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 The complete understanding of a clusters electronic structure, the primary mechanisms for 

its properties and stabilization is necessary in order to functionalize them for use as building blocks 

within novel materials.  First principle theoretical studies have been carried out upon the electronic 

properties of CrxTey (x = 1 – 6, y = 0 – 8, x + y ≤ 14), as well as for the larger triethylphosphine 

(PEt3) ligated cluster system of Cr6Te8(PEt3)6.  Together, we aim to use the information garnered 

from the smaller clusters to address the underlying behavior of the ligated Cr6Te8(PEt3)6.  

Additionally, the properties of this larger cluster will be used to further understand its role when 

paired with C60 within the binary cluster assembled material.  The stability and macroscopic 

properties of the Cr6Te8(PEt3)6 cluster, have been found to be sensitive to type of passivating ligand. 

 As will be shown, the ground state structures of Crn atoms are sensitive to both the number 

and position of bonded Te atoms.  Moreover, that this sensitivity carries over into larger cluster sizes, 

and at several size intervals produces clusters with high magnetization.  To this, we add the 
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investigation into the manipulation of the Cr6Te8 cluster geometry and its properties through various 

ligands, such as PH3, CO, and CN.  It will show, that in altering these ligands there is a 

modification to the clusters valence shell count, which in turn alters its ionization potential and 

electron affinity.  Additionally, although the ionization potential and electron affinity have changed 

for the Cr6Te8(PEt3)6 cluster, it has been found that its high magnetization does not. 
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1 Introduction 

 Novel Materials and Magic Clusters 

Systematic study of atomic clusters offers a gateway to understanding the complexity in 

their properties and the unique phenomena that are present only at these small sizes.  The next 

challenge, is to protect and magnify these properties into large, periodic, systems.  Novel 

materials built in this manner, are purposely synthesized and optimized for the harnessing of a 

specific property, or function.  Materials for specialized microelectronic devices such as 

spintronics, and new types of computer processors.  As well as, new applications within 

superconductivity, photocatalysis, and nonlinear optical materials. 

The building blocks of matter commonly found in nature are atoms or molecules. 

Depending on their chemistry and the physical conditions present, including pressure and 

temperature, these atoms/molecules frequently arrange themselves into crystalline solids of well-

defined arrays.  The properties of the crystals often depend strongly on the chemical nature of the 

atoms as well as on their arrangement.  Consider, as a simple example, two such crystals- 

diamond, and graphite.  Although both of these materials are built from carbon atoms, their 

mechanical, electronic, chemical and optical properties are very different due their atomic 

structure.  Molecular crystals, on the other hand, exhibit unique properties because molecules 

and not atoms are the fundamental building blocks.  An example of this is that of ice, that is even 

though neither hydrogen nor oxygen condenses at 0oC, H2O molecules will freeze together.  

While the examples above demonstrate that by changing the building blocks and/or their 
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arrangements one can create new materials, nature however does not offer pathways to 

synthesize all such materials.  

Advances in experimental techniques over the past three decades have enabled 

researchers to make clusters of atoms containing few to thousands of atoms.  The properties of 

these sub-nanoscale units are found to be different from the bulk, and change with size and 

composition.  For example, while bulk gold is a noble element, small clusters of Aun are found to 

be highly effective catalysts for a variety of reactions including conversion of CO to CO2.1  

Additionally, while bulk aluminum is highly reactive with oxygen, an Al13
- cluster is found to be 

resistant to etching by oxygen.2  Also, while bulk Rh is paramagnetic, small Rhn clusters are 

found to display ferromagnetic coupling with appreciable moments.3  What is important is that 

the properties can change significantly with size. In fact, the reactivity of Fen clusters has been 

found to change by orders of magnitude by adding just a single atom.4–6 

The above findings have led to a new and promising direction within nanoscience, 

namely, using clusters as the basis for new materials, instead of atoms, is the very idea behind 

Cluster-Assembled Materials (CAMs).12–17  Like molecular crystals, it is expected that cluster-

crystals may possess unique properties hitherto unknown to man.  The use of clusters as the main 

building block, or motif, introduces yet another method for tuning properties within a periodic 

solid.  Moreover, since the properties of clusters themselves can be controlled by size, 

composition, and the charge state, cluster assemblies offer a unique prospect in constructing 

tailored materials.7–11  This idea of custom materials encompasses a great deal and offers even 

more, but creating small clusters is often a difficult task on the road to realizing these materials.  

Thus, two fundamental hurdles are to be surmounted before continuing; (1), formation and 

characterization of the cluster motif itself, pure or ligated; and (2), understanding its interactions, 
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stability, preferred arrangement, and orientation, within a periodic system.  Addressing both of 

these points, to identify new and stable species of interest, as well as facilitate the formation of 

novel materials, is of the utmost importance. 

A major downfall in the synthesis of materials using clusters is their intrinsic instability, 

and desire to coalesce.  At these larger sizes, the novel properties seen in smaller versions are 

then destroyed.  One approach to realizing the possibility of novel materials is therefore to 

identify clusters that are stable and would maintain their identity when assembled.  These stable 

clusters have become known as Superatoms, and the prospect of making cluster materials has 

started a vigorous search for these species.2,14,18–28  The first step in this direction is to identify 

the factors that control the stability of clusters themselves.  

Just over two decades ago, Khanna and Jena discussed the possibility of designing these 

stable metallic clusters.13  Their arguments were derived from the experiments on the mass 

spectra of simple metal clusters.29  Specifically, the mass spectra of small sodium clusters 

observed by Knight and co-workers showed that clusters containing 2, 8, 18, 20, 34, 40… atoms 

were more prominent than the other sizes.  In order to explain the enhanced stability of these 

magic clusters, Knight and co-workers then proposed the spherical jellium model.29–31  In brief, 

one imagines that the positive charge of all ions present in the cluster is distributed uniformly 

over a sphere.  The electronic levels associated with this charge distribution correspond to 

1S21P61D102S21F142P6, etc., much like the electronic states of an atom.19,31–34 

Like noble gas atoms, the magic numbers (2, 8, 18, etc.) thus correspond to filled 

electronic shells, thereby indicating the role of electronic counts on the stability.  The possibility 

of describing the electronic structure of clusters, in terms of electronic shells, raised the 

interesting possibility that clusters themselves could be regarded as superatoms, as well. There 
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are several reasons for such an analogy.  The ionization potentials of simple metal clusters were 

found to exhibit peaks at sizes corresponding to filled electronic shells much in the same way as 

atoms.  In another series of experiments, it was quite surprisingly found that the chemical 

behavior of clusters could also be predicted by the shell model.35–38 

 Further proof of this concept came from the experiments by Leuchtner, Harms, and 

Castleman, who studied the reactivity of Aln
- clusters with oxygen.39  They showed that while 

other sizes were etched away by oxygen, the mass spectra of the reacted species exhibited a 

marked peak at Al13
-, as well as Al23

-and Al37
-.  Figure 1-1 below shows the observed mass 

spectra, while Figure 1-2 shows the groundstate structure of Al13
-.  Since Al13

- has 40 valence 

electrons, its inertness can be understood in terms of a closed electronic shell, (as well as the 23- 

and 37-atom containing systems that also have closed electronic configurations). 
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Figure 1-1. Etching reaction of aluminum anions (Al5

- – Al24
-) with oxygen. 

(A) 0.0 sccm oxygen, (B) 7.5 sccm oxygen, (C) 100.0 sccm oxygen.16,39 

 
Figure 1-2. Superatomic Orbitals and Al13

-. 
Similarities between atomic and superatomic orbital levels (left), Closed shell Cl- compared to Al13

- groundstate with closed shell 
and 40 electron count (right). (Reproduced with permission.)16 
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 These and other observations have shown that the jellium picture, though extremely 

simplistic, is amazingly successful in describing many of the globally observed electronic 

features in a variety of systems and that certain metallic clusters could be described as 

superatoms.  Moreover, later experiments and companion theoretical calculations have proven 

that aluminum clusters can also behave as halogens and alkaline earth metals, enabling the 

possibility of forming a class of superatoms with analogies to various elements of the periodic 

table.2,37,40–42  It is important to emphasize that although the electronic shells were introduced via 

the jellium model, the existence of electronic shells of fermionic systems is known to occur for a 

far wider range of potentials. 

  



7 
 

 Transition Metal—Chalcogenides: Filled Electronic Valence 
in Periodic Systems 

A full valence shell is not only used to understand the stability of free clusters, but also 

within solid state systems as well.  Specifically, systems of crystalline and amorphous 

semiconductors, where valence shell properties have a large influence on a materials 

macroscopic electronic behavior.  Alterations upon these intrinsic properties are more readily 

seen when applied to amorphous semiconductors, which they themselves can be divided into two 

classifications.  The first, being the chalcogenide glasses; and second, hydrogenated amorphous 

silicon (a-Si:H) and other related solids.43  (Here, we discuss materials and solids based on the 

former; and comprising one, or several, chalcogenides.)  The term chalcogenides denote 

dianionic elements from group 16 (VIA), of the periodic table; namely, sulfur, S2-; selenium, Se2-

; and tellurium, Te2-.  Oxygen, while still a chalcogen, and along with other oxide based 

materials, is not discussed here.  Moreover, the term “ideal glass” is often given to a material in 

which within it “all atoms satisfy their valence requirements”.  In this definition, valence is 

referred to classically; the number of single covalent bonds an atom requires to complete its 

outer shell.  From the context, an atom that completes its shell of eight electrons is obeying the 8-

N rule when N > 4, and N is equal to the number of valence electrons.  Binary chalcogenides are 

typically of two forms, As-Chalcogenide and amorphous (e.g. As2Se3); or Ge-Chalcogenide and 

crystalline (e.g. GeSe2).  Of course, this “ideal” situation is only perfectly suited to describe 

short-range ordering when long-range (i.e. crystalline) ordering is absent.  However, the 8-N rule 

was first proposed for chalcogenide glasses in an effort to account for the observation that these 

glasses were insensitive to alteration upon their electronic structure from a third element, 

purposely introduced into the system, i.e. doping.  The term “8-N rule” is often interchanged 
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with that of “Mott rule”, attributed to the first person to observe this phenomena, Sir Nevill F. 

Mott.44,45 

Knowing the intrinsic nature of chalcogenides, the intention now is to create novel 

materials based on them.  Exercising their high dependence of the 8-N rule, and deviations upon 

it, we can now begin to discuss using an elemental pairing with the chalcogenides alternative to 

those of group 15 (VI), i.e. the pnictogens.  In doing so, introduces a method of manipulating 

coordination through choice of that second element, which leads to interesting stoichiometric 

modifications upon the original concept of these materials and its properties.  Along these lines, 

chalcogenides have been paired with elements from, and studied, across all areas of the periodic 

table, including; the lanthanides, actinides, transition metals, and other main group elements.   

 The versatility in creating new materials with transition-metals and chalcogenides, rather 

than oxides, stems from several advantages present at the atomic level between chalcogens and 

oxygen.  The major differences can be stated simply that chalcogens are: larger and heavier, less 

electronegative, and further down the group, possess inner d-orbitals.  This alternate bonding 

pattern displays; a more covalent bond between metal-chalcogen than metal-oxygen; bonds that 

may involve d-orbitals of the chalcogen; within a compound, oxygen is in its formal oxidation 

state (-2), while the chalcogen is less negative (-1); and, the chalcogenide ions are more 

polarizable.46 This covalent nature of the bonds between metal and chalcogen produces a 

material which possesses broad valence and conduction bands, while still maintaining a band 

gap.  This gap grows smaller, and may even close, as the chalcogen element of choice moves 

down the group, from sulfur to tellurium.46 

The specific choice in using high-spin 3d transition-metals paired with chalcogenides is 

deliberate.  As a result, numerous pairings have produced compounds that each vary wildly in 
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optical, magnetic, and electronic properties, all sensitive to impurities and/or vacancies.47  Within 

these compounds, the mixing between the metal d-orbitals with the s and p of the chalcogen can 

no longer be ignored.  Because, after mixing, the degeneracy in d-orbitals between metal and 

chalcogen has been lifted, and the exact separation between those orbitals is now dependent upon 

the geometry of the chalcogen.  Moreover, the orbital involvement of the chalcogenide in 

covalent bonding also introduces effects upon the coordination of the chalcogenide, as well.  It 

has been shown previously, that chalcogenides in the d0 (and even d1, or the spin-paired d2) 

configuration prefer a trigonal-prismatic configuration.46,48 Thus, in conjunction with a particular 

metal, this type of bonding is seen in many MCs, and often produces a NiAs-type crystal (or, 

something close to it) when bonded to many of the transition-metals and/or lanthanides.49  This 

type of bonding also gives rise to individual cluster units with formula M6E8 (M = transition-

metal; E = chalcogenide)50, formed through combination of a transition-metal octahedron 

surrounded by an X8 cube.51  Each of these units are often described as a (distorted) fragment of 

its associated periodic compound. 

As mentioned previously, in order to create novel materials based on solitary clusters, a 

degree of stabilization is required in order to prevent agglomeration.  Additionally, a form of 

isolation from its surroundings as a means to stop growth at a particular cluster size and maintain 

its properties.  Production of ligated-TMC (LTMC) cluster was first completed in an effort to 

understand the pathways in which reagents combined together to form an extended solid.51,52–64  

This marked something of a beginning in an effort to understand how macroscopic properties of 

these elemental combinations are transformed, or altered, after ligation at small sizes; resulting in 

a new type of cluster family with formula M6E8L6 (L = phosphine ligand), (LTMCs, MEL-686, 

or simply MELs).60–63,65   



10 
 

 Periodic Solids with Ligated Transition Metal—
Chalcogenides 

 Motivation 

One form of constructing larger systems using molecular clusters is through binary 

stabilization.  An example of this can already be seen in every day table salt, NaCl.  This binary-

system method is not new, and can be found throughout the literature.12,13,15,40,66–69 However, 

building regularly periodic systems comprised of ligated clusters, who they themselves are 

composed of transition metal-chalcogenides (TMCs), is a new direction. 

 Superatomic Clusters and Their Solids 

As mentioned above, the first foray into ligated TMCs began with the desire to 

understand the exact nature of how the bonding between metals and its associated chalcogenide 

created a periodic network.63  Investigations into a close relative of the LTMCs are the unligated 

ternary metal-chalcogenides, with 868 stoichiometry, better known as the Chevrel Phase 

clusters, and formula MxMo6X8 (X = S, Se, Te; M = cation).57,70–76  These have been a source of 

special attention as they were considered to be the first superconducting ternary system to 

possess high critical temperatures.72,77  The overlap, if not similarity, between these two cluster 

types is not difficult to miss as they have sometimes been discussed together, in explaining the 

transition from bare cluster to extended system.57–59,65,72,75  

Below, Figure 1-3 highlights some recent developments along these lines, into novel 

binary solids, undertaken by Roy et al.78  Within this study, they have resynthesized a selection 

of LTMCs taken from the literature, specifically Co6Se8(PEt3)8, Cr6Te8(PEt3)8, and 

Ni9Te6(PEt3)8, with the express intention of using them as motifs in construction of novel binary 

solids.  Pairing these clusters with fullerenes, i.e. C60, as their counterion, forms two different 
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ionic solids.  The clusters of Co6Se8(PEt3)6 and Cr6Te8(PEt3)6 will form a structure resembling 

CdI2, while Ni9Te6(PEt3)8 forms the classic NaCl type structure.  

 
Figure 1-3. Ligated Transition Metal-Chalcogenide Clusters and Their Assemblies. 

Atomistic representations of the three metal-chalcogenide clusters, and combinations with the C60 fullerene complex, left to right.  
The systems of Co/Se•2C60, Ni/Te•C60, and Cr/Te•C60. (Reproduced and edited with permission.)78  

These assemblies, built from different transition metal-chalcogenides and counterions, 

offer a new avenue within areas of photovoltaics, spintronics, and single molecule electrical 

circuits.  Moreover, their electronic and magnetic properties raise new and intriguing questions.  

Consider the [Ni9Te6(PEt3)8][C60] assembly, which consists of Ni9Te6(PEt3)8 clusters, built from 

a Ni9Te6 core decorated with eight tri-ethylphosphine ligands bonded to the Ni sites.  This cluster 

had been previously isolated as an intermediate species during the synthesis of bulk NiTe from 

organometallic precursors serving as sources for Ni and Te.  However, Roy et al. have 

demonstrated, for the first time, that Ni9Te6(PEt3)8 forms a rock-salt (i.e. NaCl) structure, where 

the ligated cluster takes on the role of electron donor when combined with C60 as an electron 

acceptor.  Experiments indicate that this ionic solid is magnetic and undergoes a ferromagnetic 
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phase transition at low temperatures (4 K), while exhibiting Curie-Weiss behavior at higher 

temperatures (T > 10 K), both can be seen below in Figure 1-4, left and right respectively. 

 
Figure 1-4. Magnetic behavior of the [Ni9Te6(PEt3)8][C60] cluster assembly. 

Temperature dependence of the ZFC and FC magnetization (left), and magnetization as a function of applied field (right). 
(Reproduced with permission.)78 

Later, Lee et al. experimentally synthesized this binary cluster assembled material again in order 

to further examine the magnetic behavior at these small temperatures.  Results obtained from 

Superconducting Quantum Interface Device (SQUID) and Muon spin relaxation (MuSR) 

measurements have shown that these individual clusters behave like isolated magnets, with 

magnetic moment around 5.4 µB per functional unit in an applied field of 1 Tesla.79  Moreover, 

that static ordering of the magnetic moments occurs at a temperature of ~4 K. 

First-principles theoretical investigations by Chauhan et al. have provided an electronic 

and magnetic characterization of the [Ni9Te6(PEt3)8][C60] ionic assembly.80  This study has 

shown that despite the large ionization potentials of both cluster and ligand, there exist a charge 

transfer from ligand to the cluster.  Consequently, the PEt3 ligands create an internal, coulombic, 

potential-well that lifts the quantum states of the Ni9Te6 cluster, in turn lowering its ionization 

energy to 3.39 eV, creating a superalkali motif.  The metallic core has a magnetic spin moment 



13 
 

of 5.3 µB, in agreement with experiments.  But, the cluster is marked by a low Magnetic 

Anisotropy Energy (MAE) of 2.72 meV and a larger intra-exchange coupling, which exceeds 0.2 

eV.  These results showed that the observed paramagnetic behavior around 10 K is due to 

superparamagnetic relaxations.  Additionally, these magnetic cluster motifs, separated by C60, 

experience a weak superexchange that stabilizes in a ferromagnetic groundstate around 2 K.  The 

calculated MAE was sensitive to the charge state (multiplicity), which could account for the 

observed change in magnetic transition temperature due to the size of the ligands or anions. 

All of these properties, and across all binary types of cores, can be considered 

macroscopic, to which are then used as the starting point for development in an upward fashion 

toward larger materials. With an eye toward a new functionality for these, and many other, 

LTMC clusters, it is also necessary to fill the newly formed gap that has emerged between the 

understanding of atomically precise clusters and these LTMCs.  That is, despite their size, a 14-

element binary-core with six ligands, studies into the exciting properties expected of small-

numbered clusters seems nonexistent, and neither its modifications due to the passivating ligand.  

Moreover, alternatively to the discussions of the preceding paragraphs, study into the origins of 

the central bare clusters electronic stability and its formation routes, are rarely, if ever, discussed.  

The discussions typically found regarding the properties of those smaller cluster variants are 

completed only in context, as a supportive step for their parent, extended solid, and bulk versions 

in an “upwards” fashion.   

What remains to be seen is the reverse connection, the origin of properties found at the 

LTMC scale based from the point of view and study of binary cluster growth.  In that regard, we 

aim to answer a few questions, namely; Are the properties of these ligated clusters simply taken 
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to be a given, as result of their size?  Or, are they all that remain after growth and ligation?  We 

shall see below, in chapter 3 and 4, that it is the latter. 

 Alterations Upon Electronic Properties of Superatomic Clusters 

Above, we briefly mentioned the alteration of a TMC clusters macroscopic properties due 

to ligand exchange.  The sequence of events in the synthesis procedure of LTMCs can vary from 

system to system, however post synthesis procedures offer another variable in the building of 

periodic systems.  The alteration of the capping ligand in question upon a metal cluster is done to 

stabilize the metal core, and specifically control the total number of valence electrons.  In 

manipulating this electron count, one can alter the system’s ability to donate or accept charge to 

the external environment, that is, the clusters ionization potential and electron affinity.  Such a 

procedure has been studied and verified on several occasions within the literature.13,14,16,29,68  

Ionization potential and electronic affinity, together, are two of the most fundamental properties 

in any system.  Clusters with full electronic shells exhibit large ionization potentials and a lower 

electron affinity.  Alternatively, clusters deviating from a full valence by one electron, either 

lacking or in excess, experience the opposite effect, a lowered ionization potential and high 

electron affinity.  The stability of these cluster species is often described within the superatomic 

framework.13,16,23 

 The triethylphosphine (PEt3) ligands attached to metal sites of these LMTC clusters, 

highlighted above, bond by creating a charge transfer complex.  The cluster and ligand, once 

together, form an ionic compound when paired with C60, with the LMTC clusters serving as the 

electron donors.78  Some clusters have an open electronic shell, and stability is dictated by their 

geometric structure rather than a closed electronic shell.  Because of this, the addition of a ligand 

may not close the electronic shell in question, but does change the electronic spectrum of the 
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cluster itself.81  The idea of altering the TMC core electronics through ligand exchange arose 

through the investigations into the [Ni9Te6(PEt3)8][C60] system, where previous studies have 

shown the Ni9Te6 core and Ni9Te6(PEt3)8 to possess the same magnetic moment; with the core 

becoming superalkali when passivated with ligands.80,81  Moreover, the magnetic solid undergoes 

a ferromagnetic phase transition at extremely low temperatures (4 K), but then exhibits Curie—

Weiss behavior upon temperature increase.79 

 The argument described above for the Ni/Te clusters system is the same for that based 

upon chromium.  How does the underlying electronic behavior change with respect to the use of 

different capping ligands?  Moreover, can Cr6Te8 be described in a similar fashion to Ni9Te6?   

That is, in the process of stabilization, do both geometry and electronic structure, dictate the 

overall properties of the system; or only electronic?  

 Transition Metal-Chalcogenides at The Extremum: 
Chromium and Tellurium, Purpose of the Present Study 

Using the preceding sections for the line of inquiry, it is necessary to now understand 

how two elements at the extremum of the transition metal-chalcogenide bonding argument, 

chromium and tellurium, can vary so wildly from its TMC molecular cluster compatriots.  The 

same magnetic measurements performed by Roy et al. upon the systems Co6Se8(PEt3)6 and 

Cr6Te8(PEt3)6 based solids displayed a drastically smaller, if almost nonexistent, magnetic 

moment for the Cr6Te8(PEt3)6
2+ system.78  The inverse magnetic susceptibility measurements 

shown in Figure 1-5 highlights the differences between these two cluster assemblies.  While the 

Co6Se8(PEt3)6 based assembly shows Curie-Weiss behavior, Cr6Te8(PEt3)6 displays an initial 

increase followed by saturation.  Previous magnetic susceptibility measurements have shown that 

the solid constructed solely of the Cr6Te8(PEt3)6
2+ cluster to be paramagnetic, with an effective 
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moment, µeff, of ~2.6 - 2.8 µB between 100 and 300 K, but the electronic structure yielding this 

moment was not detailed.51 

It was surmised by Hessen et al. that the Cr6Te8(PEt3)6 cluster is the solid-state relative of 

Cr3Te4, whose periodic structure is indeed a distorted metal-deficient NiAs type.  The periodic 

solid of Cr3Te4 itself has been studied extensively for many years82–86 and has been found to be 

one of many stoichiometric combinations of chromium and tellurium to form a periodic solid, 

each forming their own macroscopic, 2D, properties.87–110 

 
Figure 1-5. Inverse magnetic susceptibility versus temperature measurements. 

 The Co/Se cluster assembly (black circles) and Cr/Te cluster assembly (open circles) in an applied external field H = 1T.  Curie-
Weiss fit for Co/Se in red. Inset shows effective moment versus temperature for Co/Se. (Reproduced with permission.)78 

While the literature details the properties of these numerous stoichiometrys of chromium and 

tellurium in the two-dimensional solid form, there is little to no discussion as to the origin of said 

properties based upon smaller constituents.82–85,87–91,93–113  As such, the precise nature of free, 

binary CrTe clusters has not been established and is to be remedied. 
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Figure 1-6. The evolution of the ZFC-FC magnetization vs. temperature for Sm2Ba3Fe5O15-δ. 

Inset shows the inverse magnetization vs. temperature in question. (Figure 12. of Reproduced.)114 

The shape of the inverse magnetic susceptibility plot in Figure 1-5 for Cr6Te8(PEt3)6 is 

something that has been seen before within the work of Raveau and Seikh, pertaining to 

magnetic perovskites.  The plots of Zero Field Cooled – Field Cooled (ZFC-FC) and inverse 

magnetic susceptibility vs temperature measurements (inset) for the quintuple perovskite of 

Sm2Ba3Fe5O15-δ are shown above in Figure 1-6.114  The behavior of this perovskite phase as seen 

in its ZFC magnetization plot shows a large irreversibility as well as an unusual hump at 50 K.  

This was investigated and from the linear behavior of the M(H) vs temperature plot (not shown) 

it was determined that the ZFC results do not originate from superparamagnetism.  The total of 

this collected data showed that the magnetization of the perovskite does not involve 

ferromagnetism, but is in fact due to intra- and interdomain antiferromagnetic interactions.  This 

point was confirmed by the fact that there was no linear dependence in the inverse magnetic 

susceptibility vs temperature plot (inset, Figure 1-6).  The behavior of this plot reflects the 

absence of free spins through the probed temperature range.   

With this information, we can deduce that our system of Cr6Te8(PEt3)6 and C60 is 

behaving in the same manner.  That the magnetic behavior of individual Cr6Te8(PEt3)6 and its 
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arrangement within the larger solid dictates the overall behavior seen experiment.  Thus, we aim 

to investigate and establish, if any, the clusters magnetic properties. 

Furthermore, the present study seeks to determine if the high magnetization of solitary 

chromium, and the alternating pattern of magnetization present within its small cluster sizes, is 

hindered, maximized, or indifferent to the introduction of tellurium.  This will be determined 

through the systematic search of groundstate structures after the sequential addition of both 

elemental chromium and tellurium atoms.  Additionally, we aim to investigate the mechanisms 

which alter the ionization potential, electronic affinity, and overall magnetic moment in the final 

Cr6Te8 metal core through the exchange with various ligands.  

The resultant clusters will be compared to one another, using their electronic stability to 

determine any fragmentation pathways.  Furthermore, analysis of the bonding between the 

elements, using alterations upon the Hirshfeld Charge densities, as well as molecular orbital 

(MO) analysis of particularly interesting clusters.  Moreover, the oxidation of chromium and 

movement of electronic charge, which can be seen through the diagrams of both the MOs, and 

the Mulliken Population charge density graphs of the chromium orbitals. 

 Organization of This Thesis 

 In Chapter 2, an outline of the theoretical basis behind Density Functional Theory (DFT) 

is presented, as well as some specifics regarding electronic methods to further investigate binary 

and ligated CrTe.  Chapter 3 will be divided into four portions; the first, overall details of the 

entire CrxTey binary cluster systems.  Here, we discuss results pertaining to magnetic moments of 

the total system, as well as the individual chromium atoms.  Additionally, the change of other 

macroscopic properties, such as bond-lengths, charge movements, and some fragmentation 

pathways.  Within parts two, three, and four, the stability, electronic properties, charge, and 
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molecular orbital analysis of systems CrxTey (x = 1 – 2, y = 1 – 4); (x = 3, y = 0 – 5) & (x = 4, y 

= 0 – 6); and, (x = 5, y = 0 – 7) & (x = 6, y = 0 – 8), respectively.  Chapter 4 discusses the 

properties discovered for the ligated Cr6Te8(PEt3)6, as well as how those properties change 

through substitution of the triethyl-phosphine (PEt3) vs. PH3, Carbon Monoxide (CO), and 

Cyanide (CN).  Finally, Chapter 5 summarizes the preceding chapters and discusses future 

directions. 

  



20 
 

2 Computational Approach 

 Overview 

The methods of theoretically calculating the properties, characteristics of, and interactions 

between solitary atoms, clusters, compounds, molecules, and solids has been formulated, 

expanded upon, and refined over a very long period of time.  These calculations are performed 

for two reasons: (1), to establish the origins of intrinsic properties seen in those various systems; 

and (2), to predict those properties within new materials.  The very basis behind these powerful 

methods and tools rests upon the accurate representation of electrons moving in and around a 

group of point nuclei.   

Calculating basic properties, through a process which has been termed in the past and shall 

be referred to again here as “the electronic problem”, is the cornerstone of quantum chemistry 

and the origins of its most widely used tool today, Density Functional Theory (DFT).  This 

chapter is intended to give a brief introduction to the history, and overview of, the theoretical 

methods behind DFT and its origins.  We conclude this chapter with a discussion regarding the 

implementation taken within this present study.    

 Background 

 The Electronic Problem & The Born—Oppenheimer 
Approximation 

The usage of DFT in finding basic properties of chemicals and compounds arises from 

the need to approximately solve the time-independent Schrödinger Equation,  

 Ĥ E   , (2.1) 
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a partial differential equation of order two, where in this context Ĥ  is the Hamiltonian operator 

for a system of nuclei and electrons.  From this equation, we can solve for the energy E  given 

some wavefunction  .  The Hamiltonian itself contains five terms, each incorporating different 

aspects of the overall system, and has the form 
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1ˆ
2 2 4 4 4

a b a
i a

i a a b a a i j i je a ab ia ij

Z Z e Z e e
H

m m r r r   

            
,   (2.2) 

where indices a and b denote nuclei, while i and j, the electrons.  The terms specifically, moving 

left to right in Equation (2.2), are the kinetic energy of the electrons, kinetic energy of the nuclei, 

nuclei-nuclei repulsion, Coulombic attraction between nuclei and electrons, and finally, the 

electron-electron repulsion.115,116  The solution to this Hamiltonian operator involves a 

wavefunction of which depends on the explicit knowledge in the position of every electron in the 

system, as well as parametric dependence of the positions of every nucleus.  Our problem is 

further complicated, in three-dimensions, with N total number of electrons, and M total nuclei; 

the wavefunction   for our system is then dependent upon 3N coordinates of space for the 

electrons, N coordinates of spin, and 3M spatial coordinates for the nuclei.  One can immediately 

deduce that calculating the interactions between every subatomic unit with their counterparts 

using this wavefunction can become quite large and solving for the groundstate of such a system 

grows uncontrollably, even with today’s computational resources. 

In order to scale computations of this kind we can make a simplification, in exercising the 

fact that nuclei are significantly heavier than the electrons.  Knowing this, we consider the 

electrons around the nuclei to be in their optimal, lowest energy, configuration, which then 

allows us claim the nuclei are stationary.  The motions of both can now, in effect, be considered 

decoupled from one another and the system in question can be treated as a group of electrons in 

motion around a group of point nuclei.  The procedure we have outlined here is referred to as the 
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Born—Oppenheimer approximation, and with this we can effectively shorten Equation (2.2). 

With stationary nuclei, the second term can be set equal to zero, the terms of their kinetic 

energy and interactions between one another.  Furthermore, the third term detailing the 

interactions between the nuclei is simply now a constant.  What remains of Equation (2.2) is 

called the electronic Hamiltonian, 
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 , (2.3) 

and operates on the electronic wavefunction el  to obtain energy elE  .  If we include 

coordinates for the electrons iq  along with those of the nuclei aq  , the wavefunction can be 

written as 

  , ;el el n i aq q    . (2.4) 

The total energy of the system being calculated can be found by simply summing together 

Equation (2.3) with the constant potential for the interacting nuclei, 
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which produces  
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It has been proven in the past, that omission of a constant from the Hamiltonian does not change 

the wavefunction, so we can now rewrite the Schrödinger Equation as 

 ˆ
el el el elH E    .  (2.7) 
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Once we find elE  and NNV  , we can then obtain  U  of Equation (2.6), and finally 

reincorporate the nuclear motion into these equations.  We know the nuclei are in some position 

aq  , then change their configuration slightly and move to position aq  , and again to position aq  , 

etc.  Together, the total number of these motions can be considered strictly as one, i.e. 

 a a a a aq q q q q         . (2.8) 

From the picture we have constructed in the previous paragraphs, the electrons move much more 

rapidly than the nuclei.  When the nuclei change slightly in the manner as shown in Equation 2.8, 

the electrons immediately adjust to this change, altering the electronic wavefunction,  

   ; ;i a i aq q q q   , as well as the electronic energy,    a aU q U q  .  Thus, as nuclei 

move, the electronic energy changes smoothly, with   aU q  effectively becoming a form of 

potential energy.  Taking this nuclear potential energy and adding it to the kinetic from Equation 

(2.2), we obtain the nuclear Hamiltonian 

  
2

21ˆ
2N a a

a a

H U q
m

      (2.9) 

which is used to calculate the energy of the moving nuclei within  

 ˆ
N N NH E    , (2.10) 

termed the nuclear Schrödinger Equation. 

Compiling together the information from our discussion above, we see that the electronic 

wavefunction can now be treated as the product between electron and nuclear parts, as originally 

prescribe by Born and Oppenheimer.  Their treatment of the mathematics in calculating 

properties of molecules have shown that the true wavefunction can be approximated as, 

      , ;i a el i a N aq q q q q    , (2.11) 
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if  1/4
/ 1e am m  .116  Justifications of, and corrections to, the Born—Oppenheimer 

approximation are outside the scope of this document, and can be found elsewhere.  Moreover, 

those arguments do not address the omissions inherent of the approximation itself.  Specifically, 

one will notice that there is no discussion above regarding the explicit position or coupling of the 

electrons around and between their individual nuclei.  Additionally, there has been no discussion 

involving the interactions between the electrons themselves, or how those interactions are varied 

when we incorporate their spin.  Thus, the Born—Oppenheimer Approximation is only the 

beginning when discussing molecular calculations, as we shall see below in subsequent sections.  

 Pauli 

The inclusion of an electrons spin into the calculation of the energy,  E  , further 

expands the wavefunction through necessity.  From here, we must address the obvious nature in 

the physical interactions involving two electrons, with or without the same spin, alternating 

positions with one another in space.  Recalling from above, the electronic Hamiltonian involves 

only the spatial coordinates of the electrons.  We now introduce an additional variable   to 

accommodate the spin direction, up or down, and further combine this with the electrons three 

spatial coordinates ( r


) into one new variable, denoted as  ,x r 
 

.  In creating this new 

variable, we can now write an N-electron wavefunction simply as 

  1, , , , , ,i j Nx x x x
       . (2.12) 

For electrons to maintain their indistinguishability from one another requires that their 

total probability density to not change through the exchange in position, ( r


), between any two 

said electrons.  Fermions, all particles with ½ spin, including electrons, possess an antisymmetric 

wavefunction, thus any change in the state between two electrons further necessitates a change of 
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sign to the total wavefunction.  This was first outlined by Wolfgang Pauli, and is now known as 

The Pauli Exclusion Principle, which states that no two electrons may occupy the same state.  

We can write this in terms of equations as 

    1 1, , , , , , , , , , , ,i j N j i Nx x x x x x x x  
              , (2.13) 

and it is the antisymmetry principle that thereby enforces the exclusion principle. 

 The Hartree—Fock Approximation 

Searching for the wavefunction of a system that yields its groundstate, the minimum 

energy ( 0E ), is an impossible task.  The methods as outlined by Hartree and Fock, provide a 

practical method to approximate the wavefunction and solve the Schrödinger equation.  Within 

this method the incorporation and enforcement of the antisymmetry principle into the 

wavefunction is done through the use of a Slater Determinant.  Defining the spatial orbital to be 

 i r 
 , and the spin orbital  x 

 as the product between spatial orbital and spin functions, 

   i r  
 or    i r  

.  Using these, we can write the Slater determinant in matrix form as 

    

     
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  
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  
    
   
  

 . (2.14) 

The antisymmetric nature of the determinant arises from the property that exchanging either two 

rows or columns, the determinant changes its sign.117 

 The Hartree—Fock energy is obtained through calculating the expectation value of the 

Hamiltonian constructed using the Slater determinant.  This expression for the molecular 

electronic energy of the system in question can be written as 
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where 
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        
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     , (2.17) 

and 

        
12

1
1 2 1 2ij i j j iK

r
     . (2.18) 

Equation (2.16) is the sum of electron kinetic energy and electron-nuclear attraction terms.  

Equations (2.17) and (2.18) represent the Coulomb and Exchange integrals, respectively.  Both 

equations sum together to form the Hartree—Fock potential, HFV  , experienced by the electron.  

The Coulomb term describes the energy between interacting electrons i and j in their respective 

positions and spin states. While the Exchange term is due to the possibility of an exchange 

occurring between those two electrons into their respective partners position and state.  We must 

note that orthonormality of the spin orbitals renders this term zero for electrons in different spin 

states, and electron exchange only exists for electrons with similar spin.  Moreover, the 

convenient removal within the equations above of the self-interaction term, when i = j.  In this 

situation, Equations (2.17) and (2.18) cancel out one anther within (2.15).  This self-interaction 

is not completely absent within DFT, and can even lead to errors in certain calculations.115,118–120 

The Hartree—Fock Approximation offers a practical method for solving the Schrödinger 

equation in a simplified and reasonable representation of the wavefunction.  Using the Slater 

determinant within this approximation, the problem of calculating the interactions between all N 
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electrons is reduced to simply one involving those electrons interacting with their surrounding 

environment.  Finally, this HF method introduces the concept of the self-consistent field (SCF) 

approximation for iteratively solving the HF equations.  Where an initial guess to the 

wavefunction is successively made more exact through calculation of the energy and continual 

update.  This process serves at the very heart of DFT, and both will be outlined in the following 

section. 

 Density Functional Theory 

 Overview 

From above, we recall that the wavefunction of an N electron molecule depends on 3N 

coordinates and N spin coordinates.  However, the electronic Hamiltonian involves only one- and 

two-electron spatial terms.  This implies that the molecular energy of the system can be written 

in terms of integrals involving only six spatial coordinates.  This leaves us with some disturbing 

facts, namely, that the many-electron wavefunction contains more information than we need, and 

it lacks any direct physical significance.  Resolving this has led to the search of new 

wavefunctions, and has even introduced the concept of replacing the wavefunction as the 

primary construct with that of the electron density  r 
 .  We shall see below that the density 

can be used to construct everything necessary within a calculation, and solved self consistently to 

reach a unique groundstate energy.  There is no universal method for computing a groundstate 

from the electron density, however the purpose of DFT is to approximate it. 

 The electron density is defined as 

     2

1 2 3 1 2 3, , , , N Nr N x x x x dx dx dx dx   
           ,  (2.19) 
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and represents the probability of finding the ith electron at any point within the volume of total 

electrons dr


.  It has the property of 

  r dr N 
 

 , (2.20) 

which states that integration over the volume elements yields the total number of electrons N. 

 A precursor to DFT, and one of the first examples to outline calculation methods based 

upon the density, was the work of Thomas and Fermi in 1927, the Thomas—Fermi Model.121  

Based upon the model of a Uniform Electron Gas (UEG), they proposed a description for the 

kinetic energy of electrons to be 

      
2 53

323
3

10TFT r r dr     
  

 , (2.21) 

and the total energy of an atom by the equation 

            2
53

3 1 22
1 2

12

3
3

10TF

r r r
E r r Z dr dr dr

r r

  
         

  
    

 . (2.22) 

The first term is the kinetic energy, and is derived from the statistical behavior of interacting 

electrons.  The second and third terms describe the interactions of nuclei-electron and electron-

electron repulsion.  Within the third term above, one can be see that there is no incorporation of 

the exchange between electrons.  In addition to this, the Thomas—Fermi Model itself is not very 

accurate.  However, our concern here is not with its accuracy, but with the fact that the model 

has now shown it to be possible to use the electron density as a parameter in performing 

calculations. 

 The Hohenberg—Kohn Theorems 

The next point in the history of DFT first began with the two theorems of Hohenberg and 

Kohn, in 1964, which together establish the basic framework for describing exactly how the 

electron density can be incorporated into a variational procedure.122,123  Their work proved for a 
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molecule with non-degenerate (only one) groundstate, that the energy, wavefunction, and all 

other properties, are uniquely determined by its electron probability density.   

The first theorem states:  

The external potential,  extV r


,(to within some trivial additive constant) is determined by 

the electron density  r 
; because this potential fixes a particular Hamiltonian, and one 

can find that the full many particle groundstate is a functional of the density.  

 

Establishing this point solidifies the use of the density as a parameter for determining the 

interaction potential between nuclei and electrons.  The Hamiltonian this theorem applies to can 

be written as 

  2

1 1

1 1ˆ
2

n n

i i
i i j i j ij

H v r
r  

      
 , (2.23) 

where 

       i ext i Ne
i

Z
v r V r V r

r


 

     
 , (2.24) 

and using the property described in Equation (2.20), we can determine this external potential of 

Equation (2.24).  From here, we can now find the remaining properties of the system, such as 

kinetic and potential energies, and the total energy HK
VE  for some potential V, all utilizing the 

density as a variable, written as 

              HK
V Ne ee Ne HKE E T E r V r dr F         

  
 , (2.25) 

where 

      HK eeF T V      (2.26) 
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is Hohenberg—Kohn functional.  When this functional operates upon a given density, it 

produces values for the kinetic T̂  and electron-electron repulsion êeV  within the groundstates 

wavefunction. 

 The Hohenberg—Kohn functional is what one would need to solve the Schrödinger 

equation exactly.  However, the explicit form of the two terms on the righthand side of Equation 

(2.26) are completely unknown and must be found.  But, we can rewrite the latter term in its 

classical analogue form of 

 
       

     

1 2
1 2

12

1

2ee ncl

ee ncl

r r
V dr dr V

r

V J V

 
 

  

 

 


 

 
 , (2.27) 

where the  nclV   term encapsulates the non-classical contributions within electron-electron 

interaction, such as the self-interaction correction, exchange, and Coulomb correlation. 

The second theorem states: 

The functional that delivers the groundstate energy of a system, that energy is the 

groundstate if-and-only-if the input density is the actual groundstate. 

 

This means that for some trial electron density which is greater than zero and associated with 

some external potential, the energy obtained using Equation (2.25) will be an upper-bound to the 

true groundstate.  That is, the particular density that minimizes this energy obtained will then be 

the exact groundstate. 

 These two theorems developed by Hohenberg and Kohn solidify the usefulness of the 

electron density as a viable construct and parameter to replace the explicit wavefunction when 

computing the groundstate energy through the variational principle.  However, these two 

theorems do not establish a routine in which to solve the Schrödinger Equation, and it was not 
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until later, in 1965, within the work of Kohn and Sham where they would devise a solution to 

this problem, through the use of a universal functional.124   

 The Kohn—Sham Formulation 

Modern density functional theory holds its origins in the implementation of the 

procedures as outlined by Kohn and Sham, where calculation of many-body properties can be 

completed through independent particle methods.  Within their work they replace the many-

particle interacting system with that of an auxiliary system, comprised of non-interacting 

particles, specifically the electrons.  This fictitious auxiliary system then effectively allows one 

to split the behavior of the electrons into two components which can be treated individually: the 

first, where their kinetic energy is computed exactly; the second, the electron correlation, and 

repulsion, which is to be approximated. 

To elaborate, let us suppose a system of N electrons.  Furthermore, that they do not 

interact with the surrounding nuclei, but with some potential  SV r


.  We intentionally create this 

potential in a manner that fosters a density that does not change, i.e. 0  .  Assuming this 

potential exists, we can find  .  This density is constructed from single electron orbitals, the 

Kohn—Sham spinorbitals, to form the Slater determinant in a similar fashion to that of the 

Hartree—Fock approximation, and is written 

 
2N

KS
i

i

   . (2.28) 

Now, because the electrons do not interact with one another, we only need to iteratively solve for 

the energy of the individual one-electron Hamiltonians as an eigenvalue problem of the form 

 ˆKS KS KS KS
i i i ih     , (2.29) 
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where this describes the energy of a particular electron in orbital i.  The total number of one-

electron orbitals, their Hamiltonians, and energies, are summed together to effectively obtain that 

of the total system, and can be seen in the expressions of 

 
 

 

21
2

1 1

,0 1 2

ˆˆ

, with 

n n
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      

  

 


 , (2.30) 

where i  is the spin coordinate of the ith electron, and KS
i  the Kohn—Sham energy eigenvalues. 

The total energy for the groundstate as computed under the Kohn—Sham formalism can 

be written as 

        0KS Ne xcE T E J E        , (2.31) 

where 

  0
1

1

2

N
KS KS
i i

i

T   


    , (2.32) 

is the exact kinetic energy of the auxiliary system,  

         2

1 1
1

N M
KSA

Ne i
i A A

Z
E V r r dr r dr

r
     

    
  (2.33) 

represents the Coulomb Nuclear-electron attraction, and 

      1 2
1 2

1 2

1

2

r r
J dr dr

r r

 
 


 

 
   , (2.34) 

is the Coulomb repulsion integral. 

The final term in Equation (2.31) ,  xcE   , is termed the exchange-correlation energy, 

which can be written as 

      xcE T J       , (2.35) 
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and represents the sum of two separate discrepancies.  The first is the inherent difference in 

energy between this fictitiously constructed one-electron schematic and the actual kinetic energy 

of the system in question,      0T T T     .  The second, is the energy that arises between 

interacting electrons, termed the correlation energy or Hartree Energy (as calculated by the 

Coulomb repulsion and interaction term),      J J J     .   

The utility of the Kohn—Sham approach is in the ability to turn the problem of solving a 

complicated many-particle system into an independent-particle one, despite these discrepancies.  

The exact contributions of the kinetic and potential energies are readily calculated, while the 

remaining contributions arising from these discrepancies are placed within xcE , whose exact 

form is unknown and must be approximated at the time of calculation.  Much progress has gone 

into devising new and all-encompassing forms for the xcE  term, resulting in many available 

choices, and improving them is a continual effort. 

Iteratively solving for a systems electron density and energy using the Kohn—Sham 

formalism (the SCF procedure) can be outlined as follows; (1) Choose a Basis-Set (detailed 

below), an exchange-correlation functional, and calculate the electronic density of the system; 

(2) Using this density, calculate the exchange—correlation potential of the system, and all of the 

one-electron Hamiltonians with their individual energies; (3) calculate the Kohn—Sham (KS) 

matrix elements (i.e. the interactions between orbitals); (4) Solve the KS equations for their 

coefficients and the total energy of the system; (5) Use the coefficients to update and improve 

upon the previously calculated electron density; (6) Return to (2), and continue until the density 

and energy of the system does not change with appreciable difference.  This energy difference is 

termed the convergence criterion, and is often taken to be 1E-3 eV (electron-volts).  Specifically, 
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a system is deemed isolated, or converged, when the difference between its calculated energy of 

the previous cycle and energy from that of the current one, is less than or equal to 0.001 eV.125 

 Exchange—Correlation Functionals 

 The Kohn-Sham equations, since their publication, have served as the starting point for 

any and all DFT calculations, and has proven itself time and time again.  What remains, is to 

further devise an appropriate exchange-correlation functional which eliminates all the unknowns 

within a calculation.  The true analytical form of the functional is itself unknown, but over the 

decades, there have been numerous undertakings in the derivation of new functionals, each 

aimed specifically at further refinement or the inclusion of another aspect in the behavior of 

electrons.  This have given rise to functionals that vary wildly in theory and extent, and 

dependent upon a functionals complexity it can be classified with its counterparts in what has 

affectionately been termed the “Jacob’s Ladder” of functionals.126  The first rung being the 

simplest, with the top rung reserved for functionals deemed closest to representing the actual 

electronic density of a system, found in nature. 

Within the first rung of this ladder resides the basis for all exchange—correlation 

functionals, the Local Density Approximation (LDA).  The functional describes the reduction of 

the complex arrangement of molecules within a system to a simpler argument, to one involving a 

uniform electron gas within a known fixed volume.  This approximation assumes homogeneity, 

and divides the volume containing the electronic gas into smaller regions.  This division then 

reduces the calculation of determining the exchange—correlation energy contribution to the 

overall system into nothing more than the multiplicative product of the small volumes and the 

density within them.  The algebraic expression for the exchange portion was originally derived 

by Bloch and Dirac, and the correlation originally fitted through Quantum-Monte Carlo 
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simulation by Vosko, Wilk, and Nusair (VWN), with several variants upon it in later years.125,127–

131  The properties of systems obtained using LDA have made it insufficient for many 

applications in chemistry, however.  It has been shown to give reasonable ionization, 

dissociation, and cohesive energies to within 10-20 %.  But, bond lengths of molecules and 

solids to an accuracy of ~2%.  The functional cannot be relied upon for use in systems that are 

dominated by electron-electron interaction effects, such as transition metal-oxides, as well. 

An improvement upon LDA, on the next rung upwards of our ladder, resides the 

generalized gradient approximation (GGA) functionals.  Functionals here add an extra term to 

their exchange portion, to include not only the position of the electrons of the one-electron 

system, but also their gradient.  Such an inclusion effectively reduces the errors of LDA by a 

factor of 3 when calculating atomization energies for small molecules.  Moving up in 

complexity, we highlight the Hybrid functionals.  These functionals marriage together the 

exchange portion derived separately, or taken from another functional, with the correlation of yet 

another (derived or taken from).  The exact procedure for creating functionals is beyond the 

scope of this dissertation, but Scuderia and Staroverov give a detailed outline and brief overview 

of the complexity at each level of formalism and provide starting points for review of the 

literature.132 

 Mulliken Population and Hirschfeld Charge Analyses 

Using the capabilities of first-principles DFT, or rather “onsite” DFT, which involves 

computation at the atomic orbital level, we can compute a number of useful electronic values.  In 

doing so, we aim to complete two aspects in this investigation.  The first, is to understand the 

emergence and eventual collapse of magnetization in the progression from small, binary, Cr-Te 

clusters, up to the larger ligated Cr6Te8(PEt3)6 system.  The second, to establish basic electronic 
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information that can be used to describe behavior of these clusters on the macroscopic level; 

either in a large periodic system, where onsite DFT is impossible, or in a top-down approach 

through experimental measurements.  We bridge these two ideas together through the methods of 

Mulliken Population Analysis (MPA), Hirshfeld Charge Analysis (HCA). 

Briefly mentioned above, Mulliken Population Analysis is the oldest and best-known 

definition in describing atomic charge.  It is completed using the optimized atomic orbitals and 

their coefficients, found during the calculation, which are then used to form the resultant electron 

“density matrix”.  Thus, this density matrix possesses all the information of the system, 

specifically with regards to every atom, its orbitals, electron occupations, and orbital overlap 

with its neighbors.133–137  Because MPA involves such detail, we can obtain information 

regarding both, the density of charge present on an atomic site, as well as the spin direction and 

number of electrons.  Within this study, we shall only concern ourselves with the population of 

spin for each element, and how that spin population is distributed across all of its orbitals.  We 

can easily deduce that applying MPA to large systems can become computationally taxing, very 

quickly, and only applied to onsite DFT.  But, we can continue with methods of charge analysis 

which are based on the electron density, as a function of space, regardless of how that density is 

computed. 

Hirshfeld Charge Analysis, involves effectively two densities, one for the total molecule 

itself, and a fictitious density constructed from each of the elements within that molecule.  

Atomic charges obtained by this method are a result of distributing, among all the atoms in the 

molecule, the total electronic probability density, which can be seen in 
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where  , ,mol x y z  is the electronic probability density at some point,  , ,A x y z  the amount of 

density at (x, y, z) being assigned to atom A,  0 , ,A x y z  is the electronic density of the isolated 

atom A (which has been calculated using the same method and basis set to obtain  , ,mol x y z  ), 

and the sum in the denominator of Equation (2.36) is over all the probability densities of the 

isolated atom types found within the molecule.  Finally, the Hirshfeld Charge for an atom A can 

be written as 

 A A AQ Z dxdydz
  

  

      , (2.37) 

where AZ  is the atomic number of atom A.116,137–142  Doing this analysis allows one to view 

density movement on a larger scale, across the entire molecule.  Moreover, the individual 

Hirschfeld charges on each atom provides the means to view a molecules effective dipole 

strength and its direction. 

 Computational Methods 

All geometries below have been found, and their properties calculated, under the 

framework of DFT utilizing the exchange and correlation components of the generalized-

gradient approximation (GGA) functional as derived and outlined by Perdew, Burke, and 

Ernzerhof (PBE).127,143  All calculations and property investigations are completed using the 

Amsterdam Density Functional (ADF 2016.104) set of codes.144–146  Here, the molecular orbitals 

are represented as linear combinations of atomic orbitals (LCAO) centered on the atomic sites.  

These onsite one-electron orbitals are generated in the fashion outlined by John C. Slater, the 

Slater-type orbitals (STOs).147–149   Moreover, geometry optimizations have been done under 
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ADFs Zeroth-Order Regular Approximation (ZORA) representation, a modification to the 

solution of the four-component Dirac equation, to effectively treat relativistic effects.150–154   

In addition to the choice of exchange-correlation functional, one is also afforded a choice 

in the size of the Basis-Set, or simply basis, to use within a calculation.  The Basis Set file is 

nothing more than a table, or list, of which there is one file for each element on the periodic 

table, with a minimum of one pair of numbers, one for each orbital of that element.  The first 

number is the fitting constant, designed to calibrate that particular orbitals behavior and 

contribution to the overall wavefunction.  The second number in this Basis file is the “Slater 

orbital exponent”, ζ (zeta), which is a fitting constant used to accurately represent the long-range 

behavior of the orbital it is associated with.  Of course, there are a fixed number of physical 

orbitals, but there is no limit to the number orbitals we can use in order to construct the full MO 

of a particular system.  Thus, depending on the calculation, one can choose a basis set with a 

single zeta coefficient (SZ) (one orbital coefficient, and one zeta parameter) to represent atomic 

orbitals, or as many as four, quadruple-zeta (QZ) (eight coefficients, and eight zeta parameters), 

for every element.  Obviously, the choice of basis set size has a direct effect on the final 

Molecular-Orbital (MO) representation.  As such, when using local atomic orbitals to build a 

larger MO, the basis plays a very important role in calculating individual electron contributions 

to the system.  Moreover, all charge analysis methods upon the system in question will involve 

one or several aspects of the basis and the final computed coefficients. 

Within ADF, the various geometries of CrxTey stoichiometry outlined below (unless 

otherwise noted) have been computed using the QZ4P basis set (Quadruple Zeta, Quadruple 

Polarized; all-electron) basis.155  This basis consists of 13S, 8P, 5D, and 3F functions for Cr; and 

18S, 15P, 8D, and 3F functions for Te.  The 4P designation represents the addition of functions 
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(coefficients and zeta exponents) to the basis in order to appropriately represent the stretching, or 

polarization, and modification of orbitals due to bonding and other effects.   

These atoms within the clusters will be moved in the direction of forces until those forces 

are reduced to 0.001 Hartree (0.027 eV) per Å, and total bonding energy reduced to 0.001 eV per 

geometry iteration, at which time the cluster is considered to have converged and thus reached its 

groundstate.  Converged geometries are visualized using the Discovery Studio Client as provided 

by Dessault Systems, Inc. (Formerly Accelrys), and the ADF Graphical User Interface (ADF 

GUI).  The ADF GUI will be used to visualize molecular orbitals, and help in detailing other 

properties such as Hirshfeld and Mulliken Populations (HPA and MPA).  Both of these analysis 

techniques are employed in order to ascertain the spin density of individual atoms as well as the 

underlying charge movement between the various atoms, and cluster fragments.  An isosurface 

value varying between 0.01 and 0.03 electrons will be applied and used throughout to better view 

the molecular orbitals. 

 The structures found in the search for binary atomically-precise CrTe, in addition to their 

Mulliken Populations, Hirshfeld Charges, and other basic cluster properties, will be discussed 

during the presentation of results in Chapter 3.  And similarly, for ligated versions of Cr6Te8 

within Chapter 4. 
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3 Atomically-Precise Binary CrxTey Clusters 

 Overview & Two-Dimensional CrTe 

While small binary clusters of chromium and tellurium are nonexistent in the literature, 

there are several reports describing the fundamental unit cells of various two-dimensional, 

periodic systems.  Chevreton, amongst a handful of others, were first to describe the magnetic 

behavior and crystallographic properties within systems containing the basic units of CrTe and 

Cr3X4 (X = S, Se, Te).82–85  Around this time it was first proposed by Khoi & Veillet in their 

study of Cr3Te4, and later seen in the NMR studies of  Hashimoto & Yamaguchi upon Cr7Te8, 

the presence of two different kinds of internal electric fields.85,87  It was inferred that both 

systems were comprised of two chromium oxidation states, specifically Cr2+ and Cr3+.  

Moreover, in addition to Cr3Te4 and Cr7Te8, Chevreton also discovered that the Cr-Te umbrella 

encapsulates another homogeneous compound, Cr2Te3.82  That same year, Van Con & Suchet 

would go further and state that the Cr-Te family possessed more than three homogeneous 

compounds, but many more nonstoichiometric counterparts in the composition range of 52-61 

at.% Te.83 

 The very early studies of Cr7Te8 showed its fundamental unit cell to be of the NiAs-

structure with associated Cr-vacancies.  The NiAs crystal structure is hexagonal, with a layering 

scheme between the two element types representative of an ABABAB… stacking, with atom A 

in the octahedral coordination, and atom B in the trigonal prismatic.  The vacancies described are 

the literal absence of an element within the lattice, typically chromium, and tends to occur every 

two layers within the superstructure.  In a two-step thermal treatment procedure of this crystal, 

Hashimoto & Yamaguchi succeeded in producing two phases, an ordered, monoclinic; and 
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disordered, hexagonal.  Each with a different arrangement of those vacancies.  Their saturation 

magnetization experiments reported a slightly higher Curie temperature and effective Bohr 

magneton number for the disordered phase than that of the ordered; 361 K vs. 350 K, and 2.5 µB 

vs. 1.8 µB.87   

 Obviously, this opened the door for many more studies into the Cr-Te systems, in both 

strictly pure binary forms, and even doped108,113 versions.  Early investigations delved into the 

magnetic properties of Cr2-δTe3
88,89, as well as further studies into previously known structures 

and into newly found compositions, such as; CrTe, Cr23Te24, Cr7Te8, Cr5Te6, and Cr3Te4
90.  

Within the same year of this comprehensive magnetism study, Klepp & Ipser in 1982, report 

their discovery of the never before seen CrTe3 crystal phase.91  Its electronic structure, and 

underlying role of tellurium, was not detailed until five years later.94  Some years prior, in 1987 

Yuzuri et al. detail their findings involving the effects of pressure upon the magnetic properties 

of Cr2S3 and Cr2Te3.92  In 1989 with Dijkstra et al. they discuss band-structure, magnetism, and 

transport within CrTe, Cr3Te4, and Cr2Te3.86  A year later, yet another phase, CrTe2, is newly 

discovered.93  Finally, in 1991 through the work of Steigerwald et al., a report appears detailing 

the differences between our cluster, Cr6Te8(PEt3)6, and the connection to its periodic ancestry of 

Chevrel clusters and the NiAs structure.57  Later, a discussion of the clusters’ synthesis and its 

connection to the two-dimensional Cr3Te4 system by Hessen et al. in 1993.51  The study of Cr-Te 

systems continues, up until today, with literature discussing everything from solidifying the 

nature of its crystal structure96, pressure induced transformations97–100, and underlying magnetic 

origins and overall electronic behavior.95,101–104,106,109,110,112 

  Despite the vast number of investigations into periodic CrTe, the magnetism, structural 

behavior, and electronic subsystem of atomically-precise CrTe clusters has yet to be understood.  
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To fully understand the complications in theoretically finding groundstate structures, electronic, 

and magnetic properties for CrTe based systems, it is necessary to first discuss and highlight a 

few previous results, and difficulties, when finding those same properties within pure clusters of 

those elements. 

 Pure Systems of Chromium, and Tellurium 

 Overview 

Firstly, to establish a unifying and overall framework in which to discuss new clusters 

based on chromium, a gap appears that must be addressed.  Specifically, in regards to chromium 

clusters, between i) the computational results within this document; and ii), those of both 

theoretical computation and experiments previously completed.  To bridge this gap, groundstates 

for pure chromium clusters, Crn n = 1 – 6, have been obtained within the formalism as outlined 

above in Chapters 2, namely; PBE GGA functional, (Scalar Relativistic) ZORA, QZ4P Basis, 

and without symmetry constraints.  Thus, before introducing clusters of binary CrTe, we first 

briefly introduce pure tellurium clusters, followed by discussion of chromium.  Finally, address 

the newly obtained small clusters of chromium. 

 Tellurium Clusters 

The inherent complexity needed for chromium cluster calculations can be easily 

transferred to those for pure tellurium, as well.  Stable structures formed from elements of group-

16 on the periodic table display transformations from diatomic species of oxygen, up through 

rings of sulfur, selenium chains, and tellurium helices, with an increase in strength of single 

bonds versus double.156,157  Elements of this group are known to have two lone electrons; each 

the sole occupant of a non-bonding orbital.  These orbitals are directional, and lie at the top of 
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the valence band, with divalent tendencies and a preference for twofold coordination.  The 

behavior of these elements with regards to their orbital interactions, results in various 

groundstate geometries of ring and/or chain-like structures, which is exemplified by the small 

clusters of tellurium.158–163   

Specific cluster isomers for Ten n = 6 were obtained by Igel-Mann et al. in 1993 under 

Hartree-Fock methods, and found changes in the ordering of these isomers after inclusion of 

correlation and configuration interactions.164  Additionally, density functional calculations of Ten 

(n = 2 – 4) clusters completed by Goddard et al. in 1999 displayed a high dependence on the 

choice of basis-set used (more about this below) on the resultant structure and vibrational 

frequencies.  But, in all instances, the isomers of Te3 (C2v) and Te3 (D3h) were found to be almost 

degenerate, and similarly for the isomers of Te4 (C2v) and Te4 (D2h).159,160  Subsequent theoretical 

studies into geometries and frequencies by Pan in 2002, n = 2 – 8, was completed using three 

different types of xc-functionals to complete their calculations, in turn finding several isomers for 

n = 4 – 6.161  This dependence on xc-functional was also accounted for in the work of Akola & 

Jones, while investigating amorphous tellurium and clusters n ≤ 16.  Using four different xc-

functionals, they showed the energy difference between two- and threefold coordination of 

tellurium atoms to be sensitive to the particular xc-functional used, as well. 157  We do not delve 

further into the nature of tellurium or its clusters, but the references mentioned here (and those 

therein) do provide sufficient introduction.165 

 A Brief History of Small Chromium Clusters 

Chromium, for many years has been known to be an antiferromagnetic substance.  

However, even within large cluster systems, chromium behavior is very complex and has drawn 

a lot of interest.  Thanks to the work of Payne et al.166 just over a decade ago, they have 
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measured the magnetic moments of free Crn clusters reaching over 100 atoms in size showing 

there are two different magnetic behaviors that develop as a function of size.  This can be seen 

below in Figure 3-1, which for the clusters Cr30, and Cr34 – Cr133 have two magnetically 

distinguishable isomers, hence the two plots.  However, at the small scale, the antiferromagnetic 

character does not persist and on some occasions, leads to systems possessing a ferromagnetic 

high spin polarization.167,168  It is this ferromagnetism that is to be harnessed and maintained into 

the macroscopic regime.  But, obtaining systems of this type can be difficult, due to the tendency 

of transition metals with a nearly half-filled shell, i.e. Mnn and Crn, to align in an antiparallel 

manner with the nearest neighbor.169  Understanding these findings is still somewhat of a 

challenge, with many theoretical investigations having already been conducted to study 

magnetism as related to structure, and vice versa.170–174 

 
Figure 3-1. Magnetic moments per atom µ for chromium clusters of N = 20 – 133. 

(Reused with permission, Copyright American Physical Society)166 

At the smaller scale, it has been confirmed in experiments of solitary Cr that it possesses 

a groundstate of 7S3, in a 3d54s1 configuration.175–177  A configuration found similarly within the 

present study.  Additionally, in the investigation of chromium clusters, extensive attention has 

been placed upon that of Cr2, both theoretically and experimentally.171,178–185  Across these 

studies it has been experimentally found that the groundstate is formed by two chromium atoms 

coupling antiferromagnetically.  This bond is comprised entirely between the s- and d-orbitals, 
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with length of 1.6788 Å; drastically shorter than found in bulk, 2.50 Å.172,186  Ideally, with each 

Cr atom supplying six unpaired electrons, this should in principle produce a dimer with six 

bonds.  Due to the size difference between the 4s and 3d orbitals, as well as the influence from 

exchange energy, this bond is very weak and has a low binding energy (1.53 ± 0.05 eV).187,188  

Accordingly, it has been found through bond order analysis that the dimer has an effective bond 

order of 3.5, instead of the ideal six.189  In this present investigation, the Cr2 cluster has a 

calculated bond length of 1.71 Å, and dissociation energy of De = 0.735 eV, both in fair 

agreement with experimental data. 

The extensive studies into the electronic properties of Cr2 have often been used as a 

benchmark when discussing the specific magnetic and bonding characteristics of larger, 

polyatomic chromium.  This understanding of Cr2 has lead Cheng & Wang in 1996 to propose a 

dimeric growth route for clusters up to Cr11, in an effort to explain the widely alternating spin 

multiplicities between even and odd numbered clusters, as well as antiferromagnetic ordering 

and structural transitions.172  Later calculations at a higher level of theory by Wang et al., in 

search of Crn (n = 2 – 5) equilibrium geometries, have reported small chromium clusters are 

antiferromagnetically coupled, and found no dimer-growth route for clusters larger than n = 

3.174,190  This was confirmed later in 2010 by Ge et al., reporting no dimeric-growth for 

metastable isomers of Crn (n = 2 – 9), under the same, higher level, of theory.191 

Clearly, as computational methods become more complex and encompassing, it is 

advantageous to determine, at these higher levels of theory, what exactly is the behavior of small 

chromium.  This lack of complexity in formalism and/or availability of adequate orbital 

representation can be followed up into the present day, as told through previous literature reports.  

The wealth of information from these studies has yielded a multitude results that are extremely 
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diverse.  Moreover, some of the claims made in regards to the electronic properties of small 

chromium are drastically different from the experimental data, in regards to bond lengths and 

dissociation energies.   

It is important to remember, and bears some emphasis, in the desire to create new 

materials with novel properties and use clusters to do so, calculation of fundamental properties 

must obviously be of the utmost of quality.  Thus, choice of xc-functional and matching basis-set 

are the two main variables for these calculations.  Within this study, the choice of PBE functional 

was based upon its history of successful usage in predicting and verifying both properties and 

structure of various clusters, as well as periodic solids and CAMs.  Moreover, the basis-set of 

QZ4P was chosen not only for its completeness in numerical representation and optimization for 

use with the ZORA formalism within ADF, but also as a type of benchmark.  Performing these 

cluster optimizations in this manner serves as a useful reference for comparing past results, as 

well as future DFT calculations of this type.  Specifically, those utilizing GGA or meta-GGA 

functionals and/or Slater-type orbitals (STO); despite the concentration of this investigation 

placed solely upon neutral species with collinear spins.   

A modern investigation into the most suitable combination between the DFT functionals 

of GGA PBE and meta-GGA TPSS, and various basis sets was undertaken recently by López-

Estrada et al. in 2016.192  This was done in search for the best description to verify experimental 

findings regarding the properties of Crn, n = 1 – 4, and highlighted a Cr4 cluster with S = 6 spin 

state.  Prior to this, a more comprehensive investigation into the most suitable functional and 

basis pairing was performed by Würdemann et al.193  Within that study, a compendium of 

information derived from numerous basis set combinations with functionals from GGA and 

meta-GGA levels was undertaken in order to solidify the electronic properties of Cr2 and Cr3, 
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which is then compared with vast amounts of experimental data found in the literature.  

Furthermore, these newly found results are applied upwards toward larger sized chromium in an 

effort to put all calculated Crn data on the same footing. 

 Small Clusters of Pure Chromium 

The groundstate structures of pure chromium clusters found in this study are shown 

below, in Figure 3-2, while their respective bond lengths and level diagrams are given in 

Appendix A.  Interestingly enough, their total magnetic moments vary between 0 and 6 µB, 

depending on even or odd number of Cr atoms, respectively.  Macroscopic properties of the Cr2 

dimer have already been discussed above, and we shall save the remainder of its analysis until 

reaching the sections of Te addition.   

Thus, we begin with the trimer which we can see below.  Different possible geometries 

without symmetry constraints, and across several spin states were considered initially, but only 

the groundstate geometry is given below.  The lowest energy geometry is in the septuplet spin 

state, M = 7.  The local moment for each chromium is listed (negative = downward).  The first 

isomer appearing at higher energy is the quintuplet, and at a difference in energy of ~0.46 eV.  A 

competition between M = 5 and M = 7 groundstates has been seen before.192  López-Estrada et 

al. have performed computations upon small chromium and have claimed their energy difference 

to be ~0.2 eV.  Within that report, the authors have also deemed the cluster of M = 7 to be 

groundstate, based upon pervious experimental results. 

With regards to geometry, the triangle formed below follows along the lines of previously 

reported geometries for the trimer, possessing a right triangle shape formed as a dimer plus 

adatom formation.  The presence of a lengthened bond exists between Cr2 and Cr3 at 1.803 Å, 

and is slightly larger than other geometries whom report lengths closer to the original dimer 
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when using GGA functions.  Together, this bond, along with the Cr2-Cr3 bond of 2.432 Å, form 

an angle at 91.19º. 

 
Figure 3-2. Groundstate clusters of pure Crn, n = 1 – 6. 

With HOMO-LUMO gap, and magnetic moments for individual Cr, and total cluster (MT). 

The chromium tetramer has been obtained from various initial geometries and spin states.  

The groundstate is a singlet, M = 1, with three atoms forming a right triangle base and the fourth 

atom bonding similarly to share the hypotenuse.  From there, this structure remains as a distorted 

tetrahedron, as the fourth atom does not reach an apex above the remaining three.  The resultant 

dihedral formed has angle of 113.24º.  The bond distances between Cr1 and Cr4, & Cr2 and Cr3 

are ~3.01 Å, while the remaining bonds are ~2.35 Å.  In this arrangement, the chromium atoms 

are antiferromagnetically arranged, with near equal charge density.  The next geometry higher in 

energy can be found at ~0.60 eV away, however there is a competition between structures in the 

triplet spin state and that with higher multiplicity of M = 13; with the triplet state only ~24 meV 

lower in energy.  This again has been reported on previously192 , but in that publication the 
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position of the fourth Cr atom at the apex dose not yield any singlet spin state geometry and has 

brought the groundstate to a discussion between the triplet and M = 13 states.  The competition 

between those two spin states has been attributed to their close geometries, which facilitates a 

spin-flip due to spin-orbit coupling.  

 Trends of this type, based on differences in energy, bond distances, and magnetic 

coupling continue upwards into the larger size of chromium.  The pentamer of chromium begins 

to display a form of regularity with respect to bond distances.  The triangle formed of Cr1, 4, and 

5, have lengths of ~3.03 Å; with the remaining distances at ~2.40 Å.  Apex atoms together are 

antiferro with respect to the central triangle, but sum total of spin moments results in a 

ferrimagnetic cluster with septuplet multiplicity.  Additionally, the cluster of Cr6 is highly 

distorted from an ideal tetragonal bipyramid structure with all bond distances lying within the 

range of 2.33 – 2.77 Å, with the shortest being found joining the four atoms of the center square.  

The distortion appears now to be a result of the individual moments of the atoms, and despite 

their differing magnitudes the overall cluster is in the singlet state.  This is affirmed, as the next 

highest pair of geometries are ~0.33 eV higher in energy.  Here, the two geometries in question 

are those with multiplicity of M = 9, and M = 11.  Both geometries are highly similar in 

structure, with only minute differences in bond lengths. 

 Summary 

Together, all the clusters above are in reasonably good agreement with current, modern, 

literature reports and serve as suitable starting points for comparison with their tellurium paired 

variants.  Using these new results, as well as our knowledge of elemental tellurium behavior 

from the prior discussions, we begin to address binary CrTe.  Specifically, what we now lack is a 

concrete formulation detailing the transition of properties between the two; small clusters of 
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chromium, and those of tellurium, together.  More importantly, how their overall magnetic and 

electronic behavior change when moving into the macroscopic scale.  Moreover, despite the 

large magnetic moment of elemental chromium, and its small clusters, how and why does that 

magnetic moment enhance, stabilize, or diminish in the presence of tellurium.  The apparent lack 

of any robust magnetism on a large scale regarding the Cr6Te8(PEt3)6 cluster, and overall solid 

itself as shown in experiment, can be traced back to these small cluster sizes of binary Cr/Te, and 

shall be addressed in the next section. 
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 The CrxTey Clusters 

 Overview 

We further divide the remainder of this chapter effectively into three parts.  The first, 

discusses the clusters, their structures, bond distances, etc.  Within the second, overall properties 

pertaining to the entire series.  Electronic properties such as HOMO-LUMO Gap, trends of the 

individual bond distances, magnetism, Hirshfeld Charge analysis, and removal energies.  Lastly, 

the bonding patterns between chromium and surrounding tellurium, as seen through levels 

diagrams, the density of states, and Mulliken spin density movement.  All cluster geometries can 

be seen below in Figure 3-3 through Figure 3-9, with labels and associated labels bond lengths 

in Appendix B. 

It should be noted, that although there are numerous interpretations and results for small 

chromium geometries and associated isomers, that number pales in comparison to those of small 

CrTe.  For each groundstate shown below, there are numerous higher energy isomers within 1.00 

eV.  One can deduce, this number grows even larger depending on the total number of Cr and Te 

atoms within a cluster.  For example, smaller CrTe systems have approximately five higher 

energy isomers; while the larger can have upwards of eight or more.  For the groundstate and 

low-lying isomers, full convergence was guaranteed through frequency analysis.  After such 

analysis, any geometry displaying a frequency which is negative, in any vibrational mode, would 

subsequently be reoptimized under a tighter geometry convergence criterion; 10-5 eV, rather than 

the standard, 10-3.  Tests involving geometry optimizations incorporating both a tighter 

convergence criterion and integration grid (ADF 2016.104: “verygood” vs “good”) have shown 

the modified geometry criterion (10-5) to be sufficient when used alone. 
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 Geometries & Structure 

 Cr1Tey (y = 1 – 4) 

 
Figure 3-3. Groundstate structures of Cr1Te1-4.   

With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; Te:Beige) 

Ascertaining the effect of bonded tellurium is best understood through its imposition 

upon the free atom and dimer of chromium.  The groundstate geometries for Cr1Te1-4 are shown 

in Figure 3-3, accompanied by their total magnetic moment, MT, as well as individual spin 

moment contributions from chromium and tellurium.  What can be seen immediately is the 

systematic decline of spin density of the central chromium atom, and the fall of the total moment.  

The bond length within Cr1Te1 is 2.453 Å.  The closest geometry higher in energy to CrTe is in 

the septuplet state, at a difference of 0.55 eV.  For CrTe2, the two tellurium atoms bonded to 

solitary Cr form an isosceles triangle with a bond length of 2.874 Å between the tellurium.  As 

the number of Te atoms increase, we can see they take on something close to a square planar 

arrangement around Cr.  Bond lengths now are ~2.62 Å between Cr and Te, and ~2.70 Å 

between the Te.  The nearest geometry higher in energy to CrTe2 is in the triplet state, and <60 

meV away.  Similarly, the first isomer of CrTe3 is 0.17 eV higher and in the quintuplet state; 

while for CrTe4, the first isomer is ~0.13 eV higher, but still in the triplet state. 
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 Cr2Tey (y = 1 – 4) 

 
Figure 3-4. Groundstate structures of Cr2Te1-4. 

With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; Te:Beige) 

Interesting geometrical effects can be seen on the dimer of chromium through the 

sequential addition of Te atoms in Figure 3-4.  Firstly, all geometries are in the singlet state, 

with virtually no spin density in the Te atoms.  Placing a single Te atom upon Cr2 stretches the 

bond from 1.7138 Å to 2.102 Å, and this Te atom is now closer to both Cr atoms at a distance of 

2.555 Å.  A second Te atom reduces the Cr2 bond back downward to 1.838 Å.  Both Te atoms 

are in a butterfly position, out of plane in the dihedral, but each maintain bond lengths of 2.559 Å 

and 2.561 Å.  A third Te atom in CrTe3 now brings the Cr dimer to a bond length to 1.769 Å, and 

all Te atoms are in the range of 2.565 – 2.570 Å.  More importantly, the spin moments on both 

Cr atoms are now completely quenched.  Finally, a total of four Te atoms, in Cr2Te4, encircling 

the central Cr2 leaves the metal bond at 1.792 Å, bonds between Cr and Te are now in the range 



54 
 

of 2.708 – 2.715 Å, with Te atoms forming two dimers, each with length of 2.781 Å.  Here, the 

spin moments are antiferromagnetic to one another.  

 Cr3Tey (y = 1 – 5) 

 
Figure 3-5. Groundstate structures of Cr3Te1-5. 

With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; Te:Beige) 

Groundstate geometries for the chromium trimer series can be seen in Figure 3-5.  All 

structures possess a quintuplet multiplicity, with the exceptions of Cr3Te3 (M = 7) and Cr3Te4 (M 

= 3).  The central Cr3 atoms remain in their isosceles formation throughout the series, with 

varying degrees of bond length, except for Cr3Te5 when all Cr atoms are stretched to their 

furthest positions.  Each central trimer takes on the behavior of the pure Cr3 structure, in that 

there remains one Cr with downward spin, excluding Cr3Te3.   
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A single Te atom atop Cr3 effectively takes the position of the fourth Cr atom of the pure 

Cr4 geometry.  It resides 2.594 Å away from the spin-up Cr atoms, but 2.903 Å from the Cr of 

downward spin.  The Cr bond distances are 2.921 Å between the spin-up chromium, and 2.312 Å 

between spin-up and spin-down chromium.  The spin density of the lone Te atom reaches -0.281.  

Addition of two Te atoms to Cr3 stretches the metal bonds only slightly, ~0.05 Å for each bond.  

However, each Te atoms is mirrored by its partner, both are a distance of ~2.66 Å from the spin-

up Cr atoms, but ~2.72 Å from the spin-down.  The two Te atoms are effectively balancing their 

distances across of all bond lengths. 

The geometry of Cr3Te3 can be best described as Cr2Te3 with a third Cr atom attached.  In 

adding this Cr, only one Te atom remains with two-coordination.  Moreover, the triangle formed 

by Cr3 becomes highly irregular.  The two Cr atoms which are bonded to the total number of 

tellurium, compress their bond distance to 1.821 Å.  These two Cr bond to the third with 

distances of 2.839 Å, and 2.846 Å, respectively.  The two-coordinated Te atom forms bond 

distances of ~2.54 Å, while the remaining two Te atoms bond within the range of 2.652 Å – 

2.678 Å.  The spin density analysis shows that the entire system is a ferromagnet, with the 

majority of spins located upon the least coordinated Cr atom. 

The Cr3Te4 complex effectively rearranges itself to accommodate the increase in Te 

number.  Only the Te atom forming the apex above Cr3 forms three bonds, while the remaining 

three are two-coordinated on the edges.  When compared to complexes of Cr3Te1 and Cr3Te2, 

four Te atoms move the central Cr3 complex closer to an equilateral triangle, with the least 

coordinated Cr atom forming the peak.  This atom is 2.421 Å and 2.424 Å away from the 

remaining two Cr atoms, which are separated by a length of 2.829 Å.  The Te atom bonded to 

both these Cr has spin-down density of 0.488, the maximum of all Te atoms across the Cr3 series. 
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Further addition of Te produces a complex with a Te-Te bond, Cr3Te5.  The central Cr3 

has bonds of all different length, with the shortest located between the Cr atom that is spin-down 

and Cr atom that is least coordinated to Te, at 2.457 Å.  Opposite this bond, between the spin-up 

Cr atoms, the length reaches 2.859 Å.  The third is at length 2.604 Å.  Once again, the lone two-

coordinated Te atom bonded to two ferromagnetically coupled Cr atoms has the largest amount 

of spin density. 

 Cr4Tey (y = 1 – 6) 

 
Figure 3-6. Groundstate structures of Cr4Te1-6. 

With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; Te:Beige) 

 Geometries for the Cr4Tey (y = 1 – 6) series are found in above in Figure 3-6.  For 

Cr4Te1, the first Te atom forms the second apex of the trigonal bipyramid, is bonded to both the 

spin-down Cr atoms at 2.74 Å, and forms the third bond at 2.640 Å.  The system is in the singlet 

state.  The pure Cr4 geometry has a larger average bond length between Cr atoms, thus lending 
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evidence to the idea of Te absorbing charge and manipulating the underlying chromium.  

Moreover, the local spin moments have diminished through the bonding of Te versus pure Cr4. 

 In Cr4Te2 the two Te atoms are bonded in the furthest possible positions from one 

another, and heavily distorting the underlying Cr4 pyramid.  Despite only two Te atoms, the 

longest bonds between Cr atoms have reached lengths of ~3.01 Å, while the remainder fall in the 

range of 2.270 – 2.465 Å.  The three-coordinated Te atoms bond onto their nearest Cr3 triangle, 

and of the Cr atoms forming this triangle, only one is opposite in spin to the other two. The four 

Cr atoms are antiferromagnetically arranged, leaving the total cluster in the singlet state. 

 What is interesting to see, with regards to the spin moment localized on the Te atoms, as 

the cluster size grows the effect of the Te atom varies with this size, as well.  This results in 

clusters that have Te atoms all in the spin down state, or a mixture of both up and down, 

depending on the total number and arrangement of those Te atoms.  In Cr4Te2, we can see both 

Te atoms have the same amount of spin density, but in opposite directions.  This continues into 

Cr4Te3, where the maximally coordinated Te atoms are equal and opposite, while the third 

possesses virtually no change in spin density. 

 The Cr4Te3 geometry, as stated above, two Te atoms that are maximally coordinated and 

a third which is doubly so.  The three-coordinated Te atoms have bond distances within 2.650 – 

2.716 Å, and the two-coordinated bonds are of length 2.575 Å, each. The addition of a third Te 

atom has diminished the effective spin moments on all Cr atoms, but the system remains in the 

singlet state.  The overall geometry of the Cr4 structure is now less distorted than that of Cr4Te2, 

but bond distances remain elongated, ranging between 2.238 – 2.748 Å. 

 The structure of Cr4Te4 marks the beginning of a rise in the total magnetic moment of the 

Cr4 series.  The triangle formed by the spin-up Cr atoms can be considered equilateral, with 
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distances 2.847 – 2.852 Å.  The apex, spin-down, Cr atom bonds effectively equally, in the range 

2.449 – 2.458 Å.  Moreover, all Te atoms are now maximally coordinated, with the Te atom 

bonded to the spin-up Cr3 triangle possessing the maximum amount of downward spin density.  

Contrary to Cr4Te2 and Cr4Te3, all Te atoms herein have spin-down (negative spin) density.  

Together, the Cr atoms are ferrimagnetic, producing a system in the septuplet state.  What is 

interesting within this particular size of clusters is the Cr4Te4 groundstate, and up to the fifth 

highest isomer, is all Cr atoms form a tetrahedron with the Te atoms on the faces.  The major 

difference between them are the bond lengths between the Cr atoms, creating isomers that are 

+0.08 eV, +0.16 eV, +0.38 eV, and +0.39 eV, with total magnetic moments of 0 µB, 8 µB, 2 µB, 

and 4 µB, respectively. 

 This magnetization further increases in the groundstate system of Cr4Te5.  The fifth Te 

atom bonds to two Cr atom sites, and effectively moves the fourth into the same position 

opposite itself.  Together, forming a Te-Te bond at 2.809 Å.  This has had a negative effect upon 

the Cr-Cr bonds.  The Cr3 base triangle has two shortened bonds at ~2.35 Å, and although two Cr 

atoms have increased in spin density the third has fallen drastically and flipped downward, -2.91.  

The distortion of the system has increased the spin density, and changed the direction, of the 

apex Cr atom.  As a result, the total system now has multiplicity of M = 9.  The next geometry is 

0.31 eV higher in energy, and in the septuplet state. 

 Following this, the Cr4Te6 cluster system now loses this high magnetization, and is in the 

triplet state.  From the figure, we can see that there is little area remaining for the Te atoms, and 

for each to be separated from one another all must bond in the two-coordination on the edges of 

the Cr4 pyramid.  As a result, large amounts of charge transfer between Te and Cr cannot occur, 

leaving all atoms with a diminished localized spin moment.  Moreover, the Cr-Cr bond distances 
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have contracted, into the range of 2.277 – 2.575 Å, with the largest bond distance between the 

spin-up Cr atoms.  The next geometry is 0.38 eV higher in energy, in the quintuplet state. 

 Cr5Tey (y = 1 – 7) 

 
Figure 3-7. Groundstate structures of Cr5Te1-7. 

With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; Te:Beige) 

Groundstates pertaining to the Cr5Tey (y = 1 – 7) series are shown in Figure 3-7.  A 

glance over the entire figure shows the numerous contortions of the underlying Cr5 structure.  

For most, this structure remains as a trigonal bipyramid with the exception of Cr5Te3 when it 

takes on the shape of tetragonal pyramid.  Moreover, due to the larger number of bonding sites 

for Te, only within Cr5Te4 and Cr5Te5 does a two-coordinated Te atom appear.  In all other 

geometries, Te atoms are three-coordinated, either with Cr, or both Cr and Te atoms.  The Cr5Te5 

cluster also has the highest multiplicity of the entire series, at M = 7.   

The Cr5Te geometry displays a similar behavior to the pure Cr5 geometry, with three 

spin-up Cr atoms forming the center Cr3 substructure and two spin-down Cr atoms bonded on the 

opposing faces.  Albeit, these moments are lower than found in pure Cr5.  The movement of spin 
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density toward the adatom of Te contracts all Cr-Cr bonds, bringing average bond length down 

from 2.611 Å to 2.52 Å, while the three bonds of Te are 2.656 Å, 2.654 Å, and 2.787 Å.  What is 

most interesting, is the spin-up Cr atoms form a near perfect equilateral triangle, at 2.839 Å, 

2.831 Å, and 2.843 Å, respectively. 

The geometry of Cr5Te2 continues in the same manner as that of Cr5Te1, maintain the 

quintuplet multiplicity, and with the average bond distances between Cr atoms contracting 

further, to 2.49 Å, while Cr-Te bond distances persist.  Here, the central Cr3 substructure 

containing the spin-up chromium, forms its own equilateral triangle, at 2.750 Å, 2.753 Å, and 

2.780 Å, respectively.  With the remaining Cr atoms bonding at the apex’s in the range of 2.299 

– 2.448 Å.  Both Te atoms are now equal in spin density, and spin down.  The spin density of the 

Cr atoms occurs in pairs, with the exception of the fifth Cr which has spin density valued near 

the average per chromium.  Addition of three Te to Cr5 subsequently breaks one of the Cr-Cr 

bonds, and produces a cluster whose center region is effectively open, and exposed.  This is done 

by Te to obtain a coordination of three.  Subsequently, Cr average bond distances are now 

enlarging, and equal that of Cr5Te1.  Moreover, the Cr4 center effectively forms a rectangle that 

has been elongated in the direction of the apex bonded Te atoms.  A feature producing two 

antiferromagnetically coupled dimers held together by an apex Cr, and equally spaced perimeter 

of Te. 

 The presence of four Te atoms produces a cluster geometry with one of the smallest 

multiplicities of the Cr5 series, M = 3.  In an effort to maintain their distance from one another, 

there are equal number of Te atoms in the two- and three-coordinated patterns.  As a result, spin 

density uptake by the surrounding Te is uneven and incomplete.  This then produces an 

arrangement where the Cr atoms involved in three-coordinated Te bonding elongate their 
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distance from the Cr atoms of the two-coordinated.  The maximum of such elongation, between 

lower apex and equatorial Cr atoms, has a bond length of 2.972 Å.  Additionally, between 

equatorial and upper apex Cr, the maximum bond is 2.836 Å. 

 The situation seen in Cr5Te4 reproduces itself within Cr5Te5, but to the opposite effect.  

The system is in the septuplet multiplicity, with majority spin density contribution from the apex 

Cr atoms.  The bonding pattern of the surrounding Te atoms now increases the number of three-

coordinated atoms to four, with the fifth in a two-coordinated scheme.  This increase in Te count 

now brings the average Cr-Cr bond distance to 2.64 Å.  We can also see the spin density of 

individual Te are occurring in near antiferromagnetic pairings. 

 It is not until reaching Cr5Te6 in which all Te atoms bond in the three-coordinate scheme, 

occupying all the faces.  This produces a central Cr3 triangle with bond distances on average to 

those seen previously, but apex Cr bond distances in the range of 3.016 – 3.296 Å.  These large 

bond distances further support the notion that the Cr-Cr interactions are managed through the 

bonded Te.  Upon arriving at the structure for Cr5Te7, in the triplet multiplicity, it can be seen 

that the additional Te atom must form its third bond with the neighboring Te.  In doing so, breaks 

the symmetry of the cluster.  Once completed, each Te atom, with the exception of one, has a 

partner with equal spin density.  The redistribution of charge has now allowed the structure to 

compress along the z-axis, bringing the apex Cr atoms closer to the center.  This results in an 

average Cr-Cr bond distance of 2.75 Å.  
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 Cr6Tey (y = 1 – 6) & (y = 7 – 8) 

 
Figure 3-8. Groundstate structures of Cr6Te1-6. 

With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; Te:Beige) 

 The series of Cr6Tey, y = 1 – 6 above in Figure 3-8, takes on a similar tone with regards 

to structural deformation and spin density through the increase of Te atoms, as we have seen 

above in smaller geometries.  The major difference here is the tetragonal bipyramid structure 

persists, resulting in antiferromagnetic clusters in the singlet state.  The exception to this occurs 

in the system of Cr6Te6, when the center Cr4 subunit contracts and bonds.  This then allows an 

increased number of Cr atoms to ferromagnetically couple, and produce a geometry with M = 9 

multiplicity.  The likelihood of such a geometry to maintain itself in this high magnetic state is 

very small, the next geometry is <0.14 eV higher in energy, is in the singlet state, and has the 

tetragonal bipyramid form. 

 It is easier to see within this series, that the Te atoms are sharing and balancing their 

effect upon the Cr structure.  This can be seen plainly within the geometry of Cr6Te4, in which all 
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spin densities are nearly equal and divided between spin-up and spin-down.  Moreover, their 

overall effect is now maximized, as each Te atom is able to bond with its preferred bonding site 

on the face formed by three Cr atom, due to the fact that a compact geometry for Cr6 is now less 

likely.  The result, there is an alteration between odd and even numbered of Te atoms in the 

average bond lengths of Cr which continues into larger numbers of Te.  However, after Cr6Te4 

this average bond distance never falls again below 2.55 Å; Cr6Te4, 2.552 Å; Cr6Te5, 2.637 Å; 

Cr6Te6, 2.717 Å; Cr6Te7, 2.678 Å; Cr6Te8, 2.783 Å. 

 
Figure 3-9. Groundstate structures of Cr6Te7,8. 

Te = 7 (A), 8 (B). With HOMO-LUMO gap, individual Mulliken Spin Density, and total magnetic moment, MT. (Cr:Blue; 
Te:Beige) 

Above in Figure 3-9, we find the structures for Cr6Te7 (A) and Cr6Te8 (B).  We can 

clearly see that the necessity for the Cr6 geometry to maintain its high multiplicity rests not only 

upon the distance between the individual Cr atoms, but also on a form of symmetry in the 

structure itself.  The addition of another Te atom to Cr6Te7 rearranges the overall spin density, 

forming a Cr6 structure comprised of four spin-up Cr atoms in the center, capped by two spin-
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down Cr atoms in the apex positions.  Moreover, the spin density of all Te atoms within Cr6Te8 

are equal and in the spin-down configuration. 

Higher energy isomers for Cr6Te7 begin at a difference of only 0.03 eV, and is in the 

quintuplet state.  This very small distance between ground and first isomer highlights the ease in 

which the chromium complex can distort to remove any kind of electronic frustration from the 

overall system.  The second isomer is 0.08 eV higher in energy (0.11 eV higher than ground), 

with triplet multiplicity.  There is a marked increase in stability in the Cr6Te8 cluster due to the 

extra Te atom.  The first isomer is 0.07 eV higher in energy, and in a higher magnetic state of M 

= 9.  Again, due to the cooperative effects of all Te atoms balanced across the entire cluster, an 

even number in this arrangement would better restrict movement of the Cr atoms. 

 Summary 

Upon closer examination of all geometries above, we can see that the behavior of pure 

chromium persists until a small number of Te are bonded.  Moreover, this number changes 

depending on the size of the Cr cluster.  With this now made obvious, the effect of said Te atoms 

can be varied to view a host of changes upon the underlying Cr complex.  In pure chromium 

clusters, after complexation, to effectively reduce the distance between two Cr atoms back 

toward its free Cr2 bond length, one must remove all electronic effects which drive the two atoms 

apart.  This is rather difficult to do, and as the total number of Cr atoms increase, so do the 

number of d-orbitals and their degeneracies.  Thus, introducing atoms of Te, the two incoming 

lone-pair orbitals in 5p4 covalently bond to Cr (d) and in doing so can effectively weaken, or 

remove, the local spin moment on the Cr atom.  Such a scheme is made apparent within the 

Cr2Te3 cluster, and broken in the Cr2Te4 geometry.  The modification of spin density and 
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bonding lead the rearrangement of an already weakly bound chromium atoms into vastly 

different geometric shapes, seen in the above. 

As the number of chromium atoms increase, the role of tellurium changes as well.  Not 

only does it continue withdrawing charge from Cr, but also begins to play a key role in 

stabilizing the overall structure.  The removal of charge from Cr drives their bond distances 

upwards, and becomes reliant upon the nearby Te atoms to balance the overall structure.  With 

that process complete, Cr can now take on different arrangements in spin.  The sensitivity of the 

underlying Cr system to the decorated Te various at all scales, and these overall properties are 

something we discuss in the next section.  
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 CrxTey Series Properties 

An overview of electronic properties for the entirety of the CrxTey series can be best 

summarized using Figure 3-10, and Figure 3-11.  At first glance, we can immediately see 

special characteristics and traits in numerous Cr/Te combinations and sizes.  Specifically, 

beginning with their total magnetic moments of Figure 3-10 (A), moving left-to-right, that the 

overall magnetic moments mimic those of bare chromium clusters, in their alteration between 

high and no magnetization.166,169,194,195  However, this pattern is broken, and magnetization 

appears to even be enhanced, beginning with clusters comprised of equal, or greater, number 

chromium vs. tellurium atoms.  The clusters of Cr3Te3, Cr4Te4, and Cr5Te5, each display a total 

magnetic moment, MT, of 6 µB; as well as the Cr6Te8 cluster core of Cr6Te8(PEt3)6, discussed 

later.  This moment continues to increase within the clusters of Cr4Te5 and Cr6Te6, whose MT 

both equal 8 µB. 

 
Figure 3-10. Basic properties of the CrxTey binary clusters.  

(A) Total magnetic moments, and (B) Distance between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied 
Molecular Orbital (LUMO), i.e. the HOMO-LUMO Gap. 

The large magnetic moments are expected within odd numbered chromium, as often with those 

of the even numbered the magnetic moments of individual chromium atoms are 
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antiferromagnetically couple to one another, yielding an overall moment of 0 µB.  However, this 

scheme no longer holds within (44) or (66), something we shall discuss in Secs. 3.5.4 and 3.5.6.  

Another interesting discovery is that of the HOMO-LUMO gap energies for the Cr/Te series, 

shown in Figure 3-10 (B).  Specifically, for that of the chromium dimer which is enhanced from 

solitary chromium, when decorated with two or more atoms of tellurium.   

 
Figure 3-11. Magnetic moments for the CrxTey cluster series.  

Averages tabulated under two different schemes; Total cluster moment divided by number of Cr atoms (A), and summed absolute 
value of individual Cr atoms by different schemes. (Insets show equation used: N, total number of Cr; µi, local spin of the ith Cr) 

In an effort to link the results presented to those of previous theoretical and experimental 

investigations, magnetic moments are presented in two different forms within Figure 3-11.  

Panel (A) highlights the total magnetic moment of a particular cluster, MT, as divided over the 

total number of Cr atoms present.  In (B), to fully understand the sequential addition of tellurium 
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upon the individual chromium atoms within a cluster, the same procedure of panel (A) is carried 

out using the absolute value of each individual Cr atom.  Together, provide a better overall 

picture as to the electronic and magnetic behavior.  Panel (A) highlights our discussion of the 

previous sections, in that major changes to the total magnetic moment are not likely to occur 

until there are equal or greater number of Te atoms when counted against the number of Cr, and 

similarly for the conservation, creation, or enhancement of any magnetic moment within a 

cluster.  Within panel (B), each individual chromium appears to maintain a large magnetic 

moment, with the exception of a few cluster species; namely, Cr2Te3, Cr3Te3, and Cr4Te6.  

Moreover, clusters with a very high magnetization are void of any symmetry and whose total 

magnetic moments are closely linked with arrangement of tellurium around chromium. 

 Hirshfeld Charge Density, Average Bond Distances, and 
“Malleability” of Chromium 

The idea that individual tellurium decorates chromium and affects the underlying metal 

system can be further illustrated in Figure 3-12, below.  Atop shows the effective average 

Hirshfeld Charge density change, for both chromium (black) and tellurium (red), within each 

cluster combination.  Additionally, the bottom portion shows the average bond distances between 

chromium’s and chromium-tellurium.   
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Figure 3-12. Hirshfeld Charge Deviation and Bond Distance Averages. 

Deviations for individual chromium and tellurium atoms (top), average Cr—Cr and Cr—Te distances (bottom); for 
Cr1Te1 – Cr6Te8, Cr6Te8(PEt3)6. (First number:x, Second:y) 

We can see, in all clusters, that chromium is losing charge to tellurium, with the exception of 

CrTe3.  Specifically, the amount of charge density possessed by a free, solitary chromium atom is 

larger when compared to that amount found upon a chromium atom within its associated cluster 

complex.  Thus, chromium bonded with tellurium results in a positive change to its Hirshfeld 

charge density; and, vice versa for tellurium.  Additionally, and most notably, the effect of 

tellurium removing charge from chromium is balanced across all the tellurium present within the 

complex itself.  This can readily be seen by choosing any number of chromium, and sequentially 

adding tellurium atoms.  In doing so, produces a graph of the saw-tooth variety. 

 This charge balancing and movement has also a noticeable effect upon the bond distances 

within each cluster.  Across the entire series, bond distances between Cr and Te deviated only 

minutely after Cr3Tex, with the exception of Cr4Te6.  However, this is the opposite case for Cr – 

Cr bond distances, and especially so when discussing Cr1Te1 – Cr2Te4.  If we call from above, 
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from experimental studies, is has been proven that the Cr2 dimer has an equilibrium bond length 

of ~1.678 Å.185,186  Additionally, and despite this close bond distance, Cr2 has a dissociation 

energy of 0.72 eV/atom.196   

Previous experiments have shown Cr2 to possess a potential energy surface with an 

unusual shape (see, for example, Figure 1 of Bauschlicher171), with a broad shoulder on its 

outerwall.185  Subsequent calculations have proven that this outer wall portion corresponds to 4s 

orbitals bonding with the 3d electrons on each center; while the inner portion to be the region 

corresponding to 3d orbital bonding.170,187,197  The energy difference between these two regions 

is on the order of ~0.4 eV.  Thus, one can expect that unless the 4s and 3d are both participating 

in a bond or bonding pattern, the distance between the chromium atoms will be significantly 

greater than 1.678 Å.  It is precisely this scheme and mechanism behind the widely different 

properties, seen above, for the C2Tex series, which we shall discuss below, in Sec. 3.5.3.  

Similarly, due to the weak bonding nature inherent between chromium’s, post the Cr2Tex series, 

this bond remains at the upper limit in the range of the chromium bond lengths and on some 

occasions, is driven even further due to the increased number of tellurium. 

 Removal Energies & Fragmentation Pathways 

Alluding to our discussion of weakly bonding chromium, there is however an increase in 

stability of the overall cluster system due an increasing Te number, with the slight exception of 

the Cr6Tex series, readily seen in Figure 3-13 (A).  At first glance, the increasing Cr removal 

energies appears to occur in a regular fashion for clusters of Crn n = 2 – 4 clusters when 

compared to those of n = 5 & 6.  Upon closer inspection, this is not the case for any number of 

Cr atoms.  However, the most stable complexes are those with an even number of Cr.  

Specifically, Cr2Te3 & Cr2Te4, Cr4Te4 & Cr4Te5, and Cr6Tex (x = 4 – 7). 
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Figure 3-13. Removal Energies for solitary, and complexed, Chromium and Tellurium. 

Solitary chromium (A), and tellurium (B). Fragmentation energies of Cr/Te complexes at various sizes (C). 

The bonding of one Te atom effectively smooths the graph of removal energy versus that 

of pure Cr, and raises this energy for all clusters with the exception of Cr6Te.  A second Te atom 

raises this bond energy within Cr6Te, but not to the level of the pure case.  Adding another Te 

has virtually no effect upon Cr5Te, and actually reduces the effective bond energy for Cr4Te2 

back to that of pure Cr4.  Increasing the number of Te atoms however does further stabilize 

Cr2Te and Cr3Te clusters by approximately 0.65 eV and 1.00 eV, respectively.  Comparing this 

increased stability with the figure of average bond lengths, Figure 3-12, we can see that through 

sequential addition of Te to the Cr2Tex series, the Cr – Cr bond is becoming shorter and 

approaches approximately the same value for that of pure Cr2.  With the exception of Cr3Te3 and 
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Cr6Te3, the presence of three Te atoms raises the stability of pure Cr clusters even further.  

Cr3Te2 is weakened, versus Cr3Te3, through the addition of Te by ~ 0.28 eV.  Continuing this 

process, the clusters of Cr3Tey, Cr6Tey all reach a maximum in their respective series when y = 4.  

While within Cr4Tey, for y = 4, this cluster reaches nearly 3.50 eV in removal energy, and then 

proceeds to increase that number for y = 5. 

Of course, the increase in decoration of bare chromium with tellurium does raise its 

overall stability.  However, this stability is only maximized when each Cr series reaches a certain 

number of Te atoms.  Moreover, in achieving this stability, across the entire series of CrxTey, 

there is first a point within each cluster where its overall stability falls before increasing again.  

For example, the Cr2 series reaches a maximum at Cr2Te3, which is then diminished through 

addition of another Te atom.  Similarly, in the Cr3 series as mentioned above, and Cr3Te3 is less 

stable than Cr3Te2.  But, neither are as stable when compared to Cr3Te4.  Within Cr4, its stability 

immediately begins an upward increase after Cr4Te2. 

This sequence becomes obvious when discussing Cr5Tey and Cr6Tey.  For Cr5Tey, there is 

virtually no change in energy between y = 1 – 2, 4.  However, a spike in stability appears for y = 

3, and removal energy continues upwards for y = 5, 6.  In the Cr6Tey case, after y = 1, energy 

remains at approximately 2.30 eV.  Not until y = 4, when this series reaches its maximum, does 

the Cr6 series raise this energy into the region of 3.00 – 3.50 eV, for y = 4 – 7.  Moreover, within 

both of these Cr6Tey subseries, the apparent rise-and-fall of the energy value occurs within each 

of them, thus effectively twice for the entire Cr6Tey series.  We can see from the figure, for y = 1 

– 3, Cr6Te2 is a maximum, and again within y = 4 – 7, Cr6Te4 is the dominant species.  From 

careful analysis of Cr removal energies, it can be readily deduced that there is a delicate balance 

between the number of Cr and Te atoms.  Thus, in sequentially adding Te, it has been found that 
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there is what can effectively be called a tipping point in stabilization within each of the pure Cr 

series. 

In turning our attention to the Te removal energies of Figure 3-13 (B), there is additional 

evidence highlighting the delicate stability within these clusters.  What can immediately be seen 

is the scale of the graph itself, where all Te removal energies are above 3.0 eV.  Moreover, the 

effective reduction of the Te removal energy within all clusters falls below 4.0 eV upon reaching 

y = 5.  Most importantly, for many chromium sizes, after a certain number of tellurium have been 

added, their removal energies become lower than that for removing solitary tellurium from pure 

chromium clusters. 

The sequence of events upon how these clusters all diminish below these thresholds 

occurs differently depending upon the exact number of Cr present.  For Cr2, Te removal energy 

peaks at Cr2Te2 and then falls for subsequent Te, but always remains within the window of 3.10 

– 3.60 eV.  This almost gentle illustration is again seen of the Cr4 series, but is not maintained 

across the entire series.  For y = 1 – 4, energies remain in the region of approximately 4.25 eV.  

However, upon addition of five tellurium’s, this binding energy falls nearly an entire electron-

volt downward to ~3.30 eV.  The drastic alteration of Te binding energy seen in the Cr4 series 

marks only the beginning.  Within the cluster series of Cr3 and Cr5, stability of tellurium removal 

rises and falls on two occasions.  For Cr3, stability is maximized with two and six Te atoms.  

While for Cr5, that number is three and six tellurium.  The largest of tellurium removal energy 

occurs for C6Te4.  Within this cluster, each tellurium forms three bonds upon one of the Cr6 

octahedron faces, in a staggered configuration. 

These wildly varying binding energies, and across various numbers of tellurium, can be 

explained as a matter of the underlying geometry of the Cr atoms.  Depending on that geometry, 
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the cluster can only accommodate a fixed number of Te on its surface.  This is further made true 

due to the inherent behavior of Te to first form two bonds, using its two lone-pair orbitals, and in 

the case of Cr clusters, often followed by yet another bond, into three-coordination.  

Additionally, the apparent balancing across all Te atoms present in the charge removal from the 

central Cr cluster results in CrTe mixed clusters groundstates with Te atoms that are as far away 

from one another as possible.  Exceptions to this are the clusters of Cr2Te2, Cr5Te2, and Cr6Te2, 

where electronic effects of the Cr cluster dictate that the second Te atom be bonded nearby to the 

first.  We shall see below, clusters decorated with Te atoms that are two-coordinated, three-

coordinated, as well as those with a mixture of both. 

Continuing along these lines of cluster stability, we turn our attention to the fragment 

removal energies of Figure 3-13 (C).  Here, it can be seen the various possible avenues for a 

particular cluster to dissociate into two smaller complexes.  In comparing upper and lower 

panels, a particular cluster is more likely to lose Te atoms when Te is also accompanied by a 

single Cr, shown in the upper panel (black line).  With this in mind, the most stable clusters are 

those that possess the most aligned graph peaks.  Specifically, the clusters of Cr4Te4 and Cr6Te4.  

And, when looking to the discussion above with regards to individual atomization, are the two 

clusters which have the highest removal energies.  In Cr4Te4, the Cr atoms are bonded in a 

compacted pyramid structure, with each Te atom forming three bonds on the faces, effectively 

protecting Cr4 from dissociation. 

 Summary 

Across all of the macroscopic properties discussed thus far for small clusters of CrTe, it 

has been shown that stability and magnetic properties are highly dependent on both numbers of 

atoms.  Moreover, as we shall see below, these properties are closely linked and can be modified, 
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or supported, through their individual arrangements.  The overall effect of introducing Te atoms 

onto pure Cr clusters is this, the Te pulls and modifies the nearby charge distribution of 

chromium by specifically bonding to the d-orbitals.  As a result, it drives the expansion of the 

bond distance of those involved chromium’s.  This then allows the individual Cr atoms to 

maintain their large spin density, and produces binary clusters with higher overall magnetization 

than their pure cluster variants.  What we shall see below, is this effect produced by additional 

tellurium has a very large and noticeable effect on the smaller clusters of chromium.  This charge 

modification performed by tellurium continues upwards into the larger clusters, and further 

solidifies itself as both a key structural and electrical component. 
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 CrxTey Electronic Properties 

 Overview 

The above results outlined the modification of chromium clusters through sequential 

addition of tellurium atoms.  Moreover, until a cluster is decorated with a larger number of 

tellurium only minute effects will be witnessed.  In witnessing such effects, we can directly view 

the contribution to the total magnetic moment through the alteration of each Cr atom, 

individually.  Additionally, within each atom, we can view the change to the individual spin 

moment through the contributions and changes within each orbital.  We do this by graphing the 

spin density of each cluster, with respect to each chromium, as calculated using Mulliken 

Population Analysis (MPA).  Although MPA may not be the most suitable method for 

population analysis, it does serve as a very useful tool in ascertaining any changes and deviations 

from the ideal representation of the orbitals in question.  And, because of our strict use of QZ4P 

in the search for groundstate geometries, we can be assured that the representation below 

captures any and all information, due to MPAs high dependence on the Basis Set.  Because of 

such a large Basis Set is used throughout these calculations, it is expected that results obtained 

using other methods of population analysis based on the electronic density, namely that of 

Natural Population Analysis (NPA), should not deviate too far from those presented.198–204 

For the graphs below, each chromium population has been normalized to valence.  That 

is, in this representation, the sum of alpha and beta spin populations reaches a maximum of six 

electrons, representing the 4s13d5 orbitals.  With the 3p6 orbitals of chromium taken to be part of 

the core electrons, any deviation from these maximums in the population density will be readily 

noticeable and traceable. 
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 Cr1Tey (y= 1 – 4) 

The Mulliken populations for the Cr1Te1-4 series are shown below in Figure 3-14.  What 

can be seen immediately is the slow decline and leveling of the alpha spin channel and slow 

increase in the beta spin, of Cr (d).  Additionally, the slow decline of Cr (s) and increase in the 

hybridization of Cr (p).  The decline of population in Cr (s) can be attributed to its increased use 

in hybridization when the lone Cr atom is accommodating additional Te atoms.  What is also 

evident, is the persistence of the Cr (d) orbital.  This is due to the fact that, although tellurium 

does pull charge from chromium, it cannot do so alone.  To that effect, the increase in beta 

channel population only manifests itself when there are four Te atoms present, creating a total of 

four Cr-Te bonds.  

 
Figure 3-14. Mulliken spin populations for Cr1Te1-4. 

(For each n; Arrows mark direction of both spin channels for each Cr atom.) 

Furthermore, the atomic orbital level diagrams for the Cr1 series can be found in Figure 

3-15.  Within it, we can see the splitting of the Cr (d) levels to varying degrees and across all 
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sizes.  The HOMO level of Cr1Te1 is formed by a degenerate, half-empty, Te (p) orbital, and is 

the reason for the overlap of HOMO and LUMO levels.  The Cr (d) levels of HOMO-1 through 

HOMO-3 form bonds directly with two of the remaining Te (p) orbitals.  A similar situation 

arises within the Cr1Te2 cluster, where the second Te atom splits the Cr (d) orbitals even further, 

and bonds to both Cr and Te.  Subsequent addition of three Te atoms continues to drive 

downward the total number of Te (p) orbitals in both the alpha and beta spin channels.  The 

central Cr atom is now flanked by a Te dimer on one side, and a lone Te on the other.  The fourth 

Te atom effectively forms a bond with its neighbor Te and the central Cr, and whose orbitals are 

subsequently pushed further downward and increases the hybridization of the Cr atom. 

 
Figure 3-15. Level diagrams for CrTen, n = 1 – 4. 

Spin-up and Spin-down channels labelled with associated arrows 
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 The atomic orbitals for CrTe3 and CrTe4 are further elaborated upon in Figure 3-16 and 

Figure 3-17, respectively, as well as plots for their density of states (DOS) in Figure 3-18.  

Within both figures are the levels diagrams found within Figure 3-15, but now contain diagrams 

of the associated molecular orbitals (MO) for a selection of levels.  Within Figure 3-16 we can 

see that Te does not form the requisite number of bonds to fully quench the Cr atom, the HOMO-

5 level is comprised solely of Cr dz
2.  Bonds around the HOMO level and comprised of Te (p) 

and Cr (d) are antibonding.  This continues within the structure of CrTe4, in Figure 3-17.  For 

HOMO through HOMO-3, Cr (d) and Te (p) in the alpha spin channel are antibonding, while Te 

(p) in the beta channel are driven further downward in energy. 

 
Figure 3-16. 3CrTe3 Atomic Orbital (AO) level diagram. 

Left column represents spin-up (alpha) channel. Right; spin-down (beta). 
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Figure 3-17. 3CrTe4 Atomic Orbital (AO) level diagram. 

Left column represents spin-up (alpha) channel. Right; spin-down (beta). 

 
Figure 3-18. Density of States (DOS) for Cr1Te3,4. 
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 Cr2Tey (y = 1 – 4) 

The Mulliken spin populations for the Cr2 series is shown in Figure 3-19.  Here we can 

watch a drastic change occur to the central Cr2 dimer with increasing number of Te atoms.  

Within Cr2Te, we know from previously that the bond is stretched beyond equilibrium, thus the 

increase in spin density for each Cr atoms alpha and beta channel, respectively.  Moreover, a 

there is still a quite sizeable amount of Cr (s) remaining on each atom, and virtually no Cr (p) 

involvement.  The second Te atom bonds to Cr (d), driving both populations slightly downward, 

as well as those of Cr (s).  It is the third Te atom which fully quenches the total spin density of 

Cr2Te3.  The central Cr2 forms a total of two bonds between each Cr atom, while the remaining 

orbitals bond directly to the incoming Te (p) lone-pairs or are now diffused over the surface of 

the cluster.  In adding the fourth Te atom, the spin density on both chromium atoms reemerges.  

The Cr2 dimer now forms three bonds between the two chromium atoms, leaving the incoming 

Te (p) orbitals bond and hybridize with the remaining orbitals and opening the HOMO-LUMO 

gap. 
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Figure 3-19. Mulliken spin populations for Cr2Te1-4. 

(For each n; Arrows mark direction of both spin channels for each Cr atom.) 

 All of the charge movement and bonding within the Cr2Te3 and Cr2Te4 cluster systems 

can be seen in the level and molecular orbital diagrams, as well as the density of states found in 

Figure 3-20 through Figure 3-23, we can see the HOMO for Cr2Te3 is highly delocalized and 

primarily comprised of Te lone-pair orbitals.  Additionally, many orbitals are antibonding in 

nature, for both Cr2Te3 and Cr2Te4.  This is made clear in Figure 3-21, in which orbitals as far 

down as 1 eV below the HOMO are antibonding, and between Cr (d) and Te (p) orbitals 

specifically.  This is confirmed in the plot of the Overlap Population Density of States (OPDOS), 

seen in Figure 3-23. 
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Figure 3-20. 1Cr2Te3 Atomic Orbital (AO) level diagram. 

 
Figure 3-21. 1Cr2Te4 Atomic Orbital (AO) level diagram. 

Left column represents spin-up (alpha) channel. Right; spin-down (beta). 
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Figure 3-22. Density of States for Cr2Te3. 

 
Figure 3-23. Density of States (DOS), and OPDOS for 1Cr2Te4. 

(OPDOS: Overlap Population Density of States. Positive indicates bonding; Negative: antibonding. Beta inverted for clarity.) 
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 Cr3Tey (y = 1 – 5) 

In turning our attention to the Cr3 series, the Mulliken populations are shown in Figure 

3-24.  The Cr3 series marks the first that experiences fluctuations in the Cr-Cr bond distance due 

to excess Te atoms, but fluctuations that do not vary wildly as compared to the later Cr series.  

Sequential addition of Te atoms does not modify greatly the amount Cr (d) spin density, with the 

exception of Cr3Te3, until reaching Cr3Te5.  The modification of the Cr (p) orbitals slowly 

increase through successive addition of Te, while the Cr (s) contribution decreases substantially. 

 
Figure 3-24. Mulliken spin populations for Cr3Te1-5. 

(For each n; Arrows mark direction of both spin channels for each Cr atom.) 

The total magnetic moment reaches a maximum in the cluster of Cr3Te3, which has the 

majority of its spin localized on the third Cr atom, seen in Figure 3-24.  This structure is closely 

linked with that of Cr2Te3, where the third Cr atom bonds within one of that clusters open 
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regions.  The third Cr atom introduces a change in the bonding pattern, away from the perfectly 

quenched Cr2Te3, and into a structure where all Cr atoms are spin-up. 

Comparing the level diagram of Cr2Te3 in Figure 3-20, with that of Cr3Te3 in Figure 

3-25, we can see that the alpha channel of Cr3Te3 is becomes densely more populated due to the 

additional Cr (d) states, combined with a significant amount of shifting in the s and p levels.  

This addition and shifting can also be seen in the Density of States, between Figure 3-22 and 

Figure 3-26.  Of the Cr2Te3 cluster, the region around the HOMO level is devoid of Cr (d) states, 

contrary to the HOMO region of Cr3Te3.  This region within Cr3Te3 is also antibonding in nature, 

and has expanded into the range of 1.5 eV below the HOMO level, as seen in the OPDOS of 

Figure 3-26, indicating very weak bonds. 

 
Figure 3-25. 7Cr3Te3 Atomic Orbital (AO) level diagram. 

Left column represents spin-up (alpha) channel. Right; spin-down (beta). 



87 
 

 
Figure 3-26. Density of States (DOS) & OPDOS for 7Cr3Te3. 

(OPDOS: Overlap Population Density of States. Positive indicates bonding; Negative: antibonding. Beta inverted for clarity.) 

 Cr4Tey (y = 1 – 6) 

As our chromium cluster grows larger, the overall effects of bonded Te on the Cr cluster 

become weaker and necessitates more Te to effect change.  This is seen in the population 

densities of Cr4Te1-3 and Cr4Te4-6, within Figure 3-27 and Figure 3-28, respectively.  The 

increase in Te atoms elongates the Cr-Cr bonds and reduces the presence of localized Cr (s) 

orbitals on the participating Cr atoms.  This then allows the Cr (s) to further hybridize with the 

nearby orbitals.  The only exception to this is that of Cr4Te6, which returns the Cr (s) orbitals 

back and then participate in the intermetallic bonding process.  Moreover, what we now see is 

the total absence of the Cr p-orbitals.  This is something that we must address now, and will 

further our discussion with regards to the choice of Basis Set and mainly the analysis method 

based upon it. 
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Figure 3-27. Mulliken spin populations for Cr4Te1-3.  

(For each n; Arrows mark direction of both spin channels for each Cr atom.) 

 
Figure 3-28. Mulliken spin populations for Cr4Te4-6.  

(For each n; Arrows mark direction of both spin channels for each Cr atom.) 
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This apparent depletion within the Cr (p) orbitals, specifically within the geometry of 

Cr4Te6, can be associated primarily with two sources.  The first of which is that the Cr (p) 

orbitals are no longer needed for bonding with Te.  The second, an often scenario that arises 

when using Mulliken Population Analysis (MPA), where the Cr (p) orbitals have been 

overestimated, lets evaluate.  If we look back upon the geometry Cr4Te4 we see all Te atoms are 

three-coordinated to the faces of the pyramid formed by Cr4.  Alternatively, the geometry of 

Cr4Te6 shows that all Te atoms are all two-coordinated, and strictly bonding with the d orbitals 

of chromium.  We detail the overall effect of Te on the Cr4 substructure, and vice versa, in both 

these clusters within the upper and lower panels of Figure 3-29, respectively. 

Below, the valence orbitals for the chromium are taken in the usual manner, 3d54s1.  

However, for tellurium we go a step further.  Instead of the traditional 5p4 we separate alpha and 

beta spin channels into two electron counts.  The total electron count within the p orbitals in a 

solitary Te atoms is 22, the alpha channel consists of twelve electrons, while there are ten 

electrons in beta.  From here, if we were to subtract nine electron pairs from the p orbitals of Te, 

we would obtain the typical 5p4 valence scheme.  However, below we subtract a total of ten 

electrons from each channel, all of the electrons which are paired, producing an effective 5p1p1 

valence.  In doing so, we can strictly discuss the modification of the empty, unoccupied, lone-

pair orbitals of Te (p).  Similar to our earlier outline for treatment of the chromium spin 

populations, we now sum the alpha and beta spins of Te.  This number will reach a maximum of 

two electrons in the alpha spin channel, and zero in the beta.  A completely filled 5p orbital of 

tellurium in this scheme would thus be represented below as both alpha and beta channels equal 

to a spin density value of two (together then totaling four electrons, i.e. py
2pz

2).  Deviations from 

these totals display the contribution of Te (p) to the overall system. 
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Figure 3-29. Mulliken spin populations for the Cr4Te4 and Cr4Te6 geometries. 

Upper and Lower, respectively. 
(Arrows mark direction of both spin channels for every Cr and Te atom, respectively.) 

(Te valence taken to be the two electrons of the lone-pair orbitals, 5py
1pz

1) 

For Cr4Te4 (upper) there is a significant amount of Te (p) spin density increased as a 

result of additional bonding with Cr, in the beta channel.  While for Cr4Te6 (lower), the Te (p) 

density is maintaining approximately its original valence electron count.  The movement 

between Cr (p) levels, across all the geometries outlined in this document, can be best described 

as the involvement of Cr (p) in the bonding scheme, and as an attempt of the calculation to fully 

represent the interactions between Te (p) and Cr (d). 

Without too much elaboration, the presence of this artifact in calculations arises from 

using a finite sized basis set to describe (supra)molecular orbitals (i.e. from using localized 

orbitals in describing and constructing diffuse, molecular orbitals).  This approach amplifies 
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these shortcomings when computing the interaction energy between two subspecies of a 

molecule.  Or, as in our case between two atoms.  That subspecies will then attempt to improve 

upon this by effectively “borrowing” basis functions from another subspecies (tellurium) within 

that system.205,206  Thus, the Cr (p) Mulliken Spin Densities graphed for these clusters, those 

previous and those below in subsequent sections, are slightly increased (10-3) in their totals.  This 

slight increase in the Cr (p) is not enough to alter their description, but warrants a brief mention.   

 

 
Figure 3-30. 7Cr4Te4 & 9Cr4Te5 Atomic Orbital (AO) level diagrams. 

Left column represents spin-up (alpha) channel. Right; spin-down (beta). 
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Figure 3-31. Atomic Orbital (AO) level diagram for Cr4Te6. 

 
Figure 3-32. Atomic Orbital (AO) level diagrams for Cr4Tey, y = 4 – 6. 

(left to right, respectively.) 
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The atomic orbital (AO) level diagrams for Cr4Te4 and Cr4Te5 are shown in Figure 3-30 

and Cr4Te6 in Figure 3-31.  Additionally, all are shown together in series, with corresponding Te 

(s) orbitals, within Figure 3-32.  The density of states for these clusters are shown below in 

Figure 3-33 through Figure 3-35.  Across all of these figures can be highlighted the distortion of 

Cr, and rearrangement of the Te atoms.  With a diminished bond order between the orbitals of Cr 

(d) and Te (p), the chromium atoms are now forming stronger bonds between each other.  This 

results in structures with chromium arrangements and bond lengths that closely mimic those 

found within the pure clusters of chromium of the same number.  This behavior can be seen 

between the structures of Cr4 in Figure 3-2 and Cr4Te6 in Figure 3-6.   

Furthermore, if we recall the graphs of Average Bond Distances and the change in 

Hirshfeld Charge densities from Figure 3-12.  From that figure, we can see that the absence of a 

third bond from Te has allowed the average bond distances between the Cr atoms to fall to the 

lowest of all geometries composed of three or more chromium.  Additionally, compared to the 

previous Cr4Tex clusters, both chromium and tellurium atoms within Cr4Te6 experience the least 

amount of change to their Hirshfeld charge densities.  The bonding of Te (p) with Cr (d) across 

all of these clusters can be seen below in their respective DOS.  For Cr4Te4 and Cr4Te5, Figure 

3-33 and Figure 3-34, we can see that the Te (p) do not completely eliminate the spins of Cr (d).  

Alternatively, for Cr4Te6, Te (p) primarily bonds to Cr (d) and drives the total magnetic moment 

of the cluster downward. 

Thanks in part to its size, the continual addition of Te atoms onto Cr4 produces clusters 

with an alternating bonding scheme for the Te atoms.  That is, for an even number of Te each 

bond in the three-coordination, and for odd number all will be three-coordinated with the 

exception of one Te.  This occurs in a few of the smaller sized chromium structures, but becomes 



94 
 

a regularity and more apparent within Cr4Tey.  Especially so for the clusters of Cr4Te3, Cr4Te4, 

and Cr4Te5.  The cluster of Cr4Te6 is thus a special case. 

 
Figure 3-33. Density of States (DOS) & OPDOS for 7Cr4Te4. 

(OPDOS: Overlap Population Density of States. Positive indicates bonding; Negative: antibonding. Beta inverted for clarity.) 

 
Figure 3-34. Density of States (DOS) for 9Cr4Te5. 
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Figure 3-35. Density of States (DOS) for 3Cr4Te6. 
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 Cr5Tey (y = 1 – 7) 

 
Figure 3-36. Mulliken spin populations for Cr5Te1-7. 

(Arrows mark direction of both spin channels for each Cr atom, respectively. For clarity, only the first atom is marked.) 

The Mulliken spin populations for each Cr atom within the Cr5Te7 series can be seen in 

Figure 3-36.  Here we can clearly see on a larger scale both the total effect of added Te atoms, as 

well as the diminishment in population density of the Cr (s) orbitals, as well as the slight increase 

in the filling of the Cr (d) beta channel .  In this series, as in all others, the bond lengths between 

the Cr atoms increases.  In addition to this, the result of odd numbered Cr atoms further increases 

the likelihood of their distortion and rearrangement through sequential addition of Te atoms.  

Furthermore, increased distortion and bond lengths grow in accordance with the number of Te 

present. 
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Because of the odd number of Te, the underlying Cr5 structure is not entirely decorated 

by three-coordinated Te, but possess a single Te in the two-coordination.  This occurs as a matter 

of necessity, as the Te atoms desire to be farthest away from one another.  The result of which is 

an arrangement of the Cr in a manner that the apex atoms are both spin-up, with a minimal loss 

of their spin densities.  The large number of Cr (d) orbitals involved in this process can be seen 

in the alpha channel of Figure 3-37.  Moreover, this effect can be seen within the DOS of Figure 

3-38, where Te (p) is not fully occupying all available Cr (d) between the HOMO level and down 

to -1 eV below HOMO.  Within this region, we find that the Overlap Population Density of 

States (OPDOS) between Te (p) and Cr (d) again, as we have seen before in these clusters, to be 

antibonding in nature, plotted in the lower panel of Figure 3-38.  

 
Figure 3-37. Atomic Orbital (AO) level diagram for 7Cr5Te5. 
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Figure 3-38. Density of States (DOS) & OPDOS for 7Cr5Te5. 

(OPDOS: Overlap Population Density of States. Positive indicates bonding; Negative: antibonding. Beta inverted for clarity.) 

The Cr5 series can effectively be thought of as marking a transition between the compact 

structures of Cr4 and those of the larger Cr6.  This transition not only highlights the continual 

influence of Te within the cluster, but also changes within the CrxTey series arising due to this 

newly achieved cluster size specifically.  A persistent property seen at all cluster sizes is the 

effective decrease in the total number of Te atoms that can be supported.  However, the current 

Cr5 series marks the beginning of the geometries in which all the added Te atoms, with the 

exception of Cr5Te5, are bonded with three-coordination.  This may seem trivial, but this added 

coordination, and with fewer Te atoms, allows the larger cluster to now become effectively 

closed and reduces the number of open sites which further protects the cluster from the 

environment.  Moreover, the remaining active sites begin to enforce a form of directionality in 

the cluster, as their locations dictate the positions available for ligand bonding upon the surface.  

All of these properties and concepts can be found within the Cr6Tey series as well, in the 

following section.  
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 Cr6Tey (y = 1 – 6) 

 
Figure 3-39. Mulliken spin populations for Cr6Te1-8. 

(Arrows mark direction of both spin channels for each Cr atom, respectively. For clarity, only the first atom is marked.) 

 As we have discussed above in regards to the Cr5Tey series, when viewing the Mulliken 

spin populations of Cr6Tey in Figure 3-39 the same effects can be seen.  The increased 

decoration of Te atoms driving the Cr atoms away from one another, changing the overall 

contributions and bonding patterns of the Cr orbitals.  Additionally, over the entire series, we can 

see again the slight increase in filling of the beta channel in the Cr (d) orbitals.  As we have 

noted above, in Section 3.3.2.6, all Cr atoms within the Cr6 series bond together to form an 

antiferromagnetic cluster in the singlet state, with the exception of Cr6Te6 which has 

fundamentally altered its geometry to avoid this.  We can compare the clusters of 1Cr6Te5 and 
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7Cr6Te6 below using their level diagrams within Figure 3-40 and Figure 3-41, respectively.  In 

Figure 3-40, we can see the Cr (d) orbitals near the HOMO level to be bonding with each other, 

facilitating the antiferromagnetic behavior of the total cluster.  In the compact geometry of 

7Cr6Te6, all Cr atoms are maximally coordinated with the surrounding Te atoms as well as each 

other.  This then allows the Cr atoms to arrange their spins in a manner similar to what we have 

seen above in the smaller CrTe clusters, and maximize the total magnetic moment of the cluster.  

The level diagram of Figure 3-41 shows the number of Cr (d) orbitals of the alpha channel 

densely populated near the HOMO level, without equal number to those of the beta channel.  

Moreover, Figure 3-42 shows us, again, that Te (p) does not entirely fill the Cr (d) orbitals 

within the cluster, and as far as one electron-volt below the HOMO level the antibonding 

behavior persists, as well. 

 
Figure 3-40. 1Cr6Te5 Atomic Orbital (AO) level diagram. 
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Figure 3-41. 9Cr6Te6 Atomic Orbital (AO) level diagram. 

 
Figure 3-42. Density of States (DOS) & OPDOS for 9Cr6Te6. 

(OPDOS: Overlap Population Density of States. Positive indicates bonding; Negative: antibonding. Beta inverted for clarity.) 
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 Cr6Tey (y = 7, 8) 

We conclude our discussions of small binary CrTe clusters by further examining Cr6Te7 

and Cr6Te8.  Geometries for both clusters are shown in Figure 3-43 (A) and (B).  The major 

difference between these two can be first be seen in their spin states, M = 1 and M = 7, 

respectively.  Without the addition of the eighth Te atom, Cr6Te7 takes on a configuration which 

is highly distorted.  This configuration is exemplified in the central Cr4 substructure of both 

clusters, seen in Figure 3-44, left and right, respectively.  For Cr6Te7, all central Cr bonds are of 

different length and, because these four atoms are out-of-plane in the dihedral with angle 

168.69º, can maintain bonding angles close or very near to 90º.  Alternatively, the Cr6Te8 central 

Cr4 unit remains planar, and with near equal bond lengths of ~2.902 Å.  However, to maintain 

this configuration the atoms are merely deformed, forming two pairs of angles 81.98º and 98.02º. 

 
Figure 3-43. Groundstate geometries of 1Cr6Te7 and 7Cr6Te8. 

(Reproduced from above.) 
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Figure 3-44. Geometry of the central Cr4 subunits for 1Cr6Te7 and 7Cr6Te8 clusters. 

(left and right, respectively.) 

 
Figure 3-45. Mulliken spin populations for 1Cr6Te7 and 7Cr6Te8. 

(Arrows mark direction of both spin channels for each Cr atom, respectively.) 

Furthermore, the Cr6Te7 cluster can be described easily with an argument typically found 

previously in the literature for describing this type of cluster; as the antiferromagnetic result of 

the union between two ferromagnetic nido- clusters, Cr3Te3 and Cr3Te4.  The addition of the 

eighth Te atom, in Cr6Te8, slightly relieves the distortion of the central Cr4 geometry, which 
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alters the arrangements of the nearby Cr atoms.  This results in a cluster with a total magnetic 

moment of 6 µB, constructed by Cr atoms in a ferrimagnetic arrangement formed across three 

separate regions of the cluster, the apex Cr of top and bottom, both spin down, and the middle 

Cr4, all spin up.  All of this has been labelled above in Figure 3-43, and can be seen in the spin 

density graph of Figure 3-45. 

The change in the bonding of nearby chromium atoms through addition of tellurium can 

be seen below in the level diagrams of Figure 3-46 and Figure 3-47.  Structural deformation is 

apparent in both figures.  The Cr6Te7 cluster employs nearby Cr (p) and Cr (s) orbitals, and as 

mentioned in the Cr4Te6 cluster, near mimicking the properties found in the pure Cr6 cluster 

variant.  The Cr6Te8 cluster is not only distorted in its Cr4 subunit, but also compressed along the 

z-axis direction.  Much of the deformation in both of these clusters can be attributed to Jahn-

Teller distortion, where the numerous d-orbitals must break their degeneracy through either 

modification of the electronic shells, or the structure itself.207–213  The result of all of this 

rearrangement drives both average Cr and Cr-Te bond lengths in Cr6Te8 upwards, and drastically 

so for Cr-Cr.  This then allows underlying orbitals to participate in bonding, while Cr (d) 

maintain their spin densities, and can be seen in the density of states of Figure 3-48. 
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Figure 3-46. 1Cr6Te7 Atomic Orbital (AO) level diagram. 

 
Figure 3-47. 7Cr6Te8 Atomic Orbital (AO) level diagram. 
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Figure 3-48. Density of States for unligated 7Cr7Te8. 

Inset shows location of the lower Te (s) orbitals 

The stability of the bare Cr6Te8 can be further expressed using the information within  

Figure 3-49, below.  Here, we have plotted the lowest energy geometry for each magnetic 

moment, with inset showing the average Cr-Cr and Cr-Te bond distances.  The groundstate 

magnetic moment for the Cr6Te8 is the septuplet, as shown above in previous sections.  From the 

plot, we can deduce that to deviate from this magnetic moment, the Cr6Te8 cluster would favor 

the M = 9 multiplicity.  However, even though this is energetically favorable, it is not 

structurally, as the bond distance between Cr atoms would need to be elongated to a drastic 

degree to produce such a charge state.  Knowing this information regarding the Cr6Te8 cluster 

further confirms that the septuplet multiplicity is correct. 
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Figure 3-49. Cluster energetics for (x+1)Cr6Te8 across various values of total µB. 

Cluster energies have been normalized to groundstate. Inset shows average Cr-Cr and Cr-Te bond distances. 
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 Discussion & Conclusions 

From the analysis and results above, ranging across all sizes in the combination of 

chromium and tellurium, we can make definitive conclusions on a number points.  The first of 

these is in regard to the overall structures.  The weakness of the chromium bond is made more 

apparent and exploited through addition of tellurium, but the overall cluster is made stronger as a 

result.  Additionally, within all clusters, chromium atoms still prefer to bond with each other, of 

course, and structurally, comprise the main clusters component. 

The effect of Te on the underlying properties of Cr is apparent at all sizes.  However, this 

effect is made especially noticeable between the two species when Cr has yet to be decorated 

with sufficient number of Te.  This situation is typical of the intermediate cluster sizes, where the 

number of bonding sites is lacking.  It is within those clusters we can see an attempt, and some 

success, of the chromium atoms to return to properties found in their pure versions.  In regards to 

Te bonding, pure tellurium is known for its ability to form two- and three-coordinated 

configurations, and the effect of Te itself is not maximized until it engages this third bond upon 

the cluster, further influencing the underlying chromium. 

Secondly, growing to larger cluster sizes, the resulting expansion of bond lengths 

between chromium atoms is due in part to the bonded tellurium atoms.  Because of this 

expansion, the Cr bonds are driven to lengths that can be considered an extremum.  These 

extended lengths seen between the metal atoms has led previous experimental reports in the 

literature on 686-cluster types to describe the metal-metal bonds as mediated by the nearby, 

capping, atom.  From what we have shown above in previous sections, this description lacks 

conclusiveness, can be misleading, and fails to highlight the underlying cluster behavior.  We 

saw above in describing the Cr6Te8 cluster, that all bonds formed are covalent, and the bonding 
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of Te upon the faces of the Cr6 octahedron deform the structure and thus becomes another 

structural component.  This indicates that the added Te atoms are integral to the stability of the 

overall cluster, more than merely dictating the behavior of the underlying metal-metal bond.  

This role of bonded Te atoms has been seen at all sizes of cluster, and is not applicable strictly to 

the cluster of Cr6Te8. 

 Using the information and results of this chapter we now carry forward an understanding 

of the Cr6Te8 structure as necessary for our discussion in utilizing it as a cluster motif.  We can 

further the discussion of ligated atomically precise binary transition metal—chalcogenides as it 

pertains to the union between the elements at the extremums of both these classifications.  Thus, 

in Chapter 4, below, we describe the alteration of properties in the pure 7Cr6Te8 through ligation 

with triethylphosphine (PEt3), whose structure has been experimentally reported in the literature 

previously.  Moreover, how these properties are varied through passivation of the cluster with 

alternate ligands; specifically, PH3, CN, and CO. 
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4 Electronic Properties of 7Cr6Te8(PEt3)6 and 
Alteration Through Ligand Exchange 

 Overview 

If we recall from chapter one, the passivation of a bare metal cluster is first done to stop 

its the growth into larger sizes, and preserve any atomic scale properties.  Moreover, we also 

know that is it is possible to manipulate these properties by adjusting the electron count of its 

valence shell through the use of various ligands.  We shall see below that the attachment of 

triethylphosphine (PEt3) ligands alters both the structure and electronic properties of the Cr6Te8 

core, while also preserving its overall magnetic moment in the septuplet state.  But, before 

moving into the ligated cluster, we must first discuss briefly about DFT formalism. 

 Change of Basis Set 

Calculations upon the larger ligated cluster were again performed utilizing the methods 

describe in the previous chapters.  However, in the interest of time and resources, the basis set 

has been changed from the original all-electron quadruple-zeta with four added polarization 

terms (QZ4P).  The new basis set utilized below, for the ligated core, is the triple-zeta with 

double polarization (TZ2P), and under the frozen core approximation.  The “frozen core” 

approximation allows one to hold fixed the coefficients and exponents that construct an atomic 

orbital comprised within a chosen basis set.  Keeping the values constant will thus mean they do 

not update during the SCF cycles between geometry updates (i.e. not computed), and translates 

to a reduced computation time.  The “frozen core approximation” itself and how it is 
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implemented within ADF will not be detailed here, but can be found within the literature for 

those interested.154 

To assuage any doubt or discrepancy between this switch in formalism, we compute the 

Cr6Te8 core yet again with an additional two basis sets, and maintaining the PBE functional, to 

finally obtain the core geometry most comparable to the ligated version.  The basis set list is as 

follows; (1) QZ4P (from above), (2) TZ2P (All Electron, without frozen core), (3) PBE:TZ2P 

(Large Frozen Core).  A keen eye will immediately see the reduction in basis set size when 

moving from (1) to (2), followed by the reduction in the number of basis set coefficients to 

compute, from (2) to (3).   

The sizes of these basis sets vary between each element, of course, depending on the 

number of orbitals it possesses.  Thus, for the chromium atom (1s2 2s2 2p6 3s2 3p6 4s1 3d5), the 

ZORA QZ4P basis is constructed using coefficients totaling 13S 8P 5D 3F, for their respective 

orbitals.  That is, 13 coefficients for the total number of s orbitals, eight for p, five for d, and 

three for f.  For tellurium (1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p4), 18S 15P 8D 3F.  Under 

ZORA TZ2P, all electron; chromium, 9S 6P 3D 1F; and tellurium, 12S 10P 7D 1F. 

In ADFs frozen core approximation, one is afforded three options; small, medium, large.  

Each choice utilizes a different basis, adjusting the number of atomic orbital coefficients to hold 

fixed.  For a few elements, some of these choices have similar effect.  For example, for both Cr 

and Te atoms the “medium” and “large” options perform in the same manner.  However, for an 

element such as phosphorus, all options are equal.  Specifically, when choosing a “large” frozen 

core when calculating Cr, the coefficients representing the orbitals 1s2 2s2 2p6 3s2 3p6 are kept 

fixed, effectively making them the “core” orbitals, while 4s13d5 are then treated as “valence”.  

The TZ2P large frozen core basis set now reads as 3S 2P | 3S 1P 3D 1F, where 3S 2P terms have 
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been used to represent the “core”.  In tellurium, 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 are 

treated as the “core”, and only 5p4 as “valence”.  The basis for this configuration is 4S 3P 2D | 

3S 3P 1D 1F. 

After all of these changes, it should be noted that the groundstate geometry and isomer 

series of the Cr6Te8 cluster remains unchanged.  That is geometry, across all calculations, is in 

the M = 7 multiplicity.  Within the next section we shall highlight any differences that should 

arise when changing the basis, and maintain that there are a larger number of similarities 

between them. 

 The 7Cr6Te8 Metal Core: QZ4P vs. TZ2P (Frozen Core) 

The groundstate structure for Cr6Te8, as computed with QZ4P and Large Frozen Core 

TZ2P, can be seen below in Figure 4-1 (A) and (B), respectively.  Major differences between the 

two can first be seen in the spin moments of the individual Cr atoms, specifically those of the 

apex atoms.  In moving from a sizeable all-electron basis to the smaller, and then utilizing the 

“frozen core approximation” there is an increase in magnitude by approximately 0.5 µB in each 

atom.  Although not to the same magnitude, there is also an increase in the spin moments of the 

individual chromium atoms comprising the central Cr4 square structure.  Additionally, a decrease 

in the magnitude all the Te atoms, -0.144 to -0.106.  Moreover, an increase in average bond 

distances between Cr-Cr and Cr-Te, 2.713 Å to 2.783 Å, and 2.651 Å to 2.693 Å, respectively. 
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Figure 4-1. Groundstate geometries of 7Cr6Te8 utilizing different Basis Sets. 

QZ4P (A), TZ2P Large Frozen Core (B). 

All of these changes can be attributed mainly to the restriction of the involved Cr (s) 

orbitals within the computation below the 4s1 level, and to a smaller degree the Cr (p) orbitals.  

The distortion and charge movement can be attributed to the behavior of the individual Cr atoms, 

and placing this restriction upon them effectively disallows further s (p) orbital movement to 

participate in bonding.  Thus, the presence of Cr (s) from the TZ2P calculation can be seen in 

both its level diagram and density of states, Figure 4-3 and Figure 4-4.  The change in basis set 

and orbital involvements can also be easily seen in the spin populations of Figure 4-2.   

Moreover, calculations utilizing the TZ2P basis without the frozen core approximation, 

TZ2P all-electron, have yielded a cluster with similar results and properties to that of QZ4P.  

This then confirms not the size of the basis set, but correct overall treatment and representation 

of the orbitals in the calculation to be of more importance.  However, in our current context, the 

differences between the two cluster representations becomes mute due to the fact that upon 

ligation of the Cr6Te8 cluster this distortion is removed(!).  Given the required computation time, 

ligated Cr6Te8 clusters as computed with QZ4P can be expected to achieve a representation 
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similar to that found with the TZ2P Large Core.  Thus, making the Cr6Te8 cluster and its ligated 

counterparts as computed below sufficiently represented. 

 
Figure 4-2. Mulliken spin populations per QZ4P and TZ2P (Large Core) basis set computed groundstates of the 7Cr6Te8 cluster. 

(Arrows mark direction of the both spin channels for each Cr atom, respectively.) 
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Figure 4-3. Atomic Orbital (AO) level diagram for 7Cr6Te8 as computed using the TZ2P (Large Core) basis set. 

 
Figure 4-4. Density of States for the 7Cr6Te8 cluster as computed using the TZ2P (Large Core) basis set. 

(Inset shows location of Te(s). HOMO adjusted to zero eV.) 
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 The 7Cr6Te8(PEt3)6 Cluster 

 
Figure 4-5. The groundstate structure of the 7Cr6Te8(PEt3)6 cluster. 

 The stabilization of the Cr6Te8 structure as completed within the previous sections serves 

as the starting point for its passivation with various ligands.  The groundstate structure for the 

7Cr6Te8(PEt3) cluster is shown above in Figure 4-5.  More importantly, effects of introducing 

PEt3 onto the surface of 7Cr6Te8 can be seen below in Figure 4-6 (A) and (B).  The overall spin 

arrangement is maintained, across both Cr and Te atoms, with the spin up Cr atoms forming and 

maintaining the center Cr4 subunit, with spin-down Cr atoms at the apex positions.  We can see 

that upon passivation, the range in which we find the individual Cr spin moments has now 

narrowed and each fall between | 2.99 – 3.21 µB |, respectively.   
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Figure 4-6. Groundstate geometries for 7Cr6Te8, and core of the 7Cr6Te8(PEt3)6 cluster. 

(A) and (B), respectively.  
(With HOMO-LUMO gap energies and individual spin moments. Cr spins are underlined.) 

 
Figure 4-7. Mulliken spin populations for 7Cr6Te8(PEt3)6. 

(Arrows mark direction of both spin channels for each Cr atom, respectively.) 
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In comparing the Cr atom Mulliken populations of the ligated cluster in Figure 4-7 with 

that of the bare 7Cr6Te8 (TZ2P-Large Core) cluster found in Figure 4-2, there is a clear 

difference.  The PEt3 ligands are bonding to Cr by way of both s and d-orbitals.  Due to the 

introduction of electrons from PEt3 ligand, the Cr (s) electrons no longer participate in the Cr-Cr 

bonding, and as a result there is an increase of the average bond distances between Cr atoms, to 

3.050 Å.  But, more importantly, the Cr atoms maintain their d-orbital spin density magnitudes to 

a relative degree in the spin up, and increase slightly in the spin-down.  Confirmation of this 

effect caused by the added PEt3 can be viewed within the clusters level diagrams and density of 

states, Figure 4-8, Figure 4-9, and Figure 4-10. 

 
Figure 4-8. 7Cr6Te8(PEt3)6 Atomic Orbital (AO) level diagram, total. 

(Carbon and Hydrogen orbitals removed for clarity.) 
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Figure 4-9. 7Cr6Te8(PEt3)6 Atomic Orbital (AO) level diagram, scaled. 

(Carbon and Hydrogen orbitals removed for clarity.) 

The level diagram of Figure 4-9 clearly shows confirms our earlier assessment, but we 

find further that the P (p) orbitals are bonding with both the d and s orbitals of chromium.  

Specifically, in the region of -7 to -8 eV, the bonds are comprised of a mixture between Cr (s) – 

T (p) – P (p), while the region of -5.5 to -6.5 eV comprises the region where the bonds are 

constructed of a mixture between Cr (d) – Te (p) – P (p).  The total effect shifts the electronic 

levels upwards when compared with bare 7Cr6Te8 in Figure 4-3, note the scale used for both 

figures.  Further evidence for the behavior between Cr6Te8 and PEt3 continues within the density 

of states below in Figure 4-10.  The donation of charge from PEt3 is shown to reorganize the 

effective bonding orbitals involved between Cr (d) and Te (p).  This also is another reason for 
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expansion in the bond distances between Cr-Cr atoms.  Additional details regarding the 

electronic substructure of the 7Cr6Te8(PEt3)6 cluster will be elaborated upon below, in Sec. 4.5. 

 
Figure 4-10. Density of states (DOS) for the Bare and PEt3 ligated 7Cr6Te8 clusters. 

Top and Bottom, respectively. 
(Solid line represents HOMO of alpha spin channel.) 
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 Robustness of 7Cr6Te8(PEt3)6 

To verify the M = 7 multiplicity is truly the groundstate geometry for the ligated cluster, 

additional calculations have been performed.  Specifically, in addition to the sequential series 

where the total magnetic moment of the system was varied, there are a handful of permutations 

regarding the arrangement of Cr spin moments that must be eliminated in terms of their energy.  

Due to the large, and more importantly, even number of Cr atoms present, these additional 

calculations are deemed necessary.  Thus, these permutations strictly produce clusters where the 

Cr atoms are arranged antiferromagnetically throughout, and will then leave the overall cluster 

system in the singlet state, M = 1.  In terms of calculation method, using the valence electrons, 

each individual Cr atom was given a maximal spin moment (6 µB) which was then directed to 

point in either the spin-up or spin-down direction, together totaling a net 0 µB.  From that point 

forward, the geometry is allowed to fully relax without restriction or constraints. 

 
Figure 4-11. Starting and final Cr spin moment arrangements for the two singlet state permutations of  1Cr6Te8(PEt3)6. 

Each with distance in energy from groundstate, core geometry, and individual Cr moments labelled. 
(The PEt3 ligands have been removed for clarity.) 
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Two permutations of spin moments have been calculated, and the results of this exercise 

are shown in Figure 4-11 (A), and (B).  The first arrangement possible for the M = 1 

configuration is two complexes of trigonal chromium coupling antiferromagnetically, effectively 

two faces of the Cr6Te8 core.  The start (left) and final (middle) spin moment arrangement is 

shown for both, as well as the cluster geometry and labelled associated spin moments for the 

individual chromium atoms (right).  The PEt3 ligands have been removed for clarity. 

In addition to the above verification process, the Cr6Te8(PEt3)6 cluster has also been 

found for a variety of spin moments.  The energies for each, as they compare to the groundstate, 

can be seen below in Figure 4-12.  Noting the scale, the figure clearly highlights a preference for 

the total cluster to remain in the central, 2, 4, and 6 µB spin states.  Above, we have established 

the 0 µB antiferromagnetic spin state to be unfavorable, and we now confirm the same for the 

quenched singlet state.  Moreover, the difference between high and low spin states, 6 and 4 µB, is 

approximately 0.20 eV. 

 
Figure 4-12. Cluster energetics for xCr6Te8(PEt3)6 across various values of total µB. 

Cluster energies have been normalized to groundstate. 
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 Ligand Exchange 

Recalling the discussion above in Chapter 1, where periodic solids are constructed 

through leveraging a clusters fundamental properties of ionization potential and electron affinity.  

Specifically, we can manipulate those properties through alteration of the clusters valence 

electron count.  A particular strategy to tune electron count, as well as stabilize the cluster core, 

is to attach ligands.  In addition to passivating the metallic core, ligands form covalent bonds that 

also change the valence electron count.  This type of cluster electron count has been completed 

previously in the literature, where a large number of solids composed of pure or mixed ligated 

clusters of gold have been used as motifs who are subsequently arranged into periodic 

solids.15,17,41,66,214–218  The stability of these cluster motif systems is rationalized within the 

superatom framework.16,23  That is, the stable species formed from this process as its valence 

count obtains a value corresponding to a filled valence and large HOMO – LUMO gap. 

Knowing now the structural form of 7Cr6Te8 cluster, as well as its counterpart within the 

7Cr6Te8(PEt3)6, we aim to now demonstrate within this chapter that ligands can be used to 

significantly alter the ionization potential and electron affinity of the total cluster.  In altering 

these properties, we can thereby enable this metallic core to behave as either an electron donor or 

acceptor.  The study carried out within this chapter, utilizing the same formalisms established 

above, further incorporate a variety of alternate ligands, belonging to two different classes.  The 

electron donor of PH3, and electron acceptors such as carbon monoxide (CO) and cyanide (CN).  

Note the chemical formula for cyanide is actually CN-, but here we take the neutral, effectively 

the cation.  The reason for this is to view any possible changes between the CO and CN 

decorated cluster by strategically removing a solitary electron from each bonding site.  Once the 

calculations regarding the total cluster of 7Cr6Te8(PEt3)6 had been completed, it was a trivial 
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matter (in terms of setup, calculations, time, and resources) in exchanging the ligand for smaller 

versions.  Our main objective is to now examine the effect of each ligand upon the electronic 

spectrum of the overall cluster.  We can view these effects not only through spin population 

density, but also in the modification of the density of states, as we have done in the previous 

chapter. 

 
Figure 4-13. Mulliken spin populations for individual chromium atoms within the ligated systems of L = PH3, CO, and CN. 

(left-to-right, respectively.  Superscript designates total system multiplicity.) 

An immediate change that is visible across these clusters is there total magnetic moment, 

and how that moment is comprised from the individual spin moments of the Cr atoms.  We can 

see those changes above in Figure 4-13, for each of the ligands PH3, CO, and CN, left-to-right, 

respectively.  There are immediately a few points to address, the first being the total absent of a 

total magnetic moment for both PH3 and CO cluster variants.  Moreover, that the Cr atoms 
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within the PH3 cluster are antiferromagnetically arranged, while in the CO case, those same 

moments are quenched and thus totally absent.  Additionally, the cluster decorated by CN 

maintains the original M = 7 groundstate found in the PEt3 cluster.  It should also be noted, that 

while the clusters of CO and PH3 closely maintain the central core structure of the Cr and Te 

atoms, this is however not the case for the CN cluster whose core is now heavily distorted.  

Moreover, that the spin moments of the underlying Cr atoms now fall within the region of | 2.73 

– 2.96 | µB, which is only a slight difference from those found within the PEt3 cluster, whose 

moments are in the range of | 3.00 – 3.22 | µB. 

 
Figure 4-14. Average bond distances, HOMO-LUMO level positions, Hirshfeld Charge Density, Adiabatic Ionization Potential 

and Electron Affinity energies, for none and various ligands. 
(A) – (D), respectively.  (Spin moments are in reference to the groundstate structure of that system.) 

The plots of the basic electronic properties we aim to alter with ligand substitution are 

given above in Figure 4-14.  Here we can see, the average bond lengths between Cr-Cr, Cr-Te 
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atoms, as well as the length between Cr and ligand.  The associated HOMO and LUMO levels 

for all of our clusters.  The change in Hirshfeld charge density for Cr, Te, and Ligand.  Finally, 

the change in value for both ionization potential and electron affinity.  In panel (A) of Figure 

4-14, we can see the overall effect of the ligand upon the central cluster core.  The most 

intriguing plot here is the average bond lengths between the Cr, which are significantly altered 

and highly dependent upon the type of ligand.  Moreover, there is a significant difference 

between those bond lengths found when comparing PH3 and PEt3 cluster variants as well.  

Additionally, remembering from above, that although CN and PEt3 clusters have large Cr bond 

distances, the CN cluster system does not maintain its geometry.  The Cr bond distances for the 

PEt3 cluster fall within the region of 2.972 – 3.153 Å, while for the CN geometry 2.678 – 3.068 

Å, two wildly different ranges in length. 

Despite these large variations in bond lengths between the Cr atoms, their Hirshfeld 

charge densities deviate the least when compared to the Te atoms and Ligands, Figure 4-14 (C).  

Upon addition of PH3 there is a slight decrease in charge density of the Cr, 0.169 to 0.101 e-, 

meaning there is a significant amount of donation from the ligand.  This is confirmed by the 

positive density experienced by the PH3 ligand.  The addition of CO oddly does not modify the 

charge density of the Cr as compared to PH3, but does drastically alter that of Te whose role has 

changed from charge removal to charge donation, from -0.125 to 0.019 e-.  This charge 

movement is further maximized in the attachment of CN.  Charges for both Cr and Te atoms are 

diminished, a net positive charge of 0.176 e-  for Cr, close to its value of the bare 7Cr6Te8 cluster, 

and 0.152 e- for Te.  These effects upon Cr and Te are exactly inverse to that of the ligand, of 

course, which for both CO and CN can be seen to be accepting this charge (blue line, Figure 

4-14 (C)).  Things appear to return to “normal” with the addition of PEt3, where charge density 
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values return closely to those found in the bare and PH3 ligated cores.  Interestingly enough, the 

Hirshfeld charge density of the P atoms in both the PH3 and PEt3 clusters are drastically 

different.  Although in both systems it is donating charge, within the PH3 system it has density of 

0.080 e-, while in PEt3 it has a density of 0.206 e-.  Highlighting the fact that these two ligands 

are not as similar as one might initially expect. 

The bare 7Cr6Te8 cluster has a high ionization potential (IP) of 6.96 eV and electron 

affinity (EA) of 3.47 eV, Figure 4-14 (D).  Both of these number are some degree higher than 

those found in the literature for the bare 7Ni9Te6 cluster, 6.33 eV and 2.63 eV; and even more so 

for bare 2Co9Te6, 5.82 eV and 2.38 eV, respectively.81  We further find an IP of 5.95 eV and 2.72 

eV EA values for the PH3 system.  An effective lowering from the bare cluster, resulting in the 

raising of the HOMO and LUMO levels, Figure 4-14 (B).  And, as expected, the raising of IP 

and EA values in both CO and CN systems, as well as the resultant lowering of their respective 

HOMO-LUMO levels.  In CO, the IP has reached 7.39 eV and EA of 3.69 eV.  This pales in 

comparison to the CN system, whose IP has value of 8.27 eV and an EA of 5.22 eV.  We go 

further, and compare these values to the PEt3 system, which has IP of 4.49 eV and EA of 1.74 

eV.  Both numbers significantly smaller than its ligated counterparts.  To give a frame of 

reference for these values, as a means of comparison, the IP of Sodium (Na) is 5.14 eV and EA 

of Chlorine (Cl) is 3.61 eV.  We have focused our attention in these calculations to AEA and 

AIP, as these clusters will relax when paired with a counterion in forming a cluster assembly.  

Thus, across all of these calculated values and properties, it has been shown that these clusters 

are capable of such an assembly, in the role of either donor or acceptor. 
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Figure 4-15. Atomic Orbital (AO) level diagrams for Bare and Ligated xCr6Te8 cluster cores. 

Bare 7Cr6Te8, with PH3, CO, and CN versions, left-to-right respectively. 
(Each with individual legend. Superscript designates total cluster multiplicity. Degeneracies of CO not labelled.) 

 In considering the atomic changes yielding these alterations to the IP and EA values, the 

entirety of the atomic orbital energy levels for each cluster, compared to those seen in Figure 

4-14 (C), have now been plotted in Figure 4-15.  There are significant changes to these levels 

through the alteration of these ligands.  The addition of PH3 shifts upwards the HOMO and 

LUMO (HL) levels of the bare cluster from -5.29 eV and -5.09 eV, to -4.42 eV and -3.82 eV.  

The HL gap has now doubled in size.  The addition of CO however lowers HOMO level of the 

bare cluster to -5.87 eV, and increases the HL gap to 0.73 eV.  This lowering of the HOMO 

levels continues with the addition of CN, and can be found at -6.77 eV.  But, the CN cluster now 

has a HL gap of 0.13 eV which is almost half of that in the bare cluster.   
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In addition to the one electron orbitals above, we can view the movement of the orbitals 

within the Density of States (DOS) plots of Figure 4-16.  Within that figure, as well as the DOS 

plot of the bare and PEt3 clusters in Figure 4-10 above, we can readily see the lowering and 

alteration of the HOMO level (vertical line) through the addition of various ligands.  Moreover, 

although the region near the HOMO level is still comprised of Cr (d) orbitals for all of these 

clusters, the diminishment of charge on the Te atom can readily be seen in the cluster of CN, 

where its contributions to the total system have now moved lower in energy. 
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Figure 4-16. Density of States for various ligated Cr6Te8(L)6 clusters. 

L = PH3, CO, CN; respectively. Solid line represents HOMO of alpha spin channel. 
(Colors from upper legend apply downwards, unless otherwise noted.) 
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 Discussion & Conclusions 

To summarize, the theoretical studies above have illustrated a number of points.  The first 

being in regards to our original cluster of 7Cr6Te8(PEt3)6 and the bare 7Cr6Te8 core.  The ligation 

of this core does not modify the overall magnetic moment, but does have an influence upon the 

bond lengths, ionization potential, and electron affinity.  Moreover, despite this ligation the 

energy difference between the groundstate 6 µB and next higher isomer of 4 µB, remains nearly 

the same in both of these systems at approximately 0.20 eV.  Further adaptability of the bare 

cluster has been shown in the alteration of the attached ligand.  We have shown how these 

ligands can be utilized in changing the strength of electron withdrawal or donation of the cluster.  

And, depending on the ligand, fundamentally alter both the physical and electronic structure of 

the total cluster.  The addition of PH3 and PEt3 drive the cluster to electron donation, each to a 

differing degree, however, the addition of CO and CN ligands drives the total cluster toward 

electron acceptor. 

Combining the information of the previous sections together, we have found the PEt3 

donor ligand to be the most desirable in this investigation.  This is chiefly due to the bare cluster 

maintaining its large magnetic moment.  But, also due to the fact that the cluster is now more 

stable after ligation, as well as a better electron donor.  Two properties which further solidify it 

as a suitable building block in cluster assembled materials. 
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5 Summary & Future Directions 

During this thesis we have focused on the evolution of bonding as the Cr atoms are mixed 

with Te so as to provide insight into the stability and magnetic properties of the Cr6Te8(PEt3)6 

cluster that forms a periodic [Cr6Te8(PEt3)6][C60] cluster assembled solid.  Our results on small 

CrxTey cluster indicate that while pure Crn clusters display antiferromagnetic coupling, the 

bonding and the nature of coupling evolve as Te is added.  Furthermore, that the addition of Te 

results in a stronger binding with Cr that in turn destabilizes the weaker Cr-Cr metal bonds.  

Initially, the addition of Te leads to a Cr2Te3 cluster with quenched Cr spin moments.  This 

situation only occurs in this particular size and changes as one goes to larger clusters where the 

Cr sites continue to carry spin magnetic moments. 

The manipulation of the underlying Cr cluster structure by the addition of Te atoms 

involves two aspects.  The first, is the bonding of the incoming Te (p) orbitals upon those of Cr 

(d).  The second, is the specific coordination of Te in forming either two of three bonds.  

Consequently, the bonding of Te results in cluster geometries consisting of two-coordinated, 

three-coordinated, and a mixture of both, depending on the size of the total cluster.  In fact, as a 

general observation, clusters that contain an abundance of triply coordinated Te are the more 

stable.  The twofold coordination of Te atoms is mostly seen in clusters of up to four Cr, for 

larger sizes, Te bonds with triple coordination.  The balance between Cr and Te atoms 

exemplifies itself within the geometry of Cr6Te8.  Here, we have shown, that it has a high 

magnetization that can be linked to the symmetrical structure, which is reliant upon the equal 

number of Te atoms distributed around the cluster.  Moreover, this cluster maintains its 

magnetization upon ligation with the triethylphosphine (PEt3) ligands. 
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The studies upon the ligated cluster shows that the stability of the bare Cr6Te8 core 

carries over to the ligated species, making it a suitable building block for synthesis in 

constructing cluster assembled materials.  This aspect was demonstrated within Chapter 4, where 

we investigated the stability of the properties found in the ligated cluster across a variety of 

ligands having donor or acceptor characteristics.  In particular, the 7Cr6Te8(PEt3)3 cluster is not 

only highly stable, due to its large HOMO-LUMO gap, but also maintains its high magnetization 

within its first cation, 5 µB.  This finding allows us to make a first step towards understanding the 

magnetic properties of the [7Cr6Te8(PEt3)3][C60] periodic solid.  Note that although 

7Cr6Te8(PEt3)3 has a net magnetic moment, the local spins at two Cr sites are 

antiferromagnetically coupled to the remaining four.  This inter-antiferromagnetic coupling is 

indicative of the clusters behavior after entering into a periodic solid with C60.  The previous 

studies upon the companion cluster system of [Ni9Te6(PEt3)8][C60] have shown only a weak 

antiferromagnetic coupling.219  Although, we have not investigated this aspect within 

[7Cr6Te8(PEt3)3][C60], the presence of a similar coupling could mark a system with both inter- 

and intra-antiferromagnetic coupling and as previous studies on perovskites have indicated, these 

types of systems can show an inverse susceptibility vs temperature plot which saturates at higher 

temperature.  This could account for the observed saturation of the inverse susceptibility of the 

[7Cr6Te8(PEt3)3][C60] system seen in experiment. 

The implications of the theoretical results and studies found within the previous chapters 

can be summarized in two points.  The first, knowing the history of two-dimensional CrTe solids 

with their numerous stoichiometric versions and properties, we can conclude that those 

properties continue downward into the atomic scale and their binary clusters.  The number and 

arrangement of Te around Cr both play an important role.  Additionally, the studies herein show 
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that the cluster of Cr6Te8 retains the flexibility in its properties most often seen within two-

dimensional CrTe, and this flexibility and adaptability is now being exploited in a manner to 

construct novel materials. 
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 Crx Bond Lengths 
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 CrxTey Bond Distances 
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