 7.97x10−11.

Therefore we reject the null hypothesis that α = 0 implying a negative binomial

model is more appropriate given the data. In Figure 31 is a profile plot of the nuclear

bud counts over time with a lowess fit overlay.
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Fig. 31: Profile plot of the raw nuclear bud counts over time and lowess fit in royal

blue.
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The lowess curve exhibits higher nuclear bud counts in the beginning of the study and

lower nuclear bud counts at end of the study. These results motivate the development

of our longitudinal negative binomial GMIFS model which we expect to be superior

to the longitudinal Poisson GMIFS model and longitudinal Poisson glmmLasso for the

early-stage breast cancer data analysis. The goal is to better predict NBud frequency

using the demographic data and methylation data.
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4.2 Statistical Methods

4.2.1 Current Methods for Analyzing a Count Outcome in a Longitudinal

High-dimensional Setting

Currently there are no methods that can handle an overdispersed longitudinal

count outcome when you have a high-dimensional predictor space. The few methods

that are applicable would be those that can handle an equidispersed longitudinal

count outcome when you have a high-dimensional predictor space. These methods

were described in Section 3.1.1. and 3.1.2. Recall that overdispersion occurs when

the count outcome’s variance is larger than the mean. It has been implied that for the

longitudinal Poisson model, described in Chapter 3, inclusion of random coefficients

may induce overdispersion minimally12.

4.2.2 Proposed Extension of the Generalized Monotone Incremental For-

ward Stagewise Method to the Longitudinal Negative Binomial Dis-

tribution

The first aim which implemented the GMIFS method for the negative binomial

model was expanded to allow for longitudinal and clustered negative binomial out-

comes when there is a high-dimensional predictor space. By incorporating the ability

to analyze longitudinal data, there is an additional dimension of time or clusters to

the model.

Let i = 1, ...., N be the number of subjects and j = 1, ..., ni be the number of

observations per subject. Therefore, the total number of observations is given by

n =
N∑
i=1

ni. Recall, in the longitudinal setting the observations, yij, are not assumed

to be independent; instead, the observations are assumed to be grouped. Let x be the

full design matrix of fixed effects which are divided into penalized and unpenalized
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predictors. Let u be the q-dimensional vector of the coefficients of the random effects,

z.

It has been implied that for the longitudinal Poisson model, described in Chapter

3, inclusion of random coefficients may induce overdispersion minimally12. Therefore,

there is a heightened need for a negative binomial model in the longitudinal setting.

The Poisson variability assumption can be made more flexible by adding in a subject

specific and time point specific variability or error term, ei
12. Using the log-link

function the model is given by

logE(yij|ui, eij) = x>i β + z>i ui + ei (4.2)

If the distribution of the exponentiated additional error term, ei, is assumed to be

gamma with a mean of one and variance of α, then the conditional mean of the count

outcome is given by

logE(yij|ui) = x>i β + z>i ui (4.3)

The corresponding conditional variance is given by

Var(yij|ui) = E(yij|ui) + α[E(yij|ui)]2 (4.4)

Therefore, when compared to the Poisson longitudinal model, the mean is unchanged

but the conditional variance is larger than the conditional mean, except when α = 0.

When approaches zero then the variance becomes equal to the mean therefore the

model converges to a Poisson. α accounts for overdispersion and allows the variance to

be larger than the mean. For many count outcomes, the assumption that the variance

is equal to the mean is invalid. When the error term is assumed to be gamma, then

the distribution of the count response is negative binomial12. Recall in the traditional

model the negative binomial distribution does take into account overdispersion which
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the Poisson distribution does not incorporate. The same applies to a longitudinal

model.

By assuming a gamma distributed error, the outcome is negative binomial, which

makes for easier maximum likelihood calculations based off the distribution12. As

previously shown in Equation 1.14, the negative binomial PDF is,

f(y;µ, α) =

(
yij + 1

α
− 1

1
α
− 1

)(
1

1 + αµi

) 1
α
(

αµi
1 + αµi

)yij
(4.5)

where α, the heterogeneity parameter, must be a positive rational value. The hetero-

geneity parameter accounts for the overdispersion and is inversely related to φ.

The likelihood function of the negative binomial mixed effects linear model that

is conditioned on the normally distributed random effects is given by,

L(µ, α) =

∫
Rq

N∏
i=1

ni∏
j=1

[(
yij + 1

α
− 1

1
α
− 1

)(
1

1 + αµi

) 1
α
(

αµi
1 + αµi

)yij]

2π−q/2|Σ|
−1
2 exp

(
−1

2
(zi − ui)>Σ−1(zi − ui)

)
du

(4.6)

L(µ, α) = 2π−q/2|Σ|
−1
2

∫
Rq

N∏
i=1

ni∏
j=1

[(
yij + 1

α
− 1

1
α
− 1

)(
1

1 + αµi

) 1
α
(

αµi
1 + αµi

)yij]

exp

(
−1

2
(zi − ui)>Σ−1(zi − ui)

)
du

(4.7)

The log link function may be used to re-write the conditional likelihood in terms of

the predictors. The link function is given by

µi = exp(x>i β + z>i ui) (4.8)

In the GMIFS method, it is necessary to be able to take the derivative of the con-

ditional likelihood in terms of the coefficient β. This is used to determine which

predictor should be incremented at each step of the GMIFS method. Therefore, the

85



marginal likelihood written in terms of the coefficients is given by

L(β) = 2π−q/2|Σ|
−1
2

∫
Rq

N∏
i=1

ni∏
j=1

[(
yij + 1

α
− 1

1
α
− 1

)(
1

1 + α exp(x>i β + z>i u)

) 1
α

(
α exp(x>i β + z>i u)

1 + α exp(x>i β + z>i u)

)yij]
exp

(
−1

2
(zi − ui)>Σ−1(zi − ui)

)
du

(4.9)

Hou and Archer, 2015 showed that it is only necessary to take the derivative of the

marginal likelihood with respect to β 20,

dL

dβ
=

N∑
i=1

ni∑
j=1

xi(yij − x>i βi + z>i ui)

1 + α(x>i βi + z>i ui)
(4.10)

The lme4 package in R is used to estimate the random effects4. Extracted from the

package are the coefficient corresponding to the standard deviation of the random

effects.

Again, we have a penalized and unpenalized predictor space. We divide our β

into a new β which are the parameters that correspond to the penalized predictors

(x), γ which are the parameters that correspond to the unpenalized predictors (w)

and γ0 which is the intercept. As previously described, unpenalized predictors are

those which are forced into the model due to already known significance or knowledge

to the outcome. The GMIFS method will be adapted for the longitudinal negative

binomial model as follows,

1. Set the step counter, s = 1. Initialize the components of β̂s = 0. Estimate α

using method of moments and the intercept, γ0, and the unpenalized coefficients,

γj, where j = 1, ..., J using the maximization algorithm of the log-likelihood.

Estimate the random effects, û.

2. Treating α, γ, γ0 and the random effects, û as fixed find the predictor xm such
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that m = arg mink(− dl
dβk

).

3. If β̂sm = 0 and step > 1 then re-estimate û using the new û and α, γ and γ0

find the predictor xm such that m = arg mink(− dl
dβk

).

Else, β̂sm 6= 0 proceed to step 4.

4. Update β̂s+1
m = β̂sm + ε.

5. Using the new β vector from step 4, update α via Hilbe’s algorithm and update

γ and γ0 via the maximization algorithm of the log-likelihood. Step is updated

to s = s+ 1.

6. Repeat steps 2-5 until the difference between successive log-likelihoods is less

than a pre-specified small tolerance, τ or until δ ∗ p ≥ n.

Further, recall that an offset term is often used where there is a rate as opposed to a

count outcome. The GMIFS algorithm accommodates the rate outcome through the

link function.

In the implementation of this algorithm, we use ε = 0.001, τ = 0.00001, and

δ = 0.10. In our GMIFS algorithm, we used the lme4 package in R to estimate the

random effects. δ has been included in the stopping criteria because general sample

size rules indicate that the number of predictors should maximally be approximately

10% of the sample size to prevent overparameterization, as noted by Harrell who

suggested 10-20 observations per parameter (covariate) estimated to be able to detect

reasonable size effects with reasonable power21. While this is a general rule, δ is a

user defined parameter which can be changed depending on the data and application.

The final model will be selected based on AIC or BIC.
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4.3 Simulation Studies

Simulation studies were conducted to evaluate the performance of our method.

The design of the simulation studies is based on the breast cancer application data

set, which was described in Section 4.1. The longitudinal negative binomial data were

simulated as follows,

1. Set α. For each of the n subjects, randomly generate an intercept fromN(0, 0.25).

2. Randomly generate the predictor set with P variables, xi1, xi2, ..., xiP where i=

1 to N ∗ ni from a standard normal distribution.

3. Select a subset, P1, of the P variables to be associated with the response. Non-

zero coefficients, β, were assigned to the P1 of the P variables to be associated

with the response. Also assign the intercept value, γ0 and the coefficient for

time, γ1.

4. Set Z to be the ni ∗ N x 2 design matrix of the random effects with the first

column consisting of 1s and the second column to be from 0 to 4 consecutively.

The second column of the random effects is going to be referred to as time.

5. Generate

µij = exp

(
γ0 + time× γ1 +

P1∑
k=1

βkxik +
2∑
l=1

uilzij

)
6. Randomly generate the response, yij ∼ negative binomial(α, µij).

7. Repeat this to simulate r independent data sets.

The number of independent data sets simulated was r = 100, the sample size was

set to N = 100 with each subject having five time points and P = 200 predictors plus

the fixed effect, time. Of the P predictors, P1 = 5 were selected to be associated with
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the response. For all data sets we attempted to fit a Poisson GMIFS model and a

negative binomial GMIFS model. Simulations were performed for coefficients of equal

magnitude, β = (0.5, 0.5,−0.5,−0.5,−0.5) with an intercept value and coefficient for

time of 0.5. The two methods were compared with respect to the following:

• The number of true predictors that had a non-zero coefficient estimate;

• The number of false predictors that had a non-zero coefficient estimate.

When attempting to fit the longitudinal Poisson GMIFS model, there were con-

vergence issues when implementing functions in the lme4 package probably due to

the fact that the data are overdispersed and a negative binomial model is more ap-

propriate. The results from the longitudinal negative binomial GMIFS models for

the simulation study when β = (0.5, 0.5,−0.5,−0.5,−0.5) appear in Table 13 and

14. For the simulation studies when α = 0.9, the BIC selected models are slightly

more parsimonious than the AIC selected models, including a mean of 1.6 compared

to 1.8 true predictors respectively. Similarly, the BIC selected models included a

mean of 1.4 false predictors compared to a mean of 2.0 in the AIC selected models.

For the simulation studies when α = 0.5, the BIC selected models are slightly more

parsimonious than the AIC selected models, including a mean of 2.8 compared to 3.2

true predictors respectively. Similarly, the BIC selected models included a mean of

2.1 false predictors compared to a mean of 2.8 in the AIC selected models.
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Table 13.: Results from Simulation Studies when α = 0.9: Mean/Median number

of true predictors that had a nonzero coefficient estimate in the final model (True

Nonzero) and the mean/median number of false predictors that had a nonzero coef-

ficient estimate in the final model (False Nonzero). Oracle number of true non-zero

coefficients, P1 = 5. Oracle number of zero coefficients, P − P1 = 195.

Negative Binomial GMIFS Negative Binomial GMIFS

BIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 1.6 (1.12) 1.8 (1.17)

True Nonzero

Median (Range) 1.0 (0.0, 4.0) 2.0 (0.0, 4.0)

False Nonzero

Mean (Standard Deviation) 1.4 (1.39) 2.0 (1.61)

False Nonzero

Median (Range) 1.0 (0.0, 5.0) 1.0 (0.0, 5.0)
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Table 14.: Results from Simulation Studies when α = 0.5: Mean/Median number

of true predictors that had a nonzero coefficient estimate in the final model (True

Nonzero) and the mean/median number of false predictors that had a nonzero coef-

ficient estimate in the final model (False Nonzero). Oracle number of true non-zero

coefficients, P1 = 5. Oracle number of zero coefficients, P − P1 = 195.

Negative Binomial GMIFS Negative Binomial GMIFS

BIC selected model AIC selected model

True Nonzero

Mean (Standard Deviation) 2.8 (1.15) 3.2 (0.99)

True Nonzero

Median (Range) 3.0 (0.0, 4.0) 3.0 (0.0, 5.0)

False Nonzero

Mean (Standard Deviation) 2.1 (1.36) 2.8 (1.18)

False Nonzero

Median (Range) 2.0 (0.0, 6.0) 3.0 (0.0, 6.0)

While we were unable to compare the Poisson GMIFS models to the negative

binomial GMIFS models, the convergence issues we encountered motivate the need for

the negative binomial GMIFS model when data are genuinely overdispersed. Overall,

the AIC and BIC selected negative binomial GMIFS models perform well at selecting

few true predictors without also selecting out incidental false predictors.

4.4 Results

For the longitudinal breast cancer data the outcome analyzed was NBud fre-

quency. Subjects varied in age as described in Section 4.1, therefore, age was included
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in the unpenalized predictor set along with time, visits one to five. The unpenalized

predictors are those that will be forced into the final model. All subjects were female

so gender was an irrelevant predictor that was not included in the model. The pe-

nalized predictors were the high-dimensional methylation data. For select patients,

there were records missing for up to three visits. The data were analyzed using the

longitudinal negative binomial GMIFS and longitudinal Poisson GMIFS. The data

were not analyzed using the glmmLasso method since it was shown in Section 3.2

that this method grossly overfits and includes more covariates than there are samples

making the results uninterpretable.

Before analysis, the methylation data were filtered. The full data has 485,512

CpG sites. CpG sites for which all samples have beta-values < 20% are considered

completely unmethylated and CpG sites for which all samples have beta-values > 80%

are considered completely methylated and both can be filtered from downstream anal-

ysis38. After filtering those that are over 80% methylated and under 20% methylated

remaining were 356,816 CpG sites.

For the longitudinal negative binomial GMIFS model, a plot of the negative log-

likelihood and how it varies at each step of the GMIFS procedure may be seen in

Figure 32, followed by the corresponding AIC and BIC values in Figure 33.
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Fig. 32: Log-likelihood Plot for the Longitudinal Negative Binomial GMIFS.
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Fig. 33: AIC (left panel) and BIC (right panel) Plot for the Longitudinal Negative

Binomial GMIFS.
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It can be seen that the minimum BIC occurs right before step 30 as does the

minimum AIC. Figure 34 shows the coefficients paths for the longitudinal negative
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binomial GMIFS model. Each coefficient is represented by a different colored line

such that you can see when a new coefficient enters the model.

Fig. 34: Plot of coefficient path for the longitudinal negative binomial GMIFS model

with a vertical line representing when the minimum AIC and BIC is achieved.
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The longitudinal negative binomial GMIFS AIC and BIC selected models iden-

tified one CpG site associated with the NBud count or one CpG site with a non-zero

coefficient estimate. The methylation locus selected was cg20974885. The associated

gene is ECE2; ALG3 with corresponding gene names Endothelin Converting Enzyme
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2; ALG3. These are protein coding genes. Previous research by Shi et al., 2014 shows

that it is associated with cancer. Due to the similarity of the predictors in the neg-

ative binomial and Poisson models, we further examined them by re-estimating the

final models using traditional methods. Table 15 shows the coefficient estimates, stan-

dard error, and p-values for the final model after it was re-estimated using glmer.nb.

The predictors in the final model included the unpenalized predictors and the one

penalized selected by the GMIFS procedure, cg20974885.

Table 15.: Table coefficient estimates for the final model refit using glmer.nb with

corresponding alpha value of 2.13.

Coefficient Estimate Standard Error P-value

Intercept 0.68 0.241 < 0.001

Slope -0.25 0.054 < 0.001

Age 0.07 0.068 0.031

cg20974885 2.29 2.119 0.028

Similarly, a longitudinal Poisson GMIFS model was fit for the breast cancer data.

A plot of the negative log-likelihood and how it varies at each step of the GMIFS

procedure may be seen in Figure 35, followed by the corresponding AIC and BIC

values in Figure 36.
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Fig. 35: Log-likelihood Plot for the Longitudinal Poisson GMIFS.
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Fig. 36: AIC (left panel) and BIC (right panel) Plot for the Longitudinal Poisson

GMIFS.

0 50 100 150 20010
80

11
00

11
20

11
40

11
60

11
80

12
00

 

Step

A
IC

0 50 100 150 200

11
00

11
20

11
40

11
60

11
80

12
00

12
20

 

Step

B
IC

It can be seen that the minimum BIC occurs right before step 10 as does the

minimum AIC. Figure 37 shows the coefficients paths for the longitudinal Poisson
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GMIFS model. Each coefficient is represented by a different colored line such that

you can see when a new coefficient enters the model.

Fig. 37: Plot of coefficient path for the longitudinal Poisson GMIFS model with a

vertical line representing when the minimum AIC and BIC is achieved.
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The longitudinal Poisson GMIFS AIC and BIC selected models identified one

CpG site associated with the NBud count or one CpG site with a non-zero coefficient

estimate. This was the same CpG site selected by the negative binomial model. The

methylation locus selected was cg20974885. The associated gene is ECE2; ALG3
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with corresponding gene names Endothelin Converting Enzyme 2; ALG3. These are

protein coding genes. Previous research by Shi et al., 2014 shows that it associated

with cancer. Table 16 shows the coefficient estimates, standard error, and p-values for

the final model after it was re-estimated using glmer. The final model only included

the unpenalized predictors and the one penalized predictor selected by the GMIFS

procedure.

Table 16.: Table coefficient estimates for the final model refit using glmer

Coefficient Estimate Standard Error P-value

Intercept 0.52 0.187 < 0.001

Slope -0.22 0.044 < 0.001

Age 0.06 0.070 0.037

cg20974885 2.78 1.53 0.007

4.5 Discussion

We performed simulation studies to compare the longitudinal Poisson GMIFS

model to the longitudinal negative binomial GMIFS model. When the simulated

data followed the negative binomial distribution, the Poisson GMIFS model failed to

converge. While this is a limitation of the Poisson GMIFS model it also shows the need

for the negative binomial GMIFS model when data are truly overdispersed. It was

concluded that the AIC and BIC selected models from the negative binomial GMIFS

performed well by selecting the true predictors without also selecting extraneous false

predictors.

When the longitudinal Poisson and longitudinal negative binomial GMIFS meth-

ods were applied to the breast cancer data, they selected the same covariates to be
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included in the final model. It would be of interest to examine other criteria for

assessing when a negative binomial model is more appropriate than a Poisson model.

While it is interesting that they selected very similar models, it is also reassuring.

Recall that a Poisson model is nested within the negative binomial model. While the

boundary likelihood ratio test showed that there was overdispersion and a negative

binomial model should be used, there might be a better test for testing this.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions from the Three Extensions to the Generalized Monotone

Incremental Forward Stagewise Method

To conclude, the GMIFS method was extended to the negative binomial distri-

bution, the longitudinal Poisson distribution, and the longitudinal negative binomial

distribution. The simulation studies for the negative binomial GMIFS demonstrated

the importance of accounting for overdispersion when the true underlying distribu-

tion is negative binomial. The negative binomial GMIFS had a superior fit to the

Poisson GMIFS and Poisson glmpath in the simulation studies. The glmpath package

had convergence issues when analyzing the negative binomial distributed data. The

negative binomial GMIFS model had more specificity for removing false predictors

or predictors that should not be included in the model. In addition, the negative

binomial GMIFS model had analogous sensitivity to the Poisson GMIFS model for

selecting true predictors. An application data set, MoBa MN counts with affiliated

gene expression, were analyzed and extracted were genomic features found to be

associated with elevated MN counts.

When assessing the performance of the longitudinal Poisson GMIFS model it was

shown through simulation studies that there were improvements in weeding out false

non-zero predictors. The alternative method, glmmLasso, selects a larger number of

the true non-zero predictor; however, it also includes a substantial percentage of the

false non-zero predictor as having non-zero coefficient estimates. Therefore, the true

non-zero predictor selection is negligible.
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To inspect the longitudinal negative binomial GMIFS model, we simulated lon-

gitudinal negative binomial data and attempted to compare the longitudinal Poisson

GMIFS model to the longitudinal negative binomial GMIFS model. Encountered

were convergence issues with the longitudinal Poisson GMIFS model when the true

underlying distribution was negative binomial. Overall, the negative binomial GMIFS

models performed well at selecting a large number true predictors and small number

of false predictors. When the longitudinal negative binomial GMIFS model and lon-

gitudinal Poisson GMIFS model were applied to the breast cancer data set, they fit

almost identical models. While the boundary likelihood ratio test suggested that a

negative binomial model would be more appropriate given the data, the models were

very similar.

To conclude, the developed methods are applicable when analyzing an equidis-

persed or overdispersed count outcome when there is a high-dimensional predictor

space, both in a traditional model and longitudinal model.

5.2 Future Work

When selecting the final model from the GMIFS procedure, we used the tradi-

tional AIC and BIC. It would be of interest to investigate other criteria that can be

used to select a final model. When examining the simulation study results from the

negative binomial GMIFS models, it was clear that the BIC selected model overes-

timated α while the AIC selected model underestimated α. An alternative model

selection criteria that is between AIC and BIC may be more optimal.

While the GMIFS method was predominantly used to select the best predictor

set, it would be useful to look at the final predictor space and refit a traditional model

for the negative binomial GMIFS method. Comparisons could be made between

the biased GMIFS coefficient estimates and the more interpretable traditional model
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coefficient estimates. Further extensions should be made to the zero-inflated Poisson

model and zero-inflated negative binomial model. It should then be analyzed when

each method is most appropriate in a high-dimensional settings.

When in the longitudinal setting, it should be further examined when a negative

binomial model is more appropriate than a Poisson model. Based on our application

data set, it did not seem pertinent to take into consider the overdispersion even

though a boundary likelihood test showed otherwise. Alternatively, in our simulation

studies when the true underlying distribution was negative binomial, the longitudinal

Poisson GMIFS model would not converge, and we were forced to only examine the

longitudinal negative binomial GMIFS model. Different improved methods should be

developed for determining what distribution is appropriate in the data are longitudinal

and there is a high-dimensional predictor space.

Finally, we plan to develop an extensive R package that can be used for analyzing

count outcomes when there is a high dimensional predictor space. A separate R

package will be developed for the longitudinal or clustered setting. We plan on making

these packages publicly available on the Comprehensive R Archive Network.
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CHAPTER 6

R CODE

6.1 Chapter 2: Negative Binomial GMIFS

6.1.1 Negative Binomial Loglikelihood Code

1 library(MASS)

2 # a is alpha, the overdispersion parameter (1/theta where theta from glm.nb)

3 # w is the set of unpenalized predictors

4 # x is the set of penalized predictors

5 # y is the discrete response

6 # offset is the offset

7 # beta are the coefficients for the penalized predictors

8 # theta are the coefficients for the unpenalized predictors

9 ###############################################################

10 ### Negative Binomial GMIFS Functions

11 ### nb.theta is used to estimate model coefficients for unpenalized subset###

12 nb.theta<-function (par, a, w, x, y, offset, beta) {

13 b<- par

14 if (!is.null(offset)) {

15 Xb <- cbind(offset, w, x) %*% c(1, b, beta)

16 }

17 else {

18 Xb <- cbind(w, x) %*% c(b, beta)
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19 }

20 contri.LL<- y*log((a*exp(Xb))/(1+ (a*exp(Xb)))) -

21 (1/a)*log(1+ (a*exp(Xb))) +

22 lgamma(y+ (1/a)) - lgamma(y+1) - lgamma(1/a)

23 # likelihood fxn

24 loglik <- sum(contri.LL)

25 -loglik

26 }

27

6.1.2 Hilbe’s Methods Code

1 ### Hilbe’s Algorithm - used to estimate alpha ###

2 hilbe<- function(w, y, x, theta, beta, offset, delta) {

3 mu<- mean(y) # estimate lambda

4 chi2<- sum( ((y-mu)^2)/mu) # Poisson chi2 test

5 if(!is.null(x) & !is.null(w)) {

6 df<-length(y)- dim(w)[2]-sum(beta!=0)

7 }

8 else if(is.null(x) & !is.null(w)) {

9 df<-length(y)- dim(w)[2]

10 }

11 else if(!is.null(x) & is.null(w)) {

12 df<-length(y)-sum(beta!=0)

13 }

14 disp<- chi2/df # Poisson Dispersion

15 alpha<- 1/disp # Inverse of Poisson Dispersion
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16 j<-1

17 delta_disp <- 1.0 # Initiating the change in the dispersion estimate

18 while(abs(delta_disp) >= delta) {

19 old_disp<- disp

20 if (is.null(x)) {

21 if (!is.null(offset)) {

22 Xb <- cbind(offset, w) %*% c(1, theta)

23 } else {

24 Xb <- w %*% theta

25 }

26 } else {

27 if (!is.null(offset)) {

28 Xb <- cbind(offset, w, x) %*% c(1, theta, beta)

29 } else {

30 Xb <- cbind(w, x) %*% c(theta, beta)

31 }

32 }

33 mu<- exp(Xb)

34 chi2<- ((y-mu)^2) / (mu + (alpha*(mu^2))) # Negative Binomial Chi2 test

35 chi2<- sum ( chi2)

36 disp<- chi2/df

37 alpha<- disp* alpha

38 delta_disp<- disp- old_disp

39 j=j+1

40 }

41 alpha
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42 }

6.1.3 Negative Binomial Generalized Monotone Incremental Forward Stage-

wise Method Code

1 nb.gmifs<-function (formula, data, x=NULL, offset, subset, epsilon=0.001,

2 tol=1e-5, scale=TRUE, verbose=FALSE, ...) {

3 mf <- match.call(expand.dots = FALSE)

4 cl <- match.call()

5 m <- match(c("formula", "data", "subset", "offset"), names(mf), 0L)

6 mf <- mf[c(1L, m)]

7 mf[[1L]] <- as.name("model.frame")

8 mf <- eval(mf, parent.frame())

9 mt <- attr(mf, "terms")

10 y <- model.response(mf)

11 w <- model.matrix(mt, mf)

12 offset <- model.offset(mf)

13 #### Subset code

14 if (!is.null(x)) {

15 if (missing(subset))

16 r <- TRUE

17 else {

18 e <- substitute(subset)

19 r <- eval( e, data)

20 if (!is.logical(r))

21 stop("’subset’ must evaluate to logical" )

22 r <- r & !is.na(r)
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23 }

24 if (class(x)=="character") {

25 nl <- as.list( 1:ncol(data))

26 names(nl) <- names( data)

27 vars <- eval(substitute(x), nl, parent.frame())

28 x <- data [r , vars, drop=FALSE ]

29 x <- as.matrix(x )

30 } else if (class(x)== "matrix" || class(x)== "data.frame") {

31 x <- x[r,, drop =FALSE]

32 x <- as.matrix(x)

33 }

34 }

35 #### End subset code

36

37 if(!is.null(offset)){

38 offset<- log(offset)

39 }

40 data <- data.matrix(data)

41 n<- length(y)

42 if (!is.null(x)) {

43 vars <- dim(x)[2]

44 # vars is the number of penalized variables

45 oldx <- x

46 if (scale) {

47 x <- scale(x, center = TRUE, scale = TRUE)

48 # Center and scale the penalized variables
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49 }

50 x_original<-x

51 # Keep the old x, will use in Hilbe’s and estimation of theta

52 x <- cbind(x, -1 * x)

53 # x is now the expanded x matrix

54 beta <- rep(0, dim(x)[2])

55 # Beta as a vector of 0’s with a length equivalent the the expanded x

56 names(beta) <- dimnames(x)[[2]]

57 step <- 1

58 Estimates <- matrix(0,ncol=vars)

59 # Estimates will be the final collapsed beta values- matrix

60 if(!is.null(offset)){

61 initialize<-glm.nb(y~w-1 + offset(offset),

62 control=glm.control(maxit=100))

63 # Starting values theta and (Intercept)

64 }else{

65 initialize<-glm.nb(y~w-1,control=glm.control(maxit=100))

66 }

67 LL0 <- Likelihood <- logLik(initialize)

68 # Log-likelihood for model with no penalized predictors

69 AIC<-AIC(initialize)

70 # AIC for model with no penalized predictors

71 BIC<-BIC(initialize)

72 # BIC for model with no penalized predictors

73 theta <- coef(initialize)

74 # Unpenalized coefficient estimates for model
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75 # with no penalized predictors

76 theta.update <- matrix(theta, ncol = length(theta))

77 a<- 1/theta.mm(initialize)

78 # Alpha for model with no penalized predictors,

79 # use mm estimate to initialize

80 a.update<- a

81 # a.update will be used to keep track of all alpha estimates

82 repeat {

83 step <- 1 + step

84 # Xb will be calculated depending on whether offset is present

85 # and whether there are penalized variables

86 if (!is.null(offset)) {

87 Xb <- cbind(offset, w, x) %*% c(1, theta, beta)

88 }

89 else {

90 Xb <- cbind(w, x) %*% c(theta, beta)

91 }

92

93 u <- t(x) %*% ((y- exp(Xb)) /(1+ (a*exp(Xb))))

94 # Likelihood gradient value- NEGATIVE BINOMIAL Hilbe Page 192

95 update.j <- which.min(-u)

96 # Choose coeffiecient to update

97 if (-u[update.j] < 0) {

98 beta[update.j] <- beta[update.j] + epsilon

99 # Update beta

100 }
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101 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(beta)])

102 # Keep track of beta changes

103 out <- optim(theta, nb.theta, a=a, w=w, x=x_original,

104 y=y, offset=offset,

105 beta=beta[1:vars]-beta[(vars+1):length(beta)],

106 method="BFGS")

107 # Update intercept and non-penalized subset using new beta values

108 theta <- out$par

109 theta.update <- rbind(theta.update, theta)

110 # Keep track of theta values

111 a<- hilbe(w=w,y=y,x=x_original,theta=theta,

112 # Update alpha using Hilbe’s algorithm

113 beta=beta[1:vars]-beta[(vars+1):length(beta)],

114 # Need to use the original x not the expanded,

115 # don’t want expanded beta too

116 offset= offset, delta=1e-5)

117 a.update<- c(a.update,a)

118 # Keep track of the alpha values

119

120 p <- sum(Estimates[step,]!=0) + length(theta) + 1

121 # Number of predictors in the NB model: nonzero beta + theta + alpha(1)

122 if (!is.null(offset)) {

123 # Calculate Xb to be used to calculate the Likelihood

124 Xb_LL <- cbind(offset, w, x_original) %*%

125 c(1, theta, beta[1:vars]-beta[(vars+1):length(beta)])

126 }
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127 else {

128 Xb_LL <- cbind(w, x_original) %*%

129 c(theta,beta[1:vars]-beta[(vars+1):length(beta)])

130 }

131 Likelihood[step]<-LL1<- sum(y*log((a*exp(Xb_LL))/(1+ (a*exp(Xb_LL)))) -

132 (1/a)*log(1+ (a*exp(Xb_LL))) +

133 lgamma(y+ (1/a)) - lgamma(y+1) - lgamma(1/a))

134 # likelihood function- NEGATIVE BINOMIAL Hilbe pg 190

135 AIC[step] <- 2*p - 2*Likelihood[step]

136 # AIC - equation 5.16 Hilbe pg 68

137 BIC[step] <- p*log(n) - 2*Likelihood[step]

138 # BIC - equation 5.21 Hilbe pg 71

139 # STOPPING CRITERIA

140 if (step >= 1 && (p>=n-1 )) {

141 break

142 }

143 LL0 <- LL1

144 # Assign the "old" LL value the "new" LL value for the next step

145 }

146 output<-list(a=a.update, beta = Estimates, theta=theta.update, x=oldx,

147 y=y, scale=scale, Likelihood=Likelihood,

148 AIC=AIC, BIC=BIC,w=w,offset=offset)

149 } else {

150 out<-glm.nb(y~w-1, offset=offset)

151 output <- list(coef(out), a=1/out$theta)

152 }
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153 class(output) <- "nb.gmifs"

154 output

155 }

156

6.1.4 Negative Binomial Generalized Monotone Incremental Forward Stage-

wise Method Functions

1 # #######################################################

2 # Predict function#########

3 # #############################

4 predict.nb.gmifs<- function(fit, newx, model.select=NA) {

5 #browser()

6 y<-fit$y

7 x<-newx

8 w<-fit$w

9 offset<-fit$offset

10 if (is.na(model.select)) {

11 model.select<-dim(fit$beta)[1]

12 }

13 else if (model.select == "AIC"){

14 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

15 model.select <- which.min(aic[-1])+1

16 }

17 else if (model.select == "BIC"){

18 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

19 model.select <- which.min(bic[-1])+1
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20 }

21 if (dim(fit$theta)[2]==1) {

22 alpha<-fit$a[model.select]

23 beta<-fit$beta[model.select,]

24 theta<-fit$theta[model.select]

25 offset<-fit$offset

26 if (is.null(offset)) {

27 y.pred <- exp(c(theta,beta) %*% t(cbind(w, x)))

28 }

29 else {

30 offset<-fit$offset

31 y.pred <- exp(c(1,theta,beta) %*% t(cbind(offset, w, x)))

32 }

33 }

34 else {

35 alpha<-fit$a[model.select]

36 beta<-fit$beta[model.select,]

37 theta<-fit$theta[model.select,]

38 if (is.null(offset)) {

39 y.pred <- exp(c(theta,beta) %*% t(cbind(w, x)))

40 }

41 else {

42 offset<-fit$offset

43 y.pred <- exp(c(1,theta,beta) %*% t(cbind(offset, w, x)))

44 }

45 }
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46 output<-list(pred=y.pred,theta=theta,beta=beta,alpha=alpha,offset=offset,w=w,x=x)

47 output

48 }

49

50 # #######################################################

51 # Coefficient function#########

52 # #############################

53 coef.nb.gmifs<- function(fit, model.select=NA) {

54 #browser()

55 if (is.na(model.select)) {

56 model.select=dim(fit$beta)[1]

57 if (is.null(dim(fit$theta))) {

58 beta<-fit$beta[model.select,]

59 theta<-fit$theta[model.select]

60 alpha<- fit$a[model.select]

61 c.coef<-c(alpha,theta,beta)

62 names(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

63 }

64 else {

65 beta<-fit$beta[model.select,]

66 theta<-fit$theta[model.select,]

67 alpha<- fit$a[model.select]

68 c.coef<-c(alpha,theta,beta)

69 names(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

70 }

71 }
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72 else if (model.select == "AIC") {

73 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

74 model.select <- which.min(aic[-1])+1

75 if (is.null(dim(fit$theta))) {

76 beta<-fit$beta[model.select,]

77 theta<-fit$theta[model.select]

78 alpha<- fit$a[model.select]

79 c.coef<-c(alpha,theta,beta)

80 names(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

81 }

82 else {

83 beta<-fit$beta[model.select,]

84 theta<-fit$theta[model.select,]

85 alpha<- fit$a[model.select]

86 c.coef<-c(alpha,theta,beta)

87 names(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

88 }

89 }

90 else if (model.select == "BIC") {

91 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

92 model.select <- which.min(bic[-1])+1

93 if (is.null(dim(fit$theta))) {

94 beta<-fit$beta[model.select,]

95 theta<-fit$theta[model.select]

96 alpha<- fit$a[model.select]

97 c.coef<-c(alpha,theta,beta)
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98 names(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

99 }

100 else {

101 beta<-fit$beta[model.select,]

102 theta<-fit$theta[model.select,]

103 alpha<- fit$a[model.select]

104 c.coef<-c(alpha,theta,beta)

105 names(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

106 }

107 }

108 else if (model.select == "all") {

109 beta<-fit$beta

110 theta<-fit$theta

111 alpha<- fit$alpha

112 c.coef<-cbind(alpha,theta,beta)

113 colnames(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))

114 rownames(c.coef)<-as.character(1:dim(beta)[1])

115 }

116

117 else {

118 if (is.null(dim(fit$theta))) {

119 beta<-fit$beta[model.select,]

120 theta<-fit$theta[model.select]

121 alpha<- fit$a[model.select]

122 c.coef<-cbind(alpha,theta,beta)

123 colnames(c.coef)<- c("alpha",colnames(fit$w),colnames(fit$x))
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124 rownames(c.coef)<-as.character(1:dim(beta)[1])

125 }

126 else {

127 beta<-fit$beta[model.select,]

128 theta<-fit$theta[model.select,]

129 alpha<- fit$a[model.select]

130 c.coef<-cbind(alpha,theta,beta)

131 colnames(c.coef)<- c("alpha", colnames(fit$w),colnames(fit$x))

132 rownames(c.coef)<-as.character(1:dim(beta)[1])

133 }

134 }

135

136 output<-list(coef=c.coef)

137 output

138 }

139

140 # #######################################################

141 # #summary function#########

142 # ##############################

143 summary.nb.gmifs<- function(fit, model.select=NA) {

144 #browser()

145 if (is.na(model.select)) {

146 model.select=dim(fit$beta)[1]

147 Likelihood<-fit$Likelihood[model.select]

148 AIC<- fit$AIC[model.select]

149 BIC<- fit$BIC[model.select]
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150 summary<-c(Likelihood,AIC, BIC)

151 names(summary)<- c("Likelihood","AIC", "BIC")

152 }

153 else if (model.select == "AIC") {

154 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

155 model.select <- which.min(aic[-1])+1

156 Likelihood<-fit$Likelihood[model.select]

157 AIC<- fit$AIC[model.select]

158 BIC<- fit$BIC[model.select]

159 summary<-c(Likelihood,AIC, BIC)

160 names(summary)<- c("Likelihood","AIC", "BIC")

161 }

162 else if (model.select == "BIC") {

163 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

164 model.select <- which.min(bic[-1])+1

165 Likelihood<-fit$Likelihood[model.select]

166 AIC<- fit$AIC[model.select]

167 BIC<- fit$BIC[model.select]

168 summary<-c(Likelihood, AIC, BIC)

169 names(summary)<- c("Likelihood","AIC", "BIC")

170 }

171 else if (model.select=="all") {

172 Likelihood<-fit$Likelihood

173 AIC<-fit$AIC

174 BIC<- fit$BIC

175 summary<-cbind(Likelihood,AIC, BIC)
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176 colnames(summary)<- c("Likelihood","AIC", "BIC")

177 }

178 else {

179 Likelihood<-fit$Likelihood[model.select]

180 AIC<-fit$AIC[model.select]

181 BIC<- fit$BIC[model.select]

182 summary<-cbind(Likelihood,AIC, BIC)

183 colnames(summary)<- c("Likelihood","AIC", "BIC")

184 }

185 output<-list(summary=summary)

186 output

187 }

188

189 #######################################################

190 # plot function#########

191 ##############################

192 plot.nb.gmifs<- function(fit, type, main=type, beta="All") {

193 #browser()

194 if (type=="coefficients") {

195 if (beta=="All"){

196 n<-which(fit$beta[dim(fit$beta)[1],] != 0)

197 plot(1:dim(fit$beta)[1],fit$beta[,n[1]],

198 xlab="Step",ylab=expression(beta),main=main,col=500+n[1],type="l",

199 ylim=c(min(fit$beta[dim(fit$beta)[1],]),max(fit$beta[dim(fit$beta)[1],])),

200 cex.lab=2, cex.axis=2, cex.main=2)

201 for (i in 2:length(n)){
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202 lines(fit$beta[,n[i]],col=500+n[i])

203 }

204 }

205 else {

206 n<-beta

207 plot(1:dim(fit$beta)[1],fit$beta[,n[1]],

208 xlab="Step",ylab="Beta",main=main,col=500+n[1],type="l",

209 ylim=c(min(fit$beta[dim(fit$beta)[1],]),max(fit$beta[dim(fit$beta)[1],])),

210 cex.lab=2, cex.axis=2, cex.main=2)

211 for (i in 2:length(n)){

212 lines(fit$beta[,n[i]],col=500+n[i])

213 }

214 }

215 }

216 else if (type == "AIC") { # This is a plot of the AIC

217 plot(1:length(fit$AIC),fit$AIC,xlab="Step",ylab="AIC",main=main,

218 cex.lab=2, cex.axis=2, cex.main=2)

219 }

220 else if (type == "BIC") { # This is a plot of the BIC

221 plot(1:length(fit$BIC),fit$BIC,xlab="Step",ylab="BIC",main=main,

222 cex.lab=2, cex.axis=2, cex.main=2)

223 }

224 else { type = "Likelihood" # This is a plot of the likelihood

225 plot(1:length(fit$Likelihood),fit$Likelihood,

226 xlab="Step",ylab="-logLikelihood",main=main,

227 cex.lab=2, cex.axis=2, cex.main=2)
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228 }

229 }

6.2 Chapter 3: Longitudinal Poisson GMIFS

6.2.1 Longitudinal Poisson Loglikelihood Code

1 # w is the set of unpenalized predictors

2 # x is the set of penalized predictors

3 # y is the discrete response

4 # z is the set of random effects

5 # offset is the offset

6 # beta are the coefficients for the penalized predictors

7 # theta are the coefficients for the unpenalized predictors

8 # u are the coefficents for the random effects

9 #################################################

10 ### poisson.theta is used to estimate model coefficients for

11 ### unpenalized subset###

12 ### Poisson GMIFS Functions ###

13 poisson.theta<-function (par, w, x, y, offset, beta, zu) {

14 if (!is.null(offset)) {

15 Xb <- cbind(offset, w, x, zu) %*% c(1, par, beta, 1)

16 }

17 else {

18 Xb <- cbind(w, x, zu) %*% c(par, beta, 1)

19 }

20 contri.LL<-y*Xb-exp(Xb)-lgamma(y+1)

21 # likelihood function Poisson
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22 loglik <- sum(contri.LL)

23 -loglik

24 }

25

6.2.2 Longitudinal Poisson Generalized Monotone Incremental Forward

Stagewise Method Code

1 poisson.long.gmifs<-function (formula, id, slope, data,

2 x=NULL, offset, subset, epsilon=0.001, tol=1e-5,

3 tau=0.1,scale=TRUE, verbose=FALSE, ...) {

4 mf <- match.call(expand.dots = FALSE)

5 cl <- match.call()

6 m <- match(c("formula", "data", "subset", "offset"), names(mf), 0L)

7 mf <- mf[c(1L, m)]

8 mf[[1L]] <- as.name("model.frame")

9 mf <- eval(mf, parent.frame())

10 mt <- attr(mf, "terms")

11 y <- model.response(mf)

12 w <- model.matrix(mt, mf)

13 offset <- model.offset(mf)

14 n<- length(unique(id))

15

16 if (!is.null(x)) { # Subset code

17 if (missing(subset))

18 r <- TRUE

19 else {
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20 e <- substitute( subset)

21 r <- eval( e, data)

22 if (!is.logical(r))

23 stop("’subset’ must evaluate to logical" )

24 r <- r & !is.na(r)

25 }

26 if (class(x)=="character") {

27 nl <- as.list( 1:ncol(data))

28 names(nl) <- names( data)

29 vars <- eval(substitute(x), nl, parent.frame())

30 x <- data [r , vars, drop=FALSE ]

31 x <- as.matrix(x )

32 } else if (class(x)== "matrix" || class(x)== "data.frame") {

33 x <- x[r,, drop =FALSE]

34 x <- as.matrix(x)

35 }

36 } # End subset code

37 if(!is.null(offset)){

38 offset<- log(offset)

39 }

40 data <- data.matrix(data)

41 if (!is.null(x)) {

42 vars <- dim(x)[2]

43 oldx <- x

44 if (scale) {

45 x <- scale(x, center = TRUE, scale = TRUE)
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46 }

47 x <- cbind(x, -1 * x)

48 beta <- rep(0, dim(x)[2])

49 names(beta) <- dimnames(x)[[2]]

50 step <- 1

51 Estimates <- matrix(0,ncol=vars)

52 beta_all<- matrix(0,ncol=2*vars)

53 initialize<-glmer(y~w-1 + (slope|id), offset=offset, family="poisson",

54 control=glmerControl(optimizer="bobyqa"))

55 # Initialize values

56 theta <- fixef(initialize)

57 # theta values or the unpenalized predictors

58 Likelihood <- LL0 <- logLik(initialize)[1]

59 # First log likelihood value

60 AIC <- AIC(initialize)

61 # First AIC value

62 BIC <- BIC(initialize)

63 # First BIC value

64 u<- c(rbind(ranef(initialize)$id[,1],

65 ranef(initialize)$id[,2]))

66 i<- unique(id)

67 freq<- melt(table(id))$value

68 mat<-lapply(i, function(i) matrix(c(rep(1,freq[i]), seq(1,freq[i])),

69 nrow=freq[i], ncol=2))

70 z<-bdiag(mat)

71 zu<- z %*% u
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72 # zu are the random effects times their coefficients, this is changing

73 theta.update <- matrix(theta, ncol = length(theta))

74 repeat {

75 step<- step+1

76 if (!is.null(offset)) {

77 Xb <- cbind(offset, w, x, zu) %*% c(1, theta, beta, 1)

78 # Added in the random effects to the log link fxn

79 }

80 else {

81 x[is.na(x)]<-0

82 Xb <- cbind(w, x, zu) %*% c(theta, beta, 1)

83 # Added in the random effects to this too

84 }

85 grad <- t(x)%*%(y-exp(Xb))

86 # Likelihood gradient value

87 update.j <- which.min(as.vector(-grad))

88 # Choose coeffiecient to update

89

90 if((step>2)&&(beta_all[step-1, update.j] - beta_all[step-2,update.j] ==0)){

91 # if this is a new beta entering the model then

92 assign("last.warning", NULL, envir = baseenv())

93 b.test<- beta[1:vars]-beta[(vars+1):length(beta)]

94 if (is.null(warnings())) {

95 initialize<-glmer(y~oldx[,b.test!=0] + w-1 + (slope|id),

96 offset=offset, family="poisson",

97 control=glmerControl(optimizer="bobyqa",

125



98 optCtrl=list(maxfun=2e4)))

99 # update the random effects

100 }

101 u<- c(rbind(ranef(initialize)$id[,1],

102 ranef(initialize)$id[,2]))

103 zu<- z %*% u

104 # zu are the random effects times their coefficients, this is changing

105 if (!is.null(offset)) {

106 Xb <- cbind(offset, w, x, zu) %*% c(1, theta, beta, 1)

107 # Added in the random effects to the log link fxn

108 }

109 else {

110 x[is.na(x)]<-0

111 Xb <- cbind(w, x, zu) %*% c(theta, beta, 1)

112 # Added in the random effects to this too

113 }

114 grad <- t(x)%*%(y-exp(Xb))

115 update.j <- which.min(as.vector(-grad))

116 # Choose coeffiecient to update

117 }

118

119 if (-grad[update.j] < 0) {

120 beta[update.j] <- beta[update.j] + epsilon

121 # Update beta

122 }

123 beta_all<- rbind(beta_all,beta)
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124 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(beta)])

125 # Keep track of beta changes

126 out <- optim(theta, poisson.theta, w=w, x=x, y=y,

127 offset=offset, zu=zu, beta=beta,method="BFGS")

128 # Update intercept and non-penalized subset

129 theta <- out$par

130 theta.update <- rbind(theta.update, theta)

131 # Keep track of new theta values

132 p <- sum(Estimates[step,]!=0) + length(theta)

133 Likelihood[step]<- LL1<- -out$value

134 AIC[step]<- 2*p-2*Likelihood[step]

135 BIC[step] <- p*log(n) - 2*Likelihood[step]

136 # BIC - equation 5.21 Hilbe pg 71

137 if (p>tau*n ){

138 break}

139 LL0 <- LL1

140 }

141 output<-list(beta = Estimates, theta=theta.update, x=oldx, y=y,

142 scale=scale, Likelihood=Likelihood, AIC=AIC, BIC=BIC,

143 w=w,offset=offset, id=id, slope=slope, u=u, z=z)

144 class(output) <- "poisson.long.gmifs"

145 } else {

146 output<-glmer(y~w-1 + (slope|id), offset=offset, family="poisson",

147 control= glmerControl(optimizer="bobyqa"))

148 }

149 output
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150 }

151

6.2.3 Longitudinal Poisson Generalized Monotone Incremental Forward

Stagewise Method Functions

1 predict.long.poisson.gmifs<- function(fit, newx, model.select=NA) {

2 #browser()

3 y<-fit$y

4 x<-fit$x

5 w<-fit$w

6 z<- fit$z

7 u<- fit$u

8 offset<-fit$offset

9 if (is.na(model.select)) {

10 model.select=dim(fit$beta)[1]

11 }

12 else if(model.select == "AIC"){

13 aic<- eval(parse(text=paste("fit", model.select, sep="$")))

14 model.select<- which.min(aic)

15 }

16 else if(model.select == "BIC"){

17 bic<- eval(parse(text=paste("fit", model.select, sep="$")))

18 model.select<- which.min(bic)

19 }

20

21 if (is.null(dim(fit$theta))) {
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22 beta<-fit$beta[model.select,]

23 theta<-fit$theta[model.select,]

24 offset<-fit$offset

25 if (is.null(offset)) {

26 y.pred <- exp(c(theta,beta,1) %*% t(cbind(w, x, (z %*% u))))

27 }

28 else {

29 offset<-fit$offset

30 y.pred <- exp(c(1,theta,beta,1) %*% t(cbind(offset, w, x, (z %*% u))))

31 }

32 }

33 else {

34 beta<-fit$beta[model.select,]

35 theta<-fit$theta[model.select,]

36 if (is.null(offset)) {

37 y.pred <- exp(c(theta,beta,1) %*% t(cbind(w, x, (z %*% u))))

38 }

39 else {

40 offset<-fit$offset

41 y.pred <- exp(c(1,theta,beta, 1) %*% t(cbind(offset, w, x, (z %*% u))))

42 }

43 }

44 output<-list(pred=y.pred,theta=theta,beta=beta,offset=offset,w=w,x=x,z=z,u=u)

45 output

46 }

47
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48

49 #######################################################

50 #Coefficient function#########

51 ##############################

52 #NEED TO ADD ABILITY TO CHOOSE SUBSET OF BETAS

53 coef.long.poisson.gmifs<- function(fit, model.select=NA) {

54 #browser()

55 if (is.na(model.select)) {

56 model.select=dim(fit$beta)[1]

57 if (is.null(dim(fit$theta))) {

58 beta<-fit$beta[model.select,]

59 theta<-fit$theta[model.select]

60 c.coef<-c(theta,beta)

61 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

62 }else {

63 beta<-fit$beta[model.select,]

64 theta<-fit$theta[model.select,]

65 c.coef<-c(theta,beta)

66 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

67 }

68 }else if (model.select == "AIC") {

69 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

70 model.select <- which.min(aic)

71 if (is.null(dim(fit$theta))) {

72 beta<-fit$beta[model.select,]

73 theta<-fit$theta[model.select]

130



74 c.coef<-c(theta,beta)

75 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

76 }else {

77 beta<-fit$beta[model.select,]

78 theta<-fit$theta[model.select,]

79 c.coef<-c(theta,beta)

80 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

81 }

82 }else if (model.select == "BIC") {

83 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

84 model.select <- which.min(bic)

85 if (is.null(dim(fit$theta))) {

86 beta<-fit$beta[model.select,]

87 theta<-fit$theta[model.select]

88 c.coef<-c(theta,beta)

89 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

90 }else {

91 beta<-fit$beta[model.select,]

92 theta<-fit$theta[model.select,]

93 c.coef<-c(theta,beta)

94 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

95 }

96 }else if (model.select == "all") {

97 beta<-fit$beta

98 theta<-fit$theta

99 c.coef<-cbind(theta,beta)
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100 colnames(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

101 rownames(c.coef)<-as.character(1:dim(beta)[1])

102 }else {

103 if (is.null(dim(fit$theta))) {

104 beta<-fit$beta[model.select,]

105 theta<-fit$theta[model.select]

106 c.coef<-c(theta,beta)

107 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

108 }else {

109 beta<-fit$beta[model.select,]

110 theta<-fit$theta[model.select,]

111 c.coef<-c(theta,beta)

112 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

113 }

114 }

115

116 output<-list(coef=c.coef)

117 output

118 }

119

120 #######################################################

121 #summary function#########

122 ##############################

123

124 summary.long.poisson.gmifs<- function(fit, model.select=NA) {

125 #browser()
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126 if (is.na(model.select)) {

127 model.select=dim(fit$beta)[1]

128 Likelihood<-fit$Likelihood[model.select]

129 AIC<-fit$AIC[model.select]

130 BIC<-fit$BIC[model.select]

131 summary<-c(Likelihood,AIC,BIC)

132 names(summary)<- c("Likelihood","AIC", "BIC")

133 }

134 else if (model.select == "AIC") {

135 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

136 model.select <- which.min(aic)

137 Likelihood<-fit$Likelihood[model.select]

138 AIC<-fit$AIC[model.select]

139 BIC<-fit$BIC[model.select]

140 summary<-c(Likelihood,AIC,BIC)

141 names(summary)<- c("Likelihood","AIC", "BIC")

142 }

143 else if (model.select == "BIC") {

144 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

145 model.select <- which.min(bic)

146 Likelihood<-fit$Likelihood[model.select]

147 AIC<- fit$AIC[model.select]

148 BIC<- fit$BIC[model.select]

149 summary<-c(Likelihood, AIC, BIC)

150 names(summary)<- c("Likelihood","AIC", "BIC")

151 }
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152 else if (model.select=="all") {

153 Likelihood<-fit$Likelihood

154 AIC<-fit$AIC

155 BIC<- fit$BIC

156 summary<-cbind(Likelihood,AIC, BIC)

157 colnames(summary)<- c("Likelihood","AIC", "BIC")

158 }

159 else {

160 Likelihood<-fit$Likelihood[model.select]

161 AIC<-fit$AIC[model.select]

162 BIC<- fit$BIC[model.select]

163 summary<-cbind(Likelihood,AIC, BIC)

164 colnames(summary)<- c("Likelihood","AIC", "BIC")

165 }

166 output<-list(summary=summary)

167 output

168 }

169

170 #######################################################

171 #plot function#########

172 ##############################

173

174 plot.long.poisson.gmifs<- function(fit, type, main=main,xlim=xlim,beta="All") {

175 if (type=="coefficients") {

176 if (beta=="All"){

177 n<-which(fit$beta[dim(fit$beta)[1],] != 0)
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178 plot(1:dim(fit$beta)[1],fit$beta[,n[1]],xlab="Step",ylab="Beta",main=main,

179 col=500+n[1],type="l",ylim=c(min(fit$beta[dim(fit$beta)[1],]),

180 max(fit$beta[dim(fit$beta)[1],])),

181 cex=2, cex.main=2, cex.lab=2, cex.axis=1.5)

182 for (i in 2:length(n)){

183 lines(fit$beta[,n[i]],col=500+n[i])

184 }

185 }

186 else {

187 n<-beta

188 plot(1:dim(fit$beta)[1],fit$beta[,n[1]],xlab="Step",ylab="Beta",

189 main=main,col=500+n[1],type="l",

190 ylim=c(min(fit$beta[dim(fit$beta)[1],]),

191 max(fit$beta[dim(fit$beta)[1],])),

192 cex.lab=1.5, cex.axis=1.5, cex.main=1.5)

193 for (i in 2:length(n)){

194 lines(fit$beta[,n[i]],col=500+n[i])

195 }

196 }

197 }

198 else if (type == "AIC") {

199 plot(1:length(fit$AIC),fit$AIC,xlab="Step",ylab="AIC",main=main,

200 cex.lab=2, cex.axis=2, cex.main=2)

201 }

202 else if (type == "BIC") {

203 plot(1:length(fit$BIC),fit$BIC,xlab="Step",ylab="BIC",main=main,
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204 cex.lab=2, cex.axis=2, cex.main=2)

205 }

206 else { type = "Likelihood"

207 plot(1:length(fit$Likelihood),fit$Likelihood,xlab="Step",

208 ylab="-logLikelihood",main=main,

209 cex.lab=2, cex.axis=2, cex.main=2)

210 }

211 }

6.3 Chapter 4: Longitudinal Negative Binomial GMIFS

6.3.1 Longitudinal Negative Binomial Loglikelihood Code

1 # w is the set of unpenalized predictors

2 # x is the set of penalized predictors

3 # y is the discrete response

4 # z is the set of random effects

5 # offset is the offset

6 # beta are the coefficients for the penalized predictors

7 # theta are the coefficients for the unpenalized predictors

8 # u are the coefficents for the random effects

9 # a is the alpha or the overdispersion parameter

10 ########################################################

11 ### nb.theta is used to estimate model

12 ### coefficients for unpenalized subset###

13 ### This FXN has been edited from Matt’s code to i

14 ### nclude the random effects- we will pass zu

15 ### to the function
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16 ### NB GMIFS Functions ###

17 nb.theta<-function (par, a, w, x, y, offset, beta, zu) {

18 if (!is.null(offset)) {

19 Xb <- cbind(offset, w, x, zu) %*% c(1, par, beta, 1)

20 }

21 else {

22 Xb <- cbind(w, x, zu) %*% c(par, beta, 1)

23 }

24 contri.LL<- y*log((a*exp(Xb))/(1+ (a*exp(Xb)))) -

25 (1/a)*log(1+ (a*exp(Xb))) +

26 lgamma(y+ (1/a)) - lgamma(y+1) - lgamma(1/a)

27 # likelihood function- NEGATIVE BINOMIAL Hilbe pg 190

28 loglik <- sum(contri.LL)

29 -loglik

30 }

6.3.2 Hilbe’s Method Code

1 ### Hilbe’s Algorithm - used to estimate alpha ###

2 hilbe<- function(w, y, x, theta, beta, zu, offset, delta=.001) {

3 #browser()

4 x[is.na(x)]<-0

5 mu<- mean(y) # estimate lambda

6 chi2<- sum(((y-mu)^2)/mu) # Poisson chi2 test

7 if(!is.null(x) & !is.null(w)) {

8 df<-length(y)- dim(w)[2]-sum(beta!=0)

9 }
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10 if(is.null(x) & !is.null(w)) {

11 df<-length(y)- dim(w)[2]

12 }

13 if(!is.null(x) & is.null(w)) {

14 df<-length(y)-sum(beta!=0)

15 }

16 disp<- chi2/df # Poisson Dispersion

17 alpha<- 1/disp # Inverse of Poisson Dispersion

18 j<-1

19 delta_disp <- 1.0

20 # Initiating the change in the dispersion estimate

21 while(abs(delta_disp) >= delta) {

22 old_disp<- disp

23 if (is.null(x)) {

24 if (!is.null(offset)) {

25 Xb <- cbind(offset, w, zu) %*% c(1, theta, 1)

26 } else {

27 Xb <- w %*% theta

28 }

29 } else {

30 if (!is.null(offset)) {

31 Xb <- cbind(offset, w, x, zu) %*% c(1, theta, beta, 1)

32 }

33 else {

34 Xb <- cbind(w, x, zu) %*% c(theta, beta, 1)

35 }
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36 }

37 mu<- exp(Xb)

38 chi2<- ((y-mu)^2) / (mu + (alpha*(mu^2)))

39 # Negative Binomial Chi2 test

40 chi2<- sum(chi2)

41 disp<- chi2/df

42 alpha<- disp*alpha

43 delta_disp<- disp - old_disp

44 j=j+1

45 }

46 alpha

47 }

48

6.3.3 Longitudinal Negative Binomial Generalized Monotone Incremen-

tal Forward Stagewise Method Code

1 nb.long.gmifs<-function (formula, id, slope, data,

2 x=NULL, offset, subset, epsilon=0.001,

3 tol=1e-5, tau=0.1,scale=TRUE,

4 verbose=FALSE, ...) {

5 mf <- match.call(expand.dots = FALSE)

6 cl <- match.call()

7 m <- match(c("formula", "data", "subset", "offset"), names(mf), 0L)

8 mf <- mf[c(1L, m)]

9 mf[[1L]] <- as.name("model.frame")

10 mf <- eval(mf, parent.frame())
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11 mt <- attr(mf, "terms")

12 y <- model.response(mf)

13 w <- model.matrix(mt, mf)

14 #print(head(w))

15 offset <- model.offset(mf)

16 n<- length(unique(id))

17

18 if (!is.null(x)) { ############## Subset code

19 if (missing(subset))

20 r <- TRUE

21 else {

22 e <- substitute( subset)

23 r <- eval( e, data)

24 if (!is.logical(r))

25 stop("’subset’ must evaluate to logical" )

26 r <- r & !is.na(r)

27 }

28 if (class(x)=="character") {

29 nl <- as.list( 1:ncol(data))

30 names(nl) <- names( data)

31 vars <- eval(substitute(x), nl, parent.frame())

32 x <- data [r , vars, drop=FALSE ]

33 x <- as.matrix(x )

34 } else if (class(x)== "matrix" || class(x)== "data.frame") {

35 x <- x[r,, drop =FALSE]

36 x <- as.matrix(x)
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37 }

38 } ################ End subset code

39 if(!is.null(offset)){

40 offset<- log(offset)

41 }

42 data <- data.matrix(data)

43 if (!is.null(x)) {

44 vars <- dim(x)[2]

45 oldx <- x

46 if (scale) {

47 x <- scale(x, center = TRUE, scale = TRUE)

48 }

49 x[is.na(x)] <- 0

50 x_original<-x

51 x <- cbind(x, -1 * x)

52 beta <- rep(0, dim(x)[2])

53 names(beta) <- dimnames(x)[[2]]

54 step <- 1

55 Estimates <- matrix(0,ncol=vars)

56 beta_all<- matrix(0,ncol=2*vars)

57 initialize<-glmer.nb(y~w-1 + (slope|id), data=as.data.frame(data),

58 offset=offset, # want an intercept

59 control=glmerControl(optimizer="bobyqa",

60 optCtrl=list(maxfun=2e5)))

61

62 BAD<- warnings()

141



63 if(!is.null(BAD)) stop(paste0("Warnings at step = ", step))

64

65 theta <- fixef(initialize)

66 # theta values or the unpenalized predictors

67 Likelihood <- LL0 <- logLik(initialize)[1]

68 # First log likelihood value for the model with random effects

69 # and only penalized

70 AIC <- AIC(initialize)

71 # First AIC value for the model with random effects

72 # and only unpenalized

73 BIC <- BIC(initialize)

74 # First BIC value for the model with random effects and

75 # only unpenalized

76 a<- 1/getME(initialize, "glmer.nb.theta")

77 # Alpha for model with no penalized predictors,

78 # use mm estimate to initialize

79 a.update<- a

80 # a.update will be used to keep track of all alpha estimates

81 u<- c(rbind(ranef(initialize)$id[,1],

82 ranef(initialize)$id[,2]))

83 i<- unique(id)

84 freq<- melt(table(id))$value

85 mat<-lapply(i, function(i) matrix(c(rep(1,freq[i]), seq(1,freq[i])),

86 nrow=freq[i], ncol=2))

87 z<-bdiag(mat)

88 zu<- z %*% u
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89 # zu are the random effects times their coefficients, this is changing

90 theta.update <- matrix(theta, ncol = length(theta))

91 repeat {

92 step<- step+1

93 if (!is.null(offset)) {

94 Xb <- cbind(offset, w, x, zu) %*% c(1, theta, beta, c(1,1))

95 # Added in the random effects to the log link fxn

96 }

97 if(is.null(offset)) {

98 Xb <- cbind(w, x, zu) %*% c(theta, beta, 1)

99 # Added in the random effects to this too

100 }

101 grad <- t(x)%*%(y-exp(Xb))

102 # Likelihood gradient value

103 update.j <- which.min(as.vector(-grad))

104 # Choose coeffiecient to update

105

106 if((step>2)&&(beta_all[step-1, update.j] - beta_all[step-2,update.j] ==0)){

107 # if this is a new beta entering the model then

108 assign("last.warning", NULL, envir = baseenv())

109 b.test<- beta[1:vars]-beta[(vars+1):length(beta)]

110 if (is.null(warnings())) {

111 initialize<-glmer.nb(y~x_original[,b.test!=0] + w-1 + (slope|id),

112 offset=offset, data=as.data.frame(data),

113 control=glmerControl(optimizer="bobyqa",

114 optCtrl=list(maxfun=2e4)))
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115 # update the random effects

116

117 BAD<- warnings()

118 if(!is.null(BAD))stop(paste0("Warnings at Re-estimating step = ",step))

119 }

120 u<- c(rbind(ranef(initialize)$id[,1],

121 ranef(initialize)$id[,2]))

122 zu<- z %*% u

123 # zu are the random effects times their coefficients, this is changing

124 if (!is.null(offset)) {

125 Xb <- cbind(offset, w, x, zu) %*% c(1, theta, beta, c(1,1))

126 # Added in the random effects to the log link fxn

127 } else {

128 Xb <- cbind(w, x, zu) %*% c(theta, beta, 1)

129 # Added in the random effects to this too

130 }

131 grad <- t(x)%*%(y-exp(Xb))

132 # Likelihood gradient value

133 update.j <- which.min(as.vector(-grad))

134 # Choose coeffiecient to update

135 }

136

137 if (-grad[update.j] < 0) {

138 beta[update.j] <- beta[update.j] + epsilon

139 # Update beta

140 }
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141 beta_all<- rbind(beta_all,beta)

142 Estimates<-rbind(Estimates,beta[1:vars]-beta[(vars+1):length(beta)])

143 # Keep track of beta changes

144 b.test<- beta[1:vars]-beta[(vars+1):length(beta)]

145 out <- optim(theta, nb.theta,a=a, w=w, x=x_original, y=y,

146 offset=offset, zu=zu, beta=b.test, method="BFGS")

147 # Update intercept and non-penalized subset using new beta values

148

149 BAD<- warnings()

150 if(!is.null(BAD)) stop(paste0("Warnings at Optim FXN step = ", step))

151

152

153

154 theta <- out$par

155 theta.update <- rbind(theta.update, theta)

156 # Keep track of new theta values

157 a<- hilbe(w=w,y=y,x=x_original,theta=theta, zu=zu,

158 # Update alpha using Hilbe’s algorithm

159 beta=beta[1:vars]-beta[(vars+1):length(beta)],

160 # Need to use the original x not the expanded

161 offset= offset, delta=.001)

162 a.update<- c(a.update,a)

163 # Keep track of the alpha values

164 p <- sum(Estimates[step,]!=0) + length(theta) +1

165 # penalized, unpenalized, alpha

166 Likelihood[step]<- LL1<- -out$value
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167 AIC[step]<- 2*p-2*Likelihood[step]

168 BIC[step] <- p*log(n) - 2*Likelihood[step]

169 # BIC - equation 5.21 Hilbe pg 71

170 if (p>floor(tau*n)){

171 break

172 }

173 LL0 <- LL1

174 }

175 output<-list(beta = Estimates, theta=theta.update,a=a.update,

176 x=oldx, y=y, scale=scale, Likelihood=Likelihood, AIC=AIC, BIC=BIC,

177 w=w,offset=offset, id=id, slope=slope, u=u, z=z)

178 class(output) <- "nb.long.gmifs"

179 } else {

180 output<-glmer.nb(y~w-1 + (slope|id), offset=offset,

181 control= glmerControl(optimizer="bobyqa"))

182 }

183 output

184 }

6.3.4 Longitudinal Negative Binomail Generalized Monotone Incremen-

tal Forward Stagewise Method Functions

1 predict.long.nb.gmifs<- function(fit, newx, model.select=NA) {

2 #browser()

3 y<-fit$y

4 x<-fit$x

5 w<-fit$w
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6 z<- fit$z

7 u<- fit$u

8 offset<-fit$offset

9 if (is.na(model.select)) {

10 model.select=dim(fit$beta)[1]

11 }

12 else if(model.select == "AIC"){

13 aic<- eval(parse(text=paste("fit", model.select, sep="$")))

14 model.select<- which.min(aic)

15 }

16 else if(model.select == "BIC"){

17 bic<- eval(parse(text=paste("fit", model.select, sep="$")))

18 model.select<- which.min(bic)

19 }

20

21 if (is.null(dim(fit$theta))) {

22 beta<-fit$beta[model.select,]

23 theta<-fit$theta[model.select,]

24 offset<-fit$offset

25 if (is.null(offset)) {

26 y.pred <- exp(c(theta,beta,1) %*% t(cbind(w, x, (z %*% u))))

27 }

28 else {

29 offset<-fit$offset

30 y.pred <- exp(c(1,theta,beta,1) %*% t(cbind(offset, w, x, (z %*% u))))

31 }
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32 }

33 else {

34 beta<-fit$beta[model.select,]

35 theta<-fit$theta[model.select,]

36 if (is.null(offset)) {

37 y.pred <- exp(c(theta,beta,1) %*% t(cbind(w, x, (z %*% u))))

38 }

39 else {

40 offset<-fit$offset

41 y.pred <- exp(c(1,theta,beta, 1) %*% t(cbind(offset, w, x, (z %*% u))))

42 }

43 }

44 output<-list(pred=y.pred,theta=theta,beta=beta,offset=offset,w=w,x=x,z=z,u=u)

45 output

46 }

47

48

49 #######################################################

50 #Coefficient function#########

51 ##############################

52 #NEED TO ADD ABILITY TO CHOOSE SUBSET OF BETAS

53 coef.long.nb.gmifs<- function(fit, model.select=NA) {

54 #browser()

55 if (is.na(model.select)) {

56 model.select=dim(fit$beta)[1]

57 if (is.null(dim(fit$theta))) {
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58 beta<-fit$beta[model.select,]

59 theta<-fit$theta[model.select]

60 c.coef<-c(theta,beta)

61 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

62 }

63 else {

64 beta<-fit$beta[model.select,]

65 theta<-fit$theta[model.select,]

66 c.coef<-c(theta,beta)

67 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

68 }

69 }

70

71 else if (model.select == "AIC") {

72 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

73 model.select <- which.min(aic)

74 if (is.null(dim(fit$theta))) {

75 beta<-fit$beta[model.select,]

76 theta<-fit$theta[model.select]

77 c.coef<-c(theta,beta)

78 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

79 }

80 else {

81 beta<-fit$beta[model.select,]

82 theta<-fit$theta[model.select,]

83 c.coef<-c(theta,beta)
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84 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

85 }

86 }

87

88 else if (model.select == "BIC") {

89 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

90 model.select <- which.min(bic)

91 if (is.null(dim(fit$theta))) {

92 beta<-fit$beta[model.select,]

93 theta<-fit$theta[model.select]

94 c.coef<-c(theta,beta)

95 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

96 }

97 else {

98 beta<-fit$beta[model.select,]

99 theta<-fit$theta[model.select,]

100 c.coef<-c(theta,beta)

101 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

102 }

103 }

104 else if (model.select == "all") {

105 beta<-fit$beta

106 theta<-fit$theta

107 c.coef<-cbind(theta,beta)

108 colnames(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

109 rownames(c.coef)<-as.character(1:dim(beta)[1])
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110 }

111

112 else {

113 if (is.null(dim(fit$theta))) {

114 beta<-fit$beta[model.select,]

115 theta<-fit$theta[model.select]

116 c.coef<-c(theta,beta)

117 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

118 }

119 else {

120 beta<-fit$beta[model.select,]

121 theta<-fit$theta[model.select,]

122 c.coef<-c(theta,beta)

123 names(c.coef)<- c("intercept",colnames(fit$w)[-1],colnames(fit$x))

124 }

125 }

126

127 output<-list(coef=c.coef)

128 output

129 }

130

131 #######################################################

132 #summary function#########

133 ##############################

134

135 summary.long.nb.gmifs<- function(fit, model.select=NA) {
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136 #browser()

137 if (is.na(model.select)) {

138 model.select=dim(fit$beta)[1]

139 Likelihood<-fit$Likelihood[model.select]

140 AIC<-fit$AIC[model.select]

141 BIC<-fit$BIC[model.select]

142 summary<-c(Likelihood,AIC,BIC)

143 names(summary)<- c("Likelihood","AIC", "BIC")

144 }

145 else if (model.select == "AIC") {

146 aic<- eval(parse(text=paste("fit",model.select,sep="$")))

147 model.select <- which.min(aic)

148 Likelihood<-fit$Likelihood[model.select]

149 AIC<-fit$AIC[model.select]

150 BIC<-fit$BIC[model.select]

151 summary<-c(Likelihood,AIC,BIC)

152 names(summary)<- c("Likelihood","AIC", "BIC")

153 }

154 else if (model.select == "BIC") { # BIC model

155 bic<- eval(parse(text=paste("fit",model.select,sep="$")))

156 model.select <- which.min(bic)

157 Likelihood<-fit$Likelihood[model.select]

158 AIC<- fit$AIC[model.select]

159 BIC<- fit$BIC[model.select]

160 summary<-c(Likelihood, AIC, BIC)

161 names(summary)<- c("Likelihood","AIC", "BIC")
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162 }

163 else if (model.select=="all") {

164 Likelihood<-fit$Likelihood

165 AIC<-fit$AIC

166 BIC<- fit$BIC

167 summary<-cbind(Likelihood,AIC, BIC)

168 colnames(summary)<- c("Likelihood","AIC", "BIC")

169 }

170 else {

171 Likelihood<-fit$Likelihood[model.select]

172 AIC<-fit$AIC[model.select]

173 BIC<- fit$BIC[model.select]

174 summary<-cbind(Likelihood,AIC, BIC)

175 colnames(summary)<- c("Likelihood","AIC", "BIC")

176 }

177 output<-list(summary=summary)

178 output

179 }

180

181 #######################################################

182 #plot function#########

183 ##############################

184

185 plot.long.nb.gmifs<- function(fit, type, main=main,xlim=xlim,beta="All") {

186 if (type=="coefficients") {

187 if (beta=="All"){
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188 n<-which(fit$beta[dim(fit$beta)[1],] != 0)

189 plot(1:dim(fit$beta)[1],fit$beta[,n[1]],xlab="Step",ylab="Beta",main=main,

190 col=500+n[1],type="l",ylim=c(min(fit$beta[dim(fit$beta)[1],]),

191 max(fit$beta[dim(fit$beta)[1],])),

192 cex=1.5, cex.main=2, cex.lab=2, cex.axis=2)

193 for (i in 2:length(n)){

194 lines(fit$beta[,n[i]],col=500+n[i])

195 }

196 }

197 else {

198 n<-beta

199 plot(1:dim(fit$beta)[1],fit$beta[,n[1]],xlab="Step",ylab="Beta",

200 main=main,col=500+n[1],type="l",

201 ylim=c(min(fit$beta[dim(fit$beta)[1],]),

202 max(fit$beta[dim(fit$beta)[1],])),

203 cex.lab=2, cex.axis=2, cex.main=2)

204 for (i in 2:length(n)){

205 lines(fit$beta[,n[i]],col=500+n[i])

206 }

207 }

208 }

209 else if (type == "AIC") {

210 plot(1:length(fit$AIC),fit$AIC,xlab="Step",ylab="AIC",main=main,

211 cex.lab=2, cex.axis=2, cex.main=2)

212 }

213 else if (type == "BIC") {
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214 plot(1:length(fit$BIC),fit$BIC,xlab="Step",ylab="BIC",main=main,

215 cex.lab=2, cex.axis=2, cex.main=2)

216 }

217 else { type = "Likelihood"

218 plot(1:length(fit$Likelihood),fit$Likelihood,xlab="Step",

219 ylab="-logLikelihood",main=main,

220 cex.lab=2, cex.axis=2, cex.main=2)

221 }

222 }
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Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia
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Appendix B

OTHER
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