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Abstract 
 

A COMPARISON OF COMPUTATIONAL METHODS FOR ESTIMATING ESTUARINE 

PRODUCTION AND RESPIRATION FROM DIEL OPEN WATER DISSOLVED OXYGEN 

MEASUREMENTS 

 

By: Spencer J. Tassone, M.S. 
 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Biology at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2017. 

 

Advisor: Dr. Paul A. Bukaveckas, Professor, VCU Department of Biology and Center for 

Environmental Studies 

 

Diel dissolved oxygen (DO) data were used to characterize seasonal, inter-annual, and 

longitudinal variation in production and respiration for the James River Estuary. Two 

computational methods (Bayesian and bookkeeping) were applied to these data to determine 

whether inferences regarding DO metabolism are sensitive to methodology. Net metabolism was 

sensitive to methodology as Bayesian results indicated net heterotrophy (production < 

respiration) while bookkeeping results indicated net autotrophy (production > respiration). 

Differences in net metabolism among the methods was due to low seasonal variation in 

respiration using the Bayesian method, whereas bookkeeping results showed a strong correlation 

between production and respiration. Bayesian results suggest a dependence on allochthonous 

organic matter (OM) whereas bookkeeping results suggest that metabolism is dependent on 

autochthonous OM. This study highlights the importance in considering the method used to 

derive metabolic estimates as it can impact the assessment of trophic status and sources of OM 

supporting an estuary. 
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Introduction 
 

Ecosystem ecologists have long been interested in primary production because of the 

important role that primary producers play in elemental cycles and in food web energetics 

(Lindeman 1942, Odum 1956). Recent interest in this topic has sought to place gross primary 

production (GPP) in the broader context of ecosystem metabolism, i.e., the balance between 

organic matter (OM) production via photosynthesis and OM consumption via autotrophic and 

heterotrophic respiration (ecosystem respiration; hereafter, ER). In aquatic systems, interest in 

net ecosystem metabolism (NEM = GPP-ER) has reflected in part a desire to understand the role 

of subsidies (allochthonous OM inputs) in supporting ecosystem metabolism, and to characterize 

aquatic systems as being net sources or sinks in the context of the global carbon cycle (i.e., net 

autotrophic (GPP > ER) or heterotrophic (ER > GPP); Vannote et al. 1980, Borges 2005, 

Tranvik et al. 2009, Raymond et al. 2013, Houser et al. 2015, Hall et al. 2016). Interest in aquatic 

ecosystem metabolism has also been fueled by technological advances in autonomous 

monitoring of dissolved oxygen (DO), which allow for characterization of ecosystem metabolism 

over larger spatial and temporal scales, and by computational advances in the means by which 

these data are analyzed (e.g., Bayesian methods).  

Among aquatic ecosystems, estuaries rank among the most metabolically active due to 

their high rates of production and respiration (Hoellein et al. 2013). Estuaries receive large 

external inputs of OM and nutrients from terrestrial, marine and freshwater sources. High rates of 

respiration are supported by allochthonous OM from the catchment and nutrient inputs, which 

elevate primary production and provide labile OM (Vincent et al. 1996, Kemp et al. 1997, 

Muylaert et al. 2005, Hoellein et al. 2013). Production and respiration are often correlated, but 

seasonal, inter-annual and longitudinal factors can shift the balance between GPP and ER. 



 
 

2 

 

Seasonal differences in water temperature and photosynthetically active radiation (PAR) impact 

the rate of production and respiration in estuaries, with greatest GPP and ER during summer and 

lowest rates during winter (Cory et al. 1974, Boynton et al. 1982, Cole et al. 1992, D’vanzo et al. 

1996, Caffrey 2014). Seasonal variation in runoff affects the timing of OM and nutrient inputs as 

well as advective transport of plankton (Paerl et al. 2010, Bruesewitz et al. 2013, Caffrey et al. 

2014, Cloern et al. 2014). Longitudinal variation in salinity and channel morphometry influences 

plankton community development (Boynton et al. 1982, Kemp et al. 1997, Paerl et al. 2010, 

Roelke et al. 2017) and the balance between heterotrophy and autotrophy (Smith and Kemp 

1995, Kemp et al. 1997, Raymond et al. 2000, Caffrey 2004). A recent review of 5 inter-annual 

and 11 spatial estuarine productivity studies showed that production can vary 5-fold inter-

annually and 10-fold spatially within an estuary (Cloern et al. 2014 and references therein). 

Kemp et al. (1997) showed distinct changes in the balance between production and respiration 

within Chesapeake Bay, with the oligohaline segment (0.5-5 ppt) being annually net 

heterotrophic, and the polyhaline segment (18+ ppt) being net autotrophic. A recent meta-

analysis of 48 estuaries found 11% of estuaries to be annually net autotrophic and 89% to be net 

heterotrophic (Hoellein et al. 2013), suggesting that most annual production is respired within 

estuaries and that allochthonous inputs to estuaries routinely drive respiration rates in excess of 

production. 

A key challenge in estimating ecosystem-scale production and respiration is properly 

accounting for non-biological oxygen fluxes (i.e., atmospheric exchange; hereafter, AE). AE is 

regulated by the concentration gradient between air and water (i.e., dissolved oxygen saturation), 

and by the gas transfer velocity (Deacon 1981, Wanninkhof 1992, Hopkinson and Smith 2005, 

Raymond et al. 2012). Gas transfer velocity is determined in part by boundary layer thickness, 
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which is influenced by wind speed and water velocity (Wanninkhof 1992, Holtgrieve et al. 2010, 

Raymond et al. 2012). In lentic systems (i.e., lakes) and oceans, boundary layer thickness is 

largely determined by wind speed due to large fetch and the absence of fluvial and tidal mixing 

(Deacon 1981, Wanninkhof 1992, Marino and Howarth 1993). Lotic systems (i.e., streams and 

rivers) typically have higher rates of gas exchange due to their low surface area to volume ratio 

and higher water velocity (Raymond et al. 2012). Within estuaries there is a complex interaction 

of factors acting on gas exchange including tidal forces (which are dependent on tidal amplitude 

and channel morphometry), fluvial forces (which vary longitudinally, and with discharge) and 

wind-driven mixing forces (which are influenced by fetch and climatic conditions; Ho et al. 

2011, Crosswell et al. 2012). A further complicating factor is that the surface area to volume 

ratio of estuaries is variable, both longitudinally and over time (due to the influence of tides, and 

sea-surface elevation). While quantifying AE in estuaries presents a challenge, it is not well 

understood how sensitive metabolism estimates are to various methods of determining AE 

(Odum 1956, Caffrey 2003, Fahey and Knapp 2007, Hondzo et al. 2013). 

 Numerous methods have been developed to estimate aquatic metabolism and AE based 

on open measurements, particularly for lake and stream environments. A common method uses a 

‘bookkeeping’ approach of tracking incremental changes in DO over a diel cycle. Caffrey (2003, 

2004) used this method to analyze diel oxygen data from 42 estuaries that were part of NERRS 

(National Estuarine Research Reserve System) (hereafter, Caffrey Method). This method 

ascribes increases in DO during the day to production, decreases in DO during night to 

respiration, and calculates AE as the product of the concentration gradient of O2 between air-

water and a fixed exchange coefficient. The advantage of this method is that it requires minimal 

parameterization, and, as it has been applied to a large number of estuaries, provides a basis for 
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comparing oxygen metabolism across systems (Caffrey 2003, 2004, Hoellein et al. 2013). 

However, this method does not account for the effects of wind speed or water velocity on AE 

and can potentially provide artificial ecological processes (e.g., negative GPP; Caffrey 2003, 

Winslow et al. 2016). As wind, fluvial and tidal influences on AE are likely to vary over time 

and longitudinally, this may lead to biased estimates of GPP, ER and NEM. 

Recent studies have applied Bayesian analyses to assess uncertainty in metabolism 

estimates, inclusive of observation uncertainty (measurement precision and accuracy), process 

uncertainty (stochasticity of model parameters), and model uncertainty. By this method 

unmeasured metabolic parameters (i.e., GPP, ER, AE) and associated parameter uncertainty (i.e., 

standard deviation; hereafter, SD) are treated as random variables with prior information (mean ± 

SD; hereafter, priors) on their distribution (Holtgrieve et al. 2010, Grace et al. 2015, Hall et al. 

2016, Winslow et al. 2016). The program ‘streamMetabolizer’ uses a Bayesian approach to 

inverse modeling, which fits a numerical model describing oxygen gains and losses to input data 

(e.g., DO measurements). Bayesian analyses are a useful alternative to the bookkeeping approach 

as they offer uncertainty estimates for modeled parameters (GPP and ER) and can accommodate 

variable rates of atmospheric exchange arising from differences in wind, fluvial and tidal forcing 

(Soloman et al. 2013, Hall et al. 2016, Winslow et al. 2016). However, Bayesian analyses require 

prior information about a system, and are computationally intensive (Grace et al. 2015, Winslow 

et al. 2016). While both the Caffrey and Bayesian methods estimate metabolic parameters and 

AE using the same input data (diel oxygen measurements), they offer different approaches to 

deriving those estimates. A key unresolved question is, are metabolic estimates influenced over 

time (i.e., seasonally, inter-annually) and/or space (i.e., longitudinally) due to methodological 

choice? 
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We analyzed 23 years of DO data from stations located within the James River Estuary 

(JRE) to better understand seasonal, inter-annual and longitudinal variation in production, 

respiration and net ecosystem metabolism. Metabolic estimates were derived using both the 

Caffrey and Bayesian methods to determine whether inferences about seasonal, inter-annual and 

longitudinal patterns were sensitive to methodological influences. Relationships between 

metabolic estimates derived using both methods were used to test relationships with 

environmental variables (i.e., pelagic metabolism, PAR and water temperature) and to make 

inferences about sources of OM supporting metabolism. Results from these analyses were used 

to address two questions: (1) How does the balance between production and respiration (i.e., 

NEM) vary seasonally, inter-annually and longitudinally within the estuary? and (2) Is our 

assessment of seasonal and spatial patterns in net ecosystem metabolism sensitive to the methods 

used to derive GPP and ER? 

Methods and Materials 

Study Site 

The James River is the third largest and southern most of the 5 major tributaries of 

Chesapeake Bay. It drains a mountainous catchment (watershed area = 26,101 km2) comprised of 

67% forest, 20% agriculture, 12% urban and 1% wetland (Bricker et al. 2007). The James River 

has a total length of 545 km, of which the lower third is tidal extending from the Fall Line in 

Richmond, VA to the confluence with Chesapeake Bay (Fig. 1). The JRE is divided into 

segments based on salinity: tidal fresh (TF, 0-0.5 ppt), oligohaline (OH, 0.5-5 ppt), mesohaline 

(MH, 5-18 ppt) and polyhaline (PH, 18+ ppt) (USEPA Chesapeake Bay Program Office 2005). 

The TF segment is further divided into upper and lower segments which differ in their 

geomorphology. The upper section, located between the Fall Line and the confluence with the 
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Appomattox River, has a riverine morphometry with a deep (> 3 m), constricted channel and low 

ratio of photic depth to total depth (Bukaveckas et al. 2011, Wood and Bukaveckas 2014). The 

lower TF section extends to the Chickahominy River, and is characterized by a more estuarine 

morphometry, with shallow (< 3 m) depths, a broader channel, and more favorable light 

conditions (Bukaveckas et al. 2011, Wood and Bukaveckas 2014). Continuous water quality 

monitoring data were collected at a station located in the lower tidal fresh segment (Virginia 

Commonwealth University Rice Rivers Center; VCU RRC) during 2009-2016, and at stations 

located in each of the 5 salinity segments during March-November of 2006-2008 (Table 1; 

Virginia Institute of Marine Science, Virginia Estuarine and Coastal Observing System; 

VECOS). The VECOS dataset was selected for analysis because it allows for estimation of 

ecosystem metabolism over a range of estuarine conditions from tidal freshwater to polyhaline. 

The Rice Pier dataset was selected as it provides long-term (8-years) data collected year-round. 

Thus, a total of 23 station-years of continuous monitoring data were available to assess seasonal, 

inter-annual and inter-segment differences in DO metabolism. 

Ecosystem Metabolism 

Daily rates of ecosystem GPP, ER and AE were derived using one-station open water diel 

O2 curves derived from 15-minute measurements. All data were collected with optical oxygen 

probes using YSI 6600 water quality sondes (2006-2014) or YSI EXO2 water quality sondes 

(2015-2016). Sondes were calibrated every 3 weeks. An important assumption when determining 

metabolic rates using the single station method is that tidal exchange does not influence local DO 

concentrations (Cole et al. 2000, Caffrey 2003). Previous analysis in the JRE has shown that tidal 

exchange does not explain a significant proportion of the residual variation in DO concentration 

(Bukaveckas et al. 2011).  
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Caffrey Method 

Following Caffrey (2003, 2004), 15-minute DO measurements (g m-3) were smoothed to 

30-minute averages and multiplied by water depth (m) to obtain areal rates of oxygen flux, which 

were summed across 24-hour periods (g O2 m
-2 d-1; Equation 1). DO fluxes during daylight hours 

were considered net primary production (NPP), while ER was derived by extrapolating nightly 

O2 fluxes to a 24-hour period. GPP was derived based on the sum of NPP + ER during daylight 

hours, and NEM was derived by subtracting daily ER from GPP. 

O2 flux = (DOt2
-DOt1

) * Water Depth – AE       (1) 

 For this analysis, a fixed average depth was used (i.e., without consideration for seasonal 

and tidal variation in water surface elevation). Average depths for the five segments were: upper 

TF = 2.7 m, lower TF = 2.5 m, OH = 3.1 m, MH = 3.1 m and PH = 5.6 m (USEPA Chesapeake 

Bay Program Office 2005). 

 

AE was derived based on DO measurements (as % saturation) that were multiplied by a 

fixed gas transfer coefficient (0.5 g O2 m
-2 h-1; Equation 2). The Caffrey method assumes that AE 

is affected solely by the air-water concentration gradient and thus varies between -0.5 to 0.5 g O2 

m-2 h-1 when water column saturation is between 0-200%.  

Bayesian Method 

The Bayesian analysis of estuarine metabolism was performed using the modeling 

package ‘streamMetabolizer’ (version 0.9.33; Table 2; Appling et al. 2017, R Core Team 2017). 

Bayesian modeling estimates unmeasured metabolic parameters (𝛳; i.e., GPP and ER) using a 

known prior probability (𝑃(𝛳)) distribution (mean and SD) of 𝛳, and a vector of measured input 

parameters (𝐷; i.e., DO concentration, DO saturation (determined via water temperature), day 
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length (determined via PAR) and depth; Equation 3; Hobbs and Hooten 2015, Hall et al. 2016). 

The likelihood (𝑃(𝐷|𝛳)) of the measured input data given our prior estimates of 𝛳 is 

proportional to the posterior distribution, 𝑃(𝛳|𝐷) of 𝛳 from which estimates of our unmeasured 

metabolic parameters are derived. 

𝑃(𝛳|𝐷) ∝ 𝑃(𝐷|𝛳) ∗ 𝑃(𝛳)       (3) 

The Bayesian analysis was performed using estuarine specific priors for GPP and ER, 

site-specific priors for AE and locally measured tidal variation in depth. Tidal variation in depth 

was determined by detrending the recorded depth from sonde measurements and adding the 

average segment depth to the detrended depth measurements. Priors for GPP and ER are 

available via streamMetabolizer but these are generic values (not estuarine specific) representing 

previous applications, many of which were small stream studies. We obtained estuarine specific 

priors that represent summer conditions for 44 estuarine sites (Hoellein et al. 2013). From these 

data, we derived the mean and standard deviation of GPP (µ = 10.8 g O2 m
-2 d-1, σ = 6.7 g O2 m

-2 

d-1) and ER (µ = 13.6 g O2 m
-2 d-1, σ = 7.4 g O2 m

-2 d-1). Site-specific estimation of AE required 

estimates of k600 (daily reaeration rate; d-1) which were derived utilizing a segment-specific 

average (2006-2013) gas transfer velocity (kO2
; m d-1) obtained from the tidal James River 

hydrodynamic model (Shen et al. 2016). The James River hydrodynamic model uses an additive 

combination of the effects of wind speed (monitored at Richmond and Norfolk airports), using 

the Thomann and Mueller formula (Thomann and Mueller 1987), and water velocity, using the 

O’Connor-Dobbins formula (O’Connor and Dobbins 1958) to derive kO2
. AE was then derived 

for each 15-minute measurement as kO2 
multiplied by the difference between DO saturation and 

modeled DO. 
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Model derived kO2 
values averaged 1.12, 1.48, 1.05, 1.67 and 1.33 m d-1 for the upper and 

lower TF, OH, MH and PH segments of the JRE respectively. Site-specific k600 priors were then 

derived by normalizing the temperature dependent Schmidt number (ScO2
), which relates gas 

solubility to water viscosity in flowing freshwater ecosystems, to 600. The normalized ScO2 
is 

then raised to the power of -0.5 due to wind-induced surface water turbulence (Jähne et al. 1987), 

and multiplied by the site-specific average kO2
 (Equation 4, Raymond et al. 2012).  

k600 = (600/ ScO2
)-0.5

 * kO2         (4) 

After log-transforming the derived k600 values, site-specific k600 priors for the lower TF 

James from 2009-2016 were µ = 0.39 d-1, σ = 0.23 d-1. Log transformed site-specific k600 priors 

for each of the 5 salinity segments from 2006-2008 were -0.06 ± 0.15 (upper TF), 0.27 ± 0.16 

(lower TF), -0.09 ± 0.13 (OH), 0.39 ± 0.13 (MH) and 0.22 ± 0.17 d-1 (PH).  

In order to assess the sensitivity of Bayesian metabolism estimates to the effects of 

variable depth and the selection of priors, three alternative modeling scenarios were performed 

with the 2009-2016 data from the lower TF James (Fig. 2). The first alternative Bayesian model 

(AB1) used estuarine-specific priors for GPP and ER, and segment-specific priors for AE but 

with a constant depth equal to the average depth of the lower TF segment (2.5 m) (i.e., without 

tidal driven variation in depth; similar to Caffrey Method). The second alternative Bayesian 

model (AB2) used the estuarine specific priors for GPP and ER, but with the generic 

streamMetabolizer log k600 prior (1.79 ± 1 d-1). The third Bayesian model scenario (AB3) used 

generic streamMetabolizer priors for GPP and ER (8 ± 4 and 10 ± 5 g O2 m
-2 d-1 respectively) 

with the segment-specific priors for k600. Results from the three alternative scenarios were 

compared to the Bayesian and Caffrey model results. 



 
 

10 

 

Pelagic Metabolism 

Pelagic production and respiration were measured to determine their relative 

contributions to ecosystem production and respiration. Pelagic metabolism was measured during 

2015-2016 at stations located in the upper and lower tidal fresh segments using the light-dark 

bottle technique (Carignan et al. 1998). Light bottles measure net production of oxygen via 

photosynthesis (P in excess of R), while dark bottles measure respiration (i.e., oxygen 

consumption). Surface water samples were collected at Osborne Landing (upper TF) and the 

VCU RRC (lower TF) twice per month when water temperatures were > 10 °C and once per 

month when water temperatures were < 10 °C. Light and dark bottles were incubated for 2 and 

24 hours respectively. Sufficient incubation time is needed to produce measurable changes in 

DO. Preliminary experiments showed non-linear effects (reduced hourly rates of metabolism) 

when incubation lengths in light bottles exceeded 2 hours. DO concentrations were measured 

using the micro-Winkler technique to obtain a precision ~0.01 mg O2 L
-1 (Carignan et al. 1998, 

Bukaveckas et al. 2011). The change in DO from the start to the end of the incubation was used 

to determine Net Primary Production (NPP; light bottles), R (dark bottles) and GPP (as NPP + 

R).   

Water collected from the upper and lower TF sites was incubated in situ at the VCU RRC 

pier. Triplicate bottles (60 mL BOD) were incubated at 0.5 m depth intervals within the photic 

zone (0-2.0 m). Production versus irradiance curves were derived to estimate pelagic production 

throughout the euphotic zone for each sampling date. Incident PAR was obtained from the 

NERRS Taskinas Creek station, located 45 km from the VCU RRC pier. Irradiance (I) at each 

0.5 m depth (z) interval was derived based on incident PAR (Io) during incubation, the light 
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attenuation coefficient (Kd; m
-1) and depth (Wetzel 1975, Hambrook-Berkman and Canova 2007; 

Equation 5). 

Iz = Ioe
-Kdz        (5) 

The light attenuation coefficient was derived from the regression of the log transformed 

down-welling irradiance versus depth (Kirk 1994). Vertical light attenuation profiles were 

measured in quadruplicate at 0.5 m intervals using a LI-COR model LI-1400 data logger 

equipped with underwater and surface quantum sensors. Chlorophyll-a (CHLa) samples were 

collected during each incubation to derive biomass-specific rates of production. Samples for 

pigment analysis were filtered through Whatman GF/A glass fiber filters, extracted in a 90% 

buffered acetone solution for 18 hours and analyzed on a Turner Design TD-700 Fluorometer 

(Sellers and Bukaveckas 2003, Bukaveckas et al. 2011).  

Statistics  

 

 For the VECOS dataset, a three-way analysis of variance (ANOVA) was performed using 

segment, method, month, and their interaction terms to explain variation in monthly mean GPP 

and ER. For the Rice Pier dataset, a two-way ANOVA was utilized with month, method, and 

their interaction term as independent variables. Linear regressions were performed to assess 

relationships between monthly mean GPP and ER with environmental variables (i.e., monthly 

mean water temperature and CHLa concentration). Independent sample t-tests were used to 

compare means and to determine statistical significance (p < 0.05) across metabolic estimates 

derived using either Caffrey or Bayesian methods. Days with negative GPP values constituted < 

5% of all daily estimates and were not removed from statistical analysis. All Bayesian analyses, 

multiple regressions, two and three way ANOVA’s were derived using Rstudio (R Core Team 

2017). Caffrey estimates were derived using a metabolism program written in Matlab. 



 
 

12 

 

Independent sample t-tests were performed using SPSS and path-analysis (see appendix) were 

derived using AMOS (IBM Corp. Version 23.0).  

Results 

Analysis of 2006-2008 VECOS Data 

For the longitudinal (VECOS) time series, three-way ANOVA results showed that 

longitude (salinity segments) accounted for the greatest proportion of variation in both GPP and 

ER (46 and 56%, respectively; Fig. 3 and Table 3). Month accounted for the second largest 

proportion of variation in GPP and ER (22 and 14%, respectively). Method was also a significant 

factor but its effects on GPP and ER varied by segment and month as indicated by significant 

interaction effects. This was further supported by the greater coefficient of variation for 

GPPCaffrey and ERCaffrey estimates for each segment across months and years, indicating lower 

variation in Bayesian derived metabolic estimates (Table 4). Monthly average GPPCaffrey and 

ERCaffrey varied 5-fold throughout the JRE, with AECaffrey accounting for a small proportion of O2 

fluxes (14% of ERCaffrey and 24% of GPPCaffrey). GPPBayesian and ERBayesian had less variation than 

Caffrey estimates, varying 2-fold throughout the estuary, with AEBayesian accounting for 10% of 

ERBayesian and 12% of GPPBayesian. Both methods indicated that the lower TF segment was net 

autotrophic (mean NEMCaffrey = 1.43 ± 0.25, mean NEMBayesian = 0.93 ± 0.60 g O2 m
-2 d-1) 

between spring and fall, with average net heterotrophy in all other segments. Overall, 87% of the 

total variation in GPP and 92% of the total variation ER was explained, with longitudinal 

differences accounting the greatest amount of variation, followed by monthly variation and 

methodological differences. 

Both methods agreed on the rank order of GPP and ER among segments, with greatest 

rates in the polyhaline (mean GPPCaffrey = 20.71 ± 1.43, mean ERCaffrey = 22.07 ± 1.33, mean 
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GPPBayesian = 13.39 ± 0.62, mean ERBayesian = 16.4 ± 0.28 g O2 m
-2 d-1) and lowest rates in the 

upper TF (mean GPPCaffrey = 3.84 ± 0.66, mean ERCaffrey = 4.86 ± 0.62, mean GPPBayesian = 6.46 ± 

0.38, mean ERBayesian = 10.47 ± 0.31 g O2 m
-2 d-1; Fig. 4). GPPBayesian estimates were greater than 

GPPCaffrey in the upper TF segment, while GPPCaffrey was greater than GPPBayesian in the 

polyhaline segment (R2 = 0.83, p < 0.001). This pattern was consistent for ER, with ERBayesian 

exceeding ERCaffrey in the upper TF and ERCaffrey exceeding ERBayesian in the polyhaline (R2 = 

0.68, p < 0.001). The two methods yielded similar estimates of AE which were highly correlated 

(R2 = 0.97, p < 0.001, m = 1.05). AE in the lower TF segment was persistently negative for both 

methods indicating that this segment had a net flux of O2 out of the water column.  

In order to determine the sources of OM (i.e., autochthonous or allochthonous) 

supporting metabolism throughout the estuary, the y-intercept of the ER vs. GPP linear 

regression was interpreted as the proportion of ER supported by allochthonous sources (i.e., ER 

when GPP = 0; del Giorgio and Peters 1994; Fig. 5). For the Caffrey estimates, allochthonous 

ER was 0.58 ± 0.02 g O2 m
-2 d-1, while average ERCaffrey was 12.49 ± 0.71 g O2 m

-2 d-1 indicating 

that 95% of ER was supported by autochthonous OM sources (e.g., algal production). For 

Bayesian estimates, allochthonous ER was 7.71 ± 0.07 g O2 m
-2 d-1, while average ERBayesian was 

12.99 ± 0.28 g O2 m
-2 d-1 indicating that ER was primarily supported by allochthonous OM 

sources (e.g., sediments). Thus an important difference between the two methods is that the 

Caffrey results indicate that metabolism was supported by autochthonous sources, whereas the 

Bayesian method indicates that metabolism is supported by allochthonous OM subsidies. 

Analysis of 2009-2016 Rice Pier Data 

Annual NEMCaffrey was net autotrophic from 2010-2014, approximately equal in 2016 and 

net heterotrophic in 2009 and 2015 (Fig. 6). On average, GPPCaffrey exceeded ERCaffrey by 0.43 ± 
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0.19 g O2 m
-2 d-1 over the 8-year span. GPPCaffrey and ERCaffrey followed seasonal trends in PAR 

and water temperature with highest rates (GPP = 10.90 ± 0.53, ER = 10.12 ± 0.40 g O2 m
-2 d-1) 

during June-September and lowest rates (GPP = 1.40 ± 0.18, ER = 2.04 ± 0.19 g O2 m
-2 d-1) 

during December-February. Results from the Bayesian analysis differed from the Caffrey 

metabolism estimates in that they yielded higher ER and therefore lower NEM (Fig. 6). 

GPPBayesian displayed similar seasonal patterns to GPPCaffrey with greatest rates during summer 

(mean = 12.18 ± 0.46 g O2 m
-2 d-1) and lowest rates in winter (mean = 3.95 ± 0.16 g O2 m

-2 d-1; 

Fig. 6b). However, ERBayesian showed low seasonal variation (summer = 8.82 ± 0.59 g O2 m
-2 d-1, 

winter = 7.75 ± 0.31 g O2 m
-2 d-1) and was not well correlated with GPPBayesian (R

2 = 0.12, p = 

0.001). With less seasonality, ERBayesian was overall higher and exceeded GPPBayesian by 0.42 ± 

0.36 g O2 m
-2 d-1. Thus an important difference between the two methods of estimating 

metabolism is that the Caffrey results indicated net autotrophic conditions (GPP > ER), whereas 

the Bayesian method indicated net heterotrophic conditions (ER > GPP). 

For the 8-year time series, a two-way ANOVA showed that both month and methodology 

accounted for a significant proportion of variation in GPP (R2 = 0.76, p < 0.001). There was no 

significant interaction between the model factors indicating that the effect of methodology was 

consistent across months. This was further supported by the strong correlation between the two 

sets of GPP estimates (R2 = 0.93, p < 0.001; Fig. 7). When GPP was in the upper half of its range 

(8-16 g O2 m
-2 d-1) GPPCaffrey was greater than GPPBayesian, whereas when GPP was lower (< 8 g 

O2 m
-2 d-1) GPPBayesian was greater than GPPCaffrey. Daily average GPPBayesian (mean = 7.89 ± 0.36 

g O2 m
-2 d-1) was 25% higher than GPPCaffrey (6.29 ± 0.45 g O2 m

-2 d-1). The two-way ANOVA 

included a significant interaction effect for ER, indicating that differences between the two 

methods were not consistent across months (R2 = 0.68, p < 0.001). ERCaffrey ranged 5-fold 
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between summer (mean = 10.12 ± 0.4 g O2 m
-2 d-1) and winter (mean = 2.04 ± 0.19 g O2 m

-2 d-1), 

whereas summer ERBayesian (mean = 9.28 ± 0.53 g O2 m
-2 d-1) was only 20% greater than winter 

ERBayesain (mean = 7.75 ± 0.31 g O2 m
-2 d-1). ERBayesian estimates were greater than ERCaffrey when 

ER was in the lower half (< 8 g O2 m
-2 d-1) of its range (R2 = 0.21, p < 0.001). Daily average 

ERBayesian was 41% higher (mean = 8.31 ± 0.24 g O2 m
-2 d-1) than ERCaffrey (mean = 5.86 ± 0.38 g 

O2 m
-2 d-1, p < 0.001). The two methods yielded similar estimates of AE which were strongly 

correlated (R2 = 0.98, p < 0.001, m = 1.22) however, AEBayesian had higher maximum and lower 

minimum estimates than AECaffrey. Using an independent sample t-test, AE estimates using both 

methods were not significantly different from each other (AEBayesian = -1.02 ± 0.16 g O2 m
-2 d-1; 

AECaffrey = -0.71 ± 0.13 g O2 m
-2 d-1, p = 0.144). AE was on average negative, indicating 

persistent O2 supersaturation in the water column with a net flux of O2 into the atmosphere.  

GPPCaffrey and ERCaffrey were highly correlated (R2 = 0.83, p < 0.001) whereas GPPBayesian 

and ERBayesian were weakly correlated (R2 = 0.12, p < 0.001; Fig. 8). Caffrey results showed that 

allochthonous ER was 1.01 ± 0.03 g O2 m
-2 d-1, while average ERCaffrey was 5.86 ± 0.38 g O2 m

-2 

d-1 indicating that 83% of ERCaffrey was supported by autochthonous OM production. For 

Bayesian estimates, allochthonous ER was 6.51 ± 0.06 g O2 m
-2 d-1, while average ERBayesian was 

8.31 ± 0.24 g O2 m
-2 d-1 indicating that ERBayesian was predominantly supported by allochthonous 

OM. Caffrey results indicate that metabolism was supported by autochthonous production, 

whereas the Bayesian results indicate that metabolism was supported by allochthonous OM 

subsidies. 

The proportion of ecosystem metabolism contributed by pelagic GPP or R was 

determined using both Caffrey and Bayesian estimates. Pelagic metabolism accounted for a 

similar proportion of GPPCaffrey and ERCaffrey in comparison to the corresponding Bayesian values 
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(Fig. 9). Pelagic GPP (mean = 6.11 ± 0.66 g O2 m
-2 d-1) accounted for on average 65% of 

GPPCaffrey (mean = 9.45 ± 1.20 g O2 m
-2 d-1) and 57% of GPPBayesian (mean = 10.68 ± 0.93 g O2 

m-2 d-1). Pelagic R (3.28 ± 0.42 g O2 m
-2 d-1) accounted for 37% of ERCaffrey (8.71 ± 1.04 g O2 m

-2 

d-1) and 28% of ERBayesian (11.79 ± 0.99 g O2 m
-2 d-1). Pelagic GPP and R were found to be more 

strongly correlated with the Caffrey estimates (R2 = 0.73 and 0.62, respectively) than with the 

corresponding Bayesian values (R2 = 0.63 and 0.15). 

Water temperature and CHLa were strongly related to GPPBayesian, GPPCaffrey and ERCaffrey, 

while only water temperature was related to ERBayesian estimates (Fig. 10). Using a multiple linear 

regression, water temperature accounted for 84% of the variation in GPPCaffrey and 85% in 

GPPBayesian, with CHLa accounting for an additional 2% and 1% of variation in both GPPCaffrey 

and GPPBayesian respectively (GPPCaffrey R
2 = 0.86, p < 0.001 and GPPBayesian R

2 = 0.86, p < 

0.001). Water temperature also had a positive linear relationship with ERCaffrey estimates (R2 = 

0.80, p < 0.001), with CHLa accounting for an additional 2% of ERCaffrey. Water temperature was 

weakly correlated with ERBayesian estimates (R2 = 0.21, p < 0.001). Water temperature and CHLa 

showed similar strong correlations with GPPBayesian, GPPCaffrey and ERCaffrey estimates (R2 = 0.86, 

0.86 and 0.82 respectively), while ERBayesian had a weak correlation with water temperature (R2 = 

0.21). 

Bayesian Scenario Comparison 

The three modeling scenarios generally yielded similar estimates of ecosystem GPP, ER 

and AE to those obtained from the original Bayesian model (Table 5).  Daily average GPPBayesian 

for the 8-year time series was 7.9 ± 0.1 g O2 m
-2 d-1 but ranged between 8.1 ± 0.1, 7.8 ± 0.1 and 

7.3 ± 0.1 g O2 m
-2 d-1 among the 3 scenarios (AB1, AB2 and AB3 respectfully). GPPBayesian 

derived using the generic GPPBayesian prior (AB3) were significantly lower than those derived 
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using estuarine-specific priors, though the proportional difference was small (8%, p < 0.001, Fig. 

11a).  Daily average ERBayesian was 8.3 ± 0.1 g O2 m
-2 d-1 but ranged from 8.4 ± 0.1, 9.4 ± 0.1 and 

7.6 ± 0.04 g O2 m
-2 d-1 among scenarios AB1, AB2 and AB3 (respectfully). Statistically 

significant effects were observed when estuarine-specific priors were replaced with a generic 

ERBayesian prior (AB3), which yielded estimates 8% lower than the original model, and, when 

using a generic atmospheric exchange value (AB2), which yielded estimates 13% higher than the 

original model (p < 0.001, Fig. 11b). For all Bayesian model scenarios, estimates of atmospheric 

exchange were small (≤ 1 g O2 m
-2 d-1) in comparison to GPPBayesian and ERBayesian (~8 g O2 m

-2 d-

1). Due to low rates of AE, proportional differences among the 4 scenarios were larger, but 

absolute differences were small, ranging from -0.3 ± 0.1 g O2 m
-2 d-1 to -1.0 ± 0.04 g O2 m

-2 d-1. 

The use of fixed depth (AB1) and generic exchange coefficients (AB2) yielded significantly 

lower rates of atmospheric exchange (p < 0.001, Fig. 11c). Overall, these results show that for an 

8-year time series of data, assumptions about priors and the effects of tidal variation in depth had 

statistically detectable effects on estimates of GPPBayesian, ERBayesian and AEBayesian, but that 

differences among the scenarios were small (< 10%) in comparison to seasonal and inter-annual 

variation. 

Discussion 
 

Methodological Variation in Metabolism 

 Seasonal, inter-annual and longitudinal rates of ecosystem metabolism were sensitive to 

the method used to derive them. Temperature is a ubiquitous predictor of metabolic rates in 

estuaries (Caffrey 2004, Hoellein et al. 2013, Testa et al. 2012), however monthly average 

ERBayesian had a weak relationship (R2 = 0.21) with water temperature compared to ERCaffrey (R
2 = 

0.80). Seasonal variation in ERBayesian was low with average winter ERBayesian being 20% lower 
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than summer rates compared to ERCaffrey that had a 5-fold difference between winter and 

summer. Low seasonality in ER of temperate estuaries is uncommon and lead to a negative 8-

year average NEMBayesian (-0.42 ± 0.36 g O2 m
-2 d-1) indicating net heterotrophic conditions, 

whereas NEMCaffrey produced net autotrophic (0.43 ± 0.19 g O2 m
-2 d-1) conditions which is 

consistent with prior metabolic work in this system (Smith and Kemp 1995, Caffrey 2004, 

Bukaveckas et al. 2011, Yvon-Durocher et al. 2012). Longitudinal rates of GPP, ER and AE 

were well correlated across methods (R2 = 0.83, 0.68 and 0.97 respectively), however Bayesian 

estimates consistently had lower maximums and higher minimums than Caffrey estimates. 

Estuarine ER and GPP are typically well correlated (Caffrey 2004, Hoellein et al. 2013) which 

was supported by Caffrey estimates (R2 = 0.96) across all salinity segments but was inconsistent 

with Bayesian estimates (R2 = 0.35). Differences in the correlation between ER and GPP 

exposed another important distinction between the methods, that ERCaffrey was driven by 

autochthonous OM whereas ERBayesain was mainly driven by allochthonous OM. Previous studies 

on the fate of algal production in the JRE have showed ER closely tracking GPP and that ER was 

mainly supported by microbial respiration of autochthonous OM (Bukaveckas et al. 2011, Wood 

et al. 2016). Thus determining which method to use when deriving metabolic estimates is 

important as it can impact our perception of the trophic status (i.e., CO2 sink or source) and OM 

sources supporting an estuary. 

  Similar to Holtgrieve et al. (2010), AEBayesian estimates were sensitive to the reaeration 

coefficient (k600) used and as we show, to variation in depth by tidal influences on water surface 

elevation. When estuarine-specific priors (0.39 ± 0.23 d-1) for daily reaeration were applied to 

the Bayesian model, daily average AEBayesian over 8-years was 3-fold greater than when generic 

(stream-specific) priors (1.79 ± 1 d-1) were used. Holtgrieve et al. (2010) showed how increasing 
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reaeration coefficient priors can significantly dampen model derived dissolved oxygen 

concentration in a stream. Furthermore, when tidal variation in depth was included in the 

Bayesian model rather than using a fixed depth, daily average AEBayesian was 2-fold greater. 

Thus, future metabolic estimates using Bayesian methods to model AE should use site-specific 

reaeration coefficients and include tidal effects on local depth as AE estimates in estuaries are 

sensitive to changes in these model input parameters.  

Longitudinal Metabolism 

Rates of GPP and ER increased longitudinally between the freshwater and saline sites of 

the James River Estuary. Between the salinity end-members (i.e., upper TF and polyhaline 

segments) GPPCaffrey and ERCaffrey increased 5-fold while GPPBayesian and ERBayesian increased 2-

fold, which is comparable to what others have found in estuaries, which can have metabolic rates 

vary up to 10-fold between segments (Cloern et al. 2014). All segments except the lower TF 

were net heterotrophic (ER > GPP) and on the whole, the JRE is annually net heterotrophic (area 

weighted NEMCaffrey = -0.57 ± 0.45 g O2 m
-2 d-1 and NEMBayesian = -2.15 ± 0.89 g O2 m

-2 d-1) 

which is within range for Mid-Atlantic estuaries (Caffrey 2004) and consistent with Hoellein et 

al. (2013) who described 89% of estuaries as net heterotrophic. No distinct difference was 

observed in the degree of heterotrophy between the upper TF and polyhaline segments (using 

either method) due to proportional increases in both GPP and ER, which is in contrast to other 

estuaries that have observed greater heterotrophy at small (by area), low salinity sites (Kemp et 

al. 1997, Raymond et al. 2000, Caffrey 2004, Tomaso and Najjar 2015). Greater heterotrophy at 

low salinity sites could occur when high allochthonous loads impede production (by increasing 

turbidity) and stimulate microbial decomposition (Gazeau et al. 2005). Since there is no 

significant difference in NEM between our salinity end-members (p = 0.154), these results 
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suggest rapid nutrient cycling between respired OM and primary production at the salinity end-

members.       

Atmospheric exchange throughout the estuary was a small component (≤ 24%) of 

biologically driven fluxes in O2. AE was persistently negative in the lower TF segment using 

either method, indicating that this segment of the estuary had a net flux of O2 out of the water 

column and was thus a CO2 sink which is consistent with earlier findings from the tidal 

freshwater JRE (Bukaveckas et al. 2011). Similarly, the oligohaline segment experienced a net 

flux of O2 out of the water column (negative AE) between March-June before becoming 

heterotrophic from July-October. All other segments were net sinks for O2 and were thus CO2 

sources. Longitudinally, AEBayesian estimates were routinely less than AECaffrey estimates and 

similar to Holtgrieve et al. (2010). AEBayesian estimates were highly sensitive to the reaeration 

coefficient used.       

Inter-annual Metabolism 

 Rates of GPP and ER in the lower tidal fresh JRE showed similar amplitudes and timing 

in peak production and respiration across 8-years. These results are similar to Nesius et al. 

(2007) who observed similar timing (July-September) in peak production across 12-years (1989-

2001) within the lower tidal freshwater JRE. Nesius et al. (2007) reported average total annual 

production of 230 g C m-2 yr-1 across 12-years in the lower tidal fresh segment, which is 3-fold 

lower than GPPCaffrey estimates (720 ± 35 g C m-2 yr-1) and 4-fold lower than GPPBayesian 

estimates (902 ± 38 g C m-2 yr-1) assuming a photosynthetic quotient of 1.2 (O2:CO2 molar; 

Kemp et al. 1997, Caffrey 2004). Several reasons may be responsible for the large differences in 

total average production between this study and that of Nesius et al. (2007). Measurements 

derived in this study are at an ecosystem scale whereas the Nesius et al. (2007) used the 14C 
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method which measures production within in a bottle. There also remains considerable 

uncertainty on the type of production the 14C method measures (i.e., GPP or NPP; Cloern et al. 

2014). Caffrey (2004) reported similar issues when comparing rates of production at 43 estuarine 

sites using the open method to studies using other methods of quantifying production. Our 

estimates of average annual GPP are comparable to those reported for estuaries by Caffrey 

(2004) which ranged between ~ 300-3300 g C m-2 yr-1. 

 While ER showed greatest rates during summer months and lowest rates during winter 

months, mean annual ERCaffrey (805 ± 32 g C m-2 yr-1) was statistically significantly less than 

ERBayesian (1139 ± 70 g C m-2 yr-1; p < 0.001) across 8-years due to low seasonality in ERBayesian 

estimates (assuming a respiratory quotient of 1 O2:CO2 molar; Caffrey 2004). Elevated rates of 

ERBayesian in winter are partially responsible for the weak correlation with GPPBayesian (R
2 = 0.12) 

and suggests that high allochthonous OM processing maintains net heterotrophic conditions 

year-to-year. While 89% of estuaries depend on allochthonous OM to maintain heterotrophic 

conditions (Hoellein et al. 2013), many estuaries have a strong correlation between GPP and ER, 

such as the Caffrey estimates, suggesting rapid microbial decomposition of algal production 

(Caffrey 2004, Hopkinson and Smith 2005, Hoellein et al. 2013) and a shift to allochthonous OM 

during periods of low GPP. These results highlight how different methods of deriving ER can 

result in large differences in annualized rates of ER and sources of OM supporting ER.   

 Previous studies on metabolism in the tidal freshwater segment of the JRE have suggest 

annual net autotrophy which the Caffrey estimates supported (Bukaveckas et al. 2011, Wood et 

al. 2016). Hoellein et al. (2013) reported GPP (mean = 10.8 ± 6.7 g O2 m
-2 d-1) and ER (mean = 

13.6 ± 7.4 g O2 m
-2 d-1) rates for 43 and 44 estuaries respectively, and indicates that GPPCaffrey 

(mean = 6.29 ± 0.45 g O2 m
-2 d-1) is in the lower 27th percentile and ERCaffrey (mean = 5.86 ± 0.38 
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g O2 m
-2 d-1) in the lower 11th percentile, suggesting that autotrophy is maintained by depressed 

ER and not by elevated GPP. NEMBayesian indicated heterotrophy for the lower tidal fresh JRE 

and indicated that annual mean GPP (7.89 ± 0.36 g O2 m
-2 d-1) and ER (8.31 ± 0.23 g O2 m

-2 d-1) 

were in the lower 42nd and 23rd percentiles respectively. While both estimates agree that annual 

daily mean ER in this system is depressed compared to other estuaries, they suggest different 

trophic states of the lower tidal fresh JRE. 

Intra-annual Metabolism 

 Monthly average GPPCaffrey and ERCaffrey were strongly related to climactic variables such 

as water temperature and PAR, with greatest metabolic rates in summer and lowest rates in 

winter, which is typical for temperate estuaries (Boynton et al. 1982, Caffrey 2004). Bayesian 

estimates of ER showed less seasonal variation, with ERBayesian having a weak correlation to 

water temperature (R2 = 0.21). Low seasonal variability in ERBayesian suggest a sustained, year-

round dependence on allochthonous OM which lead to maximum rates of heterotrophy in winter 

when GPPBayesian is lowest. Caffrey estimates also developed maximum rates of heterotrophy in 

winter but ERCaffrey was strongly correlated with GPPCaffrey (R
2 = 0.83), suggesting a seasonal 

shift to increasing dependence on allochthonous OM in winter when GPPCaffrey reaches a seasonal 

minimum. Dependence on autochthonous OM could also be supported by the low ratio of total 

depth to photic depth in this segment of the estuary which releases phytoplankton from light 

limitation and leads to elevated autochthonous production throughout much of the year 

(Bukaveckas et al. 2011). Hopkinson and Smith (2005) observed a similar seasonal shift in OM 

dependence among 29 estuaries, from autochthonous OM in summer to allochthonous OM in 

winter, which they attributed to the seasonal variability in GPP. However, Caffrey (2004) 

observed summer peaks in heterotrophy in several North American estuaries, suggesting ER is 



 
 

23 

 

strongly related to water temperature, turbidity and timing of allochthonous OM loading. While 

both methods agree on the timing of peak autotrophy (i.e., summer) and heterotrophy (i.e., 

winter), they disagree on the dependence of allochthonous OM throughout the year.    

Conclusions and Future Work 

 Metabolic estimates varied seasonally, inter-annually and longitudinally based on 

methodology. Caffrey derived metabolic estimates routinely predicted greater maximums and 

lower minimums than those derived using the Bayesian method. Both methods showed good 

agreement in estimating GPP (R2 = 0.93, m = 0.78) and AE (R2 = 0.98, m = 1.22), yet they 

differed in their ER estimates (R2 = 0.21, m = 0.29).  Both methods agreed on summer maximum 

rates of GPP and ER, but elevated ERBayesian rates in winter lead to annual net heterotrophy (i.e., 

CO2 source, O2 sink) in the lower TF segment. ERCaffrey displayed temperature dependence with 

seasonal low ERCaffrey in winter leading to annual net autotrophy (i.e., CO2 sink, O2 source) in the 

lower TF segment. Bayesian estimates suggest that ERBayesian is supported by allochthonous OM 

sources throughout the year whereas Caffrey estimates suggest a seasonal shift to allochthonous 

OM in winter when GPP is low. Average daily rates of GPP in the lower TF segment using 

either method are similar to other estuaries in the Mid-Atlantic but ER ranks among the lowest 

for North American estuaries. Between the upper TF and polyhaline segments, rates of GPPCaffrey 

and ERCaffrey increased 5-fold while GPPBayesian and ERBayesian increased 2-fold, with AE 

accounting for a small proportion (≤ 24%) of the biological O2 flux. All segments, with the 

exception of the lower TF, were heterotrophic and the degree of heterotrophy between the upper 

TF and polyhaline segments were not statistically different from each other due to proportional 

increases in both GPP and ER for both methods. Overall, both methods showed good agreement 
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for GPP and AE but differed in ER estimates which lead to differences in the interpretation of 

trophic status and the assessed importance of different sources of OM supporting ER. 

 Future studies of ecosystem metabolism in estuaries should consider the method used to 

derive metabolic estimates as this study has shown that method can impact the trophic status and 

the sources of OM supporting the metabolism of an estuary. While Bayesian approaches to 

ecosystem metabolism models offer the benefit of using site-specific prior information and 

propagation of model uncertainty, this study shows that Bayesian models can provide unlikely 

ecological patterns such as elevated ER at low temperatures. Bookkeeping approaches to 

ecosystem metabolism models, such as the Caffrey method are comparatively simpler than 

Bayesian methods as they require minimal parameterization, however they do not account for 

error propagation throughout the model. Further studies of ecosystem metabolism in the JRE 

would benefit from comparing near-shore estimates, as in this study, to study sites located off-

shore as it is unknown if the JRE is laterally well-mixed. Results of this study indicate the 

importance of long-term and longitudinally expansive water quality data-sets as they provide a 

basis for understanding regional and watershed carbon dynamics. 
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Tables & Figures 
 

Table 1. Site characteristics of continuous monitoring locations in the James River Estuary. 

Segment areas are from the Chesapeake Bay Program1 and salinity data come from the VECOS 

dataset. 

1Based on Chesapeake Bay Program segmentation scheme. Link to segmentation salinity 

ArcMap GIS layers can be found using the following link: 

https://usgs.maps.arcgis.com/home/item.html?id=d96647aad2894d2e874cb4a9189f4c4b 

*Lower TF segment area included tidal fresh section of the Appomattox River. 

**Oligohaline segment area included oligohaline segment of Chickahominy River. 
□Mesohaline segment area included mesohaline segments of the Lafayette River and the Eastern, 

Southern and Western branches of the Elizabeth River. 
□□Polyhaline segment area included the polyhaline segment of the Elizabeth River. 

 

  

VECOS Rice Pier

Upper Tidal Fresh 0.1 ± 0.1 21,350,585 Osborne Landing 159 2006-2008 -

Lower Tidal Fresh 0.1 ± 0.1 82,161,284* Rice Rivers Center 119 2006-2008 2009-2016

Oligohaline 2.8 ± 2.5 156,153,944** 4H Camp 71 2006-2008 -

Mesohaline 15.3 ± 4.0 331,231,113
□ James River Country Club 29 2006-2008 -

Polyhaline 20.1 ± 3.0 98,094,880
□□ Wythe Point 4 2006-2008 -

Segment
Salinity (ppt) 

mean ± SD

Segment Area 

(m
2
)

Collection Years
Site Name

Distance 

(rkm)
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Table 2. Model specifications used in streamMetabolizer for the Bayesian analysis of the 

VECOS and Rice Rivers Center datasets.  

 

  Analysis Bayesian

Algorithm Hamiltonian Monte Carlo

Sampler No-U-Turn Sampler (NUTS)

Chains 3

Burn-in Steps 500

Saved Steps 500

Thin Steps 1

Observation Error 0.1

Process Error 0.1

Chain Convergence

Diagnostic

Goodness-of-Fit Linear regression (modeled v. observed DO)

Priors:

GPP (g O2 m
-2

 d
-1

) 10.8 ± 6.7

ER (g O2 m
-2

 d
-1

) -13.6 ± 7.4

k 600 (d
-1

) Upper TF = -0.06 ± 0.15

Lower TFVECOS = 0.27 ± 0.16

Lower TFRice = 0.39 ± 0.23

OH = -0.09 ± 0.13

MH = 0.39 ± 0.13

PH = 0.22 ± 0.17

Gelman-Rubin (R̂ = 1.0 ± 0.1)

Model Specifications
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Table 3. Results from three-way ANOVAs testing the effect of salinity segment (Upper TF, 

Lower TF, OH, MH and PH), computational method (Caffrey or Bayesian), month and the 

interaction of each independent variable on GPP and ER estimates from the VECOS dataset.   
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Table 4. Inter-annual, intra-annual and longitudinal coefficients of variation (CV). Inter-annual CV was derived based on the mean 

and standard deviation (SD) of Caffrey or Bayesian GPP and ER for each month across all years (2006-2008) and segments. Intra-

annual CV was derived based on the mean and SD of all months for each year and segment. Longitudinal CV was derived based on 

the mean and SD of each segment for a representative spring (April) and summer (August) month for each year.  
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Table 5. Daily mean ± SE of GPP, ER, AE (g O2 m
-2 d-1) and kO2

 (m d-1) for the lower tidal 

freshwater segment of the James River during 2009-2016 using the Caffrey method, Bayesian 

method and 3 alternative Bayesian modeling scenarios. 

 

Method Production Respiration Atm. Exchange kO 2

Caffrey 6.4 ± 0.1 5.9 ± 0.1 -0.7 ± 0.03 4.8

Bayesian 7.9 ± 0.1 8.3 ± 0.1 -1.0 ± 0.04 1.5 ± 0.01

Alternative Bayesian 1 (AB1) 8.1 ± 0.1 8.4 ± 0.1 -0.5 ± 0.05 1.5 ± 0.01

Alternative Bayesian 2 (AB2) 7.8 ± 0.1 9.4 ± 0.1 -0.3 ± 0.1 7.1 ± 0.27

Alternative Bayesian 3 (AB3) 7.3 ± 0.1 7.6 ± 0.1 -0.9 ± 0.05 1.5 ± 0.01

Bayesian used site specific priors for GPP, ER and K with tidal variation in depth

AB1 used the same priors as model 1 but with a constant depth (2.5 m)

AB2 used site specific priors for GPP and ER, generic K and tidal variation in depth

AB3 used generic priors for GPP and ER, site specific K and tidal variation in depth
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Figure 1. Salinity zones and locations of continuous monitoring sites (black triangles) within the 

James River Estuary.  
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Figure 2. The Bayesian model and three alternative Bayesian modelling scenarios (AB1, AB2, 

AB3) were performed using Bayesian analysis to assess the sensitivity of metabolism estimates 

to water depth (fixed or variable) and the use of generic vs. system-specific priors for 

atmospheric exchange (K), GPP and ER.  
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Figure 3. Monthly average GPP, ER, AE and NEM for five salinity segments of the James River 

Estuary derived using the Caffrey (left column) and Bayesian (right column) method.  
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Figure 4. Comparison of Caffrey and Bayesian estimates of monthly average (A) Gross Primary 

Production (GPP), (B) Ecosystem Respiration (ER), and (C) atmospheric exchange (AE) among 

the salinity segments based on the 2006-2008 VECOS dataset. Dotted lines represent 1:1 

relationship. 
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Figure 5. Linear regressions between monthly average ecosystem respiration (ER) and ecosystem 

GPP for each salinity segment derived using the Caffrey method (upper) and the Bayesian 

method (lower) from the 2006-2008 VECOS dataset. Dotted lines represent 1:1 relationship. 
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Figure 6. Monthly averages of daily ecosystem respiration (ER), gross primary production 

(GPP), atmospheric exchange (AE) and net ecosystem metabolism (NEM) in the lower tidal 

fresh segment of the James using the Caffrey method (A) and Bayesian method (B). Also shown 

(C), monthly mean PAR and water temperature for this station.  
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Figure 7. Comparison of Caffrey and Bayesian estimates of monthly average (A) Gross Primary 

Production (GPP), (B) Ecosystem Respiration (ER), and (C) Atmospheric Exchange (AE) from 

the 2009-2016 Rice Pier dataset. Dotted lines represent 1:1 relationship.
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Figure 8. Linear regressions between monthly average ecosystem respiration (ER) and ecosystem 

GPP derived using the Caffrey method (A) and the Bayesian method (B) from the 2009-2016 

Rice Pier dataset. 
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Figure 9. Pelagic metabolism as a predictor of ecosystem metabolism derived by Caffrey and Bayesian methods. 
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Figure 10. Monthly average GPP and ER using the Caffrey (A) and Bayesian (B) methods vs. 

water temperature from the lower TF segment of the JRE.  
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Figure 11. Daily average gross primary production (A), ecosystem respiration (B) and 

atmospheric exchange (C) in the James lower tidal fresh segment during 2009-2016 derived by 

the Caffrey method, Bayesian method and 3 alternative Bayesian (AB) modeling scenarios. The 

first alternative Bayesian scenario (AB1) included the same priors as the Bayesian method but 

with a fixed depth rather than the tidally variable depth. AB2 used generic priors for AE rather 

than site-specific priors. AB3 used generic GPP and ER priors rather than estuarine-specific 

priors. Asterisks denote a statistically significant (p < 0.05) difference from the Bayesian method 

results. 
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Appendix 
 

Appendix. Methods 
 

Periphyton Production 

 

Periphyton production was measured in-situ at the Rice Rivers Center pier on 5 occasions 

between May-August 2016 to determine the periphyton contribution to pelagic metabolism. 

Periphyton production was measured in triplicate at 0.5 and 1.0 m depth intervals using 

horizontally placed unglazed clay tiles. Incubations lasted between 7-14 days, after which, 

periphyton were removed for CHLa analysis. CHLa samples were filtered through Whatman 

GF/A glass fiber filters following each periphyton incubation. Samples for pigment analysis 

were extracted in a 90% buffered acetone solution for 18 hours and analyzed on a Turner Design 

TD-700 Fluorometer (Sellers and Bukaveckas 2003, Bukaveckas et al. 2011). Areal periphyton 

CHLa abundance was then compared to areal pelagic CHLa abundance.   

Zooplankton Dynamics 

 

Macro (> 64 µm) and meso (64-20 µm) zooplankton samples were collected between 

March 2013 and December 2016 at a long-term Chesapeake Bay Program monitoring station 

(JMS75) located in the lower TF segment near the VCU RRC. Samples were collected twice per 

month when water temperatures > 10 °C and once per month when < 10 °C. All samples were 

collected in triplicate and preserved in a 5% acid Lugol’s solution. Macrozooplankton (i.e., 

Copepods and Cladocerans) were collected via vertical tows (0-3m) with a 64 μm mesh plankton 

net equipped with a flowmeter. Mesozooplankton (i.e., Rotifers) were collected by filtering 20 L 

of water through a 20 μm mesh plankton net. A 5-20 mL subsample of each replicate was 

analyzed via microscopy at 40x (macrozooplankton) and 63x (mesozooplankton) magnification. 

Typically, ~50 individual macrozooplankton and ~100 individual mesozooplankton were 
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identified per subsample. Zooplankton abundance estimates were derived based on volume 

filtered and fraction of sub-sampled counted. Statistical analysis of these data used path analysis, 

a form of structural equation modeling (SEM; IBM Corp. Version 23.0), to determine the effect 

of multiple correlated variables on zooplankton abundance. Variables included in the model 

were: water temperature, freshwater replacement time (FRT), GPP, turbidity, CHLa, total 

suspended solids and particulate organic carbon. FRT was derived based on a date-specific 

method that divides the storage volume of the tidal fresh segment by the sum of preceding daily 

discharge measurements (Alber and Sheldon 1999). Discharge is continuously monitored by the 

USGS at sites near the Fall Line on the James (02037500) and Appomattox Rivers (02041650). 

Statistical significance among predictor variables was determined using an alpha ≤ 0.05. Model 

fitness, the chi-squared (χ2) goodness-of-fit statistic, root mean square error of approximation 

(RMSEA) and the comparative fit index (CFI) (Hu and Bentler 1999). Models with the lowest χ2 

were determined to have better model fit, as well as a greater RMSEA score and a CFI 

approaching 1. 

Appendix. Results 
 

Pelagic Metabolism 

 

Pelagic GPP and R were greater in the lower tidal freshwater (TF) segment of the James 

in comparison to the upper TF segment (Appendix Fig. 1). Pelagic GPP in the lower TF segment 

was nearly 10-fold higher (mean = 4.53 ± 0.57 g O2 m
-2 d-1) relative to the upper TF (mean = 

0.50 ± 0.22 g O2 m
-2 d-1). Pelagic respiration was also higher in the lower TF segment (mean = 

3.28 ± 0.42 g O2 m
-2 d-1) in comparison to the upper TF (mean = 0.08 ± 0.01 g O2 m

-2 d-1). Net 

pelagic metabolism was 3-fold higher in the lower TF segment (mean = 1.24 ± 0.33 g O2 m
-2 d-1) 

relative to the upper TF segment (mean = 0.41 ± 0.21 g O2 m
-2 d-1). Positive mean values 
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indicate that the water column was overall net autotrophic (GPP > R), though net heterotrophy 

was observed on some dates in Fall and Winter.  

Light availability was an important determinant of pelagic GPP, particularly during 

periods of elevated water temperature (Appendix Fig. 2). When water temperatures were > 20 

°C, instantaneous photosynthetically active radiation (PAR) explained 49% of the variation in 

pelagic GPP in the upper TF segment (p = 0.0001) and 77% of the variation in the lower TF 

segment (p < 0.0001). When water temperatures were < 20 °C, instantaneous PAR explained 

19% of the variation in pelagic GPP in the upper TF segment (p = 0.0001) and 42% in the lower 

TF segment (p < 0.0001). Pelagic GPP had a significant positive linear relationship with pelagic 

R in the upper and lower TF segments of the James (Appendix Fig. 3). Pelagic GPP accounted 

for 48% of the variation in pelagic R for the upper TF segment (p < 0.0001) and 65% in the 

lower TF segment (p < 0.0001).  

Periphyton Production 

 

 Periphyton production in the lower tidal freshwater segment of the JRE was routinely less 

than 1% of pelagic production. Areal pelagic CHLa concentration ranged between 15.4 and 5.8 

µg cm-2 while areal periphyton CHLa concentration was always < 0.1 µg cm-2. These results 

suggest that periphyton production contributes little to pelagic production, suggesting rapid light 

attenuation in the lower TF segment of the JRE. 

Zooplankton Dynamics 

 

Macrozooplankton from the lower tidal freshwater segment of the JRE were dominated 

by the cladoceran Bosmina longirostris and the copepod Eurytemora affinis during the study 

period. Mesozooplankton from the same segment were dominated by rotifers (principally 

Brachionus, Kelicottia and Keratella) and copepod nauplii. All zooplankton abundance showed 
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seasonal variation with lower abundances during the winter months and greater abundances in 

summer months (Appendix Fig. 4). Rotifers were most abundant during the study period 

averaging 421,439 ± 44,016 ind. m-3, followed by copepod nauplii (769 ± 212 ind. m-3) which 

were on average significantly (p < 0.001) more abundant during the study period than Bosmina 

and Eurytemora (312 ± 93 and 274 ± 78 ind. m-3 respectively). Peek Bosmina abundances 

succeed peeks in Eurytemora which succeeded peeks in copepod nauplii abundance. Rotifer 

abundance persisted at elevated levels when water temperature was greater than 13 °C.  

The best fitting model for each zooplankton had the same model structure and variables, 

with water temperature and FRT as abiotic variables and GPP, POC and turbidity as biotic 

variables (Appendix Fig. 5). Each model had significant and positive relationships between FRT 

and POC concentration (p < 0.001), water temperature and POC concentration (p = 0.002) and 

water temperature and GPP (p < 0.001; Appendix Fig. 5). Bosmina abundance was directly and 

positively correlated with FRT which explained 36% of the variation in Bosmina abundance (p < 

0.001; Appendix Fig. 5a). The path analysis model for Bosmina explained ~38% of the total 

variation in Bosmina abundance (R2 = 0.38; Appendix Fig. 5a). Eurytemora abundance was not 

well constrained by the path analysis (R2 = 0.10) with no significant direct effects of any variable 

on Eurytemora abundance (Appendix Fig. 5b). Copepod nauplii abundance was directly and 

positively correlated with turbidity (p = 0.028) with the model explaining 20% of the total 

variation in copepod nauplii abundance (R2 = 0.20; Appendix Fig. 5c). Total rotifer abundance 

was directly and positively correlated with increasing water temperature (p = 0.003; Appendix 

Fig. 5d). The path analysis model for total rotifer abundance explained 48% of the total variation 

in rotifer abundance (R2 = 0.48; Appendix Fig. 5d). 
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Appendix. Figures 

Appendix Figure 1. Pelagic gross primary production (GPP), community respiration (CR) and 

net ecosystem metabolism (NEM) from the upper (A) and lower TF (B) segments of the James 

River Estuary.  
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Appendix Figure 2. Production (pelagic GPP) versus irradiance curves for the upper (A, C) and 

lower TF (B, D) segments of the James River Estuary when water temperature was above or 

below 20 oC. 
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Appendix Figure 3. Pelagic R had a significant positive linear relationship with pelagic GPP in 

the upper TF (A) and lower TF (B) segments of the James River.     
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Appendix Figure 4. Densities of Bosmina longirostris (A), Eurytemora affinis (B) Copepod nauplii (C) and all rotifers (D) during 

2013-2016 at station JMS75 located in the lower TF segment of the James River. 
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Appendix Figure 5. Path analysis results for models predicting temporal variation in the 

abundance of Bosmina longirostris (A), Eurytemora affinis (B) Copepod nauplii (C) and all 

rotifers (D) in the lower TF segment of the James River. Bold lines denote statistically 

significant (p < 0.05) pathways and values denote the correlation coefficient of each statistically 

significant pathway.  
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