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Abstract 

 

THE CHARACTERIZATION OF CHIMERIC CHAPERONE FLAGRP170 AS A NOVEL 

RADIOPROTECTANT 

By Tyler Nguyen, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

Virginia Commonwealth University, 2017 

Major Director: Dr. Xiang-Yang (Shawn) Wang, Ph.D., Professor, Department of Human and 

Molecular Genetics 

Radiation therapy (RT) is restricted by toxic effects on adjacent normal tissue, which limits RT 

efficacy in cancer treatment. Damage to normal tissue, such as radiosensitive intestine and bone 

marrow compartments, results in acute radiation damage. To reduce normal tissue injury in the 

setting of RT, we examine the potential radioprotectant, Flagrp170, a chimeric protein. Flagrp170 

is comprised of glucose-regulated protein-170 (Grp170) and a NF-κB activating sequence derived 

from flagellin. We show that Flagrp170 can protect normal tissues post irradiation, indicated by 

TUNEL and clonogenic assays. However, treatment with Flagrp170 does not influence tumor 

response to RT. Studies indicate that Flagrp170 activates the transcription factor NF-κB, a strong 

pro-survival signal. In addition, Flagrp170 can induce production of radioprotective cytokines as 

well. Data suggests that Flagrp170 has potential as a novel radioprotectant in the setting of RT. 

The combination of Flagrp170 therapy and RT may lead to improved treatment outcomes.
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Introduction 

Exposure to high doses of ionizing radiation (IR) results in genetic damage, mutation, and 

cell death through apoptosis or mitotic death.1 Radiation induced cell death occurs within the 

first cell division or a few divisions thereafter.2 Thus, highly proliferative cells are often the most 

sensitive towards genotoxic damage. Modern medicine takes advantage of this highly targeted 

radiation induced damage in radiation therapy (RT) as cancerous cells are inherently mitotically 

active[DS1] compared to most normal tissue. In addition, tumor cells have little means of recovery 

from genetic damage, whereas adjacent normal tissue may recover if the therapeutic radiation 

dosage is tolerable or if the cellular supply of functional cells are regenerated by progenitor cells. 

As of today, nearly 50% of patients diagnosed with cancer will eventually receive RT throughout 

the course of their treatment. RT is used to shrink tumors, cure early stages of cancer, prevent 

cancer from recurring, or improve symptoms of advance stages of cancer such as pain or 

obstruction.3 RT, however effective and widespread, is still limited by the genotoxic effects on 

normal adjacent tissue. 

Acute early reactions to radiotherapy usually occur within a few weeks of treatment. This 

type of radiation damage is most prominent in normal tissue with high cellular turnover, such as 

the gastrointestinal tract and the bone marrow compartment which are continuously 

regenerating.1 Radiation[DS2]-induced symptoms occur when functional cells are lost and are not 

recovered quickly enough to maintain homeostasis. The slow recovery of the gastrointestinal 

compartment after radiation is likely due to damage incurred by the clonogenic crypt cells. 

Repression of the hematopoietic compartment is due to multipotent progenitor cell death.2 
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Though these early acute reactions to RT rarely result in death, they restrict the effective 

therapeutic radiation dosage and may lead to chronic side effects such as fibrosis and persistent 

mucositis. Studies have revealed that aggravated acute reactions can lead to consequential late 

effects (CLE) as well. CLE often occurs after organ systems in which physiological barriers cease 

to protect against mechanical or chemical stress (gut, urinary bladder, oral mucosa, and the 

skin).4-7 Persistent acute reactions cause a breakdown of the mucosal barriers, which often 

results in additional damage to connective and endothelial tissue. The additional damage 

incurred by connective and endothelial tissue sensitizes patients to CLE. 

In treating cancer, the tolerable radiation dosage for separate human organs are based 

on published guidelines which clinicians follow. However, these guidelines have been largely 

derived from retroactive data and empirical observations.8 In severe cases[DS3], it is necessary to 

operate outside of the established guidelines and treat patients with unconventional and 

aggressive irradiation protocols. Unfortunately, in such cases, aggressive radiation treatments 

are often associated with the aggravated acute reactions, which entails more severe and longer 

lasting symptoms as well as higher risk of CLE. The exact tolerable RT dosage is also difficult to 

pinpoint since radiation sensitivity can differ from person to person. Although there has been an 

effort to create genetically predictive tests[DS4], there has been no convincing evidence for the 

applicability of these tests.9 This highlights the importance of radioprotectants. Radioprotectants 

can improve the efficacy of RT either by reducing the severity of radiation sickness, improving 

normal tissue recovery, or widening the therapeutic window of RT with higher tolerable dosages. 

Currently, there is only one radioprotectant approved by the FDA, Amifostine, a prodrug which 

becomes a[DS5] reactive oxygen species (ROS) scavenger once it is hydrolyzed by alkaline 
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phosphatases. However, Amifostine produces inconsistent radioprotective results when applied 

to a range of radiotherapies.10 Consequently, the treatment is only FDA approved for radiation 

therapy treating head and neck cancers as Amifostine consistently reduces xerostromia.11 

Amifostine also has limiting side effects such nausea, vomiting, and most severely, hypotension.12  

In this project, we characterize Flagrp170, a chimeric chaperone protein, as a potential 

radioprotectant. Previous studies have characterized Flagrp170 as an immune modulator, highly 

effective in mobilizing and restoring antitumor immunity. Flagrp170 is derived from a large 

chaperone protein, glucose-regulated-protein-170 (Grp170), conjugated with a flagellin derived 

pathogen-associated molecular pattern (PAMP).13 Grp170 has been previously shown to be an 

effective immune-stimulatory adjuvant for therapeutic immunizations against cancers such 

melanoma and prostate cancer in mice.14 The flagellin derived PAMP conjugated to Grp170 is 

danger signal that acts as a ligand that simulates the immune system through[DS6] the Toll-like 

receptor 5 (TLR5). The TLR5 signaling pathway culminates in the activation of transcription factor, 

NF-κB.15 Flagrp170 may act as an effective radioprotectant as the activation of NF-κB is known 

method of radioprotection.1,16,17 In addition, the molecular chaperone functions of Flagrp170 

may further enhance the ligand/receptor interactions between the NF-κB activating PAMP and 

TLR5.13 

The innate immune system relies on a set of evolutionary conserved pattern recognition 

receptors (PRR) to recognize a variety of microbial components and elicit an appropriate immune 

response. Toll-like receptors are among an assortment of PRRs located on various immune cells 

such as macrophages, dendritic cells, B cells and neutrophils as well as non-immune cells like 

fibroblasts, epithelial cells, and keratinocytes.15 TLRs can recruit a set of adapters that triggers a 
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downstream signaling cascade after recognizing a PAMP that leads to the activation of the NF-κB 

pathway. TLR5, a member of the TLR family, senses the microbial component, flagellin. Once 

activated, TLR5 recruits myeloid differentiation primary-response protein 88 (MyD88), which in 

turns recruits interleukin receptor associated kinase 4 (IRAK4) associated with IRAK1. IRAK4 will 

[DS7]phosphorylate IRAK1. IRAK1,[DS8] once phosphorylated, associates with tumor necrosis factor 

receptor-associated factor 6 (TRAF6). The complex formed by p-IRAK1 and TRAF6 will dissociate 

from the receptor[DS9] and form yet another complex with transforming growth factor beta-

kinase 1 (TAK1), TGF-beta activated kinase 1 binding protein 1 (TAB1), and TAB2. TAK1 and TAB2 

are phosphorylated as the complex forms. The phosphorylation of TAK1 and TAB2 leads to the 

ubiquitylation of TRAF6 which activates TAK1. TAK1 phosphorylates the inhibitor of nuclear factor 

κB (IκB)-kinase complex (IKK complex), which is composed of IKKα, IKKβ, and IKKγ. The IKK 

complex will phosphorylate IκB, which is constitutively bound[DS10] to transcription factor NF-κB. 

phosphorylated, IκB will undergo ubiquitylation and subsequently degrade, freeing NF-κB to 

translocate to the nucleus.18-20 

Once activated, NF-κB induces the transcription of cytokines and chemokines necessary 

for the immunologic and hematopoietic response which may alleviate radiation damage by 

enhancing recovery from acute radiation syndrome. NF-κB can induce the transcription of 

radioprotective cytokines and growth factors such interleukin-6 (IL-6), tumor necrosis factor 

alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF) and granulocyte 

colony-stimulating factor (G-CSF). Previous studies have shown IL-6 plays a significant role in 

hematopoietic recovery after irradiation and is an essential contributor to natural 

radioresistence.21 Like IL-6, TNF-α has been also been shown to be a natural contributor to 



 

5 
 

radioresistance[DS11]. Anti-TNF-α antibodies reduces survival of irradiated mice and studies have 

shown that administration of TNF-α shortly after irradiation significantly protect irradiated mice. 

In addition, TNF-α can also induce the transcription of manganese super oxide dismutase 

(MnSOD), an effective ROS scavenger.22 GM-CSF and G-CSF induces radioprotection by 

stimulating progenitor stem cells. These growth factors induce proliferation and differentiation 

in the hematopoietic compartment, reducing and preventing radiation induced 

myelosuppression and neutropenia.23  G-CSF treatment has been shown to accelerate 

hematopoietic regeneration and enhance survival after lethal irradiation in mouse models.24 

DNA damage caused by radiation induces apoptosis,[DS12] most prominently in progenitor 

of the gastrointestinal and hematopoietic compartments. A substantial lack of intestinal crypt 

cells and hematopoietic progenitor cells is the prevalent cause of acute radiation syndrome. 

Untreated, acute radiation reactions can cause oral and gut epithelial mucositis as well as 

hematopoietic repression. Prolonged mucositis can disrupt the integrity of mucosal barriers. 

Hematopoietic repression leaves the immune system vulnerable to opportunistic infections.2 We 

predict that Flagrp170 can effectively protect against radiation damage and acute radiation 

effects by reducing apoptosis through the activation of NF-κB which incites the production of 

anti-apoptotic proteins as well as radioprotective cytokines. Studies have shown that increasing 

NF-κB activity inhibits apoptosis in a variety of normal cells lines.16,25 Cancer cell lines often have 

NF-κB constitutively active as a mechanism of escape. The mechanisms behind the anti-apoptotic 

effects of NF-κB still has not[DS13] been completely elucidated, however, it is understood that NF-

induces numerous agents that plays a role in desensitizing cells to apoptotic signals. Several 

genes regulated by NF-κB has been identified and shown to have a significant role in blocking 
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apoptosis. These genes include the anti-apoptotic members of Bcl-2 family (A1/Bfl1, Bcl-Xl, and 

NRl3) and inhibitors of apoptosis (cIAP-1, cIAP-2, TRAF1, and TRAF2).25,26 The anti-apoptotic Bcl-

2 family members promote cellular survival and inhibit[DS14] pro-apoptosis signals.27 Inhibitors of 

apoptosis cIAP-1/2 proteins and TRAF1/2 bind caspases and suppress their activation, however 

the exact mechanism that inhibits their activity has not been well defined.28,29 Previous studies 

have demonstrated the effect of radioprotective agents that activate NF-κB.30,31 Flagellin injected 

prior to irradiation could reduce morbidity in lethally irradiated mice as well as rescue bone 

marrow cells. Vijay-Kumar et al. revealed that flagellin induced radioprotection required TLR5 

and MyD88, thus it[DS15] is likely to require NF-κB activation.31 Similarly, research conducted on 

CBLB502, an agonist of TLR5, concluded its effective radioprotective capabilities in mouse and 

primate models.30 

Chaperone proteins, otherwise known as stress proteins, support the folding of client 

proteins or bind folding intermediates to prevent aggregations. Molecular chaperones can 

maintain and stabilize the structure, conformation, and function of conjugated proteins. In 

cancer immunotherapy, chaperone proteins can induce a superior immune response when 

conjugated with an antigen compared to an antigen[DS16] alone because of their natural 

function and ability to hold and condense multiple antigens.32 As immune modulators, they are 

effective in binding an assortment of antigens, allowing for the efficient uptake of antigen via 

receptor specific interactions, and can interact with or stimulate innate immune components.33,34 

Of various families of chaperone proteins, Grp170 has been shown to have a superior capacity to 

hold client proteins and has been shown to induce a more significant antitumor response.35,36 In 

addition, Grp170 has been previously shown to facilitate the sensing of PAMP by intercellular 
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TLR-9.37 Flagrp170 retains the protein holding capabilities of Grp170 and its antigen cross-

capabilities.13  

We reason that Flagrp170 can effectively protect normal cells after radiation by reducing 

apoptosis and inducing radioprotective cytokines via the activation of NF-κB. Furthermore, 

Flagrp170 can effectively facilitate signal induction of TLR5, stabilize and perhaps enhance the 

function of the flagellin derived sequence, and induce a stronger cytokine induction via receptor 

specific interactions. 
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Materials and Methods 

Mice strains and Cell lines 

C57BL/6 and Balb/c mice were purchased from National Cancer Institute Mouse Repository 

(Frederick, MD). NF-κB-Luc-Tg mice was purchased from Taconic (Albany, NY). All experimental 

procedures were conducted according to the protocols approved by the VCU Institutional Animal 

Care and Use Committee (IACUC). CT-26 cells and SF-21 cells were purchased from American 

Type Culture Collection (Manassas, VA) and Clontech (Mountain View, CA) respectively. CT-26 

cells and SF-21 cells were maintained by RPMI1640 media (GE Healthcare, Glen Allen, VA) with 

10% FBS and 1% penicillin streptomycin and TNM-FH media (GE Healthcare, Glen Allen, VA)  with 

10% fetal bovine serum (FBS) and 1% penicillin streptomycin respectively. 

Protein Expression and Purification 

SF-21 cells were cultured with complete TNM-FH media in 15 mm plates. After confluency 

reached 90%, SF-21 cells were infected with Flagrp170 encoded baculovirus[DS18] (Invitrogen, 

Carlsbad, CA) per plate and cultured for an additional 48-72 hours until cells were granular and 

non-adherent. Between 48-72 hours SF-21 cells were extracted and lysed with prepared lysis 

buffer with proteinase inhibitors PMSF, Pepstatin A, benzamidine, and Levpeptin for 4 hrs at 

The lysate was then centrifuged at 10,000 RPM at 4˚[DS20]C for 1 hour. After centrifugation, the 

supernatant was incubated with Ni-NTA agarose beads (Qiagen, Hilden, Germany) overnight. The 

Ni-NTA agarose beads was filtered through the Poly-Prep Chromatography Columns (BioRad, 

Hercules, CA). 10 mL of binding was added to the column followed by 5 mL of wash buffer. Lastly, 

10 mL of elute buffer was pour though the column and collected. The elute buffer diluted with 
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1x phosphate buffered saline (PBS) and was concentrated using a Vivaspin 50,000 MVCO PES 

column (GE Healthcare, Glen Allen, VA). 

SDS-page and Western blot  

Purified protein was diluted with 5x SDS, denatured and loaded on a 15% SDS-PAGE followed by 

Coomassie Brilliant Blue staining (BioRad, Hercules, CA). Image was processed and analyzed via 

ImageJ, image processing software. For Western Blot analysis, protein sample was transferred 

from a 15% SDS-PAGE to a nitrocellulose membrane (BioRad, Hercules, CA). After transfer, the 

membrane was blocked with 5% bovine serum albumin (BSA) in milk followed by incubation with 

primary antibody overnight. Membrane was washed with 1x Tris-buffered saline-Tween-20 

(TBST) and then treated with secondary HRP-conjugated rabbit IgG antibody (Santa Cruz, Dallas, 

TX). Membrane was then treated with Peroxide solution and Luminal Enhancer solution (Thermo 

Fisher Scientific, Waltham, MA) to visualize bands. Images were processed on X-ray films (Phenix, 

Richmond, VA) using SRX-101A medical image processor (Konika Minolta, Tokyo, Japan). 

Preparation of Bone marrow derived macrophages 

Balb/c mice were sacrificed via CO2 followed by cervical dislocation. Bone marrow was flushed 

from mice femurs using a 6 mL syringe with 22 gauge needle containing serum free RPMI1640 

media. Bone marrow was suspended in single cell suspension. Cells were then centrifuged at 

1500 RPM for 5 minutes at 4˚[DS21]C. Serum free RPMI1640 media was removed and pellet was 

suspended with 70% RPMI1640 media and 30% L929 condition media containing G-CSF.  2 x 106 

cells were plated in a 6 well plates and incubated at 37˚[DS22]C and 5% CO2 for 7 days.  

Preparation of Bone marrow derived dendritic cells 
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Bone marrow derived dendritic cells were prepared in a similar manner to bone marrow derived 

macrophages, however the culture media used to induce dendritic cell differentiation is 98% 

RPMI1640 media and 2% B78H1 condition media containing GM-CSF. 

qPCR 

Total RNA was extracted via TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA) following 

standard procedures from Thermo Fisher (Waltham, MA). Reverse transcription preceded with 

materials (RNase Inhibitor, dNTP mix, Reverse Transcriptase, Oligo(dT)18 Primer) from Thermo 

Fisher (Waltham, MA). Reverse transcriptase PCR reaction occurred on MJ mini personal thermal 

cycler (BioRad, Hercules, CA). qPCR was conducted using materials and primers from Applied 

Biosystems (Foster City, CA) and processed on 7900 HT Fast Real Time PCR system (Applied 

Biosystems, Foster City, CA). Gene expression was relative to β-actin expression and normalized 

by negative control groups by standard (−ΔΔCT) calculation. 

ELISA 

Capture antibody (Biolegend, San Diego, CA) diluted in 1x Coating buffer (Biolegend, San Diego, 

CA) in ddH2O was pipetted at 100 µL per well in the ELISA MAX uncoated plate (Biolegend, San 

Diego, CA) and incubated at 4˚[DS23]C overnight. Coating buffer was removed and plate was 

times with 0.1% TBST in ddH2O by ELx50 automation (BioTek, Winooski, VT). All further wash 

procedures will proceed in a similar manner. Blocking buffer was prepared with 1x blocking buffer 

solution (Biolegend, San Diego, CA) in PBS. Plate was then blocked with 200 µL blocking buffer 

per well and incubated at room temperature (RT) for 1 hour. After 1 hour, blocking buffer was 

removed and plate was washed. After wash, 100 µL of sample were incubated in wells at RT for 
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2 hours. Samples were removed and plate was washed. After wash, the plate was incubated with 

Avidin-HPR solution (Biolegend, San Diego, CA) for 30 minutes. Avidin-HRP solution was removed 

and ELISA plate was thoroughly washed. TMB substrate solution (Biolegend, San Diego, CA) was 

incubated in ELISA plate in the dark at RT for 5-30 minutes depending probe. 

Reporter Mice Imaging 

NF-κB-Luc-Tg mice were treated protein or vehicle i.p. 1 hour prior to imaging. 10 minutes prior 

to imaging mice sedated via isoflurane (Henry Schein, Melville, NY) dispersed with an IVIS 

isoflurane vaporizer. Once sedated mice were inject i.p. with 200 µL of D-luciferin at 

concentration of 30 mg/mL (GoldBio, Olivette, MO). After injection mice were allowed to regain 

consciousness for 5 minute of activity in order to circulate luciferin. After 5 minutes mice were 

again sedated and placed in to the IVIS 200 In Vivo Imaging System (PerkinElmer, Waltham, MA). 

Image and fluorescence was processed by the IVIS living image software. ROI photon/sec 

measurement was determined by IVIS living image software as well. Immediately after imaging, 

mice were sacrificed via CO2 followed by cervical dislocation and organs were harvested. Within 

a 30 minute timeframe beginning with cervical dislocation, liver, spleen, small intestines, and 

colon samples were harvested and placed on clean black paper. Organs were then placed into 

the IVIS 200 In Vivo Imaging system. Image and fluorescence from organs were processed by the 

IVIS living image software. ROI photon/sec measurement was determined by IVIS living image 

software as well. 

Radiation Induced Tissue Injury Model 
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Mice were treated with protein or vehicle i.p. 1 hour prior to irradiation. Shortly prior to 

irradiation, mice were sedated with an i.p. injection of 200 µL of ketamine. Once fully sedated, 

mice were placed sparsely into a container which was placed into Cesium irradiator for a lethal 

dose of whole body radiation. Mice fully recovered from ketamine sedation before undergoing 

sacrifice or examination. Bone marrow and intestines was collected. Bone marrow cell viability 

was determined via clonogenic assay and normal tissue damage was measure via TUNEL stain. 

Radiation Treatment of Tumor-bearing Mice 

Tumors were induced via injection of 5 x 106 of CT-26 cells s.c. into the abdominal area. Tumor 

growth was recorded every 4 days. When tumors reached 5 mm in size mice were randomized. 

Once tumor were of size, mice were treated with either protein or PBS injection. Shortly prior to 

irradiation, mice were sedated with an i.p. injection of 200 µL of ketamine. Mice were placed into 

a container and restrained. Non-tumor-bearing portions were protected from radiation exposure 

by lead plate. Mice underwent a sub-lethal partial body irradiation dose. Mice fully recovered 

from ketamine sedation before undergoing sacrifice or examination. Normal tissue was collected. 

Radiation damage was measured via TUNEL staining. 

TUNEL/DAPI Immunohistochemistry 

Microscopic sections were incubated in 4% Paraformaldehyde in 1x PBS for 20 minutes. Slides 

were then rinsed twice in PBS and washed in PBS for 30 minutes at room temperature. After 

slides were washed, they were then incubated in 0.1% Triton and 0.1% Sodium Citrate for 2 

minutes at 4˚[DS24]C. Slides are then rinsed twice in PBS and dried. Once completely dried wax 

was drawn around the tissue samples on the slide. The TUNEL solution (Roche, Basel, 
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Switzerland) was prepared according to manufacturer’s protocol. 40 µL of TUNEL staining 

solution was pipetted on to tissue section and incubated in the dark for at 37˚[DS25]C for 1 hour. 

1 hour slides were washed for 5 minutes in PBS 3 times. Afterwards slides were dried and cover 

slipped using mounting media with DAPI (Vector Laboratories, Burlingame, CA). Fluorescence 

intensity was determined by ImageJ. 

Clonogenic Assay 

Balb/c mice were sacrificed via CO2 followed by cervical dislocation. Bone marrow was flushed 

from mice femurs using a 6 mL syringe with a 22 gauge needle containing serum free RPMI1640 

media. Bone marrow was suspended in single cell suspension. Cells were then centrifuged at 

1500 RPM for 5 minutes at 4˚[DS26]C. Serum free RPMI1640 was removed and pellet was re-

with 98% RPMI1640 media and 2% B78H1 condition media containing GM-CSF. Bone marrow 

cells were plated at 5 x 106 cells per plate in 6 well plate and 1 x 106 per plate in 12 well plate. 

Cells were incubated at 37˚[DS27]C and 5% CO2 for 10 days. After 10 days, culture media was 

and cells were incubated with crystal violet dye for 30 minutes. After 30 minutes, crystal violet 

dye was removed and washed with ddH2O and left to dry. Cell count was automated with ImageJ.  

Effect of Flagrp170 on Tumor Response to Radiation Therapy 

Tumors were induced via injection of 5 x 106 of CT-26 cells s.c. into the right dorsal flank of mice. 

Tumor growth was recorded every 4 days. When tumors reached 5 mm in size mice were 

randomized and injected s.c. with protein or vehicle. 1 hour post injection, mice underwent local 

radiation therapy directed at the flank where the tumor resided. Treatment with either protein 

with RT or PBS with RT was repeated the following day and once more the day after. A group of 
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tumor-bearing mice received neither injection nor RT. Experiment was terminated when tumor 

completely recessed or the diameter reached 2 cm. 

Statistical Analysis 

Statistical significance was determined by the Student t-test[DS28] or ANOVA. P values less than 

were considered to be statistically significant. 
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Figures 

 

 

Figure 1. Characterization of Flagrp170 preparation. Flagrp170 protein stock was purified from 

SF-21 cells infected with baculovirus encoding Flagrp170. Flagrp170 protein from infected SF-21 

cell lysate was extracted via nickel affinity chromatography. Flagrp170 was ran through SDS 

polyacrylamide gel (SDS-PAGE) to determine purity which was estimated by band density via 

ImageJ, image processing software. Purified protein also was analyzed via western blot with 

Grp170 antibody detection to confirm that purified protein was indeed Flagrp170.  



 

16 
 

 

A1 

 
 

 

 

 



 

17 
 

A2 

 
B 

 



 

18 
 

Figure 2. Flagrp170 reduces normal tissue injury and improves bone marrow cell viability after 

irradiation. (A) Balb/c mice (n=2) were intraperitoneally (i.p.) injected with PBS, Grp170, 

Flagrp170 (100 µg), or Flagrp170 (50 µg). All mice underwent a lethal dose of ionizing whole body 

irradiation (9 Gy) via cesium irradiator 1 hour after treatment. Random intestine sections were 

collected, encased in OCT and stored in -80˚[DS29]C. Tissue samples were sectioned on microscopic 

slides and apoptosis was analyzed by TUNEL assay. Results indicate there a significantly higher 

frequency of apoptotic cells in intestine samples from irradiated PBS treated mice and Grp170 

treated mice when compared to both groups of Flagrp170 treated mice. (B) Bone marrow 

samples were harvested 5 hours after irradiation from the femora of all mice groups for 

clonogenic assay. Bone marrow cells (BMCs) were plated at 5 x 10^6 cells per well. All BMC 

samples were cultured with in complete RPMI1640 media with GM-CSF in six well plates. BMCs 

were cultured for 10 days. On the 10th day, each plate was stained with crystal violet dye and cell 

count was estimated via ImageJ. Results indicate there is a significantly higher cell per mm2 in the 

plates cultured with BMCs from Flagrp170 treated mice when compared to BMCs from PBS 

treated mice. There was no significant difference between the Grp170 treated group and the 

Flagrp170 treated group. There was no significant difference between the Grp170 treated group 

and the PBS treated group. *, P < 0.05; NS, not significant
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Figure 3. Flagrp170 has a protective effect on normal tissue in the context of radiation therapy. 

Balb/c mice (n =3) were subcutaneously (s.c.) injected in the abdominal area with 5 x 106 cells 

CT-26 to induce tumor. After 1 week, mice were i.p. injected with 50 µg of Flagrp170 or PBS. 1 

hour after treatment, Flagrp170 and PBS treated mice group underwent 10 Gy of partial body 

irradiation (PBI) in the abdominal area where the tumor resided. Mice left un-irradiated were 

used as controls. Random intestines were collected, encased in OCT, and stored in -80˚[DS30]C. 

samples were sectioned and stained with DAPI/TUNEL. Results shows a higher frequency of 

apoptotic cells in irradiated intestines from PBS treated mice when compared to Flagrp170 

treated mice. *, P < 0.05
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Figure 4. Flagrp170 does not alter tumor response to radiation therapy. Balb/c mice (n =3) were 

s.c. injected with 5 x 106 CT-26 cells to induce tumor growth on the right leg. Tumor growth was 

recorded every 4 days. When tumor size reached 4-5 mm in diameter (indicated with red arrow), 

2 groups of mice were s.c. injected in the area of the tumor with either 50 µg of Flagrp170 or PBS. 

1 hour after treatment, mice underwent 10 Gy of local radiation therapy where the tumor 

resided. The injections and the irradiation treatment was repeated twice more in the following 2 

days (indicated by black arrows). 1 group of mice was left untreated as a negative control. Results 

show there is no significant difference in tumor response to radiation therapy in the PBS 

treatment group when compared to Flagrp170 treatment group. *, P < 0.05; NS, not significant
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Figure 5. Flagrp170 induces the transcription and production of radioprotective cytokines IL-6 

and TNF-α in bone marrow derived macrophages (BMDM) and dendritic cells (BMDC). (A) 

BMDMs and BMDCs were treated with Flagrp170 (20 µg/mL) and vehicle (PBS). After 12 hours 

BMDMs and BMDCs were collected and RNA was extracted. qPCR analysis determined that there 

were significantly more IL-6 and TNF-α mRNA in BMDMs and BMDCs treated with Flagrp170 

when compared to PBS treated BMDMs and BDMCs. (B) BMDMs and BMDCs were treated with 

Flagrp170 (20 µg/mL) or vehicle (PBS). After 24 hours BMDMs and BMDCs culture media was 

collected. ELISA determined there was a significantly higher concentration of IL-6 and TNF-α 

cytokine in the culture media of BMDMs and BMDCs treated with Flagrp170 when compared 

with the culture media from BMDMs and BMDCs treated with PBS. *, P < 0.05 
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Figure 6. Flagrp170 induces IL-6 and TNF-α In vivo. Balb/c mice (n=2) were i.p. injected with 50 

µg of Flagrp170 or vehicle (PBS). Peritoneal lavage fluid and serum was collected 4 hours after 

injection. The concentration of IL-6 and TNF-α in peritoneal lavage fluid and serum was 

determined via ELISA. The concentration of IL-6 cytokines was significantly higher peritoneal 

lavage fluid and serum from the Flagrp170 treatment group compared to PBS treatment group. 

The concentration of TNF-α was significantly higher in peritoneal lavage from the Flagrp170 

treatment group compared to PBS treatment group, however there was no significant difference 

in serum concentration of TNF-α. Experiment repeated 2 additional times with similar results, 

above data is representative. *, P < 0.05; NS, not significant
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Figure 7. Flagrp170 induces systemic activation of NF-κB. (A) NF-κB-luc-tg reporter mice (n = 3) 

were i.p. injected with 50 µg of Flagrp170 or vehicle (PBS). 90 minutes after injection, mice were 

injected with luciferin (30mg/mL) and imaged using an IVIS imaging instrument. Fluorescence 

was determined by Living Image software. Results show Flagrp170 treatment strongly activates 

NF-κB systemically when compared to PBS treatment in NF-κB-luc-tg reporter mice. (B) 

Immediately after imaging, NF-κB-luc-tg reporter mice (n = 3) were sacrificed and organs samples 

were collected. Spleen, liver, small intestines and colon samples from all mice were imaged using 

the IVIS. Fluorescence was determined by living image software. Results show that organ samples 

from the Flagrp170 treatment group had much stronger fluorescent signals when compared to 

the PBS group. Flagrp170 treatment group had stronger activation of NF-κB compared to PBS 

treatment group *, P < 0.05



 

29 
 

A1 

 
 

 

 

 



 

30 
 

A2 

 

 



 

31 
 

 

 

B

 

 

 



 

32 
 

Figure 8. Flagrp170 is dependent on TLR5 to alleviate radiation induced damage in the intestinal 

compartment, however Flagrp170 does not require TLR5 to improve bone marrow cell viability 

after irradiation. (A) C57BL6 (WT) and TLR5 -/- mice (n=3) were i.p. injected with Flagrp170 or 

vehicle (PBS). 1 hour after injection, all mice underwent a lethal dose (9 Gy) of whole body 

irradiation. 4 hours after irradiation small intestines were harvested and frozen for sectioning. 

Tissue selections from all irradiated mice was stained with TUNEL/DAPI. Intestinal tissue from 

untreated and un-irradiated WT mice was stained as a negative control. Intensity of TUNEL 

staining was determined by ImageJ. Flagrp170 treated WT mice had significantly less apoptotic 

cells after irradiation when compared to PBS treated WT mice. There was no significant reduction 

of apoptotic cells after irradiation between Flagrp170 treated and PBS treated TLR5 -/- mice. 

Flagrp170 in dependent TLR5 to reduce normal tissue damage after irradiation. (B) BMCs were 

harvested 5 hours after irradiation from the femora of all mice groups for clonogenic assay. BMCs 

were plated at 1 x 10^6 cells per well. All BMC samples were cultured with in complete RPMI1640 

media with GM-CSF in 12 well plates. BMC were cultured for 10 days. On the 10th day, each plate 

was stained with crystal violet dye and cell count was estimated via image processing software, 

ImageJ. Results indicate there is a significantly higher cell per mm2 volume in the plates cultured 

with BMC’s from Flagrp170 treated mice when compared to BMC’s from PBS treated mice 

regardless of phenotype. *, P < 0.05; NS, not significant 
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Results[DS31] 

Protein purified from SF-21 cells infected baculovirus encoding Flagrp170 sequence.  

 Prior to the experiments in which Flagrp170 was characterized as a radioprotectant, we 

first purified a stock of the protein. The baculovirus encoding Flagrp170 was used to infect SF-21 

cells which produced the protein. The cells were lysed and the recombinant Flagrp170 was 

purified via nickel affinity chromatography. The purified protein was ran through a SDS-page gel 

and purity was determined to be above 80% via ImageJ (Figure 1). To confirm that the purified 

protein was indeed Flagrp170, the protein elute was ran through a polyacrylamide gel, 

transferred to a nitrocellulose membrane, and detected using anti-Grp170 antibody (Figure 1). 

The antibody recognized Flagrp170 at 150 kDa with two bands. The two bands [DS32]are likely due 

to post-transcriptional modification, glycosylation. 

 

Flagrp170 protects the gastrointestinal and the bone marrow compartment from irradiation.  

 Gastrointestinal acute radiation syndrome (ARS) is defined by the destruction of 

clonogenic crypt cells.1 To provide evidence of Flagrp170 induced radioprotection we examined 

the number[DS33] of apoptotic cells in the gastrointestinal compartment of mice after irradiation. 

Our studies showed that Flagrp170 reduced the number of apoptotic cells in the gastrointestinal 

tract when compared to the PBS treated group. This effect was specific to Flagrp170 and we did 

not see a dose dependent effect in current experimental settings. In addition, it is likely that the 

NF-κB activating domain of flagellin is responsible for this effect as there is a significant reduction 

of apoptosis in small intestines of mice from Flagrp170 groups when compared to Grp170 groups 

(Figure 2A). In this experiment, we also examined the bone marrow compartment after 
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irradiation. We collected and cultured bone marrow cells (BMC) from all groups. After 10 days, 

the clonogenic assay showed that there was a significantly increased BMC density in plates 

cultured from mice that received Flagrp170 injection prior to irradiation when compared to PBS 

treatment group. Our results indicate an increased BMC viability[DS34] from animals treated either 

dosage of Flagrp170 when compared to PBS groups. However, there is no significant difference 

in BMC viability between Grp170 and Flagrp170 groups (Figure 2B). Though there is not a 

significant difference between Grp170 treatment and Flagrp170, this result is likely artificial as 

Grp170 should not elicit an immune response by itself and should not have any mechanisms 

which can improve BMC viability. 

 

Flagrp170 induced radioprotection is specific to normal tissue.  

In order for Flagrp170 treatment to improve the therapeutic index of radiotherapy, the 

protein’s radioprotective effect must be specific to normal tissue. Aberrant NF-κB activation is 

already a naturally occurring mechanism by which tumor cells escape the death pathway. If 

Flagrp170-induced[DS35] radioprotection does depend on NF-κB activation, we predict that it 

be effective only in normal tissue and not in tumor tissue. To test our hypothesis, we established 

tumors by injecting CT-26 cells (5 x 105 per injection), a colon cancer cell line s.c. at the abdominal 

area of Balb/c mice. Once the tumor grew to size (5 mm in diameter), mice were treated with 

Flagrp170 or PBS and underwent partial body irradiation. Consistent with our previous findings 

(Figure 2A), Flagrp170 treated mice had a significant reduction of apoptosis in small intestinal 

tissue in the context of radiotherapy. In addition, we also conducted a tumor growth study to 

examine the effect of Flagrp170 on tumor response to radiation treatment over time. Our studies 
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showed that there was no significant difference in tumor response between the Flagrp170 

treatment and the PBS treatment group after irradiation (Figure 4). Our findings indicate that 

Flagrp170 has radioprotective effect specific to normal tissue. 

 

Flagrp170 induces radioprotective cytokines both in vitro and in vivo. 

In order to explore the possible mechanisms responsible for the radioprotective 

capabilities of Flagrp170, we first determined the biological effects of the protein without 

radiation. Given that Flagrp170 has been initially described as an effective immune adjuvant13 we 

used two types of immune cells, bone marrow derived macrophages and bone marrow derived 

dendritic cells as experimental models. Our qPCR results demonstrated that the transcription of 

IL-6 and TNF-α was significantly higher in Flagrp170 treatment groups of both macrophages and 

dendritic cells in comparison to PBS treatment groups (Figure 5A).  

Next we examined radioprotective cytokine concentrations in the culture media of 

dendritic cells and macrophages to ensure there is an elevated production of IL-6 and TNF-α after 

treatment. Consistent with our qPCR results, the culture media from cells treated with Flagrp170 

had significantly higher concentrations of IL-6 and TNF-α when compared to culture media from 

PBS treated cells (Figure 5B). Despite the statistical significance, the Flagrp170 induced 

production of TNF-α in dendritic cells may not be biologically significant. 

After we established a statistically significant result from in vitro studies, we moved on to 

examine the effect of Flagrp170 in vivo. ELISA results shows that the concentration of IL-6 and 

TNF-α was significantly higher in peritoneal lavage fluid from Flagrp170 treated mice when 

compared to PBS treated mice (Figure 6). Furthermore, our results showed a significant increase 
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of IL-6 concentration in serum from Flagrp170 treated mice when compared to PBS treated mice. 

However, despite the increased concentration of IL-6 in serum after Flagrp170 treatment, the 

difference in concentration of TNF-α in serum between PBS treated mice and Flagrp170 was non-

significant (Figure 6). Overall our in vivo studies determined that Flagrp170 delivered 

intraperitoneally has both a significant local and systematic effect. 

 

Flagrp170 induces the activation of NF-κB in vivo.  

It has been previously shown that NF-κB activation can plays a significant role in 

radioprotection.1,30,31 Since a NF-κB activating domain is incorporated into Flagrp170, we 

predicted that NF-κB activation may be the principle mechanism by which Flagrp170 provides 

radioprotection to normal tissue. To ensure that Flagrp170[DS36] treatment does induce the 

of NF-κB, we examined the protein’s effect in NF-κB-luc-tg mice, a transgenic NF-κB reporter 

model. Factors that activate NF-κB can induce the expression of luciferase which correlates with 

NF-κB activation. Flagrp170 treatment groups were shown to have a significantly higher signal of 

luciferase compared to PBS treatment group (Figure 7A). In addition, our studies indicate that 

Flagrp170 induces the activation of NF-κB strongly in the spleen, liver, small intestines, and colon 

when compared to organs harvested from PBS treated groups (Figure 7B). 

 

Flagrp170 induced gastrointestinal radioprotection requires Toll like receptor 5 (TLR5). 

 As previously mentioned[DS37], we have predicted the principle mechanism behind the 

radioprotective effect of Flagrp170 is caused by the flagellin-derived[DS38] NF-κB activating 

conjugated to the protein. TLR5 is the innate receptor responsible for the sensing of flagellin and 
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initiates the signaling pathway which results in the activation of NF-κB.15  Thus[DS39], to explore 

mechanism behind Flagrp170 induced radiation protection, we examined the effect of Flagrp170 

in TLR5 -/- mice and compared to C57BL6 (WT) with normal functional TLR5 expression. 

Consistent with our previous results, Flagrp170 significantly reduced apoptosis after irradiation 

in intestinal tissue from WT mice when compared to PBS treated WT mice. However, Flagrp170 

had seemingly no significant effect on the gastrointestinal compartment in TLR5 -/- mice after 

irradiation (Figure 8A). 

 

Flagrp170 does not require TLR5 to increase bone marrow cell viability. 

 After examining the gastrointestinal compartment in TLR5 -/- mice we preceded to 

examine the bone marrow compartment. Unexpectedly, Flagrp170 treatment improved the 

viability of the bone marrow cells from both WT and TLR5 -/- mice. Consistent with our previous 

clonogenic assay (Figure 2B), BMCs from Flagrp170 treated WT mice had increased viability after 

irradiation when compared to BMCs from PBS treated mice (Figure 5B). Interestingly, Flagrp170 

also had a similar effect on BMCs from TLR5 -/- mice. BMCs derived from Flagrp170 treated TLR5 

-/- mice had significantly increased cell density after a 10 day culture, when compared to BMCs 

from PBS treated mice (Figure 8B). Our results indicate that Flagrp170 is dependent on TLR5 to 

protect gastrointestinal compartment from radiation induced injury, however Flagrp170 does 

not require TLR5 to improve BMC viability after radiation. 

 

 

 



 

38 
 

Discussion 

 Exposure to radiation can result in varying biological responses associated with tissue 

injury. Ionizing radiation induces the production of free radicals which if unregulated can 

adversely affect lipids, proteins, and DNA.38 Oxidative stress induced[DS40] by free radicals can 

lipid peroxidation which has been implicated in neurodegenerative diseases, ischemic 

reperfusion injury, kidney damage, and many other serious disease states.39 Oxidative damage 

to proteins can incur adverse changes to amino acid structures, peptide cleavage, and cause 

protein crosslinks[DS41]. Any of these modifications to protein structure can alter cellular 

such as signal transduction, enzyme activity, and various other protein function important to 

homeostasis.38,40  

On a genetic level, radiation-induced[DS42] free radicals can break DNA to a point beyond 

leading to cell death by mitotic death,[DS43] or apoptosis.2 The resulting cell death may lead to 

toxicity in which proliferative progenitor cells (epithelial and hematopoietic) are quickly depleted 

and unable to replenish terminal functional cells. At high enough radiation dose, acute radiation 

syndrome or radiation sickness is life threatening. At lower radiation doses[DS44], secondary early 

toxicity occurs in which cell populations with low turnover rates (endothelium, fibroblast, neural, 

muscle, etc.) are unable to function. Such an event leads to late radiation toxicities such chronic 

tissue dysfunction and tissue disorganization. Late reactions to radiation exposure is incredibly 

detrimental to quality of life and may even be life threatening. Though some cells are able to self-

repair DNA damage after radiation, they may still retain permanent genetic mutations which can 

lead to radiation induced carcinogenesis.1 
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To avoid these disease states researchers have explored several preventative measures 

against radiation toxicity. Detoxifying free radicals with scavengers is one of the most effective 

method of radioprotection.1,11,41-43 Mitochondrial manganese superoxide dismutase (MnSOD) is 

a well-researched ROS scavengers and has a very potent effect, converting oxygen radicals to 

hydrogen peroxide.41,43 The only FDA approved radioprotectant Amifostine is a ROS scavenger 

that is specific to normal tissue.11  

Outside of preventative measures, agents that enhance the DNA repair process after 

oxidative damage also has the potential to serve as radioprotectant. Agents such as Resveratrol, 

Oxoguanine DNA glycosylase, and PARP-1, [DS45], help alleviate oxidative damage and 

enhancing DNA repair.1 Resveratrol reduces chromosomal aberrations by expression of sirtuins 

(silent information regulator 2), proteins which accelerates DNA repair by histone deacetylation 

or mono-ribosyltransferase activity.44,45 Oxoguanine DNA glycosylase (OGG1) directly enhance 

repair by interacting with multiple enzyme involved in the repair process, accelerating 

restoration.46 PARP-1 is a nuclear enzyme that is involved in the suppression of imprecise repair 

and possibly preventing mutagenesis.47,48 

DNA damage due to radiation exposure triggers pro-apoptotic responses starting with the 

upregulation of the p53 gene, the guardian of genomic integrity. Blockers of p53 such as Sodium 

orthovanadate and pifithrin-α can significantly enhance survival and protect the gastrointestinal 

compartment from damage.49 The Bcl-2 family of proteins are important regulators of apoptosis. 

Bcl-2 and Bcl-xl are anti-apoptotic, while Bax and Bcl-2 homologous antagonist are pro-

Treatment with glycogen synthase kinase 3β, SB216763, and SB415286 can inhibit Bax and 

upregulate Bcl-2 in the intestinal crypt. These agents have been shown to reduce the apotosis in 
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crypt cells and protect mice against gastrointestinal radiation syndrome.50 NF-κB is an important 

transcription factor which regulates a host of genes including the Bcl-2 family and other inhibitors 

of apoptosis. Flagellin, a PAMP, has been shown to induce a radioprotective effect through the 

activation of NF-κB. Treatment with flagellin with prior to radiation significantly improves survival 

in mouse models.31 CBLB502, an engineered derivative of NF-κB activating domain of flagellin, 

has great potency as a radioprotectant. CBLB502 administered prior to irradiation preserved the 

normal crypt cell proliferation in mice and significantly improves survival even more effectively 

than Amifostine in mouse models.30 

Our examination of gut epithelial cells from lethally irradiated mice show that Flagrp170 

could significantly reduce apoptosis in the radiosensitive gastrointestinal compartment in both 

radiosensitive and radioresistant[DS47] mice strains, Balb/c and C57BL6 mice, respectively.51 The 

reduction of apoptosis is likely due to Flagrp170 induction of NF-κB activation. The data from our 

NF-κB reporter imaging indicates that Flagrp170 injection significantly activates NF-κB in the 

small intestines and colon tissue. Though the entirety of the mechanisms behind NF-κB induced 

anti-apoptotic effect has not been completely elucidated, it is understood that NF-κB induces the 

transcription of anti-apoptotic members of the Bcl-2 family and certain IAPs.52 IAPs induced by 

NF-κB, c-IAP1 and c-IAP2, can either directly block caspase functions or indirectly induce their 

degradation.28 C-Flip is another major anti-apoptotic gene that is under NF-κB control. C-Flip acts 

directly at the DISC, it blocks CD95-mediated apoptosis.53,54 Bcl-2 family members, Bcl-2, Bcl-xl, 

and Bfl-1[DS48], prevent cytochrome-C release and subsequent caspase 9 activation.27 

Our in vitro and in vivo studies showed that treatment with Flagrp170 induced a 

significant increase of IL-6 and TNF-α concentration, which are both radioprotective. Research 
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has shown that administration of IL-6 can accelerate hematopoietic recovery after irradiation.21 

IL-6 induced hematopoietic recovery may be an essential mechanism for which [DS49]Flagrp170 

provides radioprotection in the hematopoietic compartment. Despite accelerating 

hematopoietic recovery, IL-6 alone does not significantly improve recovery from lethal radiation 

damage. Administration of IL-6, however, does improve TNF-α and IL-1-induced[DS50] recovery 

lethal radiation.55 IL-6 likely requires interactions with TNF-α or IL-1 for a prominent 

radioprotective effect. Studies have demonstrated anti-TNF-α antibodies reduce survival of mice 

after irradiation, suggesting that TNF-α is involved in the natural response to radiation damage. 

Furthermore, TNF-α administration can reduce lethality after whole body irradiation by exert a 

radioprotective effect on bone marrow precursor cells.56-58 TNF-α has also been found to induce 

the transcription of MnSOD, an effective ROS scavenger effective in radioprotection.59,60 Though 

Flagrp170 induces a significant amount of IL-6 both in vitro and in vivo, TNF-α is only strongly 

induced significantly in vitro. Flagrp170 does induce a modest production of TNF-α, detected 

locally at site of injection in the lavage fluid. However, TNF-α is highly toxic so a high induction of 

the inflammatory cytokine would be detrimental. The modest induction of TNF-α may be 

adequate for synergistic radioprotective effect with IL-6. In addition, studies have indicated that 

only a minute concentration of TNF-α is required for transcription of MnSOD.59 

Though we have yet to compare Flagrp170 to other NF-κB activating agents, Flagrp170 

may be more effective in activating NF-κB due to its molecular chaperone functions. Flagrp170, 

as molecular chaperone function, could stabilize the structure and conformation of the NF-κB 

activating sequence conjugated to it.13,32 In addition, Flagrp170 may also be able to facilitate the 

sensing of NF-κB activating PAMP. Previous studies have indicated that Grp170, which Flagrp170 
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is derived from, can amplify TLR9 activation during pathogen recognition.37 Several studies have 

shown that uptake of chaperone proteins by antigen-presenting cells is mediated by receptors, 

such as SR-A, CD91, and LOx1.33,34,61 Flagrp170 may be more efficiently endocytosed[DS51] by 

presenting cells (APCs) and efficiently induce the production of radioprotective cytokines which 

is consistent with our in vitro studies. 

In this study, we did not delve deeply into the mechanisms by which Flagrp170 induces 

radioprotection. Our initial hypothesis was that Flagrp170[DS52]-induced radioprotection was TLR5 

dependent because Flagrp170 contains the NF-κB activating stimuli derived from flagellin, a TLR5 

ligand. From our mechanistic studies, we demonstrated that Flagrp170 does require TLR5 to 

reduce occurrence of apoptosis in the gastrointestinal compartment, supported by the 

observation that there was no difference in the number of apoptotic epithelial cells between PBS 

treated and Flagrp170 treated TLR5 -/- mice. Surprisingly however, our clonogenic assay 

indicated that Flagrp170 could improve the viability of BMCs derived from TLR5 -/- mice. This 

implies that there may be another mechanism responsible for Flagrp170-enhanced BMC viability. 

Supplementary figures from Dr. Yu revealed that TLR5 expression does not appear to mediate 

the activation of NF-κB in BMDC with adenovirus mediated delivery of Flagrp170.13 Our 

unpublished data also indicated that Flagrp170-induced[DS53] antitumor immunity may involve 

inflammasomes. It possible that NF-κB activation may be induced by another PRR. 

Though [DS54]we have characterized some aspects of Flagrp170’s potential as a 

there is still much left to be explored. In this study, we have mostly focused on Flagrp170’s effect 

in respects to acute early reactions to RT and thus are mostly short term. The duration, as well 

as the peak of Flagrp170’s radioprotective effect has yet to be defined. In addition, we have only 
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explored two methods of drug delivery for Flagrp170, intraperitoneal and subcutaneous. 

the Flagrp170 can be administrated orally or via intravenous injection as those are convenient 

methods of drug delivery for human treatment  

We have shown that Flagrp170 can substantially reduce apoptosis, but it is still unknown 

if this radioprotective effect is substantial. It is important to establish that Flagrp170 treatment 

does significantly improve the lifespan of mice after a lethal dose of ionizing radiation. A long 

term survival study should be conducted with lethally irradiated[DS56] mice to truly confirm 

efficacy as a radioprotectant. In addition, survival studies would be a straight forward approach 

of comparing Flagrp170 to other radioprotective agents. 

Even if Flagrp170[DS57]-inducedradioprotection can drastically improve lifespan[DS58] after 

radiation, inhibitors of apoptosis signaling may inadvertently increase the risk of mutagenesis by 

allowing genetically compromised cells to the escape death. Essentially, inhibitors of apoptosis 

[DS59]reduces early radiation toxicity[DS60], but at the cost of increased risk for radiation-induced 

carcinogenesis. However, Flagrp170 has distinct and effective immune modulating capabilities 

and the enhanced immune detection of tumor antigen may decrease the risk of recurring tumor 

regardless. Future studies should examine on the long-term effects of sub lethal radiation and 

explore the balance between the risk of radiation[DS61]-induced carcinogenesis and the lethality 

radiation or CLE. Cells lines and mice strains that are sensitive to DNA damage or have ineffective 

DNA repair mechanism would serve as good models. 

To this date, there has been no FDA-approved therapeutic mitigators for radiation 

damage. In the chance[DS62] occurrence of a nuclear incidence, there is no viable method of 
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radiation damage. CBLB502, an agent with similar attributes to Flagrp170, has been shown to be 

moderately effective as radiation mitigator taken after radiation exposure[DS63].30 In this study, 

have only observed Flarp170 induced radioprotection when delivered prior to radiation 

exposure, which supports its potential use in a preventative setting in clinical RT. There is[DS64] no 

evidence to exclude the possible mitigative effect of Flagrp170 if treatment occurs after 

radiation. 

EThough[DS65] early toxicity may be reduced by Flagrp170, however it is unclear if 

has any effect on long term consequential damage. Acute reactions that fail to heal can result in 

damage that extends to late radiation toxicities.2 Since the processes that results in later 

radiation sequelae are extremely complex, it was out of the scope [DS66]of the current study, 

future studies should examine if Flagrp170 affects vascular endothelial cells and fibroblasts. 

Future in vivo studies should examine whether Flagrp170 can reduces fibrosis and ulcers which 

are common symptoms among late effects of radiation. 

 The dual role of Flagrp170 as an immune modulator and, potentially, as a radioprotectant 

is an exciting[DS67][DS68] and unexplored prospect. Flagrp170 has already been described as an 

immune modulator and could induce therapeutic antitumor immunity against multiple lines of 

cancers. We predicted in our tumor study that Flagrp170 via s.c. delivery would be able to load 

tumor antigens after radiation treatment and to prime the immune system against the 

Counter to our predictions, Flagrp170 seemly had little positive effects on the reduction of the 

tumor size after radiation. Nevertheless, the tumor study did provide evidence that Flagrp170 

does not impact tumor response to RT, the combined immune-modulating[DS70] and 

effect of Flagrp170 should be further investigated in the setting of radiotherapy. Perhaps 
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adenoviral delivery of Flagrp170 can still effectively induce a radioprotective effect as previous 

studies suggested that there is still NF-κB activation with a viral delivery method. 

If applied as a therapeutic adjuvant in the setting of RT, Flagrp170[DS71] could potentially 

reduce common side effects of RT. Nausea, vomiting, and diarrhea results in part from damaged 

gut epithelial surfaces and an insufficient amount of function epithelial cells. Flagrp170 could 

quicken recovery since it can protect intestinal crypt cells from apoptosis and increase BMC 

viability. The quicken[DS72] recovery prevents extended acute toxicities thus lowering the risk of 

Opportunistic infections, which are a well-known phenomenon in patients severely damaged by 

radiation, could be prevented by Flagrp170 treatment. Flagrp170[DS73] by improving BMC viability 

inducing radioprotective IL-6 could accelerate hematopoietic recovery. Taken together our 

results indicate that Flagrp170 may be potentially exploited as a radioprotective agent in the 

clinical setting of RT.  
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